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Abstract

The low-rank matrix completion problem is a fundamentalgpean with many
important applications. Recently, [4],[13] and [5] obtdhthe first non-trivial
theoretical results for the problem assuming that the eeskezntries are sampled
uniformly at random. Unfortunately, most real-world d&tssdo not satisfy this
assumption, but instead exhibit power-law distributed gams In this paper, we
propose a graph theoretic approach to matrix completionsthliges the problem
for more realistic sampling models. Our method is simplartialyze than previ-
ous methods with the analysis reducing to computing thesktolel forcomplete
cascadem random graphs, a problem of independent interest. Byyaima the
graph theoretic problem, we show that our method achievast egcovery when
the observed entries are sampled from the Chung-Lu-Vu madhéth can gener-
ate power-law distributed graphs. We also hypothesizeahatlgorithm solves
the matrix completion problem from an optimal number of iestifor the popu-
lar preferential attachment model and provide strong doglievidence for the
claim. Furthermore, our method is easy to implement andbistantially faster
than existing methods. We demonstrate the effectivenessrafnethod on ran-
dom instances where the low-rank matrix is sampled accgriirthe prevalent
random graph models for complex networks and present piognigeliminary
results on the Netflix challenge dataset.

1 Introduction

Completing a matrix from a few given entries is a fundameptablem with many applications in
machine learning, statistics, and compressed sensinge Sompletion of arbitrary matrices is not
a well-posed problem, it is often assumed that the undeylgiatrix comes from a restricted class.
Here we address the matrix completion problem under thealadgsumption that the underlying
matrix is low-rank.

Formally, for an unknown matri®/ € R™*" of rank at mosk, givenQ2 C [m] x [n], Po(M)* and
k, the low-rank matrix completion problem is to find a matiixe R™*™ such that

rank(X) <k and Pq(X)="Pq(M). (1.2)

Recently Candes and Recht [4], Keshavan et.al [13], CamiteFa0 [5] obtained the first non-trivial
guarantees for the above problem under a few additionahgstsons on the matri®/ and the set of
known entrie€). At a high level, the assumptions made in the above papensecatated as follows.

Al M is incoherentin the sense that the singular vectorsidfare not correlated with the
standard basis vectors.

Throughout this papePo : R™*™ — R™*™ will denote the projection of a matrix onto the pairs of
indices inQ: (Pa(X)):; = Xy for (4,7) € Q and(Pa(X)):; = 0 otherwise.



A2 The observed entries are sampled uniformly at random.

In this work we address some of the issues with assumptioh A2 Q2 C [m] x [n], letthesampling
graphGq = (U,V,Q) be the bipartite graph with verticés = {u1,...,un}, V = {v1,...,0,}
and edges given by the ordered pair§ifA. Then, assumption [A2] can be reformulated as follows:

A3 The sampling grapli'q, is an Erds-Renyi random graph

A prominent feature of Ef@s-Renyi graphs is that the degrees of vertices are Poissoibdigtd and
are sharply concentrated about their mean. The technidiés5], [13], as will be explained later,
crucially rely on these properties of ErstRenyi graphs. However, for most large real-world graphs
such as the World Wide Web ([1]), the degree distributioniate significantly from the Poisson
distribution and has high variance. In particular, mosyéamatrix-completion datasets such as the
much publicized Netflix prize dataset and the Yahoo Musiaskit exhibit power-law distributed
degrees, i.e., the number of vertices of degiéeproportional tal~# for a constang? (Figure 1).

In this paper, we overcome some of the shortcomings of assamjA3] above by considering
more realistic random graph models for the sampling gi@ph We propose a natural graph theo-
retic approach for matrix completion (referred td@MC for information cascading matrix comple-
tion) that we prove can handle sampling graphs with power-latvibiged degrees. Our approach
is motivated by the models for informatiazascadingn social networks proposed by Kempe et
al. [11, 12]. Moreover, the analysis 8EMC reduces to the problem of finding densityesholds
for complete cascad@s random graphs - a problem of independent interest.

By analyzing the threshold for complete cascades in theomngtaph model of Chung, Lu & Vu
[6] (CLV model), we show thatCMC solves the matrix completion problem for sampling graphs
drawn from the CLV model. The bounds we obtain for matrix-ptetion on the CLV model are
incomparable to the main results of [4, 5, 13]. The methodtheflatter papers do not apply to
models such as the CLV model that generate graphs with skdegmetes. On the other hand, for
Erdos-Renyi graphs the density requirementd@aC are stronger than those of the above papers.

We also empirically investigate the threshold for comptetecading in other popular random graph
models such as the preferential attachment model [1], tfesfdire model [17] and the affiliation
networks model [16]. The empirical estimates we obtain fier threshold for complete cascading
in the preferential attachment model strongly suggesti@diC solves the exact matrix-completion
problem from an optimal number of entries for sampling pcares with preferential attachment.

Our experiments demonstrate that for sampling graphs dfesmm more realistic models such as
the preferential attachment, forest-fire and affiliatiobweek models|CMC outperforms - both in
accuracy and time - the methods of [4, 5, 3, 13] by an order @fnitade.

In summary, our main contributions are:

e We formulate the sampling process in matrix completion agging random graphé&:(;) and
demonstrate that the sampling assumption [A3] does notfooleal-world datasets.

e \We propose a novel graph theoretic approach to matrix caiapl@CMC) that extensively uses
the link structure of the sampling graph. We emphasize thatipusly none of the methods
exploited the structure of the sampling graph.

e We prove that our method solves the matrix completion proldsactly for sampling graphs
generated from the CLV model which can generate power-lawidited graphs.

e We empirically evaluate our method on more complex randasplymodels and on the Netflix
Challenge dataset demonstrating the effectiveness of etlrad over those of [4, 5, 3, 13].

2 Previous Work and Preliminaries

The Netflix challenge has recently drawn much attention éolofv-rank matrix completion prob-
lem. Most methods for matrix completion and the more genenalk minimization problem with

affine constraints are based on either relaxing the nonecorank function to a convex function
or assuming a factorization of the matrix and optimizing tésulting non-convex problem using
alternating minimization and its variants [2, 15, 18].

2We will often abuse notation and identify edges, v;) with ordered pairgi, 7).
*We consider the Exis-Renyi model, where edgdsi;, v;) € F independently with probability fop for
(,7) € [m] x [n] andp is the density parameter.



Until recently, most methods for rank minimization subjexiaffine constraints were heuristic in

nature with few known rigorous guarantees. In a recent lheailigh, Recht et.al [20] extend the
techniques of compressed sensing to rank minimizationafithe constraints. However, the results
of Recht et.al do not apply to the case of matrix completiothasonstraints in matrix completion

do not satisfy theestricted isoperimetry propertirey assume.

Building on the work of Recht et al. [20], Candes and Rechaf#] Candes and Tao [5] showed that
minimizing the trace-norm recovers the unknown low-rankrin@xactly under certain conditions.
However, these approaches require the observed entriesgarbpled uniformly at random and as
suggested by our experiments, do not work well when the gbdantries are not drawn uniformly.

Independent of [4, 5], Keshavan et al. [13] also obtainedlaimesults for matrix completion using
different techniques that generalize the works of Friedmgal. [9], Feige and Ofek [8] on the
spectrum of random graphs. However, the results of [13Lialy rely on theregularityof Erdds-
Rényi graphs and do not extend to sampling graphs with skewgrkd distributions even for rank
one matrices. This is mainly because the results of Friedetaal. and Feige and Ofek on the
spectral gapf Erdés-Renyi graphs do not hold for graph models with skewed expeatitgdees (see
[6, 19]).

We also remark that several natural variants ofttframing phase of [8] and [13] did not improve
the performance in our experiments. A similar observatias made in [19], [10] who address the
problem of re-weighting the edges of graphs with skewedekegin the context of LSA.

2.1 Random Graph Models

We focus on four popular models of random graphs all of whanrthg@enerate graphs with power-law
distributed degrees. In contrast to the common descriptadrihe models, we need to work with
bipartite graphs; however, the models we consider geaerakturally to bipartite graphs. Due to
space limitations we only give a (brief) description of thieu@g et.al [6], and refer to the original
papers for the preferential attachment [1], forest-fird Hit affiliation networks [16] models.

The CLV model [6] generates graphs with arbitragypected degree sequences,...,pm,
qis---squWithpy + ...+ p = q1 + ... + ¢, = w. Inthe model, a bipartite graphi = (U, V, E)

with U = {uy,...,un},V = {v1,...,v,} is generated by independently placing an edge between
verticesu;, v; with probabilityp;q; /w for all ¢ € [m], j € [n]. We define thelensityof an instance

of CLV model to be the expected average dediget+ ... + p,,)/(mn) = w/mn.

The CLV model is more general than the standardd&fBEnyi model with the casg; = np,¢; =
mp corresponding to the standard BsdRenyi model with density for bipartite random graphs.
Further, by choosing weights that are power-law distridutbe CLV model can generate graphs
with power-law distributed degrees, a prominent featuneaf-world graphs.

3 Matrix Completion from Information Cascading

We now present our algorithl@MC. Consider the following standard formulation of the lomka
matrix completion problem: Giveh, 2, Pq (M) for a rankk matrix M, find X, Y such that

Po(XYT) = Po(M), X € R™F Y c R™F, (3.1)

Note that givenX we can findY” and vice versa by solving a linear least squares regressidn p
lem. This observation is the basis for the popw#ernate minimizatiomeuristic and its variants
which outperform most methods in practice. However, anafythe performance of alternate min-
imization is a notoriously hard problem. Our algorithm camsleen as a more refined version of the
alternate minimization heuristic that is more amenablendyssis. We assume that the target matrix
M is non-degenerate in the following sense.

Definition 3.1 A rank k matrix Z is non-degenerate if there exist X € R™*F Y e R7»¥%,
Z = XY7T such that any & rows of X are linearly independent and any % rows of Y are linearly
independent.

Though reminiscent of thncoherenceroperty used by Candes and Recht, Keshavan et al., non-
degeneracy appears to be incomparable to the incohereogerfy used in the above works. Ob-
serve that a random low-rank matrix is almost surely noredegate.

Our method progressively computes rowsXfandY so that Equation (3.1) is satisfied. Call a
vertexu, € U asinfectedif the i'th row of X has been computed (the teinfiected is used to reflect



that infection spreads bgontactas in an epidemic). Similarly, call a vertex € V' as infected if
thej'th row of Y has been computed. Suppose that at an intermediate iteragidices. C U and
R C V are marked as infected. That is, the rows¥ofvith indices inL and rows ofY” with indices
in R have been computed exactly.

Now, for an uninfected € [n], to compute the corresponding rowf yJT € R*, we only need:
independent linear equations. Thus)ifis non-degenerate, to comquﬁ we only need: entries

of the j'th column of M with row indices inL. Casting the condition in terms of the sampling graph
Gq, y7T can be computed and vertex € V be marked as infected if there are at Idastiges from

v; to infected vertices i.. Analogouslyz! can be computed and the vertexc U be marked as
infected if there are at leastedges fromu; to previously infected verticeB.

Observe thatl = XYT = XWW YT, for any invertible matrixi/ € R***. Thus for non-
degeneraté/, without loss of generality, a set &frows of X can be fixed to be thke x k identity
matrix I;;. This suggests the followingascadingorocedure for infecting vertices g and pro-
gressively computing the rows &f, Y. HereLy, C U with |Ly| = k.

|CMC(GQ, PQ(M), L()):
1 Start with initially infected seté = Lo C U, R = (). Set thek x k sub-matrix ofX with rows
in Lo to bely.
2 Repeat until convergence:
(a) Mark as infected all uninfected verticedirthat have at lead¢tedges to previously infected
verticesL and add the newly infected vertices/b
(b) For each newly infected vertex < R, compute thej’th row of Y using the observed
entries of)M/ corresponding to edges from to L.
(c) Mark asinfected all uninfected verticedlirthat have at leadtedges to previously infected
verticesR and add the newly infected verticesio
(d) For each newly infected vertax, € L, compute the’th row of X using the observed
entries of M corresponding to edges from to R
3 OutputM’ = XYT.

We abstract the cascading procedure from above using theefvark of Kempe et al. [11] for
information cascades in social networks. et (W, E') be an undirected graph and fixC W,
k > 0. Defineog 1(4,0) = A and fort > 0 defineoq (A, t + 1) inductively by

oc k(A t+1)=0gr(A t)U{u e W : uhasatleast edgestwq (A, ¢t) }.

Definition 3.2 The influenceof aset A C W, o 1 (A), is the number of vertices infected by the
cascading process upon termination when starting at A. That is, o x(A) = | U ogk(A4,1)|. We
say A is completely cascadingf order k if o 1 (A) = |W|.

We remark that using a variant of the standard depth-firstheslgorithm, the cascading process
above can be computed limear time for any setA. From the discussion preceditigVC it follows
thatICMC recoversM exactly if the cascading process starting gtinfects all vertices of7, and
we get the following theorem.

Theorem 3.1 Let M be a non-degenerate matrix of rank k. Then, given G = (U, V,Q), Pa(M)
and Ly C U with |Ly| = k, ICMC(Gq, Pq(M), L) recovers the matrix M exactly if Ly is a
completely cascading set of order & in Gg,.

Thus, we have reduced the matrix-completion problem to thplgtheoretic problem of finding

a completely cascading set (if it exists) in a graph. A moneegal case of the problem — finding
a set of vertices that maximize influence, was studied by Keetpal. [11] for more general cas-
cading processes. They show the general problem of maxigiafluence to be NP-hard and give
approximation algorithms for several classes of instances

However, it appears that for most reasonable random graplelsiahe highest degree vertices have
large influence with high probability. In the following weviestigate completely cascading sets
in random graphs and show that for CLV graphs, khaighest degree vertices form a completely
cascading set with high probability.



4 Information Cascading in Random Graphs

We now show that for sufficiently dense CLV graphs and fikethek highest degree vertices form
a completely cascading set with high probability.

Theorem 4.1 For every v > 0, there exists a constant ¢(~y) such that the following holds. Con-
sider an instance of the CLV model given by weights p1,...,pm, ¢1,-- ., ¢, With density p and
min(p;, g;) > c(y)klogn/p*. Then, for G = (U, V, E) generated from the model, the k highest
degree vertices of U forma completely cascading set of order £ with probability at least 1 — n=7.

Proof sketch We will show that the highest weight verticés = {uy, ..., u} form a completely
cascading set with high probability; the theorem followenfrthe above statement and the observa-
tion that the highest degree verticegdWill almost surely correspond to vertices with large wegyht
in the model; we omit these details for lack of space.et >, p; = Zj g; = mnp andm < n.

Fix a vertexu; ¢ Ly and consider an arbitrary vertex € V. Let Pj be the indicator variable
that is1 if (u;,v;) € E andwv; is connected to all vertices di,. Note that vertex:; will be
infected after two rounds by the cascading process staatihg if Zj Pj’ > k. Now, Pr[P]? =1] =

(pig;/w) [1,<;<x(mg;/w) and

B[P+ + Pi] = ZP’%H“%%@ S1EOD SULNENCEY

1<k 1<I<k j=1

Observe thad , p; = w < nk + prp(m — k). Thus,p;, > (w — nk)/(m — k). Now, using the
power-mean inequality we get,

k41 -
R T (q1+n+q") —n- (ﬂ) ’ (4.2)

n

with equality occurring only if;; = w/n for all j. From Equations (4.1), (4.2) we have

- : w—nk\* 1
E[P/+...+ P >p;- =
[1+ + n]_p (m—k) nk

o (Y () @3)
(

It is easy to check that under our assumptians: nk? andm > k2. Thus,(1 — nk/w) >1/e
and(1 — k;/m)—’C > 1/2e. From Equat|on (4.3) and our assumptjgn> c(v)klogn/p*, we get
E[P{ + ...+ Pi] > c(vy)klogn/4e?.

Now, since the indicator variablg¥, . . ., P! are independent of each other, using the above lower
bound for the expectation of their sum and Chernoff boundgyetePr[P} + ... + P! < k] <
exp(—Q(c()logn)). Thus, for a sufficiently large constaeity), the probability that the vertex;

is uninfected after two round3r[P; + ...+ P, < k] < 1/2m"*1. By taking a union bound over

all verticesuy1, - - - , um,, the probability that there is an uninfected vertex in ttiepartition after

two steps of cascading starting frabg is at mostl/2m?. The theorem now follows by observing
that if the left partition is completely infected, for a @bty large constant(~y), all vertices in the
right will be infected with probability at leadt— 1/2m?” asq; > ¢(y)klog n.0

Combining the above with Theorem 3.1 we obtain exact matixpletion for sampling graphs
drawn from the CLV model.

Theorem 4.2 Let M be a non-degenerate matrix of rank k. Then, for sampling graphs G, gen-
erated from a CLV model satisfying the conditions of Theorem 4.1, ICMC recovers the matrix M
exactly with high probability.

Remark: The above results show exact-recovery for CLV graphs witisifies up tox~'/* = o(1).
As mentioned in the introduction, the above result is incaraple to the main results of [4, 5], [13].

The main bottleneck for the density requirements in the fpoddrheorem 4.1 is Equation (4.2)
relatingy”, ¢/ * to (3, ¢;)**!, where we used the power-mean inequality. However, when the
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expected degreeg are skewed, say with a power-law distribution, it should besible to obtain
much better bounds than those of Equation (4.2), hence migmving the density requirements.
Thus, in a sense the E¥g-Renyi graphs are the worst-case examples for our analysis.

Our empirical simulations also suggest that completelgading sets are more likely to exist in
random graph models with power-law distributed expectegtetes as compared to EBstRenyi
graphs. Intuitively, this is because of the following re@so

¢ In graphs with power-law distributed degrees, the high @egertices have much higher degrees
than the average degree of the graph. So, infecting the stiglegree vertices is more likely to
infect more vertices in the first step.

e More importantly, as observed in the seminal work of Kleirgijgd.4] in most real-world graphs
there are a small number of verticdwipg that have much higher connectivity than most ver-
tices. Thus, infecting thbubsis likely to infect a large fraction of vertices.

Thus, we expectCMC to perform better on models that are closer to real-worlglgsaand have
power-law distributed degrees. In particular, as stromsgigported by experiments (see Figure 3),
we hypothesize thd€MC solves exact matrix completion from an almost optimal nunaobentries
for sampling graphs drawn from the preferential attachmeadel.

Conjecture 4.3 There exists a universal constant C' such that for all £ > 1, k1, ks > Ck the fol-
lowing holds. For G = (U, V, E) generated fromthe preferential attachment model with parameters
m,n, k1, ks, the k highest degree vertices of U form a completely cascading set of order & with high
probability.

If true, the above combined with Theorem 3.1 would imply tbikofving.

Conjecture 4.4 Let M be a non-degenerate matrix of rank k. Then, for sampling graphs G, gen-
erated from a PA model with parameters k1, ky > Ck, ICMC recovers the matrix M exactly with
high probability.

Remark: To solve the matrix completion problem we need to sampleasit(en + n)k entries.
Thus, the bounds above are optimal up to a constant factaeder, the bounds above are stronger
than those obtainable - even information theoretically -Hmiés-Renyi graphs, as for Efs-Renyi
graphs we need to samglEn log n) entries even fok = 1.

5 Experimental Results

We first demonstrate that for many real-world matrix comipletiatasets, the observed entries are
far from being sampled uniformly with the sampling graphihgwower-law distributed degrees.
We then use various random graph models to compare our matheidst the trace-norm based
singular value thresholding algorithm of [3], the spectratrix completion algorithm (SMC) of
[13] and the regularized alternating least squares mirititim (ALS) heuristic. Finally, we present
empirical results on the Netflix challenge dataset. For aming with SVT and SMC, we use the
code provided by the respective authors; while we use ourioyitementation for ALS. Below we
provide a few implementation details for our algorith@MC.

Implementation Details

Consider step 2(b) of our algorithif@tMC. Let L; be the set of vertices i that have an edge to
vy, Lf be any size: subset ofL;, and IetX(L?, :) be the sub-matrix o containing rows corre-
sponding to vertices iriL?. If the underlying matrix is indeed low-rank and there is mise in the
observed entries, then for a newly infected vergxthe corresponding row df, ij can be com-
puted by solving the following linear system of equatioM(L?,j) = X(Lf, :)y;. To account for
noise in measurements, we compyieby solving the following regularized least squares problem
y; = argminy, | M (L;, j) — X (L;, :)yll3+ A|y||3, where) is a regularization parameter. Similarly,
we computer? by solving:x; = argmin,, || M (i, R;)T — Y/(R;,:)z||3 + A3
Note that ifICMC fails to infect all the vertices, i.eL C U or R C V, then rows ofX andY
will not be computed for vertices itr\L andV\R. Let X = [X, X;], whereX|, is the set of
computed rows of{ (for vertices inL) and X; denotes the remaining rows a&f. Similarly, let
Y = [Yg,Yj]. We estimateX; andY; using an alternating least squares based heuristic thagssol
the following: )
. X
i |2 (3= [ 0F V1) | sl il

X;.Yz

i
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Figure 1: Cumulative degree distribution of (a) movies, ybgrs (Netflix dataset) and (c) artists,
(d) users (Yahoo Music dataset). Note that degree diskoibsiin all the four cases closely follow

power-law distribution and deviate heavily from Poissastribution, which is assumed by SVT [3]
and SMC [13].
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Figure 2: Results on synthetic datasets for fixed samplimgitlewith sampling graph coming from
different Graph Models: (a) Eé$-Renyi model, (b) Chung-Lu-Vu model, (c) Preferential attach
ment model, and (d) Forest-fire model. Note that for the tip@eer-law distribution generating
models our methodCMC) achieves considerably lower RMSE than the existing method

(a) Erdds-Renyi Graphs (b) Chung-Lu-Vu Graphs
n/Method] SMC | SVT | ALS | ICMC || n/Method] SMC | SVT | ALS | ICMC
500 | 4551| 888 1.09| 1.28 500 | 35.32| 14.69| 1.24| 0.49
1000| 93.85| 17.07| 2.39| 3.30 1000 | 144.19| 17.55] 2.24] 2.02
1500 | 214.65| 38.81| 4.85| 6.28 1500 | 443.48| 30.99| 3.89| 3.91
2000 | 343.76| 59.88| 7.20| 9.89 2000 | 836.99| 46.69| 5.67| 5.50

(c) Preferential Attachment Graphs (d)Forest-fire Graphs
n/Method| SMC | SVT | ALS | ICMC || n/Method| SMC | SVT | ALS | ICMC
500 | 15.05| 14.40| 3.97| 1.94 500 | 22.63| 5.53| 0.57| 0.39
1000| 67.96| 16.49| 5.06| 2.01 1000 | 85.26| 11.32| 1.75| 1.23
1500 | 178.35| 24.48| 9.83| 3.65 1500 | 186.81| 21.39| 3.30| 2.99
2000 | 417.54| 32.06 | 15.07| 7.46 2000 | 350.98| 27.37| 4.84| 5.06

Table 1: Time required (in seconds) by various methods othsyic datasets for fixed sampling
density with sampling graph coming from different Graph Mtsd (a) Erds-Renyi model, (b)
Chung-Lu-Vu model, (c) Preferential attachment model, @)d~orest-fire model. Note that our
method (CMCQ) is significantly faster than SVT and SMC, and has similartiore to that of ALS.

wherey > 0 is the regularization parameter.

Sampling distribution in Netflix and Yahoo Music Datasets

The Netflix challenge dataset contains the incomplete mrtie ratings matrix while the Yahoo
Music dataset contains the incomplete user-artist ratimggsix. For both datasets we form the cor-

responding bipartite sampling graphs and plot the leftrf@)sand right (movies/artists) cumulative
degree distributions of the bipartite sampling graphs.

Figure 1 shows the cumulative degree distributions of tpatite sampling graphs, the best power-
law fit computed using the code provided by Clauset et.al ifid] the best Poisson distribution fit.

The figure clearly shows that the sampling graphs for the Xetfld Yahoo Music datasets are far
from regular as assumed in [4],[5],[13] and have power-lgstrithuted degrees.

Experiments using Random Graph Models

To compare various methods, we first generate random lokwmeatricesX € R™*"™ for varyingn,
and sample from the generated matrices usin@&fnyi, CLV, PA and forest-fire random graph
models. We omit the results for the affiliation networks mddam this paper due to lack of space;
we observed similar trends on the affiliation networks model
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Figure 3:Left: Fraction of infected nodes as edge density increases. tNetexistence of a clear
threshold. The threshold is quite small for CLV and PA sutjgggood performance dCMC for
these modelsMiddle: Threshold for parameters , k, (the number of edges per node) in PA as
k increases. The threshold varies linearly witlsupporting Conjecture 4.3Right: Fraction of
infected rows and columns usih@MC for the Netflix challenge dataset.

For each random graph model we compare the relative meanesguuar (RMSE) on the unknown
entries achieved by our meth¢dMC against several existing methods. We also compare the total
time taken by each of the methods. All results representitbeage ovel0 runs.

Figure 2 compares the RMSE achieved 6 C to that of SVT, SMC and ALS when rarikis fixed

to be10, sampling density = 0.1, and the sampling graphs are generated from the four random
graph models. Note that for the more-realistic CLV, PA, ftifire three modellCMC outperforms
both SVT and SMC significantly and performs noticeably betian ALS. Table 1 compares the
computational time taken by each of the methods. The taloeskhat for all three model$CMC

is faster than SVT and SMC by an order of magnitude and is alstpetitive to ALS. Note that

the performance of our method for Erdos-Renyi graphs (Eigua)) is poor, with other methods
achieving low RMSE. This is expected as the Erdos-Renyilggage in a sense the worst-case
examples fotCMC as explained in Section 4.

Threshold for Complete Cascading

Here we investigate th#hresholdfor complete cascading in the random graph models. Besides
being interesting on its own, the existence of completescading sets is closely tied to the success
of ICMC by Theorem 3.1. Figure 3 shows the fraction of vertices itefg@®dy the cascading process
starting from thek highest degree vertices for graphs generated from the namgaph models as
the edge density increases.

The left plot of Figure 3 shows the existence of a clear thokkfor the densityp, beyond which
the fraction of infected vertices is almost surely one. Nb#g the threshold is quite small for the
CLV, PA and forest-fire models, suggesting good performarid€éMC on these models. As was
explained in Section 4, the threshold is bigger for thed&rEenyi graph model.

The right plot of Figure 3 shows the threshold value (the mimn value above which the infected
fraction is almost surely one) fdr, k2 as a function ok in the PA model. The plot shows that the
threshold is of the forn@’'% for a universal constarg, strongly supporting Conjectures 4.3, 4.4.

Netflix Challenge Dataset

Finally, we evaluate our method on the Netflix Challenge skttavhich contains an incomplete
matrix with about100 million ratings given by 480,189 users for 17,770 movies.e Tightmost
table in Figure 3 shows the fraction of rows and columns ief@dy ICMC on the dataset for
several values of the rank parameter Note that even for a reasonably high rank25f ICMC
infects a high percentag&4%) of rows and columns. Also, for rant0 the fraction of infected
rows and columns drops to almost zero, suggesting that thplgey density of the matrix is below
the sampling threshold for rars¢.

For rankk = 20, the RMSE incurred over the probe set (provided by Netflix).$8137 which is
comparable to the RMSHE=9404 achieved by the regularized Alternating Least Squares adeth
More importantly, the time required by our methodi§9 x 103 seconds compared @15 x 10*
seconds required by ALS. We remark that noise (or higher oéttke underlying matrix) can offset
our method leading to somewhat inferior results. In suchsacaur method can be used for a good
initialization of the ALS method and other state-of-théellaborative filtering methods to achieve
better RMSE.
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