
Automated Certified Hybrid System Safety
Verification

Eelis van der Weegen
J.w.w.:

Herman Geuvers
Adam Koprowski

Dan Synek

Radboud University Nijmegen

ITP 2010

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Background

I C-CoRN: Coq library of constructive mathematics
I 2000, Milad Niqui: Constructive real numbers

I Computation impractical §
I 2007, Russell O’Connor: Re-implementation

I Computation practical! ©
I “Let’s find an application that calls for certified

proof-by-computation with reals!”
→ Automated hybrid system safety verification

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Hybrid system: Basics
I Model of software interacting with environment
I Running example: Thermostat
I Software: Finite state automaton

I Thermostat:

Heat

T = 2

Cool

.

.

.

.

..

.
T >= 5 c <= 1

T = − T/2

c = 1
c = 1

T = −T

Check

T <= 10 & c <= 3

c = 1

T <= 6

c := 0

c := 0

c >= 2

c >= 0.5

c := 0

T >= 9

I Environment: Continuous space (typically Rn).
I Thermostat: R2 (= Temperature × clock)

I State of hybrid system: software state × environment state

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Hybrid system: Behaviour

System state can change in two ways:

1. Discrete transition:
I Instantaneous jump to different software state
I “Guarded” by condition on environment state

2. Continuous transition (‘passage of time’):
I Environment state (point in continuous space) changes

according to flow
I One flow function per location: solution to differential

equations on continuous space:

flow : SoftState→ Duration→ Point → Point

Execution “trace”: sequence of these transitions

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Hybrid system: Safety

Given:
1. designated set of initial states;
2. designated set of unsafe states

I thermostat: states with temperature < 4.5

Safety problem:

Any unsafe states reachable from initial states?

I Undecidable in general
I Manual approach: find system invariant
I Better: Do it automatically (using heuristics)!

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



The predicate abstraction method (Alur, 2006)

Idea:
I Partition continuous space into finite set of regions

Abstract system state: software state × region
I Compute abstract discrete/continuous transitions...
I ... such that resulting graph respects original system:

If a b in concrete system, then abs(a) abs(b) in
abstract system

I Compute reachable states in abstract system
I If no unsafe ones among them, system is safe!

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Alur’s implementation

Alur’s implementation is pragmatic:

I Nice language for hybrid system specification
I Integration with existing tools
I Modest preconditions on hybrid systems

(linear flow/guards/etc)
I Sophisticated optimizations and data structures

But... does not produce fully verified safety proofs:
I Abstract system not provably respectful
I Uncertified implementation
I Floating point approximations of real numbers

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Alur’s implementation

Alur’s implementation is pragmatic:

I Nice language for hybrid system specification
I Integration with existing tools
I Modest preconditions on hybrid systems

(linear flow/guards/etc)
I Sophisticated optimizations and data structures

But... does not produce fully verified safety proofs:
I Abstract system not provably respectful
I Uncertified implementation
I Floating point approximations of real numbers

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Our development

Our goal: do produce fully verified safety proofs.
I Formalize hybrid systems in Coq
I Reimplement abstraction method in Coq
I Keep it simple (for now)
I Different algorithm for abstract transition computation
→ to make respect provable

I Stronger preconditions on hybrid systems
I Use O’Connor’s “efficient” computable reals in C-CoRN

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Abstract system construction: Region partitioning

I Regions in Rn: products of n intervals in R
I Thermostat: rectangles

I Interval bound selection (Alur):
1. Start with constants occurring in guards/invariants

(e.g. thermostat temperature intervals: 0, 4.5, 5, etc)
2. Refine if safety unprovable for resulting abstract system
3. Repeat

In our development:
I Automatic refinement not yet implemented
I For thermostat: refinement needed because constants

from guards/invariants don’t immediately work
I Ad-hoc solution: “right” interval bounds given by user

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Abstract system construction: Region partitioning

I Regions in Rn: products of n intervals in R
I Thermostat: rectangles

I Interval bound selection (Alur):
1. Start with constants occurring in guards/invariants

(e.g. thermostat temperature intervals: 0, 4.5, 5, etc)
2. Refine if safety unprovable for resulting abstract system
3. Repeat

In our development:
I Automatic refinement not yet implemented
I For thermostat: refinement needed because constants

from guards/invariants don’t immediately work
I Ad-hoc solution: “right” interval bounds given by user

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Abstract system construction: Continuous transitions

Question:
Given regions A and B and flow function f, is there flow
from (a point in) A to (a point in) B?

I If no: no abstract transition
I If yes (or not sure): emit transition

Alur’s heuristic:
I Calculate flow at rectangle corners after r , 2r , 3r , ..., nr
I Use d/dt tool to compute convex hull overapproximation
I Determine intersections with other regions (rectangles)

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Abstract system construction: Continuous transitions

We use a different approach:
I Require separability of flow functions:

fs(d , (x , y)) = (fs,X (d , x), fs,Y (d , y))

I Require flow inverses: fs,X (f−1
s,X (x , x ′), x) = x ′

I Decide region-flowability by computing:
I for each dimension, inverses between region bounds;
I if no non-negative overlap: omit transition
I otherwise: emit transition

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Computable reals
Deciding interval overlap:

I Boils down to deciding if a < b for a, b ∈ R
I Or equivalently: deciding if 0 < a− b

Can’t do it for arbitrary computable reals!

I Can only observe arbitrarily close Q approximations of
a− b

Hence, cannot decide overlap in general §

But we don’t need full decidability!
I We only need “best effort” semi-deciders

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Computable reals
Deciding interval overlap:

I Boils down to deciding if a < b for a, b ∈ R
I Or equivalently: deciding if 0 < a− b

Can’t do it for arbitrary computable reals!

I Can only observe arbitrarily close Q approximations of
a− b

Hence, cannot decide overlap in general §

But we don’t need full decidability!
I We only need “best effort” semi-deciders

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Best-effort semi-deciders:

I Underestimation for proposition P: term of type option P
I Naturally gives underestimators for non-overlap and flow

absence

Used at higher levels, too, because abstraction method can fail:
I poor partitioning of continuous space;
I epsilon too big;
I unsafe system.

Toplevel result: option TheSystemIsSafe.

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Local classical reasoning
In Coq’s constructive logic: no PEM for arbitrary propositions §

But we do have it under double negation: ¬¬(P ∨ ¬P)

1. DN P := ¬¬P is a monad
2. For some P, P ↔ DN P

These stable propositions can escape from DN!

So we get to use PEM when proving stable propositions ©

In our development, we:
I introduce strategic DN annotations and stability req’s;
I ... to make PEM (and e.g. a < b decisions in R) available

in their proofs

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Local classical reasoning
In Coq’s constructive logic: no PEM for arbitrary propositions §

But we do have it under double negation: ¬¬(P ∨ ¬P)

1. DN P := ¬¬P is a monad
2. For some P, P ↔ DN P

These stable propositions can escape from DN!

So we get to use PEM when proving stable propositions ©

In our development, we:
I introduce strategic DN annotations and stability req’s;
I ... to make PEM (and e.g. a < b decisions in R) available

in their proofs

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Conclusions

I It works: we produce fully certified, formal proofs of hybrid
system safety, in acceptable time

I Nice use case for proof-by-computation-with-reals
I Constructive reals do complicate theory and

implementation
I ... but this can be dealt with systematically:

I “estimators” to make “tactics” without dropping to
meta-level (Ltac)

I Double negation monad

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Conclusions (cont’d)

Development works, but...
I Still very much a prototype
I No nice interface for defining hybrid system
I Strong restrictions on hybrid systems...
I ... some of which require additional proofs from user

(e.g. flow invertibility)
I No automatic refinement
I Less efficient than Alur’s implementation

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Future work

Continue work to get best of both worlds:
I Ease restrictions on hybrid systems:

I Better heuristics that don’t require flow separability
I ODE solver instead of making user provide solution

I Nicer user interface / specification language
I Implement automatic partitioning refinement
I Make C-CoRN reals faster
I Conditional guarantees that safety can be determined
I Failure traces

Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification



Eelis van der Weegen et al. Radboud University Nijmegen

Automated Certified Hybrid System Safety Verification


