
1

SQLizer: Query Synthesis from Natural Language

NAVID YAGHMAZADEH, The University of Texas at Austin
YUEPENG WANG, The University of Texas at Austin
ISIL DILLIG, The University of Texas at Austin
THOMAS DILLIG, The University of Texas at Austin

This paper presents a new technique for automatically synthesizing SQL queries from natural language (NL).
At the core of our technique is a new NL-based program synthesis methodology that combines semantic
parsing techniques from the NLP community with type-directed program synthesis and automated program
repair. Starting with a program sketch obtained using standard parsing techniques, our approach involves
an iterative refinement loop that alternates between quantitative type inhabitation and automated sketch
repair. We use the proposed idea to build an end-to-end system called Sqlizer that can synthesize SQL queries
from natural language. Our method is fully automated, works for any database without requiring additional
customization, and does not require users to know the underlying database schema. We evaluate our approach
on over 450 natural language queries concerning three different databases, namely MAS, IMDB, and YELP.
Our experiments show that the desired query is ranked within the top 5 candidates in close to 90% of the cases
and that Sqlizer outperforms Nalir, a state-of-the-art tool that won a best paper award at VLDB’14.

ACM Reference Format:
Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. 2017. SQLizer: Query Synthesis from
Natural Language. Proc. ACM Program. Lang. 1, 1, Article 1 (January 2017), 25 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In recent years, there has been considerable interest in automated synthesis of programs from
informal specifications, such as input-output examples [Barowy et al. 2015; Feser et al. 2015; Gulwani
2011; Le and Gulwani 2014; Osera and Zdancewic 2015; Polozov and Gulwani 2015; Yaghmazadeh
et al. 2016]. Such computer-aided programming techniques have been successful in a wide range of
domains, ranging from spreadsheets [Barowy et al. 2015; Gulwani 2011; Le and Gulwani 2014] to
XML documents [Le and Gulwani 2014; Yaghmazadeh et al. 2016] to R programming [Feng et al.
2017a].

A particularly promising application domain for such computer-aided programming techniques
is the automated synthesis of database queries. Although many end-users need to query data stored
in some relational database, they typically lack the expertise to write complex queries in declarative
query languages such as SQL. As a result, there has been a flurry of interest in automatically
synthesizing SQL queries from informal specifications [Feng et al. 2017a; Li and Jagadish 2014;
Popescu et al. 2003; Wang et al. 2017; Zhang and Sun 2013].
Existing techniques for automatically synthesizing SQL queries fall into two different classes,

namely example-based approaches and those based on natural language. Programming-by-example
techniques, such as Scythe [Wang et al. 2017] and SQLSynthesizer [Zhang and Sun 2013], require
the user to present a miniature version of the database together with the expected output. A
shortcoming of such example-directed techniques is that they require the user to be familiar with
the database schema. Furthermore, because realistic databases typically involve many tables, it can
be quite cumbersome for the user to express their intent using input-output examples.

2017. 2475-1421/2017/1-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig

"List total
annual income
of tax payers..."

Semantic
parser

Database
Analysis

Query sketch

Schema+stats

Program
synthesis

Sketch
repair

SELECT F.Year ...

FROM TAX_PAYER ...

WHERE F.Year > 1986

New sketch

Fig. 1. Schematic overview of our approach

On the other end of the spectrum, techniques that can generate SQL queries from natural
language (NL) descriptions are easier for end-users but more difficult for the underlying synthesizer,
as natural language is inherently ambiguous. Existing NL-based techniques try to achieve high
precision either by training the system on a specific database [Tang and Mooney 2000; Zelle and
Mooney 1996] or requiring interactive guidance from the user [Li and Jagadish 2014]. Hence,
existing NL-based techniques for synthesizing SQL queries are either not fully automatic or not
database-agnostic (i.e., require customization for each database).

In this paper, we present a novel technique, and its implementation in a tool called Sqlizer, for
synthesizing SQL queries from English descriptions. By marrying ideas from the NLP community
with type-directed synthesis and repair techniques from the programming languages community,
our proposed approach overcomes many of the disadvantages of existing techniques. Specifically,
our method is fully automatic (i.e., it does not require guidance from the user) and database-agnostic
(i.e., it does not require database-specific training or customization). As we show experimentally,
Sqlizer achieves high precision across multiple different databases and significantly outperforms
Nalir [Li and Jagadish 2014], a state-of-the-art system that won a best paper award at VLDB’14.

From a technical perspective, our approach achieves these results by combining three novel and
synergistic ideas in a confidence-driven refinement loop:

Sketch generation semantic parsing. As a first step, our method uses standard semantic parsing
techniques [Kate and Mooney 2006; Kate et al. 2005; Liang and Potts 2015] from the NLP community
to translate the user’s English description into a so-called query sketch (skeleton). Since a query
sketch only specifies the shape – rather than the full content – of the query (e.g., join followed by
selection followed by projection), the semantic parser does not need to be trained on the target
database. Hence, by using the semantic parser to generate a query sketch rather than a full-fledged
SQL query, we can translate the user’s English description into a suitable formal representation
without requiring any database-specific training. This property of being database-agnostic is very
useful because our system does not need additional training data for each new database that a user
wishes to query.

Type-directed sketch completion. Given a query sketch containing holes, our technique employs
type-directed program synthesis to complete the sketch into a well-typed SQL query. However,
because there are typically many well-typed completions of the sketch, our approach assigns a
confidence score to each possible completion using both the schema and the contents of the database.

Sketch refinement using repair . Since users are typically not familiar with the underlying data
organization, the initial query sketches generated using semantic parsing may not accurately

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

SQLizer: Query Synthesis from Natural Language 1:3

reflect the structure of the target query. Hence, there may not be any well-typed, high-confidence
completions of the sketch. For example, consider a scenario in which the user believes that the
desired data is stored in a single database table, although it in fact requires joining two different
tables. Since the user’s English description does not adequately capture the structure of the desired
query, the initial query sketch needs to be repaired. Our approach deals with this challenge by (a)
performing fault localization to pinpoint the likely cause of the error, and (b) using a database of
“repair tactics" to refine the initial sketch.

Figure 1 gives a schematic overview illustrating the interaction between the three key ideas
outlined above. Given the user’s natural language description, Sqlizer first generates the top k
most likely query sketches Q using semantic parsing, and, for each query skeleton q ∈ Q , it tries to
synthesize a well-typed, high-confidence completion of q. If no such completions can be found,
Sqlizer tries to identify the root cause of failure and automatically repairs the suspect parts of
the sketch. Once Sqlizer enumerates all high-confidence queries that can be obtained using at
most n repairs on q, it then moves on to the next most-likely query sketch. At the end of this
parse-synthesize-repair loop, Sqlizer ranks all queries based on their confidence scores and presents
the topm results to the user.

The general idea. While our target application domain in this paper is relational databases, we
believe that our proposed ideas could be applicable in other domains that require synthesizing
programs from natural language descriptions. Specifically, given a program sketch generated using
standard NLP techniques, we propose a confidence-driven synthesis methodology that uses a form
of quantitative type inhabitation to assign a confidence score to each well-typed sketch completion.
While the specific technique used for assigning confidence scores is inherently domain-specific,
the idea of assigning confidence scores to type inhabitants is not. Given a domain-specific method
for performing quantitative type inhabitation and a database of domain-specific repair techniques,
the parse-synthesize-repair loop proposed in this paper can be instantiated in many other settings
where the goal is to synthesize programs from natural language.

Results. We have evaluated our approach on 455 queries involving three different databases, namely
MAS (Microsoft Academic Search), IMDB, and YELP. Our evaluation shows that the desired query
is ranked within Sqlizer’s top 5 solutions approximately 90% of the time and within top 1 close to
80% of the time. We also compare Sqlizer against a state-of-the-art NLIDB tool, Nalir, and show
that Sqlizer performs significantly better across all three databases, including on the data set that
is used for evaluating Nalir.

Contributions. In summary, this paper makes the following key contributions:
• We describe a new methodology for synthesizing programs from natural language. Our
synthesis algorithm starts with a program sketch obtained using parsing techniques from
the NLP community, and then enters an iterative refinement loop that alternates between
type-directed synthesis and automated repair.
• Wepresent Sqlizer, an end-to-end system for synthesizing SQL queries from natural language.
Sqlizer is fully automated, database-agnostic, and does not require users to know the
underlying database schema.
• We evaluate Sqlizer on a set of 455 queries involving three databases. Our results show that
the desired query is ranked number one in 78.4% of benchmarks and within the top 5 in 88.3%
of the benchmarks.

Organization. The rest of the paper is organized as follows: We first provide an overview of
our approach through a simple motivating example (Section 2). Then, we present our general

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig

Publication
*P pid Integer

tit le VARCHAR (200)
abstract VARCHAR (2000)
year Integer

*F cid Integer
*F j id Integer

{entity} PK (pid)

Journal
*P j id Integer

name VARCHAR (200)
fullName VARCHAR (1000)
homepage VARCHAR (200)

{entity} PK (jid)

Conference
*P cid Integer

name VARCHAR (200)
fullName VARCHAR (1000)
homepage VARCHAR (200)

{entity} PK (cid)

Writes
*PF aid Integer
*PF pid Integer

{entity} PK (aid, pid)

Author
*P aid Integer

name VARCHAR (200)
homepage VARCHAR (200)

{entity} PK (aid)

Fig. 2. Simplified schema for the Microsoft Academic Search (MAS) database

methodology for synthesizing programs from natural language descriptions (Section 3). After
providing some background on a variant of relational algebra (Section 4), we then show how
to instantiate each of the components of our general synthesis methodology in the context of
SQL synthesis (Sections 5, 6, 7). Finally, we discuss our implementation in Section 8, present our
empirical evaluation in Section 9 and survey related work in Section 10.

2 OVERVIEW

In this section, we give a high-level overview of our technique with the aid of a simple motivating
example. Figure 2 shows the relevant portion of the schema for the Microsoft Academic Search
(MAS) database, and suppose that we would like to synthesize a database query to retrieve the
number of papers in OOPSLA 2010. To use our tool, the user provides an English description, such
as “Find the number of papers in OOPSLA 2010". We now outline the steps taken by Sqlizer in
synthesizing the desired SQL query.

Sketch generation. Our approach first uses a semantic parser to generate the top k most-likely
program sketches. For this example, the highest-ranked query sketch returned by the semantic
parser is the following 1:
SELECT count(?[papers]) FROM ??[papers] WHERE ? = "OOPSLA 2010"

Here, ?? represents an unknown table, and ?’s represent unknown columns. Where present,
the words written in square brackets represent so-called “hints" for the corresponding hole. For
example, the second hint in this sketch indicates that the table represented by ?? is semantically
similar to the English word “papers".

First iteration. Starting from the above sketchS, Sqlizer enumerates all well-typed completionsqi
of S, together with a score for each qi . In this case, there are many possible well-typed completions
of S, however, none of the qi ’s meet our confidence threshold. For instance, one of the reasons
why Sqlizer fails to find a high-confidence query is that there is no entry called “OOPSLA 2010" in
any of the database tables.

Next, Sqlizer performs fault localization onS to identify the root cause of failure (i.e., not meeting
confidence threshold). In this case, we determine that the likely root cause is the predicate ? =
"OOPSLA 2010" since there is no database entry matching “OOPSLA 2010", and our synthesis
1We actually represent query sketches using an extended version of relational algebra. In this section, we present query sketches using SQL
for easier readability.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

SQLizer: Query Synthesis from Natural Language 1:5

algorithm has assigned a low confidence score to this term. Next, we repair the sketch by splitting
the where clause into two separate conjuncts. As a result, we obtain the following refinement S′ of
the initial sketch S:
SELECT count(?[papers]) FROM ??[papers]
WHERE ? = "OOPSLA" AND ? = 2010

Second iteration. Next, Sqlizer tries to complete the refined sketch S′ but it again fails to find a
high-confidence completion of S′. In this case, the problem is that there is no single database table
that contains both the entry “OOPSLA" as well as the entry “2010". Going back to fault localization,
we now determine that the most likely problem is the term ??[papers], and we try to repair it
by introducing a join. As a result, the new sketch S′′ now becomes:
SELECT count(?[papers]) FROM ??[papers] JOIN ?? ON ? = ?
WHERE ? = "OOPSLA" AND ? = 2010

Third iteration. After going back to the sketch completion phase a third time, we are now able
to find a high-confidence instantiation q of S′′. In this case, the highest ranked completion of S′′
corresponds to the following query:
SELECT count(Publication.pid)
FROM Publication JOIN Conference ON Publication.cid = Conference.cid
WHERE Conference.name = "OOPSLA" AND Publication.year = 2010

This query is indeed the correct one, and running it on the MAS database yields the number of
papers in OOPSLA 2010.

3 GENERAL SYNTHESIS METHODOLOGY

Before describing our specific technique for synthesizing SQL code from English queries, we
first explain our general methodology for synthesizing programs from natural language descrip-
tions. As mentioned in Section 1, our general synthesis methodology involves three components,
namely (a) sketch generation using semantic parsing, (b) sketch completion using quantitative type
inhabitation, and (c) sketch refinement using repair.

The high-level structure of our synthesis methodology is described in pseudo-code in Algorithm 1.
The algorithm takes as input a natural language description Q of the program to be synthesized, a
type environment Γ, and a confidence threshold γ . Since our synthesis algorithm assigns confidence
scores to generated programs, the cut-off γ is used to identify programs that do not meet some
minimum confidence threshold. The output of the synthesis procedure is a list of synthesized
programs, together with their corresponding confidence score.
Given an English description of the program, the first step in our synthesis methodology is

to generate a ranked list of program sketches using semantic parsing [Kate and Mooney 2006;
Kate et al. 2005; Liang and Potts 2015]. Semantic parsing is a standard technique from the NLP
community that can be used to convert an English utterance into a logical form, which is defined
according to a formal context-free grammar. In this paper, we use program sketches [Solar-Lezama
et al. 2005, 2006] as our logical form representation because they allow us to translate the NL
description into a program draft while omitting several low-level details that may not be accurately
captured by the user’s English description. As standard, a program sketch in this context is a partial
program with holes [Solar-Lezama et al. 2005, 2006]. However, because our program sketches are
created from English descriptions, we additionally allow each hole in the sketch to contain a natural
language hint associated with it. The idea is to use these natural language hints for assigning
confidence scores during sketch completion.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig

Algorithm 1 General synthesis methodology

1: procedure Synthesize(Q, Γ, γ)
2: Input: natural language query Q, type environment Γ, confidence threshold γ
3: Output: A list of synthesized programs and their corresponding confidence scores
4: Sketches := SemanticParse(Q) ▷ Sketch generation
5: Proдrams := [];
6: for all top k ranked S ∈ Sketches do
7: loop n times
8: θ := FindInhabitants (S, Γ) ▷ Type-directed sketch completion
9: needRepair := true
10: for all (Ii ,Pi) ∈ θ do
11: if Pi > γ then Proдrams .add(Ii ,Pi); needRepair := false
12: if ¬needRepair then break
13: F := FaultLocalize(S, Γ, ∅) ▷ Sketch refinement
14: if F = null then break
15: S := S[FindRepair(F)/F]
16: return Proдrams

Given the top k query sketches generated by the semantic parser, the next step is to complete
each sketch S such that it is well-typed with respect to our type environment Γ. For instance, in the
context of SQL, the type environment corresponds to the database schema, and the goal of sketch
completion is to find a relational algebra term that is well-typed with respect to the underlying
database schema. In essence, the use of type information allows our synthesis methodology to
perform logical reasoning that complements the probabilistic reasoning performed by the semantic
parser. However, because there are typically many well-typed completions of a given sketch,
we would like to predict which term is the most likely completion. We refer to this problem as
quantitative type inhabitation: Given a type τ , a type environment Γ, and some “soft constraints" C
on the term to be synthesized, what is our confidence Pi that Ii is the inhabitant of τ with respect
to hard constraints Γ and soft constraints C? These soft constraints include natural language hints
embedded inside the sketch as well as any other domain-specific knowledge. For example, in the
context of database queries, we also utilize the contents of the database when assigning confidence
scores to relational algebra terms.
Now, if we fail to find any well-typed completions of the sketch that meet our confidence

threshold γ , our algorithm goes into a refinement loop that alternates between repair and synthesis
(the inner loop at lines 7–15 in Algorithm 1). Given a program sketch S for which we cannot find a
high-confidence completion, the fault localization procedure (line 13) returns a minimal subterm of
the sketch that does not meet our confidence threshold γ . Given a faulty subterm F of sketch S, we
then consult a database of domain-specific repair tactics to find a new subterm F ′ that can be used
to replace F . For instance, in the domain of SQL query synthesis, the repair tactics introduce join
operators, aggregate functions, or additional conjuncts in predicates depending on the shape of the
faulty sub-term. If there are multiple repair tactics that apply, we can either arbitrarily choose one
or try each of them in turn. Since this refinement process may, in general, continue ad infinitum,
our algorithm allows the user to specify a value n that controls the number of refinement steps
that are allowed.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

SQLizer: Query Synthesis from Natural Language 1:7

T := ΠL (T) | σϕ (T) | T c▷◁cT | t
L := L,L | c | f (c) | д(f (c), c)
E := T | c | v
ϕ := ϕ lop ϕ | ¬ϕ | c op E
op := ≤ | < | = | > | ≥
lop := ∧ | ∨

Fig. 3. Grammar of Extended Relational
Algebra. Here, t , c denote table and col-
umn names; f denotes an aggregate
function, and v denotes a value.

id name score cid_fk
1 John 60 101
2 Jack 80 102
3 Jane 80 103
4 Mike 90 104
5 Peter 100 103
6 Alice 100 104

(a) Grades

cid cname dept
101 C1 CS
102 C2 EE
103 C3 CS
104 C4 EE

(b) Courses

Fig. 4. Example tables

4 EXTENDED RELATIONAL ALGEBRA

In the rest of this paper, we will show how to apply the synthesis methodology outlined in Section 3
to the problem of synthesizing database queries from natural language. However, since our approach
synthesizes database queries in a variant of relational algebra, we first describe our target language.
Note that it is straightforward to translate our extended relational algebra to declarative query
languages, such as SQL.

Our target language for expressing database queries is presented in Figure 3. Here, relations are
denoted asT and include tables t stored in the database or views obtained by applying the relational
algebra operators, projection (Π), selection (σ), and join (▷◁). As standard, projection ΠL (T) takes
a relation T and a column list L and returns a new relation that only contains the columns in L.
The selection operation σϕ (T) yields a new relation that only contains rows satisfying ϕ in T . The
join operation T1 c1▷◁c2T2 composes two relations T1, T2 such that the result contains exactly those
rows of T1 ×T2 satisfying c1 = c2, where c1, c2 are columns in T1,T2 respectively. Please observe
that the grammar from Figure 3 allows nested queries. For instance, selections can occur within
other selections and joins as well as inside predicates ϕ.
In the rest of this paper, we make a few assumptions that simplify our technical presentation.

First, we assume that every column in the database has a unique name. Note that we can easily
enforce this restriction by appending the table name to each column name. Second, we only consider
equi-joins because they are the most commonly used join operator; however, our techniques can
also be extended to other kinds of join operators (e.g., θ -join).
Unlike standard relational algebra, the relational algebra variant shown in Figure 3 also allows

aggregate functions as well as a group-by operator. For conciseness, aggregate functions f ∈
AggrFunc = {max, min, avg, sum, count} are specified as a subscript in the projection operation.
In particular, Πf (c) (T) yields a single aggregate value obtained by applying f to column c of
relationT . Similarly, group-by operations are also specified as a subscript in the projection operator.
Specifically, Πд (f (c1),c2) (T) divides rows of T into groups дi based on values stored in column c2
and, for each дi , it yields the aggregate value f (c1).

Example 4.1. Consider the “Grades” and “Courses” tables from Figure 4, where column
names with suffix “_fk" indicate foreign keys. Here, Πavg(score) (Grades) evaluates to 85, and
Πg(avg(score), dept) (Gradescid_fk▷◁cidCourses) yields the following table:

dept avg(score)
CS 80
EE 90

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig

χ := Πκ (χ) | σψ (χ) | χ ?h▷◁?hχ | ??h
κ := κ,κ | ?h | f (?h) | д(f (?h), ?h)
η := χ | ?h | v
ψ := ψ lop ψ | ¬ψ | ?h op η

op := ≤ | < | = | > | ≥

lop := ∧ | ∨

Fig. 5. Sketch Grammar. Here, v denotes
a value, h represents a natural language
hint, and f is an aggregate function.

β := Number N | Bool B | String S | · · ·
τ := β | {(c1 : β1), · · · , (cn : βn)}
Γ :: Table→ τ

p :: {ν : double | 0 ≤ ν ≤ 1}
sim :: S × S→ p

P▷◁ :: Column × Column→ p

Pϕ :: Column × Value→ p

Fig. 6. Symbols used in sketch completion

To provide an example of nested queries, suppose that a user wants to retrieve all students with
the highest score. We can express this query as Πname (σscore=Πmax(score) (Grades) (Grades)). For the tables
from Figure 4, this query yields a table with two rows, Peter and Alice.

5 SKETCH GENERATION USING SEMANTIC PARSING

Recall from Section 3 that the first step of our synthesis methodology is to generate a program
sketch using semantic parsing. In this section, we provide some background on semantic parsing
and describe our parser for generating a query sketch from the user’s English description.

Background on semantic parsing. The goal of a semantic parser is to map a sentence in natural
language to a so-called logical formwhich represents its meaning. A logical form is an unambiguous
artificial language specified using a context-free grammar. Previous work on semantic parsing has
used various logical form representations, including lambda calculi [Carpenter 1997], database
query languages [Zelle and Mooney 1996], and natural logics [MacCartney and Manning 2009].

Similar to traditional parsers used in compilers, a semantic parser is specified by a context-free
grammar and contains a set of reduction rules describing how to derive non-terminal symbols
from token sequences. Given an English sentence S , the parse is successful if the designated root
non-terminal can be derived from S .
Since semantic parsers deal with natural language, they must overcome two challenges that

do not arise in parsers for formal languages. First, multiple English phrases (e.g., “forty two") can
correspond to a single token (e.g., 42); so a semantic parser must be capable of recognizing phrases
and mapping them accurately into tokens. To address this challenge, semantic parsers typically
include a linguistic processing module to analyze the sentence and detect such phrases based on
part-of-speech tagging and named entity recognition. Second, since natural language is inherently
ambiguous, one can often derive multiple logical forms from an English sentence. Modern semantic
parsers address this challenge by using statistical methods to predict the most likely derivation for
a given utterance. Given a set of training data consisting of pairs of English sentences and their
corresponding logical form, the idea is to train a statistical model to predict the likelihood that
a given English sentence is mapped to a particular logical form. Hence, the output of a semantic
parser is a list of logical forms xi , each associated with a probability that the English sentence
corresponds to xi .

Sqlizer’s Semantic Parser. The logical forms used in our synthesis methodology take the form of
program sketches containing unknown expressions with natural language hints. In essence, the
use of program sketches as our logical form representation allows the semantic parser to generate
a high-quality intermediate representation even when we have modest amounts of training data

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

SQLizer: Query Synthesis from Natural Language 1:9

available. In the context of generating database queries from natural language, the use of query
sketches allows our technique to work well without requiring any database-specific training.
Figure 5 defines query sketches that are used as our logical form representation in the database

query synthesis domain. At a high level, a query sketch χ is a relational algebra term with missing
table and column names. In particular, ?h represents an unknown column with hint h, which is just
a natural language description of the unknown. Similarly, ??h represents an unknown table name
with corresponding hint h. If there is no hint associated with a hole, we simply write ? for columns
and ?? for tables.

To map English sentences to query sketches, we have implemented our own semantic parser on
top of the Sempre framework [Berant et al. 2013], which is a toolkit for building semantic parsers.
For the linguistic processor, we leverage the pre-trained models of the Stanford CoreNLP [Manning
et al. 2014] library for part-of-speech tagging and named entity recognition. Given an utterance
u, our parser generates all possible query sketches Si and assigns each Si a score that indicates
the likelihood that Si is the intended interpretation of u. This score is calculated based on a set of
pre-defined features. More precisely, given an utterance u and weight vectorw , the parser maps
each query sketch Si to a d-dimensional feature vector ϕ (u,Si) ∈ Rd and computes the likelihood
score for Si as the weighted sum of its features:

score (u,Si) = w⃗ . ϕ (u,Si) =
d∑
j=1

w j · ϕ (u,Si) j

Sqlizer uses approximately 40 features that it inherits from the Sempre framework. Examples of
features include the number of grammar rules used in the derivation, the length of the matched
input, whether a particular rule was used in the derivation, the number of skipped words in a
part-of-speech tag etc.

6 TYPE-DIRECTED SKETCH COMPLETION

Given a program sketch S and a type environment (in our case, database schema) Γ, sketch
completion refers to the problem of finding an expression e such that e is well-typed with respect
to Γ. In essence, this is a type inhabitation problem in that we can view each program sketch
as defining a type. However, rather than finding any inhabitant of S, we would like to find an
inhabitant e of S that has a high probability of being the program that the user has in mind. One of
the key ideas in this paper is to use natural language hints embedded in sketch S as well as any
domain-specific background knowledge to associate a confidence score Pi with every inhabitant Ii
of a type τ with respect to the type environment Γ. As mentioned earlier, we refer to this problem
as quantitative type inhabitation.
In the specific case of the database query synthesis problem, we make use of the following

high-level insights to determine the confidence score of each type inhabitant:
• Names of schema elements: Since our query sketches contain natural language hints for each
hole, we can utilize table and column names in the database schema to assign confidence
scores.
• Foreign and primary keys: Since foreign keys provide links between data in two different
database tables, join operations that involve foreign keys have a higher chance of being the
intended term.
• Database contents: Our approach also uses the contents of the database when assigning scores
to queries. For instance, a candidate term σϕ (T) is relatively unlikely to occur in the target
query if there are no entries in relation T satisfying predicate ϕ.2

2This assumption may not hold in all contexts. However, since Sqlizer is intended as a question answering system, we
believe this assumption makes sense under potential deployment scenarios of a tool like Sqlizer.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig

t ∈ dom(Γ)
p = sim(h, t)

Γ ⊢??h ⇓ t : Γ(t), p
(Table)

Γ ⊢ χ ⇓ T : τ , p1
Γ,τ ⊢s κ ⇓ L : τ1, p2

Γ ⊢ Πκ (χ) ⇓ ΠL (T) : τ1, p1 ⊗ p2
(Proj)

Γ ⊢ χ ⇓ T : τ , p1
Γ,τ ⊢s ψ ⇓ ϕ : B, p2

Γ ⊢ σψ (χ) ⇓ σϕ (T) : τ , p1 ⊗ p2
(Sel)

Γ ⊢ χ1 ⇓ T1 : τ1, p1
Γ ⊢ χ2 ⇓ T2 : τ2, p2

Γ,τ1 ⊢s?h1 ⇓ c1 : {(c1, β)}, p3
Γ,τ2 ⊢s?h2 ⇓ c2 : {(c2, β)}, p4

p = p1 ⊗ p2 ⊗ p3 ⊗ p4 ⊗ P▷◁ (c1, c2)
Γ ⊢ χ1 ?h1▷◁?h2 χ2 ⇓ T1 c1▷◁c2T2 : τ1 ∪ τ2, p

(Join)

Fig. 7. Inference rules for relations

Using these domain-specific heuristics in the query synthesis context, Figures 7 and 8 describe
our quantitative type inhabitation rules. Specifically, the top-level sketch completion rules derive
judgments of the form Γ ⊢ χ ⇓ T : τ ,p where Γ is a type environment mapping each table t in the
database to its corresponding type. The meaning of this judgment is that sketch χ instantiates to
a relational algebra term T of type τ with confidence score p ∈ [0, 1]. The higher the score p, the
more likely it is that T is a valid completion of sketch χ .

Figure 8 presents the helper rules used for finding inhabitants of so-called specifiers. A specifier ω
of a sketch χ is any subterm of χ that does not correspond to a relation. For example, the specifier
for Πκ (χ) is κ, and the specifier for σψ (χ) isψ . The instantiation rules for specifiers are shown in
Figure 8 using judgements of the form:

Γ,τ ⊢s ω ⇓ Z : τ ′,p

Here, type τ used on the left-hand side of the judgment denotes the type of the table that ω is
supposed to qualify. For instance, if the parent term of ω is Πω (χ), then τ represents the type of
relation χ . Hence, the meaning of this judgment is that, under the assumption that ω qualifies a
relation of type τ , then ω instantiates to a term Z of type τ ′ with score p.

Inhabitation rules for relation sketches. Let us first consider the quantitative type inhabitation
rules from Figure 7. Given a sketch ??h indicating an unknown database table with hint h, we can,
in principle, instantiate ?? with any table t in the database (i.e., t is in the domain of Γ). However, as
shown in the first rule from Figure 7, our approach uses the hint h to compute the likelihood that t
is the intended completion of ??. Specifically, we use the sim procedure to compute a similarity
score between hint h and table name t usingWord2Vec [Mikolov et al. 2013], which uses a two-layer
neural net to group similar words together in vector-space.
Next, let us consider the Proj, Sel rules from Figure 7. Given a sketch of the form Πκ (χ) (resp.

σψ (χ)), we first recursively instantiate the sub-relation χ toT . Now, observe that the columns used
in specifiers κ andψ can only refer to columns inT ; hence, we use the type τ ofT when instantiating
specifiers κ,ψ . Now, assuming χ instantiates to T with score p1 and κ (resp. ψ) instantiates to L
(resp. ϕ) with score p2, we need to combine p1 and p2 to determine a score for ΠL (T) (resp. σϕ (T)).
Towards this goal, we define an operator ⊗ that is used to compose different scores. While there
are many possible ways to compose scores, our implementation defines ⊗ as the geometric mean
of p1, . . . ,pn :

p1 ⊗ ... ⊗ pn = n
√
p1 × ... × pn

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

SQLizer: Query Synthesis from Natural Language 1:11

Observe that our definition of ⊗ is not the standard way to combine probabilities (i.e., standard
multiplication). We have found that this definition of ⊗ works better in practice, as it does not
penalize long queries and allows a more meaningful comparison between different-length queries.
However, one implication of this choice is that the scores of all possible completions do not add up
to 1. Hence, our confidence scores are not “probabilities” in the technical sense, although they are
in the range [0, 1].

Finally, let us consider the Join rule for completing sketches of the form χ1 ?h1▷◁?h2 χ2. As before, we
first complete the nested sketches χ1 and χ2, and then instantiate ?h1 and ?h2 under the assumption
that χ1, χ2 have types τ1,τ2 respectively. The function P▷◁ (c1, c2) used in the Join rule assigns a
higher score to term T1 c1▷◁c2T2 if column c1 is a foreign key referring to column c2 in table T2 (or
vice versa). Intuitively, if c1 in table T1 is a foreign key referring to c2 in Table T2, then there is a
high probability that the term T1 c1▷◁c2T2 appears in the target query. More precisely, we define the
P▷◁ function as follows, where ϵ is a small, non-zero constant:

P▷◁ (c1, c2) =

1 − ϵ if c1 is a foreign key referring to c2 (or vice versa)
ϵ otherwise

Inhabitation rules for specifiers. In our discussion so far, we ignored how to find inhabitants of
specifiers and how to assign confidence scores to them. We now consider the rules from Figure 8
that address this problem.

In the simplest case, a specifier is a column of the form ?h. As shown in the Col rule of Figure 8,
we must first ensure that the candidate inhabitant c is actually a column of the table associated
with the parent relation (i.e., (c, β) ∈ τ). In addition to this “hard constraint", we also want to assign
a higher confidence score to inhabitants c that have a close resemblance to the natural language
hint h provided in the sketch. Hence, similar to the Table rule from Figure 7, we assign a confidence
score by computing the similarity between c and h using Word2Vec.
Since most of the rules in Figure 8 are quite similar to the ones from Figure 7, we do not

explain them in detail. However, we would like to draw the reader’s attention to the Pred rule
for instantiating predicate sketches of the form ?h op η. Recall that a predicate c op v evaluates to
true for exactly those values v ′ in column c for which the predicate v ′ op v is true. Now, if c does
not contain any entries v ′ for which the v ′ op v evaluates to true, there is a low, albeit non-zero,
probability that c op v is the intended predicate. To capture this intuition, the Pred rule uses the
following Pϕ function when assigning a confidence score:

Pϕ (c op E) =

1 − ϵ if ∃v ′ ∈ contents(c). v ′ op E = ⊤

ϵ otherwise
Here, ϵ is a small, non-zero constant that indicates low confidence. Hence, predicate c op E is

assigned a low score if there are no entries satisfying it in the database. 3
Finally, we would also like to draw the reader’s attention to the Value rule, which types constants

in a quantitative manner. To gain intuition about the necessity of quantitatively typing constants,
consider the string constant “forty two". While this value may correspond to a string constant, it
could also be an integer (42) or a float (42.0). To deal with such ambiguity, our typing rules use a
function Pτ to estimate the probability that constant v has type β and then cast v to a constant v ′
of type β .

3Observe that this heuristic requires querying the underlying database. Hence, if Sqlizer is used as part of an online system
that has direct access to the live database, our synthesis algorithm may place a load on the database by issuing multiple
queries in short succession. However, this problem can be avoided by forking the database rather than using the live version.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig

(c, β) ∈ τ
p = sim(h, c)

Γ,τ ⊢s?h ⇓ c : {(c, β)}, p
(Col)

Γ,τ ⊢s?h ⇓ c : {(c, β)}, p1
Γ,τ ⊢s η ⇓ E : {(c ′, β)}, p2
p = p1 ⊗ p2 ⊗ Pϕ (c op E)

Γ,τ ⊢s?h op η ⇓ c op E : B, p
(Pred)

p = Pτ (v, β), (c, β) ∈ τ
cast(v, β) = v ′

Γ,τ ⊢s v ⇓ v ′ : {(v ′, β)}, p
(Value)

Γ ⊢ χ ⇓ T : τ ,p
Γ,τ ⊢s χ ⇓ T : τ ,p

(Reduce)

Γ,τ ⊢s ψ ⇓ ϕ : B, p
Γ,τ ⊢s ¬ψ ⇓ ¬ϕ : B, p

(PredNeg)

Γ,τ ⊢s?h ⇓ c : {(c, β)}, p
type(f) = β → β ′

Γ,τ ⊢s f (?h) ⇓ f (c) : {(f (c), β ′)}, p
(Fun)

Γ,τ ⊢s f (?h1) ⇓ f (c1) : {(f (c1), β)}, p1
Γ,τ ⊢s?h2 ⇓ c2 : {(c2,τ2)}, p2

Γ,τ ⊢s д(f (?h1), ?h2) ⇓ д(f (c1), c2)
: {(c2,τ2), (f (c1), β)}, p1 ⊗ p2

(Group)

Γ,τ ⊢s κ1 ⇓ L1 : τ1, p1
Γ,τ ⊢s κ2 ⇓ L2 : τ2, p2

Γ,τ ⊢s κ1,κ2 ⇓ L1,L2 : τ1 ∪ τ2, p1 ⊗ p2
(ColList)

Γ,τ ⊢s ψ1 ⇓ ϕ1 : B, p1
Γ,τ ⊢s ψ2 ⇓ ϕ2 : B, p2

Γ,τ ⊢s ψ1 lop ψ2 ⇓ ϕ1 lop ϕ2 : B, p1 ⊗ p2
(PredLop)

Fig. 8. Inference rules for specifiers

Example 6.1. Consider again the (tiny) database shown in Figure 4 and the following query
sketch:

Πg(avg(?score), ?department) (??score?▷◁???)

According to the rules from Figures 7 and 8, the query Πg(avg(score), dept) (Gradescid_fk▷◁cid_fkGrades) is
not a valid completion because it is not “well-typed" (i.e., dept is not a column in Gradescid_fk▷◁
cid_fkGrades). In contrast, the query Πg(avg(score), dept) (Gradesid ▷◁cidCourses) is well-typed but is as-
signed a low score because the column id in Grades is not a foreign key referring to column cid
in Courses. As a final example, consider the query:

Πg(avg(score), dept) (Gradescid_fk▷◁cidCourses)

This query is both well-typed and is assigned a high score close to 1.

7 SKETCH REFINEMENT USING REPAIR

In the previous section, we saw how to generate a ranked list of possible sketch completions using
quantitative type inhabitation. However, in some cases, it may not be possible to find well-typed,
high-confidence completions of any sketch. For instance, this situation can arise for at least two
different reasons:
(1) Due to ambiguities in the user’s natural language description, the correct sketch may not be

in the top k sketches generated by the semantic parser.
(2) In some cases, the user’s natural language description may be misleading. For instance, in the

context of query synthesis, the user might make incorrect assumptions about the underlying
data organization , so her English description may not accurately reflect the general structure
of the target query.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

SQLizer: Query Synthesis from Natural Language 1:13

Algorithm 2 Fault Localization Algorithm
1: procedure FaultLocalize(S, Γ, τ)
2: Input: partial sketch S, schema Γ, record type τ
3: Output: faulty partial sketch S′ or null
4: if isRelation(S) then
5: for all (χi ,ωi) ∈ SubRelations(S) do
6: χ ′i = FaultLocalize(χi , Γ, τ)
7: if χ ′i , null then return χ ′i
8: θi = FindInhabitants(χi , Γ)
9: for all (Ij , Pj , τj) ∈ θi do
10: ω ′i j = FaultLocalize(ωi , Γ, τj)

11: if ∀j . ω ′i j , null then
12: if ∀j,k . ω ′i j = ω

′
ik then return ω ′i0

13: else if CanRepair(ωi) then return ωi

14: else if isSpecifier(S) then
15: for all ωi ∈SubSpecifiers(S) do
16: ω ′i = FaultLocalize(ωi , Γ, τ)
17: if ω ′i , null then return ω ′i
18: θ = FindInhabitants(S, Γ, τ)
19: if MaxProb(θ) < ρ and CanRepair(S) then
20: return S
21: else return null

SubRelations(Πκ (χ)) = {(χ ,κ)}
SubRelations(σψ (χ)) = {(χ ,ψ)}

SubRelations(χ1 ?h1▷◁?h2 χ2) = {(χ1, ?h1), (χ2, ?h2)}
SubSpecifiers(д(f (?h1), ?h2)) = { f (?h1), ?h2}

SubSpecifiers(κ1,κ2) = {κ1,κ2}
SubSpecifiers(?h op η) = {?h,η}

SubSpecifiers(¬ψ) = {ψ }
SubSpecifiers(ψ1 lop ψ2) = {ψ1,ψ2}

Fig. 9. Auxiliary functions used in Algorithm 2

One of the key ideas underlying our synthesis methodology is to overcome these problems
through the use of automated sketch refinement. Given a faulty sketch S, the goal of sketch refine-
ment is to generate a new program sketch S′ such that S′ repairs a potentially faulty sub-part of S.
Similar to prior approaches on automated program repair, our method performs sketch refinement
using a combination of fault localization and a database of repair tactics. However, since we do not
have access to a concrete test case that exhibits a specific bug, our sketch refinement procedure is
again confidence-driven. Specifically, we perform fault localization by identifying a minimal fault
subpart F of the sketch such that F does not have any high-confidence inhabitants. The minimal
faulty sub-sketch F has the property that all of its strict sub-expressions have an inhabitant whose
score exceeds our confidence threshold, but F itself does not.
Algorithm 2 presents our fault localization algorithm for query sketches. The recursive Fault-

Localize procedure takes as input the database schema Γ, a partial sketch S, which can be either a
relation or a specifier. If S is a specifier, FaultLocalize also takes as input a record type τ , which
describes the schema for the parent table. (Recall that sketch completion for specifiers requires

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig

split(v) = (v1,v2), v2 , ϵ

?h op v ⇝?h op v1∧?h op v2
(AddPred)

σψ (χ) ⇝ σψ (χ ?ϵ▷◁?ϵ??ϵ)
(AddJoin1)

Πκ (χ) ⇝ Πκ (χ ?ϵ▷◁?ϵ??ϵ)
(AddJoin2)

χ1 ?h1▷◁?h2 χ2 ⇝ χ1 ?ϵ▷◁?ϵ??ϵ ?ϵ▷◁?ϵχ2
(AddJoin3)

split(h) = (f ′,h′)
f ∈ AggrFunc, sim(f , f ′) ≥ δ

?h ⇝ f (?h′)
(AddFunc)

?h op v ⇝?h op ?v
(AddCol)

Fig. 10. Repair tactics. Here, split(v) tokenizes value v using predefined delimiters: split(v) = (v1,v2) iff v1
occurs before the first occurrence of the delimiter and v2 occurs after. If the delimiter doesn’t appear in v,
then split(v) = (v, ϵ).

the parent table τ .) The return value of FaultLocalize is either the faulty sub-sketch or null (if S
cannot be repaired).
Let us now consider Algorithm 2 in more detail. If S is a relation, we first recurse down to its

subrelations and specifiers (see Figure 9) to identify a smaller subterm that can be repaired (lines
4–13). On the other hand, if S is a specifier (lines 14–17), we then recurse down to its subspecifiers,
again to identify a smaller problematic subterm. If we cannot identify any such subterm, we then
consider the current partial sketch S as the possible cause of failure. That is, if S does not have
any inhabitants that meet our confidence threshold, we then check if S can be repaired using our
database of repair tactics. If so, we return S as the problematic subterm (lines 18–20).
One subtle part of the fault localization procedure is the handling of specifiers in lines 11–

13. Recall from Section 6 that the completion of specifiers is dependent on the parent relation.
Specifically, when we find the inhabitant of a relation such as Πκ (χ), we need to know the type of χ
when we complete κ. Hence, there is a valid completion of Πκ (χ) if there exists a valid completion
of κ for some inhabitant of χ . Thus, we can only say that ωi (or one of its subterms) is faulty if it is
faulty for all possible inhabitants of χ (i.e., ∀j . ω ′i j , null).

Example 7.1. Consider the query “Find the number of papers in OOPSLA 2010” from the moti-
vating example in Section 2. The initial sketch generated by semantic parsing is:

Πcount(?papers) (σ?=OOPSLA 2010 (??papers))

Since there is no high-confidence completion of this sketch, we perform fault localization using
Algorithm 2. The innermost hole ??papers can be instantiated with high confidence, so we next
consider the subterm ? = OOPSLA 2010. Observe that there is no completion of ??papers
under which ? = OOPSLA 2010 has a high confidence score because no table in the database
contains the entry "OOPSLA 2010". Hence, fault localization identifies the predicate as ? =
OOPSLA 2010 as the root cause of failure.

Once we identify a faulty subpart F of sketch S, our method tries to repair S by replacing
F by some F ′ obtained using a database of domain-specific repair tactics. Figure 10 shows a
representative subset of our repair tactics for the query synthesis domain. At a high-level, our repair
tactics describe how to introduce new predicates, join operators, and columns into the relevant
sub-parts of the sketch.
To gain some intuition about our repair tactics for database queries, let us consider the rewrite

rules in Figure 10 in more detail. The first tactic, labeled AddPred, splits a predicate into two parts
by introducing a conjunct. For instance, consider a predicate ?h op v and suppose that v is a string

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

SQLizer: Query Synthesis from Natural Language 1:15

that contains a common delimiter (e.g., space, apostrophe etc.). In this case, the AddPred tactic
splits v into two parts v1,v2 occurring before and after the delimiter and rewrites the predicate as
?h op v1∧?h op v2. For example, we have used this tactic in the motivating example from Section 2
when rewriting ?="OOPSLA 2010" as ?="OOPSLA" and ?="2010".

The rewrite rules labeled AddJoin in Figure 10 show how to introduce additional join operators
in selections, projections, and joins. Because users may not be aware that the relevant information
is spread across multiple database tables, these tactics allow us to introduce join operators when
the user’s English description does not contain any clues about the necessity of performing joins.
For instance, recall that we use the AddJoin tactic in our example from Section 2 to rewrite the
term ??[papers] into ??[papers] JOIN ??.

The next rule labeled AddFunc introduces an aggregate function if the hint h in ?h contains the
name of an aggregate function (e.g., count) or something similar to it. For instance, consider a hole
? with hint “average grade". Since “average" is also an aggregate function, the AddFunc rule can be
used to rewrite this as avg(?grade). Finally, the last rule labeled AddCol introduces a new column
in the predicate ?h op v . Since v may refer to the name of a column rather than a constant string
value, the AddCol rule allows us to consider this alternative possibility.

As mentioned earlier, the particular repair tactics used in the context of sketch refinement are
quite domain-specific. However, since natural language is inherently imprecise and ambiguous, we
believe that the proposed methodology of refining the program sketch using fault localization and
repair tactics would also be beneficial in other contexts where the goal is to synthesize a program
from natural language.

8 IMPLEMENTATION

Our Sqlizer tool, written in a combination of C++ and Java, automatically synthesizes SQL code
from English queries. Sqlizer uses the Sempre framework [Berant et al. 2013] and the Stanford
CoreNLP library [Manning et al. 2014] in the implementation of its semantic parser. For quantitative
type inhabitation, Sqlizer uses the Word2Vec [Mikolov et al. 2013] tool to compute a similarity
metric between English hints in the sketch and names of database tables and columns.

Recall that our synthesis algorithm presented in Section 3 only considers the top k query sketches
and repairs each program sketch at most n times. It also uses a threshold γ to reject low-confidence
queries. While each of these parameters can be configured by the user, the default values for k and
n are both 5, and the default value for γ is 0.35. In our experimental evaluation, we also use these
default values.

Training data. Recall from Section 5 that our semantic parser uses supervised machine learning
to optimize the weights used in the likelihood score for each utterance. Towards this goal, we
used queries for a mock database accompanying a databases textbook [Elmasri and Navathe 2011].
Specifically, this database contains information about the employees, departments, and projects for
a hypothetical company. In order to train the semantic parser, we extracted the English descriptions
of 108 queries from the textbook and manually wrote the corresponding sketch for each query.
Please note that the query sketches were constructed directly from the English description without
manually “repairing" them to fit the actual database schema. Also, while a training set of 108 queries
may seem like a small number compared to other supervised machine learning techniques, we can
get away with such a modest amount of training data for several reasons: First, due to our use of
query sketches as the logical form representation, we do not need to train a statistical model to map
English phrases to relational algebra expressions over the database schema. Second, the grammar
we implemented in the semantic parser is carefully designed to minimize ambiguities. Finally, the
linguistic processor used in the semantic parser is pre-trained over a large corpus, including ∼2,500

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig

Database Size #Tables #Columns
MAS 3.2GB 17 53
IMDB 1.3GB 16 65
YELP 2.0GB 7 38

Table 1. Database Statistics

Cat Description

C1 Does not use aggregate function or join
operator

C2 Does not use aggregate function but
Joins different tables

C3 Uses an aggregate function
C4 Uses subquery or self-join

Table 2. Categorization of different benchmarks

articles from the Wall Street Journal for part-of-speech tagging and ∼15,000 sentences from the
CoNLL-2003 dataset for named entity recognition.

Optimizations.While our implementation closely follows the technical presentation in this paper,
it performs two important optimizations that we have not mentioned previously: First, because the
fault localization procedure completes the same sub-sketch many times, we memoize the result
of sketch completion for every subterm. Second, if the score for a subterm is less than a certain
confidence threshold, we reject the partially completed sketch without trying to complete the
remaining holes in the sketch.

9 EVALUATION

To evaluate Sqlizer, we perform experiments that are designed to answer the following questions:
Q1. How effective is Sqlizer at synthesizing SQL queries from natural language descriptions?
Q2. What is Sqlizer’s average running time per query?
Q3. How well does Sqlizer perform across different databases?
Q4. How does Sqlizer perform compared to other tools for synthesizing queries from natural

language?
Q5. What is the relative importance of type information and sketch repair in practice?
Q6. How important are the various heuristics that we use to assign confidence scores to type

inhabitants?

9.1 Experimental Setup

To answer these research questions, we evaluate Sqlizer on three real-world databases, namely the
Microsoft academic search database (MAS) used for evaluating Nalir [Li and Jagadish 2014], the
Yelp business reviewing database (YELP), and the IMDB movie database (IMDB). 4 Table 1 provides
statistics about each database.

Benchmarks. To evaluate Sqlizer on these databases, we collected a total of 455 natural language
queries. For the MAS database, we use exactly the 196 benchmarks obtained from the Nalir
dataset [Li and Jagadish 2014]. For the IMDB and YELP databases, we asked a group of people
at our organization to come up with English queries that they might like to answer using IMDB
and YELP. Participants were given information about the type of data available in each database
(e.g., business names, cities, etc.), but they did not have any prior knowledge about the underlying
database schema, including names of database tables and columns.

Checking correctness. To evaluate the accuracy of Sqlizer, we manually inspected the SQL queries
returned by Sqlizer. We consider a query to be correct if (a) executing the query yields the desired

4All the benchmarks and databases are available at goo.gl/DbUBMM

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

SQLizer: Query Synthesis from Natural Language 1:17

DB Cat Count Top 1 Top 3 Top 5 Parse Synth/repair
% # % # % time (s) time (s)

M
A
S

C1 14 12 85.7 14 100.0 14 100.0 0.41 0.08
C2 59 52 88.1 55 93.2 55 93.2 1.07 0.16
C3 60 49 81.7 55 91.6 56 93.3 1.11 0.29
C4 63 45 71.4 49 77.7 53 84.1 2.53 0.21

Total 196 158 80.6 173 88.3 178 90.8 1.50 0.21

IM
D
B

C1 18 16 88.9 17 94.4 17 94.4 0.50 0.21
C2 69 51 73.9 59 85.5 61 88.4 0.60 0.24
C3 27 24 88.8 26 96.2 26 96.2 0.71 0.34
C4 17 11 64.7 11 64.7 12 70.5 0.70 0.49

Total 131 102 77.9 113 86.3 116 88.5 0.61 0.28

YE
LP

C1 8 6 75.0 7 87.5 7 87.5 0.55 0.02
C2 49 35 71.4 39 79.6 42 85.7 0.77 0.05
C3 51 40 78.4 48 94.1 49 96.0 0.72 0.05
C4 20 15 75.0 15 75.0 15 75.0 0.96 0.06

Total 128 96 75.0 109 85.2 113 88.3 0.77 0.05

Table 3. Summary of our experimental evaluation

information, and (b) the synthesized query faithfully implements the data retrieval logic specified
by the user’s English description.

Categorization of benchmarks. To assess how Sqlizer performs on different classes of queries,
we manually categorize the benchmarks into four groups based on the characteristics of their
corresponding SQL query. Table 2 shows our taxonomy and provides an English description for
each category. While there is no universal agreement on the difficulty level of a given database
query, we believe that benchmarks in category Ci+1 are generally harder for humans to write than
benchmarks in category Ci .

Hardware and OS. All of our experiments are conducted on an Intel Xeon(R) computer with
E5-1620 v3 CPU and 32GB memory, running the Ubuntu 14.04 operating system.

9.2 Accuracy and Running Time

Table 3 summarizes the results of evaluating Sqlizer on the 455 benchmarks involving the MAS,
IMDB, and YELP databases. In this table, the column labeled “Count" shows the number of bench-
marks under each category. The columns labeled “Top k" show the number (#) and percentage (%) of
benchmarks whose target query is ranked within the top k queries synthesized by Sqlizer. Finally,
the columns labeled “Parse time" and “Synth/repair time" show the average time (in seconds) for
semantic parsing and sketch completion/refinement respectively.

As shown in Table 3, Sqlizer achieves close to 90% accuracy across all three databases when we
consider a benchmark to be successful if the desired query appears within the top 5 results. Even if
we adopt a stricter definition of success and consider Sqlizer to be successful if the target query is
ranked within the top one (resp. top three) results, Sqlizer still achieves approximately 78% (resp.
86%) accuracy. Also, observe that Sqlizer’s synthesis time is quite reasonable; on average, Sqlizer
takes 1.22 seconds to synthesize each query, with 85% of synthesis time dominated by semantic
parsing.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig

MAS IMDB YELP
0

20

40

60

80

100

Pe
rc
er
ta
ge

So
lv
ed

(%
)

Sqlizer Nalir

Fig. 11. Comparison between Sqlizer and
Nalir

MAS IMDB YELP
0

20

40

60

80

100

Pe
rc
en
ta
ge

So
lv
ed

(%
)

Sqlizer NoType NoRepair

Fig. 12. Comparison between different variations
of Sqlizer

To gain intuition about cases in which Sqlizer does not work well, we investigated the root
causes of failures in our experimental evaluation. In most cases, the problem is caused by domain-
specific terms for which we cannot accurately compute similarities using Word2Vec. For instance,
in the context of on-line reviewing systems such as Yelp, the terms “star" and “rating" are used
interchangeably, but the domain-agnostic Word2Vec system does not consider these two terms
to be similar. Clearly, this problem can be alleviated by training the neural net for measuring
word similarity on a corpus specialized for this domain. However, since our goal is to develop a
database-agnostic system, we have not performed such domain-specific training for our evaluation.

9.3 Comparison with NALIR

To evaluate whether the results described in Section 9.2 improve over the state-of-the-art, we also
compare Sqlizer against Nalir, a recent system that won a best paper award at VLDB’14 [Li and
Jagadish 2014]. Rather than re-implementing the ideas proposed in the VLDB’14 paper, we directly
use the Nalir implementation provided to us by Nalir’s developers.
Similar to Sqlizer, Nalir generates SQL queries from English and also aims to be database-

agnostic (i.e., does not require database-specific training). However, unlike Sqlizer, which is fully
automated, Nalir can also be used in an interactive setting that allows the user to provide guidance
by choosing the right query structure or the names of database elements. In order to perform a fair
comparison between Sqlizer and Nalir, we use Nalir in the non-interactive setting (recall that
Sqlizer is fully automatic). Furthermore, since Nalir only generates a single database query as its
output, we compare Nalir’s results with the top-ranked query produced by Sqlizer.
As shown in Figure 11, Sqlizer outperforms Nalir on all three databases with respect to the

number of benchmarks that can be solved. In particular, Sqlizer’s average accuracy is 78% whereas
Nalir’s average accuracy is less than 32%. Observe that the queries for the MAS database are
the same ones used for evaluating Nalir, but Sqlizer outperforms Nalir even on this dataset.
Furthermore, even though Sqlizer’s accuracy is roughly the same across all three databases, Nalir
performs significantly worse on the IMDB and YELP databases.
To provide some intuition about why Sqlizer performs better than Nalir in our experiments,

recall that Sqlizer can automatically refine query sketches using a database of repair tactics and
guided by the confidence scores inferred during sketch completion. In contrast, Nalir does not
automatically resolve ambiguities and is more effective when it is used in its interactive mode that

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

SQLizer: Query Synthesis from Natural Language 1:19

MAS IMDB YELP
0

20

40

60

80

100

Pe
rc
en
ta
ge

So
lv
ed

(%
)

Sqlizer NoHints NoKeys NoContent

Fig. 13. Impact of heuristics for assigning confidence scores on Top 5 results

allows the user to guide the system by choosing between different candidate mappings between
nodes in the parse tree to SQL components.

9.4 Evaluation of Different Components of Synthesis Methodology

In this paper, we argued that the use type information and automatic sketch refinement are
both very important for effective synthesis from natural language. To justify this argument, we
compare Sqlizer against two variants of itself. One variant, referred to as NoType, does not use
type information to reject some of the generated SQL queries. The second variant, referred to as
NoRepair, does not perform sketch refinement.
Figure 12 shows the results of our evaluation comparing Sqlizer against these two variants of

itself. As we can see from this figure, disabling either of these features dramatically reduces the
accuracy of the system. In particular, while the full Sqlizer system ranks the target query within
the top 5 results in over 88% of the cases, the average accuracy of both variants is below 35%. We
believe that these results demonstrate that the use of types and automated repair are both crucial
for the overall effectiveness of Sqlizer.

9.5 Evaluation of Heuristics for Assigning Confidence Scores

A key ingredient of the synthesis methodology proposed in this paper is quantitative type inhabita-
tion in which we use domain-specific heuristics to assign confidence scores to programs. In the
context of the database domain, we proposed three different heuristics for assigning confidence
scores to queries. The first heuristic, referred to as Hints, computes the similarity between the
natural language hints in the sketch and the names of schema elements. The second heuristic,
referred to as Keys, uses a function P▷◁ to assign scores to join operators using information about
foreign keys. The third heuristic, referred to as Content, uses a function Pϕ that assigns confidence
scores to selection operations using the contents of the database.
We evaluate the relative importance of each of these heuristics in Figure 13. Specifically, the

variant of Sqlizer labeled NoX disables the scoring heuristic called X . As we can see from the
figure, all of our proposed heuristics are quite important for Sqlizer to work effectively as an
end-to-end synthesis tool.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:20 Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig

0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

Confidence Threshold

Pe
rc
er
ta
ge

So
lv
ed

(%
)

MAS IMDB YELP

Fig. 14. Impact of different confidence thresholds on Top 5 results

9.6 Evaluation of Different Confidence Thresholds

Recall from Algorithm 1 that our synthesis algorithm rejects queries with a confidence score below
a certain threshold γ . As mentioned in Section 8, we use the default value γ = 0.35 in all of our
experiments. To understand the impact of this confidence threshold on our results, we also run the
same set of experiments using different confidence thresholds in the range [0.15, 0.5]. As shown in
Figure 14, Sqlizer is not very sensitive to the exact value of γ as long as it is in the range [0.25, 0.45];
however, accuracy drops sharply if γ is chosen to be either below 0.25 or above 0.45. If the threshold
γ is too low (i.e., below 0.25), Sqlizer seems to generate many incorrect queries, thereby affecting
the overall ranking of the target query. On the other hand, if γ is too high (i.e., above 0.45), Sqlizer
ends up ruling out more queries, sometimes including the desired query. Hence, overall precision
decreases in both cases.

10 RELATED WORK

The work presented in this paper spans a variety of different topics from the databases, program-
ming languages, and natural language processing communities. In what follows, we compare our
technique with related approaches.

Database query synthesis. There is a significant body of work on automatically synthesizing
database queries. Related work in this area can be categorized into three classes, depending on the
form of specifications provided by the user. In one line of work on query synthesis, users convey
their intent to the system through the use of input-output examples [Tran et al. 2009; Wang et al.
2017; Zhang and Sun 2013; Zloof 1975]. Specifically, the input to the system is a miniature version
of the database, and the output is the desired table that should be extracted from this database
using the target query. In this work, we prefer natural language specifications over input-output
examples for two important reasons: First, in order to provide input-output examples, the user
must be familiar with the database schema, which is not always the case. Second, since a database
may contain several tables with many different columns, providing input-output examples may be
prohibitively cumbersome.
The second line of work on query synthesis uses natural language descriptions to convey user

intent [Androutsopoulos et al. 1993, 1995; Li and Jagadish 2014; Li et al. 2006; Popescu et al. 2004,

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

SQLizer: Query Synthesis from Natural Language 1:21

2003; Warren and Pereira 1982]. Early work in this area focuses on systems that are hand-crafted
to specific databases [Codd 1974; Hendrix et al. 1978; Warren and Pereira 1982; Woods et al. 1972].
Later work describes NLIDB systems that can be reused for multiple databases with appropriate
customization [Grosz et al. 1987; Tang and Mooney 2000; Zelle and Mooney 1996]. However, these
techniques are not database-agnostic in that they require additional customization for each database.
In contrast, our technique does not require database-specific training.
Similar to our proposed approach, the Nalir system [Li and Jagadish 2014] also aims to be

database-agnostic. Specifically, Nalir leverages an English dependency parser to generate linguistic
parse trees, which are subsequently translated into query trees, possibly with guidance from the
user. In addition to being relatively easy to convert to SQL, these query trees can also be translated
back into natural language with the goal of facilitating user interaction. In contrast, our goal in
this paper is to develop a system that is as reliable as Nalir without requiring guidance from the
user. In particular, since users may not be familiar with the underlying database schema, it may
be difficult for them to answer some of the questions posed by a Nalir-style system. In contrast,
our approach does not assume that users are familiar with the organization of information in the
database.

The third line of work on query synthesis generates more efficient SQL queries from code written
in conventional programming languages [Cheung et al. 2013; Wiedermann et al. 2008]. For instance,
QBS [Cheung et al. 2013] transforms parts of the application logic into SQL queries by automatically
inferring loop invariants. This line of work is not tailored towards end-users and can be viewed as
a form of query optimization using static analysis of source code.

Programming by natural language. Since SQL is a declarative language, the techniques proposed
in this paper are also related to programming by natural language [Desai et al. 2016; Gulwani and
Marron 2014; Le et al. 2013; Quirk et al. 2015; Raza et al. 2015]. In addition to query synthesis,
natural language has also been used as the preferred specification mechanism in the context of
smartphone automation scripts [Le et al. 2013], “if-then-else recipes" [Quirk et al. 2015], spreadsheet
programming [Gulwani and Marron 2014], and string manipulation [Raza et al. 2015]. Among these
systems, the NLyze tool [Gulwani and Marron 2014] is most closely related to Sqlizer in that it
also combines semantic parsing with type-directed synthesis. However, NLyze does not generate
program sketches and uses type-based synthesis to mitigate the low recall of semantic parsing.
In contrast, Sqlizer uses semantic parsing to generate an initial query sketch, which is refined
using repair tactics and completed using quantitative type inhabitation. Furthermore, NLyze targets
spreadsheets rather than relational databases and proposes a new DSL for this domain.

Most recently, [Desai et al. 2016] have proposed a general framework for constructing synthesizers
that can generate programs in a domain-specific DSL from English descriptions. The framework
requires a DSL definition and a set of domain-specific training data in the form of pairs of English
sentences and their corresponding programs in the given DSL. While this framework can, in
principle, be instantiated for SQL query synthesis, it would require database-specific training data.

Program synthesis. The techniques proposed in this paper borrow insights from other papers
on program synthesis. In particular, the use of the term sketch is inspired by the Sketch sys-
tem [Solar Lezama 2008; Solar-Lezama et al. 2005, 2006] in which the user writes a program sketch
containing holes (unknown expressions). However, in contrast to the Sketch system where the
holes are instantiated with constants, holes in our query sketches are completed using tables,
columns, and predicates. Similar to Sqlizer, some prior techniques (e.g., [Feng et al. 2017b; Zhang
and Sun 2013]) have also decomposed the synthesis task into two separate sketch generation and

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:22 Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig

sketch completion phases. However, to the best of our knowledge, we are the first to generate
program sketches from natural language using semantic parsing.

In addition to program sketching, this paper also draws insights from recent work on type-directed
program synthesis [Feser et al. 2015; Gvero et al. 2013; Osera and Zdancewic 2015; Polikarpova
et al. 2016]. Among these projects, the most related one is the InSynth system, which synthesizes
small code snippets in a type-directed manner. Similar to our proposed methodology, InSynth also
performs quantitative type inhabitation to synthesize type-correct expressions at a given program
point. Specifically, InSynth assigns weights to each type inhabitant, where lower weights indicate
higher relevance of the synthesized term. These weights are derived using a training corpus and
the structure of the code snippet. At a high level, our use of quantitative type inhabitation is similar
to InSynth in that we both use numerical scores to evaluate which term is most likely to be the
inhabitant desired by the user. However, the way in which we assign confidence scores to type
inhabitants is very different from the way InSynth assigns weights to synthesized code snippets.
Furthermore, in contrast to InSynth where lower weights indicate higher relevance, Sqlizer
assigns lower scores to inhabitants that are less likely to be correct.

Fault localization and program repair. As mentioned earlier, the sketch refinement strategy
in Sqlizer is inspired by prior work on fault localization [Ball et al. 2003; Groce and Visser 2003;
Jones and Harrold 2005; Jones et al. 2002; Jose and Majumdar 2011a,b] and program repair [Goues
et al. 2012; Long and Rinard 2015, 2016; Nguyen et al. 2013; Weimer et al. 2009]. Similar to other
techniques on program repair, the repair tactics employed by Sqlizer can be viewed as a pre-defined
set of templates for mutating the program. However, to the best of our knowledge, we are the first
to apply repair at the level of program sketches rather than programs.
Fault localization techniques [Ball et al. 2003; Groce and Visser 2003; Jones and Harrold 2005;

Jones et al. 2002; Jose andMajumdar 2011a,b] aim to pinpoint a program expression that corresponds
to the root cause of a bug. Similar to these fault localization techniques, Sqlizer tries to identify
the minimal faulty subpart of the “program". However, we perform fault localization at the level of
program sketches by finding a minimal sub-sketch for which no high-confidence completion exists.

Semantic parsing. Unlike syntactic parsing which focuses on the grammatical divisions of a
sentence, semantic parsing aims to represent a sentence through logical forms expressed in some
formal language [Berant et al. 2013; Kate et al. 2005; Liang and Potts 2015; Tang and Mooney 2000;
Zelle and Mooney 1993]. Previous techniques have used semantic parsing to directly translate
English sentences to queries [Kate et al. 2005; Miller et al. 1996; Tang and Mooney 2000; Zelle
and Mooney 1996]. Unlike these techniques, we only use semantic parsing to generate an initial
query sketch rather than the full query. We believe that there are two key advantages to our
approach: First, our technique can be used to answer queries on a database on which it has not
been previously trained. Second, the use of sketch refinement allows us to handle situations where
the user’s description does not accurately reflect the underlying database schema.

11 LIMITATIONS AND FUTURE WORK

In this section, we discuss the current limitations of our system and possible ways to improve it in
the future.

Recall that Sqlizer uses domain-specific heuristics to assign confidence scores to query comple-
tions, and one of these heuristics (namely, Pϕ) uses database contents when performing quantitative
type inhabitation. The strategy of assigning low confidence scores to queries that yield an empty
relation works very well in most cases, but it may prevent Sqlizer from generating the right
query if the query legitimately returns an empty table. Another situation in which this heuristic

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

SQLizer: Query Synthesis from Natural Language 1:23

may not work well is if the user’s natural language query does not exactly match the contents
of the database, such as in cases where the user’s description uses an abbreviation or contains a
misspelling. A possible solution to this problem is to look for syntactically or semantically similar
entries in the database rather than insisting on an exact match.

Another limitation of Sqlizer is that the user ultimately needs to decide which (if any) of the top
k queries returned by Sqlizer is the right one. An interesting avenue for future work is to explore
user-friendly mechanisms to help the user make this decision. One possibility is to present the user
with a natural language description of the query rather than the SQL query itself. However, this
solution would still require the user to be knowledgeable about the underlying database schema.
Another possibility is to present the query result rather than the query itself and let the user decide
if the result is sensible. An even better solution would be to further improve the system’s accuracy
so that the desired SQL query is ranked number one in more cases. However, given that Sqlizer is
already capable of returning the desired query as the top result in 78% of the cases, we believe that
Sqlizer is still quite useful to end-users as is.

12 CONCLUSIONS

We have proposed a new methodology for synthesizing programs from natural language and
applied it to the problem of synthesizing SQL code from English queries. Starting with an initial
program sketch generated using semantic parsing, our approach enters an iterative refinement loop
that alternates between quantitative type inhabitation and sketch repair. Specifically, our method
uses domain-specific knowledge to assign confidence scores to type (i.e., sketch) inhabitants and
uses these confidence scores to guide fault localization. The faulty subterms pinpointed using error
localization are then repaired using a database of domain-specific repair tactics.

We have implemented the proposed approach in a tool called Sqlizer, an end-to-end system for
generating SQL queries from natural language. Our experiments on 455 queries from three different
databases shows that Sqlizer ranks the desired query as top one in 78% of the cases and among
top 5 in ∼ 90% of the time. Our experiments also show that Sqlizer significantly outperforms
Nalir, a state-of-the-art system for generating SQL code from natural language queries. Finally,
our evaluation also justifies the importance of type information and program repair and shows
that our proposed domain-specific heuristics are necessary and synergistic.

In the future, we plan to apply our proposed synthesis methodology to other domains where it
is beneficial to generate code from English descriptions. For instance, we believe that our proposed
synthesis methodology could be also useful for querying data stored in other forms (e.g., noSQL
databases, XML documents, file systems) or for synthesizing simple scripts, such as if-then-else
recipes or robot control commands.

13 ACKNOWLEDGMENTS

We would like to thank Xinyu Wang and the anonymous reviewers for their thorough and helpful
comments. This material is based on research sponsored by DARPA under agreement number #8750-
14-2-0270. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA or the U.S. Government.

REFERENCES
I Androutsopoulos, G Ritchie, and P Thanisch. 1993. Masque/sql: An Efficient and Portable Natural Language Query Interface

for Relational Databases. Tech report, University of Edinburgh (1993).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:24 Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig

Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. 1995. Natural language interfaces to databases - An
Introduction. Natural Language Engineering (1995).

Thomas Ball, Mayur Naik, and Sriram K. Rajamani. 2003. From symptom to cause: localizing errors in counterexample
traces. In POPL. 97–105.

Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin G. Zorn. 2015. FlashRelate: extracting relational data from
semi-structured spreadsheets using examples. ACM, 218–228.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic Parsing on Freebase from Question-Answer
Pairs. In EMNLP. 1533–1544.

Bob Carpenter. 1997. Type-logical semantics. MIT press.
Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing database-backed applications with query

synthesis. In PLDI. 3–14.
E. F. Codd. 1974. Seven Steps to Rendezvous with the Casual User. In IFIP Working Conference Data Base Management.

179–200.
Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark Marron, Sailesh R, and Subhajit Roy. 2016.

Program synthesis using natural language. In ICSE.
Ramez Elmasri and Shamkant B. Navathe. 2011. Fundamentals of Database Systems. Addison-Wesley.
Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017a. Component-based Synthesis of Table

Consolidation and Transformation Tasks from Examples. In Programming Language Design and Implementation.
Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017b. Component-based synthesis for complex

APIs. In POPL. 599–612.
John K Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure transformations from input-output

examples. In PLDI. 229–239.
Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. 2012. A systematic study of automated

program repair. In ICSE. 3–13.
Alex Groce and Willem Visser. 2003. What Went Wrong: Explaining Counterexamples. In SPIN.
Barbara J. Grosz, Douglas E. Appelt, Paul A. Martin, and Fernando C. N. Pereira. 1987. TEAM: An Experiment in the Design

of Transportable Natural-Language Interfaces. Artificial Intelligence 32, 2 (1987), 173–243.
Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In ACM SIGPLAN Notices,

Vol. 46. ACM, 317–330.
Sumit Gulwani and Mark Marron. 2014. NLyze: interactive programming by natural language for spreadsheet data analysis

and manipulation. In SIGMOD.
Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013. Complete completion using types and weights. In ACM

SIGPLAN Notices, Vol. 48. ACM, 27–38.
Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalowicz, and Jonathan Slocum. 1978. Developing a Natural Language Interface

to Complex Data. TODS 3, 2 (1978), 105–147.
James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the tarantula automatic fault-localization technique.

In ASE. 273–282.
James A. Jones, Mary Jean Harrold, and John T. Stasko. 2002. Visualization of test information to assist fault localization. In

ICSE. 467–477.
Manu Jose and Rupak Majumdar. 2011a. Bug-Assist: assisting fault localization in ANSI-C programs. In CAV.
Manu Jose and Rupak Majumdar. 2011b. Cause clue clauses: error localization using maximum satisfiability. PLDI (2011).
Rohit J. Kate and Raymond J. Mooney. 2006. Using String-Kernels for Learning Semantic Parsers. In ACL.
Rohit J. Kate, Yuk Wah Wong, and Raymond J. Mooney. 2005. Learning to Transform Natural to Formal Languages. In AAAI.

1062–1068.
Vu Le and Sumit Gulwani. 2014. FlashExtract: a framework for data extraction by examples. ACM, 542–553.
Vu Le, Sumit Gulwani, and Zhendong Su. 2013. Smartsynth: Synthesizing smartphone automation scripts from natural

language. In MobiSys. 193–206.
Fei Li and H. V. Jagadish. 2014. Constructing an Interactive Natural Language Interface for Relational Databases. PVLDB 8,

1 (2014), 73–84.
Yunyao Li, Huahai Yang, and H. V. Jagadish. 2006. Constructing a Generic Natural Language Interface for an XML Database.

In EDBT. 737–754.
Percy Liang and Christopher Potts. 2015. Bringing machine learning and compositional semantics together. Annual Review

of Linguistics 1, 1 (2015), 355–376.
Fan Long and Martin Rinard. 2015. Staged program repair with condition synthesis. In ESEC/FSE.
Fan Long and Martin Rinard. 2016. Automatic patch generation by learning correct code. In POPL.
Bill MacCartney and Christopher D Manning. 2009. An extended model of natural logic. In IWCS. 140–156.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

SQLizer: Query Synthesis from Natural Language 1:25

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky. 2014. The
Stanford CoreNLP Natural Language Processing Toolkit. In ACL System Demonstrations. 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Distributed Representations of Words
and Phrases and their Compositionality. In NIPS.

Scott Miller, David Stallard, Robert J. Bobrow, and Richard M. Schwartz. 1996. A Fully Statistical Approach to Natural
Language Interfaces. In ACL. 55–61.

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. 2013. SemFix: program repair via
semantic analysis. In ICSE. 772–781.

Peter-Michael Osera and Steve Zdancewic. 2015. Type- and example-directed program synthesis. In PLDI.
Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from polymorphic refinement types.

In PLDI. 522–538.
Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A framework for inductive program synthesis. ACM, 107–126.
Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko, and Alexander Yates. 2004. Modern Natural Language

Interfaces to Databases: Composing Statistical Parsing with Semantic Tractability. In COLING.
Ana-Maria Popescu, Oren Etzioni, and Henry A. Kautz. 2003. Towards a theory of natural language interfaces to databases.

In IUI. 149–157.
Chris Quirk, Raymond Mooney, and Michel Galley. 2015. Language to code: Learning semantic parsers for if-this-then-that

recipes. In ACL. 878–888.
Mohammad Raza, Sumit Gulwani, and NatasaMilic-Frayling. 2015. Compositional Program Synthesis fromNatural Language

and Examples. In IJCAI.
Armando Solar Lezama. 2008. Program Synthesis By Sketching. Ph.D. Dissertation. EECS Department, University of California,

Berkeley.
Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodík, and Kemal Ebcioglu. 2005. Programming by sketching for

bit-streaming programs. In PLDI.
Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A. Saraswat. 2006. Combinatorial

sketching for finite programs. In ASPLOS. 404–415.
Lappoon R Tang and Raymond J Mooney. 2000. Automated construction of database interfaces: Integrating statistical and

relational learning for semantic parsing. In EMNLP. 133–141.
Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2009. Query by output. In SIGMOD. 535–548.
Chenglong Wang, Alvin Cheung, and Ras Bodik. 2017. Synthesizing Highly Expressive SQL Queries from Input-Output

Examples. In Programming Language Design and Implementation.
David H. D. Warren and Fernando C. N. Pereira. 1982. An Efficient Easily Adaptable System for Interpreting Natural

Language Queries. American Journal of Computational Linguistics 8, 3-4 (1982), 110–122.
Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009. Automatically finding patches using

genetic programming. In ICSE. 364–374.
Ben Wiedermann, Ali Ibrahim, and William R. Cook. 2008. Interprocedural query extraction for transparent persistence. In

OOPSLA. 19–36.
William AWoods, Ronald M Kaplan, and Bonnie Nash-Webber. 1972. The lunar sciences natural language information system.

Bolt, Beranek and Newman.
Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaudhuri. 2016. Synthesizing transformations on hierar-

chically structured data. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 508–521.

John M. Zelle and Raymond J. Mooney. 1993. Learning Semantic Grammars with Constructive Inductive Logic Programming.
In AAAI. 817–822.

John M. Zelle and Raymond J. Mooney. 1996. Learning to Parse Database Queries Using Inductive Logic Programming. In
AAAI. 1050–1055.

Sai Zhang and Yuyin Sun. 2013. Automatically synthesizing SQL queries from input-output examples. In ASE.
Moshé M. Zloof. 1975. Query-by-Example: the Invocation and Definition of Tables and Forms. In VLDB.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

	Abstract
	1 Introduction
	2 Overview
	3 General Synthesis Methodology
	4 Extended Relational Algebra
	5 Sketch Generation Using Semantic Parsing
	6 Type-Directed Sketch Completion
	7 Sketch Refinement Using Repair
	8 Implementation
	9 Evaluation
	9.1 Experimental Setup
	9.2 Accuracy and Running Time
	9.3 Comparison with NALIR
	9.4 Evaluation of Different Components of Synthesis Methodology
	9.5 Evaluation of Heuristics for Assigning Confidence Scores
	9.6 Evaluation of Different Confidence Thresholds

	10 Related Work
	11 Limitations and Future Work
	12 Conclusions
	13 Acknowledgments
	References

