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Background

» C-CoRN: Coq library of constructive mathematics
» 2000, Milad Niqui: Constructive real numbers
» Computation impractical ®
» 2007, Russell O’Connor: Re-implementation
» Computation practical! ©
» “Let’s find an application that calls for certified
proof-by-computation with reals!”

— Automated hybrid system safety verification
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Hybrid system: Basics

» Model of software interacting with environment
» Running example: Thermostat

» Software: Finite state automaton
» Thermostat:

» Environment: Continuous space (typically R").
» Thermostat: R? (= Temperature x clock)

» State of hybrid system: software state x environment state
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Hybrid system: Behaviour

System state can change in two ways:

1. Discrete transition:

» Instantaneous jump to different software state
» “Guarded” by condition on environment state

2. Continuous transition (‘passage of time’):

» Environment state (point in continuous space) changes
according to flow

» One flow function per location: solution to differential
equations on continuous space:

flow : SoftState — Duration — Point — Point

Execution “trace”: sequence of these transitions
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Hybrid system: Safety

Given:

1. designated set of initial states;
2. designated set of unsafe states
» thermostat: states with temperature < 4.5

Safety problem:
Any unsafe states reachable from initial states?

» Undecidable in general
» Manual approach: find system invariant
» Better: Do it automatically (using heuristics)!
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The predicate abstraction method (Alur, 2006)

ldea:
» Partition continuous space into finite set of regions
Abstract system state: software state x region

» Compute abstract discrete/continuous transitions...
» ... such that resulting graph respects original system:

If a ~ bin concrete system, then abs(a) ~ abs(b) in
abstract system

» Compute reachable states in abstract system
» If no unsafe ones among them, system is safe!
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Alur’s implementation

Alur’s implementation is pragmatic:

» Nice language for hybrid system specification
» Integration with existing tools

» Modest preconditions on hybrid systems
(linear flow/guards/etc)

» Sophisticated optimizations and data structures
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Alur’s implementation

Alur’s implementation is pragmatic:

» Nice language for hybrid system specification
» Integration with existing tools

» Modest preconditions on hybrid systems
(linear flow/guards/etc)

» Sophisticated optimizations and data structures

But... does not produce fully verified safety proofs:
» Abstract system not provably respectful
» Uncertified implementation
» Floating point approximations of real numbers
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Our development

Our goal: do produce fully verified safety proofs.
» Formalize hybrid systems in Coq
» Reimplement abstraction method in Coq
» Keep it simple (for now)

» Different algorithm for abstract transition computation
— to make respect provable

» Stronger preconditions on hybrid systems
» Use O’Connor’s “efficient” computable reals in C-CoRN
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Abstract system construction: Region partitioning

» Regions in R™: products of nintervals in R
» Thermostat: rectangles
» Interval bound selection (Alur):

1. Start with constants occurring in guards/invariants

(e.g. thermostat temperature intervals: 0, 4.5, 5, etc)
2. Refine if safety unprovable for resulting abstract system
3. Repeat
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Abstract system construction: Region partitioning

» Regions in R™: products of nintervals in R
» Thermostat: rectangles
» Interval bound selection (Alur):

1. Start with constants occurring in guards/invariants

(e.g. thermostat temperature intervals: 0, 4.5, 5, etc)
2. Refine if safety unprovable for resulting abstract system
3. Repeat

In our development:
» Automatic refinement not yet implemented

» For thermostat: refinement needed because constants
from guards/invariants don’t immediately work

» Ad-hoc solution: “right” interval bounds given by user
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Abstract system construction: Continuous transitions

Question:
Given regions A and B and flow function f, is there flow
from (a point in) A to (a point in) B?

» If no: no abstract transition
» If yes (or not sure): emit transition

Alur’s heuristic:
» Calculate flow at rectangle corners after r,2r,3r, ..., nr
» Use d/dt tool to compute convex hull overapproximation
» Determine intersections with other regions (rectangles)
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Abstract system construction: Continuous transitions

We use a different approach:
» Require separability of flow functions:

fs(d7 (Xa y)) = (fS,X(dv X)v fS,Y(d7 y))

» Require flow inverses: fs x(f; (X, x'),x) = x’

» Decide region-flowability by computing:
» for each dimension, inverses between region bounds;
» if no non-negative overlap: omit transition
» otherwise: emit transition
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Computable reals
Deciding interval overlap:
» Boils down to decidingifa< bfora,be R
» Or equivalently: decidingif 0 <a— b

Can’t do it for arbitrary computable reals!

» Can only observe arbitrarily close QQ approximations of
a-»b
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Computable reals
Deciding interval overlap:
» Boils down to decidingifa< bfora,be R
» Or equivalently: decidingif 0 <a— b

Can’t do it for arbitrary computable reals!

» Can only observe arbitrarily close QQ approximations of
a-»b

Hence, cannot decide overlap in general ©

But we don’t need full decidability!
» We only need “best effort” semi-deciders
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Best-effort semi-deciders:

» Underestimation for proposition P: term of type option P

» Naturally gives underestimators for non-overlap and flow
absence

Used at higher levels, too, because abstraction method can fail:
» poor partitioning of continuous space;
» epsilon too big;
» unsafe system.

Toplevel result: option TheSystemlisSafe.
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Local classical reasoning

In Coq’s constructive logic: no PEM for arbitrary propositions ©

But we do have it under double negation: —=—(P Vv =P)

1. DN P := =—Pis a monad

2. Forsome P, P — DN P
These stable propositions can escape from DN!

So we get to use PEM when proving stable propositions ©
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Local classical reasoning

In Coq’s constructive logic: no PEM for arbitrary propositions ©

But we do have it under double negation: —=—(P Vv =P)

1. DN P := —-—Pis a monad
2. Forsome P, P — DN P
These stable propositions can escape from DN!

So we get to use PEM when proving stable propositions ©

In our development, we:
» introduce strategic DN annotations and stability req’s;

» ... to make PEM (and e.g. a < b decisions in R) available
in their proofs
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Conclusions

» It works: we produce fully certified, formal proofs of hybrid
system safety, in acceptable time

» Nice use case for proof-by-computation-with-reals

» Constructive reals do complicate theory and
implementation

» ... but this can be dealt with systematically:

» “estimators” to make “tactics” without dropping to
meta-level (Ltac)
» Double negation monad
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Conclusions (cont’d)

Development works, but...
» Still very much a prototype
» No nice interface for defining hybrid system
» Strong restrictions on hybrid systems...

» ... some of which require additional proofs from user
(e.g. flow invertibility)

» No automatic refinement
» Less efficient than Alur’'s implementation
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Future work

Continue work to get best of both worlds:
» Ease restrictions on hybrid systems:

» Better heuristics that don’t require flow separability
» ODE solver instead of making user provide solution

Nicer user interface / specification language
Implement automatic partitioning refinement

Make C-CoRN reals faster

Conditional guarantees that safety can be determined
Failure traces

vV v . v. v Y
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