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Background

I C-CoRN: Coq library of constructive mathematics
I 2000, Milad Niqui: Constructive real numbers

I Computation impractical §
I 2007, Russell O’Connor: Re-implementation

I Computation practical! ©
I “Let’s find an application that calls for certified

proof-by-computation with reals!”
→ Automated hybrid system safety verification
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Hybrid system: Basics
I Model of software interacting with environment
I Running example: Thermostat
I Software: Finite state automaton

I Thermostat:
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I Environment: Continuous space (typically Rn).
I Thermostat: R2 (= Temperature × clock)

I State of hybrid system: software state × environment state
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Hybrid system: Behaviour

System state can change in two ways:

1. Discrete transition:
I Instantaneous jump to different software state
I “Guarded” by condition on environment state

2. Continuous transition (‘passage of time’):
I Environment state (point in continuous space) changes

according to flow
I One flow function per location: solution to differential

equations on continuous space:

flow : SoftState→ Duration→ Point → Point

Execution “trace”: sequence of these transitions
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Hybrid system: Safety

Given:
1. designated set of initial states;
2. designated set of unsafe states

I thermostat: states with temperature < 4.5

Safety problem:

Any unsafe states reachable from initial states?

I Undecidable in general
I Manual approach: find system invariant
I Better: Do it automatically (using heuristics)!
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The predicate abstraction method (Alur, 2006)

Idea:
I Partition continuous space into finite set of regions

Abstract system state: software state × region
I Compute abstract discrete/continuous transitions...
I ... such that resulting graph respects original system:

If a b in concrete system, then abs(a) abs(b) in
abstract system

I Compute reachable states in abstract system
I If no unsafe ones among them, system is safe!
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Alur’s implementation

Alur’s implementation is pragmatic:

I Nice language for hybrid system specification
I Integration with existing tools
I Modest preconditions on hybrid systems

(linear flow/guards/etc)
I Sophisticated optimizations and data structures

But... does not produce fully verified safety proofs:
I Abstract system not provably respectful
I Uncertified implementation
I Floating point approximations of real numbers
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Our development

Our goal: do produce fully verified safety proofs.
I Formalize hybrid systems in Coq
I Reimplement abstraction method in Coq
I Keep it simple (for now)
I Different algorithm for abstract transition computation
→ to make respect provable

I Stronger preconditions on hybrid systems
I Use O’Connor’s “efficient” computable reals in C-CoRN
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Abstract system construction: Region partitioning

I Regions in Rn: products of n intervals in R
I Thermostat: rectangles

I Interval bound selection (Alur):
1. Start with constants occurring in guards/invariants

(e.g. thermostat temperature intervals: 0, 4.5, 5, etc)
2. Refine if safety unprovable for resulting abstract system
3. Repeat

In our development:
I Automatic refinement not yet implemented
I For thermostat: refinement needed because constants

from guards/invariants don’t immediately work
I Ad-hoc solution: “right” interval bounds given by user
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Abstract system construction: Continuous transitions

Question:
Given regions A and B and flow function f, is there flow
from (a point in) A to (a point in) B?

I If no: no abstract transition
I If yes (or not sure): emit transition

Alur’s heuristic:
I Calculate flow at rectangle corners after r , 2r , 3r , ..., nr
I Use d/dt tool to compute convex hull overapproximation
I Determine intersections with other regions (rectangles)
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Abstract system construction: Continuous transitions

We use a different approach:
I Require separability of flow functions:

fs(d , (x , y)) = (fs,X (d , x), fs,Y (d , y))

I Require flow inverses: fs,X (f−1
s,X (x , x ′), x) = x ′

I Decide region-flowability by computing:
I for each dimension, inverses between region bounds;
I if no non-negative overlap: omit transition
I otherwise: emit transition
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Computable reals
Deciding interval overlap:

I Boils down to deciding if a < b for a, b ∈ R
I Or equivalently: deciding if 0 < a− b

Can’t do it for arbitrary computable reals!

I Can only observe arbitrarily close Q approximations of
a− b

Hence, cannot decide overlap in general §

But we don’t need full decidability!
I We only need “best effort” semi-deciders
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Best-effort semi-deciders:

I Underestimation for proposition P: term of type option P
I Naturally gives underestimators for non-overlap and flow

absence

Used at higher levels, too, because abstraction method can fail:
I poor partitioning of continuous space;
I epsilon too big;
I unsafe system.

Toplevel result: option TheSystemIsSafe.
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Local classical reasoning
In Coq’s constructive logic: no PEM for arbitrary propositions §

But we do have it under double negation: ¬¬(P ∨ ¬P)

1. DN P := ¬¬P is a monad
2. For some P, P ↔ DN P

These stable propositions can escape from DN!

So we get to use PEM when proving stable propositions ©

In our development, we:
I introduce strategic DN annotations and stability req’s;
I ... to make PEM (and e.g. a < b decisions in R) available

in their proofs
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Conclusions

I It works: we produce fully certified, formal proofs of hybrid
system safety, in acceptable time

I Nice use case for proof-by-computation-with-reals
I Constructive reals do complicate theory and

implementation
I ... but this can be dealt with systematically:

I “estimators” to make “tactics” without dropping to
meta-level (Ltac)

I Double negation monad
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Conclusions (cont’d)

Development works, but...
I Still very much a prototype
I No nice interface for defining hybrid system
I Strong restrictions on hybrid systems...
I ... some of which require additional proofs from user

(e.g. flow invertibility)
I No automatic refinement
I Less efficient than Alur’s implementation
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Future work

Continue work to get best of both worlds:
I Ease restrictions on hybrid systems:

I Better heuristics that don’t require flow separability
I ODE solver instead of making user provide solution

I Nicer user interface / specification language
I Implement automatic partitioning refinement
I Make C-CoRN reals faster
I Conditional guarantees that safety can be determined
I Failure traces
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