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Abstract

The low-rank matrix completion problem is a fundamental problem with many
important applications. Recently, [4],[13] and [5] obtained the first non-trivial
theoretical results for the problem assuming that the observed entries are sampled
uniformly at random. Unfortunately, most real-world datasets do not satisfy this
assumption, but instead exhibit power-law distributed samples. In this paper, we
propose a graph theoretic approach to matrix completion that solves the problem
for more realistic sampling models. Our method is simpler toanalyze than previ-
ous methods with the analysis reducing to computing the threshold forcomplete
cascadesin random graphs, a problem of independent interest. By analyzing the
graph theoretic problem, we show that our method achieves exact recovery when
the observed entries are sampled from the Chung-Lu-Vu model, which can gener-
ate power-law distributed graphs. We also hypothesize thatour algorithm solves
the matrix completion problem from an optimal number of entries for the popu-
lar preferential attachment model and provide strong empirical evidence for the
claim. Furthermore, our method is easy to implement and is substantially faster
than existing methods. We demonstrate the effectiveness ofour method on ran-
dom instances where the low-rank matrix is sampled according to the prevalent
random graph models for complex networks and present promising preliminary
results on the Netflix challenge dataset.

1 Introduction

Completing a matrix from a few given entries is a fundamentalproblem with many applications in
machine learning, statistics, and compressed sensing. Since completion of arbitrary matrices is not
a well-posed problem, it is often assumed that the underlying matrix comes from a restricted class.
Here we address the matrix completion problem under the natural assumption that the underlying
matrix is low-rank.

Formally, for an unknown matrixM ∈ Rm×n of rank at mostk, givenΩ ⊆ [m]× [n], PΩ(M)1 and
k, the low-rank matrix completion problem is to find a matrixX ∈ Rm×n such that

rank(X) ≤ k and PΩ(X) = PΩ(M). (1.1)

Recently Candes and Recht [4], Keshavan et.al [13], Candes and Tao [5] obtained the first non-trivial
guarantees for the above problem under a few additional assumptions on the matrixM and the set of
known entriesΩ. At a high level, the assumptions made in the above papers canbe stated as follows.

A1 M is incoherent, in the sense that the singular vectors ofM are not correlated with the
standard basis vectors.

1Throughout this paperPΩ : Rm×n
→ Rm×n will denote the projection of a matrix onto the pairs of

indices inΩ: (PΩ(X))ij = Xij for (i, j) ∈ Ω and(PΩ(X))ij = 0 otherwise.
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A2 The observed entries are sampled uniformly at random.

In this work we address some of the issues with assumption [A2]. ForΩ ⊆ [m]×[n], let thesampling
graphGΩ = (U, V,Ω) be the bipartite graph with verticesU = {u1, . . . , um}, V = {v1, . . . , vn}
and edges given by the ordered pairs inΩ 2. Then, assumption [A2] can be reformulated as follows:

A3 The sampling graphGΩ is an Erd̋os-Ŕenyi random graph3.

A prominent feature of Erd̋os-Ŕenyi graphs is that the degrees of vertices are Poisson distributed and
are sharply concentrated about their mean. The techniques of [4, 5], [13], as will be explained later,
crucially rely on these properties of Erdős-Ŕenyi graphs. However, for most large real-world graphs
such as the World Wide Web ([1]), the degree distribution deviates significantly from the Poisson
distribution and has high variance. In particular, most large matrix-completion datasets such as the
much publicized Netflix prize dataset and the Yahoo Music dataset exhibit power-law distributed
degrees, i.e., the number of vertices of degreed is proportional tod−β for a constantβ (Figure 1).

In this paper, we overcome some of the shortcomings of assumption [A3] above by considering
more realistic random graph models for the sampling graphGΩ. We propose a natural graph theo-
retic approach for matrix completion (referred to asICMC for information cascading matrix comple-
tion) that we prove can handle sampling graphs with power-law distributed degrees. Our approach
is motivated by the models for informationcascadingin social networks proposed by Kempe et
al. [11, 12]. Moreover, the analysis ofICMC reduces to the problem of finding densitythresholds
for complete cascadesin random graphs - a problem of independent interest.

By analyzing the threshold for complete cascades in the random graph model of Chung, Lu & Vu
[6] (CLV model), we show thatICMC solves the matrix completion problem for sampling graphs
drawn from the CLV model. The bounds we obtain for matrix-completion on the CLV model are
incomparable to the main results of [4, 5, 13]. The methods ofthe latter papers do not apply to
models such as the CLV model that generate graphs with skeweddegrees. On the other hand, for
Erdos-Renyi graphs the density requirements forICMC are stronger than those of the above papers.

We also empirically investigate the threshold for completecascading in other popular random graph
models such as the preferential attachment model [1], the forest-fire model [17] and the affiliation
networks model [16]. The empirical estimates we obtain for the threshold for complete cascading
in the preferential attachment model strongly suggest thatICMC solves the exact matrix-completion
problem from an optimal number of entries for sampling procedures with preferential attachment.

Our experiments demonstrate that for sampling graphs drawnfrom more realistic models such as
the preferential attachment, forest-fire and affiliation network models,ICMC outperforms - both in
accuracy and time - the methods of [4, 5, 3, 13] by an order of magnitude.

In summary, our main contributions are:

• We formulate the sampling process in matrix completion as generating random graphs (GΩ) and
demonstrate that the sampling assumption [A3] does not holdfor real-world datasets.

• We propose a novel graph theoretic approach to matrix completion (ICMC) that extensively uses
the link structure of the sampling graph. We emphasize that previously none of the methods
exploited the structure of the sampling graph.

• We prove that our method solves the matrix completion problem exactly for sampling graphs
generated from the CLV model which can generate power-law distributed graphs.

• We empirically evaluate our method on more complex random graph models and on the Netflix
Challenge dataset demonstrating the effectiveness of our method over those of [4, 5, 3, 13].

2 Previous Work and Preliminaries

The Netflix challenge has recently drawn much attention to the low-rank matrix completion prob-
lem. Most methods for matrix completion and the more generalrank minimization problem with
affine constraints are based on either relaxing the non-convex rank function to a convex function
or assuming a factorization of the matrix and optimizing theresulting non-convex problem using
alternating minimization and its variants [2, 15, 18].

2We will often abuse notation and identify edges(ui, vj) with ordered pairs(i, j).
3We consider the Erd̋os-Ŕenyi model, where edges(ui, vj) ∈ E independently with probability forp for

(i, j) ∈ [m] × [n] andp is the density parameter.
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Until recently, most methods for rank minimization subjectto affine constraints were heuristic in
nature with few known rigorous guarantees. In a recent breakthrough, Recht et.al [20] extend the
techniques of compressed sensing to rank minimization withaffine constraints. However, the results
of Recht et.al do not apply to the case of matrix completion asthe constraints in matrix completion
do not satisfy therestricted isoperimetry propertythey assume.

Building on the work of Recht et al. [20], Candes and Recht [4]and Candes and Tao [5] showed that
minimizing the trace-norm recovers the unknown low-rank matrix exactly under certain conditions.
However, these approaches require the observed entries to be sampled uniformly at random and as
suggested by our experiments, do not work well when the observed entries are not drawn uniformly.

Independent of [4, 5], Keshavan et al. [13] also obtained similar results for matrix completion using
different techniques that generalize the works of Friedmanet al. [9], Feige and Ofek [8] on the
spectrum of random graphs. However, the results of [13], crucially rely on theregularityof Erdős-
Rényi graphs and do not extend to sampling graphs with skewed degree distributions even for rank
one matrices. This is mainly because the results of Friedmanet al. and Feige and Ofek on the
spectral gapof Erdős-Ŕenyi graphs do not hold for graph models with skewed expecteddegrees (see
[6, 19]).

We also remark that several natural variants of thetrimming phase of [8] and [13] did not improve
the performance in our experiments. A similar observation was made in [19], [10] who address the
problem of re-weighting the edges of graphs with skewed degrees in the context of LSA.

2.1 Random Graph Models

We focus on four popular models of random graphs all of which can generate graphs with power-law
distributed degrees. In contrast to the common descriptions of the models, we need to work with
bipartite graphs; however, the models we consider generalize naturally to bipartite graphs. Due to
space limitations we only give a (brief) description of the Chung et.al [6], and refer to the original
papers for the preferential attachment [1], forest-fire [17] and affiliation networks [16] models.

The CLV model [6] generates graphs with arbitraryexpected degree sequences, p1, . . . , pm,
q1, . . . , qn with p1 + . . . + pm = q1 + . . . + qn = w. In the model, a bipartite graphG = (U, V,E)
with U = {u1, . . . , um}, V = {v1, . . . , vn} is generated by independently placing an edge between
verticesui, vj with probabilitypiqj/w for all i ∈ [m], j ∈ [n]. We define thedensityof an instance
of CLV model to be the expected average degree(p1 + . . . + pm)/(mn) = w/mn.

The CLV model is more general than the standard Erdős-Ŕenyi model with the casepi = np, qi =
mp corresponding to the standard Erdős-Ŕenyi model with densityp for bipartite random graphs.
Further, by choosing weights that are power-law distributed, the CLV model can generate graphs
with power-law distributed degrees, a prominent feature ofreal-world graphs.

3 Matrix Completion from Information Cascading

We now present our algorithmICMC. Consider the following standard formulation of the low-rank
matrix completion problem: Givenk, Ω, PΩ(M) for a rankk matrixM , find X,Y such that

PΩ(XY T ) = PΩ(M), X ∈ Rm×k, Y ∈ Rn×k. (3.1)

Note that givenX we can findY and vice versa by solving a linear least squares regression prob-
lem. This observation is the basis for the popularalternate minimizationheuristic and its variants
which outperform most methods in practice. However, analyzing the performance of alternate min-
imization is a notoriously hard problem. Our algorithm can be seen as a more refined version of the
alternate minimization heuristic that is more amenable to analysis. We assume that the target matrix
M is non-degenerate in the following sense.

Definition 3.1 A rank k matrix Z is non-degenerate if there exist X ∈ Rm×k, Y ∈ Rn×k,
Z = XY T such that any k rows of X are linearly independent and any k rows of Y are linearly
independent.

Though reminiscent of theincoherenceproperty used by Candes and Recht, Keshavan et al., non-
degeneracy appears to be incomparable to the incoherence property used in the above works. Ob-
serve that a random low-rank matrix is almost surely non-degenerate.

Our method progressively computes rows ofX andY so that Equation (3.1) is satisfied. Call a
vertexui ∈ U asinfectedif the i’th row of X has been computed (the terminfected is used to reflect

3



that infection spreads bycontactas in an epidemic). Similarly, call a vertexvj ∈ V as infected if
thej’th row of Y has been computed. Suppose that at an intermediate iteration, verticesL ⊆ U and
R ⊆ V are marked as infected. That is, the rows ofX with indices inL and rows ofY with indices
in R have been computed exactly.

Now, for an uninfectedj ∈ [n], to compute the corresponding row ofY , y
T
j ∈ Rk, we only needk

independent linear equations. Thus, ifM is non-degenerate, to computey
T
j we only needk entries

of thej’th column ofM with row indices inL. Casting the condition in terms of the sampling graph
GΩ, y

T
j can be computed and vertexvj ∈ V be marked as infected if there are at leastk edges from

vj to infected vertices inL. Analogously,xT
i can be computed and the vertexui ∈ U be marked as

infected if there are at leastk edges fromui to previously infected verticesR.

Observe thatM = XY T = XWW−1Y T , for any invertible matrixW ∈ Rk×k. Thus for non-
degenerateM , without loss of generality, a set ofk rows ofX can be fixed to be thek × k identity
matrix Ik. This suggests the followingcascadingprocedure for infecting vertices inGΩ and pro-
gressively computing the rows ofX,Y . HereL0 ⊆ U with |L0| = k.

ICMC(GΩ,PΩ(M), L0):
1 Start with initially infected setsL = L0 ⊆ U , R = ∅. Set thek × k sub-matrix ofX with rows

in L0 to beIk.
2 Repeat until convergence:

(a) Mark as infected all uninfected vertices inV that have at leastk edges to previously infected
verticesL and add the newly infected vertices toR.

(b) For each newly infected vertexvj ∈ R, compute thej’th row of Y using the observed
entries ofM corresponding to edges fromvj to L.

(c) Mark as infected all uninfected vertices inU that have at leastk edges to previously infected
verticesR and add the newly infected vertices toL.

(d) For each newly infected vertexui ∈ L, compute thei’th row of X using the observed
entries ofM corresponding to edges fromui to R

3 OutputM ′ = XY T .

We abstract the cascading procedure from above using the framework of Kempe et al. [11] for
information cascades in social networks. LetG = (W,E) be an undirected graph and fixA ⊆ W ,
k > 0. DefineσG,k(A, 0) = A and fort > 0 defineσG,k(A, t + 1) inductively by

σG,k(A, t + 1) = σG,k(A, t) ∪ {u ∈ W : u has at leastk edges toσG,k(A, t) }.

Definition 3.2 The influenceof a set A ⊆ W , σG,k(A), is the number of vertices infected by the
cascading process upon termination when starting at A. That is, σG,k(A) = | ∪t σG,k(A, t)|. We
say A is completely cascadingof order k if σG,k(A) = |W |.

We remark that using a variant of the standard depth-first search algorithm, the cascading process
above can be computed inlinear time for any setA. From the discussion precedingICMC it follows
that ICMC recoversM exactly if the cascading process starting atL0 infects all vertices ofGΩ and
we get the following theorem.

Theorem 3.1 Let M be a non-degenerate matrix of rank k. Then, given GΩ = (U, V,Ω),PΩ(M)
and L0 ⊆ U with |L0| = k, ICMC(GΩ,PΩ(M), L0) recovers the matrix M exactly if L0 is a
completely cascading set of order k in GΩ.

Thus, we have reduced the matrix-completion problem to the graph-theoretic problem of finding
a completely cascading set (if it exists) in a graph. A more general case of the problem – finding
a set of vertices that maximize influence, was studied by Kempe et al. [11] for more general cas-
cading processes. They show the general problem of maximizing influence to be NP-hard and give
approximation algorithms for several classes of instances.

However, it appears that for most reasonable random graph models, the highest degree vertices have
large influence with high probability. In the following we investigate completely cascading sets
in random graphs and show that for CLV graphs, thek highest degree vertices form a completely
cascading set with high probability.
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4 Information Cascading in Random Graphs

We now show that for sufficiently dense CLV graphs and fixedk, thek highest degree vertices form
a completely cascading set with high probability.

Theorem 4.1 For every γ > 0, there exists a constant c(γ) such that the following holds. Con-
sider an instance of the CLV model given by weights p1, . . . , pm, q1, . . . , qn with density p and
min(pi, qj) ≥ c(γ)k log n/pk. Then, for G = (U, V,E) generated from the model, the k highest
degree vertices of U form a completely cascading set of order k with probability at least 1 − n−γ .

Proof sketch We will show that the highest weight verticesL0 = {u1, . . . , uk} form a completely
cascading set with high probability; the theorem follows from the above statement and the observa-
tion that the highest degree vertices ofG will almost surely correspond to vertices with large weights
in the model; we omit these details for lack of space. Letw =

∑

i pi =
∑

j qj = mnp andm ≤ n.

Fix a vertexui /∈ L0 and consider an arbitrary vertexvj ∈ V . Let P i
j be the indicator variable

that is 1 if (ui, vj) ∈ E and vj is connected to all vertices ofL0. Note that vertexui will be
infected after two rounds by the cascading process startingatL0 if

∑

j P i
j ≥ k. Now,Pr[P i

j = 1] =

(piqj/w)
∏

1≤l≤k(plqj/w) and

E[P i
1 + . . . + P i

n] =

n
∑

j=1

piqj

w

∏

l≤k

plqj

w
=

pi

wk+1
· (

∏

1≤l≤k

pl) ·
n

∑

j=1

qk+1
j . (4.1)

Observe that
∑

i pi = w ≤ nk + pk(m − k). Thus,pk ≥ (w − nk)/(m − k). Now, using the
power-mean inequality we get,

qk+1
1 + qk+1

2 + . . . + qk+1
n ≥ n

(

q1 + . . . + qn

n

)k+1

= n ·
(w

n

)k+1

, (4.2)

with equality occurring only ifqj = w/n for all j. From Equations (4.1), (4.2) we have

E[P i
1 + . . . + P i

n] ≥ pi ·

(

w − nk

m − k

)k

·
1

nk

= pi ·

(

1 −
nk

w

)k

·

(

1 −
k

m

)−k

·
( w

mn

)k

. (4.3)

It is easy to check that under our assumptions,w ≥ nk2 andm ≥ k2. Thus,(1 − nk/w)k ≥ 1/e
and(1 − k/m)−k ≥ 1/2e. From Equation (4.3) and our assumptionpi ≥ c(γ)k log n/pk, we get
E[P i

1 + . . . + P i
n] ≥ c(γ)k log n/4e2.

Now, since the indicator variablesP i
1, . . . , P

i
n are independent of each other, using the above lower

bound for the expectation of their sum and Chernoff bounds weget Pr[P i
1 + . . . + P i

n ≤ k] ≤
exp(−Ω(c(γ) log n)). Thus, for a sufficiently large constantc(γ), the probability that the vertexui

is uninfected after two roundsPr[P1 + . . . + Pn ≤ k] ≤ 1/2mγ+1. By taking a union bound over
all verticesuk+1, . . . , um, the probability that there is an uninfected vertex in the left partition after
two steps of cascading starting fromL0 is at most1/2mγ . The theorem now follows by observing
that if the left partition is completely infected, for a suitably large constantc(γ), all vertices in the
right will be infected with probability at least1 − 1/2mγ asqj ≥ c(γ)k log n.¤

Combining the above with Theorem 3.1 we obtain exact matrix-completion for sampling graphs
drawn from the CLV model.

Theorem 4.2 Let M be a non-degenerate matrix of rank k. Then, for sampling graphs GΩ gen-
erated from a CLV model satisfying the conditions of Theorem 4.1, ICMC recovers the matrix M
exactly with high probability.

Remark: The above results show exact-recovery for CLV graphs with densities up ton−1/k = o(1).
As mentioned in the introduction, the above result is incomparable to the main results of [4, 5], [13].

The main bottleneck for the density requirements in the proof of Theorem 4.1 is Equation (4.2)
relating

∑

j qk+1
j to (

∑

j qj)
k+1, where we used the power-mean inequality. However, when the
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expected degreesqj are skewed, say with a power-law distribution, it should be possible to obtain
much better bounds than those of Equation (4.2), hence also improving the density requirements.
Thus, in a sense the Erdős-Ŕenyi graphs are the worst-case examples for our analysis.

Our empirical simulations also suggest that completely cascading sets are more likely to exist in
random graph models with power-law distributed expected degrees as compared to Erdős-Ŕenyi
graphs. Intuitively, this is because of the following reasons.

• In graphs with power-law distributed degrees, the high degree vertices have much higher degrees
than the average degree of the graph. So, infecting the highest degree vertices is more likely to
infect more vertices in the first step.

• More importantly, as observed in the seminal work of Kleinberg [14] in most real-world graphs
there are a small number of vertices (hubs) that have much higher connectivity than most ver-
tices. Thus, infecting thehubsis likely to infect a large fraction of vertices.

Thus, we expectICMC to perform better on models that are closer to real-world graphs and have
power-law distributed degrees. In particular, as stronglysupported by experiments (see Figure 3),
we hypothesize thatICMC solves exact matrix completion from an almost optimal number of entries
for sampling graphs drawn from the preferential attachmentmodel.

Conjecture 4.3 There exists a universal constant C such that for all k ≥ 1, k1, k2 ≥ Ck the fol-
lowing holds. For G = (U, V,E) generated from the preferential attachment model with parameters
m,n, k1, k2, the k highest degree vertices of U form a completely cascading set of order k with high
probability.

If true, the above combined with Theorem 3.1 would imply the following.

Conjecture 4.4 Let M be a non-degenerate matrix of rank k. Then, for sampling graphs GΩ gen-
erated from a PA model with parameters k1, k2 ≥ Ck, ICMC recovers the matrix M exactly with
high probability.

Remark: To solve the matrix completion problem we need to sample at least(m + n)k entries.
Thus, the bounds above are optimal up to a constant factor. Moreover, the bounds above are stronger
than those obtainable - even information theoretically - for Erdős-Ŕenyi graphs, as for Erd̋os-Ŕenyi
graphs we need to sampleΩ(n log n) entries even fork = 1.

5 Experimental Results

We first demonstrate that for many real-world matrix completion datasets, the observed entries are
far from being sampled uniformly with the sampling graph having power-law distributed degrees.
We then use various random graph models to compare our methodagainst the trace-norm based
singular value thresholding algorithm of [3], the spectralmatrix completion algorithm (SMC) of
[13] and the regularized alternating least squares minimization (ALS) heuristic. Finally, we present
empirical results on the Netflix challenge dataset. For comparing with SVT and SMC, we use the
code provided by the respective authors; while we use our ownimplementation for ALS. Below we
provide a few implementation details for our algorithmICMC.

Implementation Details
Consider step 2(b) of our algorithmICMC. Let Lj be the set of vertices inL that have an edge to
vj , Lk

j be any sizek subset ofLj , and letX(Lk
j , :) be the sub-matrix ofX containing rows corre-

sponding to vertices inLk
j . If the underlying matrix is indeed low-rank and there is no noise in the

observed entries, then for a newly infected vertexvj , the corresponding row ofY , y
T
j , can be com-

puted by solving the following linear system of equations:M(Lk
j , j) = X(Lk

j , :)yj . To account for
noise in measurements, we computeyj by solving the following regularized least squares problem:
yj = argmin

y
‖M(Lj , j)−X(Lj , :)y‖

2
2+λ‖y‖2

2, whereλ is a regularization parameter. Similarly,
we computexT

i by solving:xi = argmin
x
‖M(i, Ri)

T − Y (Ri, :)x‖
2
2 + λ‖x‖2

2.

Note that if ICMC fails to infect all the vertices, i.e.L ( U or R ( V , then rows ofX andY
will not be computed for vertices inU\L andV \R. Let X = [XL,XL̃], whereXL is the set of
computed rows ofX (for vertices inL) andXL̃ denotes the remaining rows ofX. Similarly, let
Y = [YR, YR̃]. We estimateXL̃ andYR̃ using an alternating least squares based heuristic that solves
the following:

min
X

L̃
,Y

R̃

∣

∣

∣

∣

∣

∣

∣

∣

PΩ

(

M −

[

XL

XL̃

]

[Y T
R Y T

R̃
]

)∣

∣

∣

∣

∣

∣

∣

∣

2

F

+ µ‖XL̃‖
2
F + µ‖YR̃‖

2
F ,
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Figure 1: Cumulative degree distribution of (a) movies, (b)users (Netflix dataset) and (c) artists,
(d) users (Yahoo Music dataset). Note that degree distributions in all the four cases closely follow
power-law distribution and deviate heavily from Poisson-distribution, which is assumed by SVT [3]
and SMC [13].
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Figure 2: Results on synthetic datasets for fixed sampling density with sampling graph coming from
different Graph Models: (a) Erdős-Ŕenyi model, (b) Chung-Lu-Vu model, (c) Preferential attach-
ment model, and (d) Forest-fire model. Note that for the threepower-law distribution generating
models our method (ICMC) achieves considerably lower RMSE than the existing method.

(a) Erd̋os-Ŕenyi Graphs (b) Chung-Lu-Vu Graphs
n/Method SMC SVT ALS ICMC

500 45.51 8.88 1.09 1.28
1000 93.85 17.07 2.39 3.30
1500 214.65 38.81 4.85 6.28
2000 343.76 59.88 7.20 9.89

n/Method SMC SVT ALS ICMC

500 35.32 14.69 1.24 0.49
1000 144.19 17.55 2.24 2.02
1500 443.48 30.99 3.89 3.91
2000 836.99 46.69 5.67 5.50

(c) Preferential Attachment Graphs (d)Forest-fire Graphs
n/Method SMC SVT ALS ICMC

500 15.05 14.40 3.97 1.94
1000 67.96 16.49 5.06 2.01
1500 178.35 24.48 9.83 3.65
2000 417.54 32.06 15.07 7.46

n/Method SMC SVT ALS ICMC

500 22.63 5.53 0.57 0.39
1000 85.26 11.32 1.75 1.23
1500 186.81 21.39 3.30 2.99
2000 350.98 27.37 4.84 5.06

Table 1: Time required (in seconds) by various methods on synthetic datasets for fixed sampling
density with sampling graph coming from different Graph Models: (a) Erd̋os-Ŕenyi model, (b)
Chung-Lu-Vu model, (c) Preferential attachment model, and(d) Forest-fire model. Note that our
method (ICMC) is significantly faster than SVT and SMC, and has similar run-time to that of ALS.

whereµ ≥ 0 is the regularization parameter.

Sampling distribution in Netflix and Yahoo Music Datasets
The Netflix challenge dataset contains the incomplete user-movie ratings matrix while the Yahoo
Music dataset contains the incomplete user-artist ratingsmatrix. For both datasets we form the cor-
responding bipartite sampling graphs and plot the left (users) and right (movies/artists) cumulative
degree distributions of the bipartite sampling graphs.

Figure 1 shows the cumulative degree distributions of the bipartite sampling graphs, the best power-
law fit computed using the code provided by Clauset et.al [7] and the best Poisson distribution fit.
The figure clearly shows that the sampling graphs for the Netflix and Yahoo Music datasets are far
from regular as assumed in [4],[5],[13] and have power-law distributed degrees.

Experiments using Random Graph Models
To compare various methods, we first generate random low-rank matricesX ∈ Rn×n for varyingn,
and sample from the generated matrices using Erdős-Ŕenyi, CLV, PA and forest-fire random graph
models. We omit the results for the affiliation networks model from this paper due to lack of space;
we observed similar trends on the affiliation networks model.
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COMBMC
m=Ck+C

0

k Fraction of infected RMSE
rows & columns

5 0.98 0.9603
10 0.95 0.9544
20 0.87 0.9437
25 .84 0.9416
30 0.46 × 10−5 0.9602

Figure 3:Left : Fraction of infected nodes as edge density increases. Notethe existence of a clear
threshold. The threshold is quite small for CLV and PA suggesting good performance ofICMC for
these models.Middle : Threshold for parametersk1, k2 (the number of edges per node) in PA as
k increases. The threshold varies linearly withk supporting Conjecture 4.3.Right: Fraction of
infected rows and columns usingICMC for the Netflix challenge dataset.

For each random graph model we compare the relative mean square error (RMSE) on the unknown
entries achieved by our methodICMC against several existing methods. We also compare the total
time taken by each of the methods. All results represent the average over20 runs.

Figure 2 compares the RMSE achieved byICMC to that of SVT, SMC and ALS when rankk is fixed
to be10, sampling densityp = 0.1, and the sampling graphs are generated from the four random
graph models. Note that for the more-realistic CLV, PA, forest-fire three modelsICMC outperforms
both SVT and SMC significantly and performs noticeably better than ALS. Table 1 compares the
computational time taken by each of the methods. The table shows that for all three models,ICMC

is faster than SVT and SMC by an order of magnitude and is also competitive to ALS. Note that
the performance of our method for Erdos-Renyi graphs (Figure 2 (a)) is poor, with other methods
achieving low RMSE. This is expected as the Erdos-Renyi graphs are in a sense the worst-case
examples forICMC as explained in Section 4.

Threshold for Complete Cascading
Here we investigate thethresholdfor complete cascading in the random graph models. Besides
being interesting on its own, the existence of completely cascading sets is closely tied to the success
of ICMC by Theorem 3.1. Figure 3 shows the fraction of vertices infected by the cascading process
starting from thek highest degree vertices for graphs generated from the random graph models as
the edge density increases.

The left plot of Figure 3 shows the existence of a clear threshold for the densityp, beyond which
the fraction of infected vertices is almost surely one. Notethat the threshold is quite small for the
CLV, PA and forest-fire models, suggesting good performanceof ICMC on these models. As was
explained in Section 4, the threshold is bigger for the Erdős-Ŕenyi graph model.

The right plot of Figure 3 shows the threshold value (the minimum value above which the infected
fraction is almost surely one) fork1, k2 as a function ofk in the PA model. The plot shows that the
threshold is of the formCk for a universal constantC, strongly supporting Conjectures 4.3, 4.4.

Netflix Challenge Dataset
Finally, we evaluate our method on the Netflix Challenge dataset which contains an incomplete
matrix with about100 million ratings given by 480,189 users for 17,770 movies. The rightmost
table in Figure 3 shows the fraction of rows and columns infected by ICMC on the dataset for
several values of the rank parameterk. Note that even for a reasonably high rank of25, ICMC

infects a high percentage (84%) of rows and columns. Also, for rank30 the fraction of infected
rows and columns drops to almost zero, suggesting that the sampling density of the matrix is below
the sampling threshold for rank30.

For rankk = 20, the RMSE incurred over the probe set (provided by Netflix) is0.9437 which is
comparable to the RMSE=0.9404 achieved by the regularized Alternating Least Squares method.
More importantly, the time required by our method is1.59 × 103 seconds compared to6.15 × 104

seconds required by ALS. We remark that noise (or higher rankof the underlying matrix) can offset
our method leading to somewhat inferior results. In such a case, our method can be used for a good
initialization of the ALS method and other state-of-the-art collaborative filtering methods to achieve
better RMSE.
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