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Abstract

We present an overview of a theory of modules and in-
terfaces applicable to the specification and verification
of systems with a layered architecture. At the heart of
this theory is a module composition theorem. The the-
ory is applied to the specification of a distributed sys-
tem consisting of subjects and objects in different hosts
(computers). Formal specifications of a user interface
and a network interface are given. Access to objects,
both local and remote, offered by the distributed sys-
tem is proved to be multilevel secure.

1 Introduction

Modules and interfaces are important concepts. An
interface that is carefully specified can be used to hide
the internal implementation of a system, i.e., it allows
the use of many different implementations that satisfy
the same interface specification. In designing a com-
plex system, structured as a hierarchy of layers or as
a collection of interacting modules, well-defined inter-
faces are indispensable.

In this paper, we first present an overview of a the-
ory of modules and interfaces developed recently by
Lam and Shankar [11, 12]. In this theory, the mean-
ings of interface and module are rigorously defined, as
well as the meaning of M offers I, where M denotes
a module and I an interface. Furthermore, for mod-
ule M and disjoint interfaces U and L, the meaning of
M using L offers U is also defined. Let N be a mod-
ule that interacts with module M across interface L.
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The following composition theorem is proved: If M
using L offers U, and N offers L, then M interacting
with N offers U. This theorem is at the heart of the
theory of Lam and Shankar. They have also proved
the following theorem for a linear hierarchy of mod-
ules and interfaces, My, I, My, Is, ..., My, I, :

If M, offers I,
and, for i = 2,...,n, M; using I;—, offers I;,
then the hierarchy of modules offers I,,.

The above theorem provides a theoretical foundation
for the specification and verification of systems with a
layered architecture, where each layer corresponds to
a module in the theorem.

An obvious problem in the security area to apply this
theorem is the specification and verification of trusted
computer systems with a layered architecture [6, 8].
In this paper, we illustrate another application of the
theory to the security area. Consider Figure 1 where
two modules (layers) are shown, referred to as system
and network. The system module is made up of soft-
ware in a set of hosts for managing access of subjects
to objects. The hosts are interconnected by a com-
munication network. The network module is made up
of the hardware and software used to deliver messages
from one host to another. The interface between the
network and system modules is called the network in-
terface. Note that many different network implemen-
tations can be used to offer this interface, ranging from
the very simple (e.g., secure communication links) to
the very complex (e.g., worldwide internetworks). The
interface between the system module and subjects is
called the user interface. Notions of secure informa-
tion flow between objects and subjects are embodied
in the user interface specification.

To verify the security of distributed systems, our ap-
proach has several unique characteristics:
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Figure 1: A Distributed System

o The property of secure information flow is a re-
quirement that is enforced at the user interface.
In our approach, interface requirements and mod-
ule implementation requirements are cleanly sep-
arated. In most other approaches (e.g., the Bell-
LaPadula model), however, separation of these re-
quirements is not emphasized.

o Our approach allows both functional requirements
and security requirements to be specified for each
interface. Satisfaction of the functional require-
ments of an interface (e.g., serializability at the
user interface, reliable delivery of messages at the
network interface) can be achieved and verified
separately.

o In our approach, interfaces at different levels of a
layered architecture can have different sets of se-
curity concerns. In the distributed system of Fig-
ure 1, for example, security concerns at the user
interface may include access control and secure in-
formation flow; security concerns at the network
interface may include confidentiality, authenticity,
integrity, as well as access control.

In the security literature, network and distributed sys-
tem security has been studied in [3, 19, 20, 22, 23, 24].
The security of a composition of modules was investi-
gated by McCullough [16, 17, 18]. McCullough’s work
is on a particular definition of security that is preserved
by composition. In our approach, notions of security
that can be specified as interface requirements are not
restricted (because the notion of safety in the theory
of modules and interfaces is general). Furthermore, we
allow the specification of different notions of security
for different interfaces in the same composition. On
the other hand, we do require that modules be orga-
nized hierarchically, which is a restriction.

The balance of this paper is organized as follows. In
Section 1, we present an overview of the theory of mod-
ules and interfaces, including a specification notation
designed for application of the theory to nontrivial ex-
amples. This section is taken from the work of Lam
and Shankar [10, 11, 12]. In Section 3, we present spec-
ifications of a user interface U, and a network interface
L. Then we present the specification of a system mod-
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ule M, together with a proof that the module satisfies
M using L offers U. The specification of a network
module N and derivation of a proof that it satisfies
N offers L can be carried out in a similar manner,
and are omitted for brevity.

2 Overview of Theory

A module interacts with its environment at an inter-
face. Semantically, an interface is specified by a set
of allowed sequences of interface events, each of which
defines one possible sequence of interactions betweeen
the module and its environment. A module is speci-
fied by a state transition system and a set of fairness
requirements (see Section 2.2).

For a module M and an interface I, the meaning of
M offers I is defined in [11]. The definition is similar
to—but not quite the same as—various definitions of
M satisfies S in the literature, where S is a specifica-
tionof M [2,5,7, 9, 10, 13, 14, 15]. Most definitions of
M satisfies S have this informal meaning: M satisfies
S if every possible observation of M is described by S.
Various definitions differ in whether interface events
or states are observable, in whether observations are
finite or infinite sequences, as well as in the particular
formalism used to represent these sequences. There are
also differences in how interactions between a module
and its environment can occur.

Two modules interacting across an interface are com-
posed to become a single module by hiding the in-
terface between them. In this respect, the composi-
tion of two modules is defined in a manner not un-
like the approaches of CSP [7] and I/O automata [15].
The theory of modules and interfaces, however, differs
from the theories of CSP and I/O automata in two
respects. First, the interaction method at an interface
between a module and its environment is different (see
Section 2.1). Second, the theory of modules and inter-
faces was designed with an objective somewhat differ-
ent from those of CSP and 1/0 automata. Specifically,
it is intended more for system decomposition than for
module composition per se. An elaboration on this
point follows.



Suppose an interface I has been specified through
which a system provides services. Instead of design-
ing and implementing a monolithic module M that
offers I, we would like to implement the system as a
collection of smaller modules {M;} such that the com-
position of {M;} offers I. To achieve this objective,
the following three-step approach may be used:

Step 1 Derive a set of interfaces {S;} from I, one
for each module in the collection (decomposition

step).

Step 2 Design modules individually and, for all i,
prove that M; offers S; assuming that the envi-
ronment of M; satisfies S; in some manner.

Step 3 Apply an inference rule (composition theorem)
to infer from the proofs in Step 2 that the com-
position of {M;} offers I.

The above approach has the following highly-desirable
feature: given interfaces {S;}, each module can be de-
signed and implemented individually. However, to de-
velop the approach into a valid method, the following
problem has to be solved, namely: in general, the in-
ference rule required in Step 3 uses circular reasoning,
and may not be valid. To see this, consider two mod-
ules M and N that interact across interface I. Each
module guarantees some properties of I only if its envi-
ronment satisfies some properties of I. However, mod-
ule M is part of the environment of module N, and
module N is part of the environment of module M.

User
Interface U
Module M
Interface L
Module N

Figure 2: Module M and its Environment

Consider module M in Figure 2. It provides services
to a user through interface U while it is using services
offered by module N through interface L. We refer to
U as the upper interface and L as the lower interface
of module M. Note that module M is the user of
interface L and the service provider of interface U. Its
environment consists of both the user of U and module
N, which is the service provider of interface L.

In the Lam-Shankar theory, a basic composition theo-
rem is proved for the configuration in Figure 2. Com-
position theorems are also proved for an arbitrary
number of modules organized in a linear hierarchy and
as nodes of a rooted tree [12]. We note that many prac-
tical systems have a hierarchical structure. In fact, al-
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most all computer networks have layered protocol ar-
chitectures. Each protocol layer—e.g., transport, data
link—can be specified as a module in a linear hierar-
chy.

2.1 Interfaces

Consider models in which observations of a module
are sequences of interface events [7, 14, 15]. We iden-
tify three requirements that characterize interface in-
teractions. First, the occurrence of an interface event
involves simultaneous participation by a module and
its environment; moreover, such occurrence is observ-
able by both the module and its environment. This
requirement, a hallmark of Hoare’s CSP [7], appears
to be fundamental and is included in all models that
we are familiar with.

The second requirement, which we call unilateral con-
trol, specifies that each interface event is under the
control of either the module or its environment, such
that the occurrence of an interface event can be initi-
ated only by the module or its environment (but not
both). In particular, the set of interface events is par-
titioned into a set of input evenis controlled by the
environment and a set of output events controlled by
the module [14, 15]). The side (module or environment)
with control of an interface event is the only one that
can initiate the event’s occurrence. The requirement of
unilateral control restricts the class of interface speci-
fications. This restricted class, however, appears to be
adequate for specifying interface interactions for many
kinds of input and output operations.

Note that while an interface event is initiated to occur
by one side of an interface, its occurrence is impossi-
ble without participation by the other side. A third
requirement, introduced in the model of I/O automata
[15], is the following: each automaton is input-enabled,
i.e., every input event is enabled in every state of the
automaton. With this requirement, the class of inter-
face specifications is further restricted.

In the theory of modules and interfaces, interface in-
teractions are characterized by both the requirements
of simultaneous participation and unilateral control.
However, modules are required to be input-enabled
only when the occurrence of an input event would not
violate any “safety” requirement of the module’s in-
terface; otherwise, occurrence of the input event may
be blocked (disabled) by the module. Specifically, the
module has a choice: it may block occurrence of the
input event, but it is not required to do so.1

1Blocking is useful for specifying modules that have a finite




Notation A sequence over E, where E is a set, is a
(finite or infinite) sequence (eo,é€1,...), where ¢; € E
for all 4. ]

Definition An interface I is defined by:

e Events(I), a set of events that is the union of two
disjoint sets,

Inputs(I), a set of input events, and
Outputs(I), a set of output events.

e AllowedEventSeqs(I), a set of sequences over
Events(I), each of which is referred to as an al-
lowed event sequence of I. o

2.2 Relational specifications

The semantic definitions of M offers I and M using
L offers U given in {11, 12] are not easy to apply di-
rectly. For nontrivial applications, they were recast
in the relational notation, a specification formalism
with two basic constructs: state formulas that repre-
sent sets of states, and event formulas that represent
sets of state transitions [10, 11]. In what follows, we
present how state transition systems, modules and in-
terfaces are specified in the relational notation. Con-
ditions sufficient for the satisfaction of M offers I and
M using L offers U, expressed in the relational nota-
tion, are then presented. For a more detailed presenta-
tion of the theory, the reader is referred to [11]; proofs
can be found in [12].

To specify a state transition system, its state
space is defined by a set of variables, called state
variables. For system A, its set of state vari-
ables is denoted by Variables(A). For each vari-
able v, there is a set domain(v) of allowed val-
ues. By definition, the set of system states is
States(A) = [l,evariastesa) domain(v). Each state
s € States(A) is represented by a tuple of values,
(dy : v € Variables(A)), where d, € domain(v).

We use state formulas to represent subsets of
States(A). A state formula is a formula® in
Variables(A) that evaluates to true or false when
Variables(A) is assigned s, for every state s €
States(A). A state formula represents the set of states

input buffer, e.g., a soda vending machine that has room tc ac-
cept at most n coins prior to dispensing soda or returning coins,
and is needed in the implementation of many communication
protocols that enforce input control, flow control or congestion
control.

2We use formula to mean a well-formed formula in the lan-
guage of predicate logic.
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for which it evaluates to true. For state s and state
formula P, s satisfies P iff P evaluates to true for s.

We use event for-
mulas to specify the transitions of events. An event
formula is a formula in Variables(A) UVariables(A)',
where Variables(A) = {v':v € Variables(A)} and
domain(v’) = domain(v). The ordered pair (s,t) €
States(A) x States(A) is a transition specified by
an event formula iff (s,t) satisfies the event formula,
that is, the event formula evaluates to true when
Variables(A) is assigned s and Variables(A)' is as-
signed t.

Definition A state transition system A is specified in
the relational notation by:

o Events(A), a set of events.

e Variables(A), a set of state variables, and their
domains.

e Initials, a state formula specifying the initial
states.

o For every event e € Events(A), an event formula
formula 4(e) specifying the transitions of e.

Notation A sequence over alternating E and F, where
E and F are sets, is a sequence (e, fo,e1, f1,...),
where ¢; € F and f; € F for all 1. o

A behavior of A is a sequence o = (sp, €9, 51,€1,...)
over alternating States(A) and Events(A) such
that so satisfies Initialy and (s;,8i41) satisfies
formula4(e;) for all i. A finite sequence o over alter-
nating States(A) and Events(A) may end in a state
or an event. A finite behavior, on the other hand, ends
in a state by definition. The set of behaviors of A is
denoted by Behaviors(A).

For e € Events(A), define

enableds(e) = [IVariables(A) : formula,(e)]

which is a state formula representing the set of states
{s : for some state ¢, (s, ) satisfies formulas(e)}.
Event e is said to be enabled in a state s of A iff s
satisfies enabled 4(e). Event e is said to be disabled in
state s iff it is not enabled in s.

Let us digress and state some conventions to be used
in event formulas. Two examples of event definitions
are shown below:

v1>2 A vy €{l,2,5}
v > vz Av1+v;=5

€

]

€2



In each definition, the event name is given on the left-
hand side of “=" and the event formula is given on
the right-hand side.

Consider a state transition system A with two state
variables v; and va. Let ez above be an event of
the system. Note that v] does not occur free in
formula4(ez). By the following convention, it is as-
sumed that v is not changed by the occurrence of es.

Convention Given an event formula, formulaa(e),
for every state variable v in Variables(A), if v is not
a free variable of formulas(e), the conjunct v/ = v is
implicit in formula(e). o

If a parameter occurs free in an event’s formula, then
there is an event defined for every allowed value of the
parameter. For example, consider

es(m) vnw>vz Avi+vp=m

where m is a parameter with a specified domain of
allowed values. A parameterized event is a convenient
way to specify a group of related events.

Definition A module M is specified in the relational
notation by:

e Disjoint sets of events, Inputs(M), Outputs(M),
and Internals(M), with Events(M) being their
union.

e sts(M), a state transition system with
Events(sts(M)) = Events(M), specified in the
relational notation.

e Fairness requirements of M, a finite collection of
subsets of OQutputs(M) U Internals(M). Each
subset is referred to as a fairness requirement of

M.
m]

Convention For readability, the notation sts(M)
is abbreviated to M wherever such abbreviation
causes no ambiguity, e.g., States(sts(M)) is abbrevi-
ated to States(M), enabled,:,(ar)(e) is abbreviated to
enabledps(e), ete. D

Let F be a fairness requirement of module M. F is
said to be enabled in a state s of M iff, for some
e € F, e is enabled in 5. In a behavior o
(50,€0,51,€1,...,5j,¢€j,...), we say that F occurs in
state s; iffe; € F. An infinite behavior o of M satisfies
F iff F occurs infinitely often or is disabled infinitely
often in states of 0.
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For module M, a behavior ¢ is an allowed behavior iff
for every fairness requirement F of M: o is finite and
F is not enabled in its last state, or ¢ is infinite and
satisfies F. Let AllowedBehaviors(M) denote the set
of allowed behaviors of M.

To specify an interface in the relational notation, we
use a state transition system together with invariant
and progress assertions. In what follows, we first intro-
duce the assertions and then explain how the allowed
event sequences of an interface are specified.

Invariant assertions are of the form: invariant P,
where P is a state formula. A finite sequence over
alternating states and events satisfies invariant P iff
every state in the sequence satisfies P. An infinite se-
quence over alternating states and events satisfies in-
variant P iff every finite prefix of the sequence satisfies
invariant P.

We use leads-to assertions of the form: P leads-to @,
where P and Q are state formulas.® A sequence
(s0,€0,51,€1,...) over alternating states and events
satisfies P leads-to Q iff the following holds: Vi :
(s: satisfies P) = (3j:j > i : s; satisfies Q).

Invariant and leads-to assertions are collectively re-
ferred to as atomic assertions. In what follows, an as-
sertion is either an atomic assertion or one constructed
from atomic assertions using logical connectives and
quantifiers. Let o denote a sequence over alternat-
ing states and events. An assertion is true for o iff
o satisfies the assertion. For a given o, to evaluate
the truth value of an assertion Assert, we first eval-
uate for o the truth value of every atomic assertion
within Assert. For example, o satisfies the assertion
XAY = Z, where X, Y and Z are atomic assertions,
iff (o satisfies X) A (o satisfies Y) = (o satisfies Z).

A safety assertion is an assertion constructed from in-
variant assertions only. A state transition system sat-
isfies a safety assertion iff every finite behavior of the
state transition system satisfies the safety assertion.
A progress assertion is an assertion constructed from
atomic assertions that include at least one leads-to as-
sertion. A module satisfies a progess assertion iff every
allowed behavior of the module satisfies the progress
assertion.

To use a state transition system, say A, for specifying
an interface, we need to exercise care in defining the
events of A. First, A cannot have internal events. Sec-
ond, the input and output events must be defined such
that they have “adequate resolution.” The following
is a sufficient condition:

3)eads-to is the only temporal connective we use.




Definition A state transition system A has determin-
istic events iff

o Internals(A) = 0,
o Initial, represents a single state, and

o for all e € Events(A), formula4(e) represents a
partial function, i.e., for all s € States(A), there
is at most one state s’ such that (s,s’) satisfies

formula4(e). a

This condition is easy to satisfy because events in the
Lam-Shankar theory can be regarded as names or la-
bels. (Moreover, event names can be parameterized in
the relational notation [10].) Note that an event se-
quence represents at most one behavior of A because
event occurrences have deterministic effects. Behav-
iors of A, however, are nondeterministic because more
than one event can be enabled in a state.

The restriction of a single initial state can also be cir-
cumvented by adding more events, as follows: Let sg
denote a state not in States(A), and Init(A) the de-
sired initial states of A. For all s € Init(A), specify a
distinct event for each transition (s, s). Define s to
be the initial state of A.

Notation For any state formula R, we use R’ to de-
note the formula obtained from R by replacing every
state variable v in it with v’. D

Convention For readability, the notation sts(I)
is abbreviated to I wherever such abbreviation
causes no ambiguity, e.g., States(sts(I)) is abbrevi-
ated to States(I), formula,,,(1)(e) is abbreviated to
formulaj(e), etc. a]

Definition An interface I is specified in the relational
notation by:

¢ Disjoint sets of events, Inputs(I) and Outputs(I),
with Events(I) being their union.

o sts(I), a state transition system with determinis-
tic events specified in the relational notation such
that Events(sts(I)) = Events(I).

o InvAssumy, a conjunction of state formulas re-
ferred to as invariant assumptions of I, such that
Initial(I) = InvAssumj, and
Ve € Outputs(I) :

InvAssum; A formular(e) = InvAssum/

e InvGuary, a conjunction of state formulas re-
ferred to as invariant guarantees of I, such that
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Initial(I) = InvGuary, and

Ve € Inputs(I) :

InvGuary A formular(e) = InvGuar}
e ProgRegsr, a conjunction of progress assertions,

referred to as progress requirements of I. o
The invariant assumptions and guarantees of interface
I are collectively referred to as invariant requirements
of interface I. Define

InvReqs; = InvAssum; A InvGuary.

Given an interface I specified in the relational nota-
tion, an allowed event sequence of I is the sequence of
events in a behavior of sts(I) that satisfies all invariant
and progress requirements; more precisely, define

AllowedBehaviors(I) = {¢ : ¢ € Behaviors(I) and
o satisfies invariant InvRegsy and ProgRegsr}

AllowedEventSeqs(I) =
{image(o, Events(I)) : o € AllowedBehaviors(I)}.

where image(o, Events(I)) denotes the sequence of
events over Events(I) obtained from o by deleting all
states and events that are not in Events(I).

For event e € Events(I), define

possibler(e) = InvReqs;
A [FVariables(I) : formular(e) A InvRegs}]

which is a state formula representing the set of states
in which event e can occur without violating any in-
variant requirement of I.

Note that there are two ways to specify the safety re-
quirements of an interface: namely, a state transition
system, and a set of invariant requirements. Either
one or—typically—both can be used for a particular
specification. It is our experience that some safety
requirements are more easily expressed by invariant
requirements, while some are more easily expressed by
allowed state transitions encoded in a state transition
system. The approach described above is a flexible
one.

We next introduce a refinement relation between
two state transition systems A and B such that
Variables(A) D Variables(B). Note that there is a
projection mapping from States(A) to States(B) de-
fined as follows: state s € States(A) is mapped to
state t € States(B) where t is defined by the values of
Variables(B) in s [9, 10].

Notation Given Variables(A) D Variables(B), for
any s € States(A), if s = (dy : v € Variables(A))



where d, € domain(v), then image(s, B) = (dy:ve
Variables(B)). n]

State formulas in Variables(B) can be interpreted di-
rectly over States(A) using the projection mapping.
Also, event formulas in Variables(B) UV ariables(B)’'
can be interpreted directly over States(A) x States(A)
using the projection mapping.

Definition Given state transition systems A and B
and state formula Inv4 in Variables(A), A is a refine-
ment of B assuming Inv, iff

o Variables(A) D Variables(B) and
Events(A) 2 Events(B)
e Initialy, = Initialp
o [event refinement]
Ve € Events(A) N Events(B) :
Invs A formulas(e) = formulagp(e)
o [null image condition]
Ve € Events(A) — Events(B) :
Inva A formulaa(e)

= [Vv € Variables(B) : v = v'] o

If A is a refinement of B assuming Inv4 and, moreover,
A satisfies invariant Invy, then A is a refinement of B
as defined in [10]. In this case, for any state formula
P in Variables(B), if B satisfies invariant P then A
satisfies invariant P.

2.3 Specifying modules to satisfy inter-
faces

Given a module M, an interface I, and some state for-
mula Invy in Variables(M), the following conditions,
expressed in the relational notation, are sufficient for
M offers I:

B1 Inputs(M) = Inputs(I) and
Outputs(M) = Outputs(I)
B2 sts(M) is a refinement of sts(I) assuming Invy
B3 Ve € Inputs(l) :
Invpy A possibler(e) = enabledp(e)
B4 Ve € Outputs(I) :
Invy A formulapm(e) = InvGuar}
B5 sts(M) satisfies
(invariant InvAssum; = invariant Inva)

B6 M satisfies
(invariant InvAssum; = ProgReqsr)
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For a module M, interfaces U and L, and some state
formula Invy in Variables(M), the following condi-
tions, expressed in the relational notation, are suffi-
cient for M using L offers U:

C1 Events(U) N Events(L) =0
Inputs(M) = Inputs(U) U Outputs(L)
Outputs(M) = Outputs(U) U Inputs(L)
Variables(U) N Variables(L) = @

C2 sts(M) is a refinement of sts(U) assuming Invy

C3

C4 Ve € Inputs(U) :

Invy A possibley(e) = enabledp(e)
Ve € Outputs(L) :

Invps A possibler(e) = enabledar(e)
Ve € Inputs(L) :

Invy A formulap(e) = InvAssumf
Ve € Outputs(U) :

Invy A formulap(e) = InvGuary
sts(M) satisfies

(invariant (InvAssumy A InvGuary)
= invariant Invy)

M satisfies
((invariant (InvAssumy A InvGuarr)
A ProgReqst)

= ProgReqsy)

sts(M) is a refinement of sts(L) assuming Invy

C5
Cé6
C7

Ccs8

Cc9

Let us point out an interesting feature in the seman-
tic definitions of M offers I and M using L offers U,
[11, 12]). Whenever the environment of M initiates an
interface event whose occurrence would violate some
interface safety requirement of M, module M can ei-
ther block the event’s occurrence or let the event oc-
cur. In the latter case, module M can behave arbi-
trarily after the event’s occurrence, and still satisfy
these semantic definitions. The B and C conditions
are slightly stronger than the respective semantic def-
initions in that they distinguish between those safety
requirements of an interface, say I, encoded in sts(I)
and those encoded in InvAssum;. Conditions B2, C2
and C3 require that module M block the occurrence
of any environment-controlled event that would violate
an interface safety requirement encoded in sts([).

A finite set of modules {M; : j € J} are compatible iff
Vikeld,j#k

Internals(M;) N Events(M;) = 0, and
Outputs(M;) N Outputs(My) = 0.



Given a compatible set of modules {M; : j € J}, their
composition is a module M defined in the obvious way
with each state of the composition being a tuple s =
(tj : j € J), where t; € States(M;), and output and
input events that match each other becoming internal
events of the composite module M.

Theorem 1 Let modules, M and N, and interfaces,
U and L, satisfy the following:

o Internals(M) N Internals(N) =0
e M using L offers U
e N offers L

Then, M and N are compatible and their composition
offers U. o

For a more detailed treatment of the theory of modules
and interfaces, the reader is referred to [11]. A proof
of Theorem 1 can be found in [12].

3 Case Study: A Secure Dis-
tributed System

Consider a distributed system where there is a collec-
tion of hosts, interconnected by a communication net-
work. Denote the set of hosts by M. Each host h € H
serves a distinct set U of subjects and maintains a
distinct set Oy of objects.

We define a function host : HUQO — H that returns the
resident host for each subject or object. Its definition
is:

host(z) = h ifzelUn U0,

We also use a boolean predicate local : U x O —
{true, false} that returns true if subject u resides in
the same host as object o; false otherwise. The formal
definition is:

local(u,0) = (host(u) = host(0))

The security concern of interest here is multilevel ac-
cess control security. For simplicity, we do not in-
clude rules for changing subject clearance and object
classification.* Thus both subject clearance and object
classification are fixed. We denote the fixed clearance
of a subject u by clearance(u), and the fixed classifi-
cation of an object o by classification(o).

41t is known that potential security problems (covert chan-
nels) can arise if subject clearance and object classification can
be dynamically varied [21].
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Note that not all subjects and/or objects resident on
a host possess the same clearance or classification.
In other words, each host is trusted to operate at a
range of security levels, denoted by [h.lower, h.upper).5
Thus, by definition:

Vz €U : host(z)=h

= clearance(z) € [h.lower, h.upper)
Vz€O:host(z)=h

= classification(z) € [h.lower, h.upper]

For each host h, both h.lower and h.higher are static
and are fixed by a certification process (and possibly
some administrative policies). We assume that each
host maintains a table containing the security range
of every other host in the distributed system. Also,
each host possesses information of local subjects and
objects only. In particular, a host does not know the
clearances/classifications of remote subjects/objects.

An operational description of the distributed system
is as follows: the activities of subjects are structured
as transactions. A subject can issue two kinds of com-
mands: operations and rules. Informally, operations
can be used to modify the “value” component (e.g.
object contents) of the system state, while rules can
be used to modify the “protection” component (e.g.
access matrix) of the system state. Each transaction
is composed of a sequence of commands, delimited by
a begin and an end command (both begin and end
are operations). Each transaction is executed serially
while different transactions (for different subjects) can
be performed concurrently. Each subject can have at
most one outstanding (active) transaction. If a com-
mand in a transaction names only local objects (ob-
jects maintained by the resident host of the subject),
it can be carried out locally without invoking any net-
work service; otherwise, communication services of-
fered by an underlying communication network are
needed.

The distributed system is structured into two layers as
shown in Figure 1. The network module in Figure 1 de-
notes a layer that provides communication services for
implementing remote operations. The system module
offers a secure service to subjects for reading/writing
objects, both local and remote. Note that the actual
implementation of each module consists of a multiplic-
ity of geographically distributed entities. In fact, each
module may itself be structured as a hierarchy of mod-
ules.

5This means that the hosts are certified at least to the Bl
level under the Trusted Security Evaluation Criteria [1).



For the layered system shown in Figure 1, there are
two levels of security concerns. One level of security
concern is at the user interface between subjects and
the system. Here, we require access control security
in the sense of Bell-LaPadula [4]. Another level of
security concern is at the interface between the sys-
tem module and the network module. Here, channels
are established between pairs of hosts along which ac-
cess requests and object contents are transferred. The
security requirement of the network interface can be
specified by a predicate comm C H x H, which can be
defined very generally. An example of such a require-
ment is the following simple variant of Bell-LaPadula:

VhkeH:comm(h k) =
[h.lower, h.upper] N [k.lower, k.upper] # @

That is, a communication channel can be established
between two hosts only if their security ranges overlap.

For our example, we propose just a small set of com-
mands. In particular, we consider only these com-
mands: the operations are begin, end, read and write
and the rules are get-obs, get-alt, rel-obs and rel-alt. In-
formally, subjects invoke read to retrieve the content
of an object, and write to update the content of an
object. In order for these operations to be successful,
the proper access rights must be first obtained by the
subjects, and this is achieved through the use of rules:
get-obs requests the observation right for an object,
while rel-obs releases the observation right for an ob-
ject; get-alt and rel-alt are similarly defined to request
and release the alteration right for an object.

Note that the system being specified below may ex-
hibit perculiar functional behaviors because we do not
require the user interface to satisfy any consistency
constraint (e.g. serializability). It is possible that
different subjects simultaneously hold acess rights to
write the same object. Such undesirable functional
behaviors can be avoided by appropriately strenght-
ening the user interface specification. This illustrates
the flexibility of the theory of modules and interfaces.
For a formal specification of a seriablizable database
interface given in the relational notation, the reader is
referred to [11].

3.1 Notation

We specify an event as a tuple, with subject name, ob-
ject name, host name and some event-specific param-
eters as typical components. For example, (u, read, o)
denotes the event corresponding to a read command:
u is the subject requesting the read, read specifies the
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command type, and o is the object being read. We pre-
fix an input event with in and an output event with
out. Thus in(u, read, o) is an input event (of a particu-
lar interface or module). A subscript is used to denote
the interface or module an event belongs, e.g. if U is
an interface, then iny(u,read,0) is an input event of
interface U. Since there is only one module (M) spec-
ified in this paper, events of module M do not have
subscripts.

We introduce several functions for accessing the com-
ponents of a tuple. The functions sbj, cmd, obj,
val, and hst return respectively the subject compo-
nent, the command type component, the object com-
ponent, the value component, and the host component
of a tuple if such a component exists; if the speci-
fied component does not exist, undefined is returned.
For example, consider tuple t = (u,read,o,v), then
sbj(t) = u, cmd(t) = read, 0bj(t) = o, val(t) = v while
hst(c) = undefined. We omit the precise definitions of
these functions.

We define that a tuple ¢ is contained in another tuple
ty if all the components in ¢; are also in {;. Thus
(u, rel-obs, 0) is contained in both (u, rel-obs, 0, ok) and
(u, rel-obs, o, failed). We also say ¢, contains t; if
is contained in ¢;. Let T be a sequence over a set of
tuples. For a tuple ¢, proj,(T") denotes the subsequence
of tuples in T each of which contains the tuple t. For
example, p"oj(u,rel-obs, o)(T) returns the subsequence
of tuples in T each of which contains (u, rel-obs, 0).

A generic command specifies a class of related com-
mands, and is written using a wildcard symbol ‘¥’.
For example, *-obs specifies the class of commands
{get-obs, rel-obs}; get-obs and rel-obs are called specific
commands corresponding to %-obs. The correspon-
dence between generic commands and specific com-
mands should be self-explanatory in the following;
hence precise definitions of such correspondence are
omitted. We extend the above containment relation-
ship to the use of generic commands: a tuple ¢ con-
tains a tuple ¢; if ¢;’s command component ¢ is generic
while ¢;’s command component is a specific command
corresponding to ¢, and all other components of ¢; are
in t3. For example, (u,*-obs,0) is contained in both
(u, get-obs, o, failed) and (u, rel-obs, o, ok).

(T): returns the ith element in the sequence T and T'@t
represents the sequence T with ¢ appended. last(T)
returns the last element in T'; and undefined if T is
empty.

In the following, u, ¢, o, h and v are used respectively
as variables standing for an subject, a command name,
an object, a host, and a value unless explicitly stated



otherwise.

3.2 The user interface U

Operations

Rules

iny (u, begin)

outy (u, begin, ok)
outy (u, begin, failed)
iny (u, end)

outy (u, end, ok)

iny (u, read, o)

outy (u, read, o, v)
outy (u, read, o, failed)
iny (u, write, 0, v)
outy (u, write, o, ok)

iny (u, get-obs, 0)

outy (u, get-obs, ok)
outy (u, get-obs, failed)
iny (u, get-alt, 0)

outy (u, get-alt, ok)
outy (u, get-alt, failed)
iny (u, rel-obs, 0)

outy (u, rel-obs, o, ok)
iny (u, rel-alt, o)

outy (u, rel-alt, o, ok)

outy (u, write, o, failed)

Figure 3: Events of User Interface U

We specify the user interface U in the relational nota-
tion as defined in Section 2.2. The events of interface
U are listed in Figure 3. For each subject-command
pair, we have an input event; and for each input event,
there may be zero or more output events represent-
ing the system’s response to the input event. We use
two distinct constants ok, failed ¢ V to indicate respec-
tively success and failure.

Variables of sts(U)

o statusy(u) : {idle, ready} U {(u, begin), (u, end)}
U{(u,c,0) : c € {read, write, get-+}}

For each subject u, statusy(u) records its state
of transaction execution. If there is an outstand-
ing transaction for u, statusy(u) would record a
constant value of ready (the interface U is waiting
for the next command) or the command currently
being executed by u in that transaction. If there
is no outstanding transaction for u, statusy(u)
would assume the constant value idle. Initially
statusy (u) is idle for all u.

o Ty : sequence over {(u,c,0,7) : c = get-*,
r € {ok, failed}} U {(u, ¢, 0, 0k) : ¢ = rel-x}

Ty records the sequence of rule events (access
grants and denials) that have occurred so far for
a transaction. The current “protection state” can
be determined by examining Ty. For instance,
if a (u, get-obs, 0, ok) event is in Ty and there is
no subsequent (u, rel-obs, o, ok) event, then we can
conclude that u holds observation right for 0. Ty
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is initially set to nil, a constant not in V. (Ty be-
comes an auxiliary variable in the system module
M)

We define two state functions to be used in event spec-
ifications.

o observabley : U x O — {true, false} defined by

observabley (u,0) =
last(proj , x-obs,s)(Tv)) = (u, get-obs, 0, ok)

o alterabley : U x O — {true, false} defined by

alterabley(u,0) =
last(proj(u’*_a“’a)(Tu)) = (u, get-alt, o, ok)

Note that, observabley (u, o) (respectively alterabley(u,o))

is true in a state s if u has observation (respectively
alteration) right for o in s.

Events of sts(U)

The event specifications of interface U are given in Fig-
ure 4. Several desirable safety properties are encoded
in the events of sts(U):

e An out event must be preceded by a corresponding
in event, i.e. output events do not occur sponta-
neously.

o Each subject has at most one outstanding trans-
action at a time.

o A subject succeeds in reading an object only if the
subject has observation right for that object.

o A subject succeeds in writing an object only if the
subject has alteration right for that object.

We make several other observations: First, the
precise condition for accepting a transaction from
u is left umspecified (same enabling condition for
outy (u, begin,ok) and outy(u,begin,failed)). Thus
a module that offers U can impose various
implementation-dependent conditions without violat-
ing the interface specification, e.g. a transaction is ac-
cepted only if the system has sufficient resources. Such
nondeterminism in an interface specification allows a
wide variety of implementations, and is preferred when
more specific conditions are either not known or not
necessary.



iny(u, begin) statusy(u) = idle

A statusy(u)’ = (u, begin)
statusy(u) = (u, begin)

A statusy(u)’ = ready
statusy(u) = (u, begin)

A statusy(u)’ = idle
statusy(u) = ready

A statusy(u)’ = (u,end)
statusy(u) = (u, end)

A T{, = nil

A statusy(u)’ = idle
statusy(u) = ready

A statusy(u)’ = (u, get-obs, 0)

outy(u, begin, ok)

outy(u, begin, failed)

iny(u,end)

outy(u, end, ok)

iny(u, get-obs, 0)

outy(u, get-obs, o, ok)

statusy(u) = (u, get-obs, 0)
A TY = Ty@(u, get-obs, o, ok)
A statusy(u)’ = ready

outy (u, get-obs, o, failed) statusy(u) = (u, get-obs, 0)
ATy, = Ty@(u, get-obs, o, failed)
A statusy(u)’ = ready

statusy(u) = ready A observablev(u, o)
A statusy(u)' = (u, rel-obs, o)

H

iny(u, rel-obs, 0)

outy (u, rel-obs, o, ok) statusy(u) = (u, rel-obs, o)

A Ty = Ty@(u, rel-obs, o, ok)
A statusy(u)’ = ready
statusy(u) = ready

A statusy(u)’ = (u,read, o)

iny(u,read, o)

outy(u, read, o, v)

statusy(u) = (u, read,o0) A observabley(u, o)
A statusy(u)’ = ready

outy (u, read, o, failed) statusy(u) = (u, read, o)

A statusy(u)’ = ready
statusy(u) = ready
A statusy(u)' = (u, write,0,v)

iny(u, write, 0, v)

outy(u, write,0,0k) = statusy(u) = (u, write, 0,v) A alterablev(u,0)

A statusy(u)’ = ready
outy(u, write,o,falled) = statusy(u) = (u, write, 0,v)
A statusy(u)’ = ready

The event formulas for x-alt rules are similar to those for *-obs, and are omitted here.

Figure 4: Event Specifications of U

On the other hand, the end, rel-obs and rel-alt events
always succeed, as indicated by the absence of a failed
output event for each of them. This is so because the
condition for success has already been incorporated in
the enabling condition of the respective input event.

The enabling conditions for outy(u,read,o,v) and
outy (u, read, o, failed) are not mutually exclusive: it
is observabley (u, 0) for outy(u, read, o,v) and true for
outy (u, read, o, failed) (in addition to statusy(u) =
(u,read,0) for both). Thus, a read can always fail
even when the subject u possesses the necessary ob-
servation rights. Such behavior would be removed in
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an implementation, i.e. the system module M.

The get-* events can be invoked by a subject even
when the subject already has the access right being
requested. This generality is useful for handling the
case in which object classifications may change dynam-
ically. (But in the system module M to be specified,
we assume that object classifications are fixed, which
gives rise to an optimized implementation.)

Lastly, only the security-relevant semantics of interface
U is specified. For example, the above specification
does not require the value returned by a successful read



to be the same as the value currently stored, nor the
object content be updated by a successful write. This
is consistent with our proposal that security specifica-
tion and functional specification should be separate;
the semantics of read and write can be specified by
appropriately strengthening their respective event for-
mulas with additional conjuncts, or by including extra
invariant requirements below.

Invariant requirements of U

Invy, = Yi:(Tu)i = (u, get-obs, 0, ok)
= classification(o) <X clearance(u)

A [-local(u,0) = comm(host(u), host(0))]
Invys = Vi: (Tv)i = (u, get-alt, o, ok)
= clearance(u) < classification(o)

A [-local(u, 0) = comm(host(u), host(0))]

Invy; and Invy s are similar to the s-secure and *-
secure properties of the Bell-LaPadula model, but are
stated using Ty .

InvAssumy true

InvGuary Invy,y A Invy

Progress requirements of U

The requirement that every user command must be
processed in a finite time (i.e. an input event must be
followed by a corresponding output event in a finite
number of steps) is obviously a nice one. However, it
may not be satisfiable. Also, whether such a require-
ment should be considered a security concern depends
on the perceived threats. If the system operates in an
environment that is potentially malicious and denial of
service is considered a threat, then the finite response
time requirement should be included as a security re-
quirement. Such a requirement for interface U can be
formalized as follows:

ProgReqsy = Vu:
statusy (u) ¢ {idle,ready} leads-to statusy(u) = ready

3.3 The network interface L

For the network interface, all events are concerned
with commands involving remote objects. In fact,
when a command c is executed by a subject at the
user interface: if ¢ names only local objects, the out-
put response events are executed by the system module

147

without making use of the service offered by L. On the
other hand, if ¢ names remote objects, the command
is relayed down to L, in which case a response event
at U to the user cannot occur until a response event
at L has occurred.

In order for a host to communicate with another host,
communication channels have to be first established.
Channels are created dynamically on a per subject ba-
sis between two hosts. That is, if two subjects resident
on the same host request the same remote object, two
separate channels between the hosts are created, one
for each subject. Channels are unidirectional, in the
sense that it can be used only by one side to pass com-
mands and retrieve results. Channels persist only for
the duration of a transaction and are torn down when
the transaction terminates. Note that channels are
merely a logical abstraction suitable for our analysis.
Further refinements may be needed to obtain realistic
implementations, e.g. multiplexing, logical separation
by encryption, etc.

Since channels are established on a per subject basis
and a subject is resident on exactly one host, we can
uniquely identify a channel by the subject and the re-
mote host at the other end of the channel.

We follow the OSI model for peer entity communica-
tions. The peer entities are embedded in the system
module. For entity A to initiate a communication with
a peer entity B, entity A invokes a request event at
the network interface. Subsequently, a corresponding
indication event is output to B at the interface. B re-
sponds to the indication event with an input response
event to the interface. The content of the response
would subsequently be conveyed to A in an output
confirm event.

Variables of sts(L)

o statusg(h,u):{ready}

U{(u, ¢, h) : c € {conn-*, disconn-req}}

U{(u, ¢, 0) : ¢ € {read-*, write-*, get-+-+}}
For each host h and subject u, statusp(h,u)
records the current activity of u on host h (with
respect to the network interface). If h is the resi-
dent host of u, statusg (h, u) indicates the request
whose response from a remote host u is wait-
ing for, or ready if there is no such outstanding
request. In the case that h is not the resident
host of u, statusg(h, u) records whether an indi-
cation event has been received on behalf of u and
a response from host h is pending; ready denotes
the absence of such a pending response. Initially,
statusp(h, u) is ready for all h and u.




o outchannel(u) : H

For each subject u, outchannel(u) denotes a set
containing all hosts to which u (at host host(u))
has established a communication channel with.

e inchannel(h) : H

For each h, inchannel(h) is a set containing all
remote hosts that have established a communica-
tion channel to host h.

Both outchannel(u) and inchannel(h) are initially 0.

e Ty : sequence over {(u,c,0,r) : c = get-*,
r € {ok, failed}} U {(u, ¢, 0,0k) : ¢ = rel-+}

Ty is maintained for stating the Bell-LaPadula
security requirements. It records all the access
grants/denials between hosts at the network inter-
face. Ty is initially nil. (Ty becomes an auxiliary
variable in the system module M.)

o result(h,u) : {nil, ok, failed} UV

For each indication event, two response events are
possible (e.g. one to indicate success and an-
other to indicate failure). We use the variable
result(h, u) to relay the parameters in a response
event to its corresponding confirm event. For ex-
ample, a response event indicating success sets
result(h, u) to ok, which is used to generate a cor-
responding confirm event signifying success.

Events of sts(L)

The event specifications of interface L are given in Fig-
ure 5 (connection and disconnection events) and Fig-
ure 6 (access request and read/write events).

Several observations are in order here. First, a
conn-req event requires that the channel requested be
nonexistent, while a disconn-req event requires that
the channel to be torn down be an established one.
Second, the condition for a remote host to accept a
connection request is unspecified, thus an implemen-
tation is allowed to impose specific conditions. Third,
interface L as specified herein offers reliable message
delivery; thus the disconn-req event does not require a
disconn-con as an acknowledgement.

The events read-req, write-req, get-obs-req, and
get-alt-req require a channel to have been established.
Events read-req and write-req further require the ap-
propriate rights to have been granted. Again, the con-
dition for a successful read or write is left unspecified.
For example, a disk failure at the remote host can
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cause a read or write to fail even when the subject has
the necessary rights.

Note that the clearance of a subject has to be ex-
plicited passed as a value of the parameter n in the
get-obs and get-alt events, since the remote host does
not possess information regarding a foreign subject.

The rel-obs-req and rel-alt-req events are not strictly
speaking needed at this level, since the appropriate
rights for the subjects involved can be released locally.
The events are included here to preserve the mean-
ing of Ty which records all access grants and denials
for remote objects. However, unlike their counterparts
rel-obs and rel-alt at U, rel-obs-req and rel-alt-req do not
check possession of rights; hence it is possible to release
an unacquired right. Also, rel-obs-req and rel-alt-req,
unlike get-obs-req and get-alt-req, do not require the re-
mote host where the object resides to be notified. For
applications that require a host to have precise knowl-
edge of the propagation of rights for its objects (e.g. in
distributed mutual exclusion), appropriate indication
events will have to be added.

Most of the safety requirements of L are specified in
the state transition system. For example, the strict
sequencing requirement concerning peer communica-
tions (i.e. request — indication — response — con-
firm) is specified using the variable statusr(h,u). The
requirement that command executions can proceed
only after the appropriate channels have been estab-
lished is specified by including the conjunct host(o) €
outchannel(u) in the event formulas.

In the following, observabler and alterabler are
state functions defined similar to their counterparts,
observabley and alterabley, in U, except that all ref-
erences to Ty are replaced by references to Tf.

Invariant requirements of L

An invariant assumption of the network interface is
that all interface events must correspond to remote
operations, i.e., the user of L can only invoke events
naming remote objects at L. Formally,

InvAssumy =
[V h,u: (statusp(h,u) = (u, ¢, h)
A ¢ € {conn-x, disconn-*})

=> host(u) # h]

A

[V h,u,0: (statusp(h,u) = (u,¢c,0)
A c & {conn-x, disconn-*})
= -local(u, 0)]



inz(u, conn-req, h)

1]

outz (u, conn-ind, k)

inz (u, conn-res, k, ok)

1}

inz (u, conn-res, h, failed)

outy (u, conn-con, k, ok)

outz (u, conn-con, k, failed)

inz (u, disconn-req, h)

outy (u, disconn-ind, k)

statusp(host(u), u) = ready

A h & outchannel(u)

A [~comm(host(u),h) => result(host(u), u)’ = failed]
A[comm(host(u), k) = result(host(u),u)’ = nil]
A statusy(host(u),u)’ = (u,conn-req, k)
statusy(host(u), u) = (u, conn-req, h)

A statusy (b, u) = ready A result(host(u),u) = nil
A statusy(k, u)’ = (u, conn-ind, h)

statusy(h,u) = (u, conn-ind, k)

Ainchannel(h) = inchannel(h) U {host(u)}

A result(host(u),u)’ = ok

A statusy (b, u)’ = ready

statusy (h,u) = (u, conn-ind, k)

A result(host(u),u)’ = failed

A statusy(h, )’ = ready

statusy (host(u), u) = (u,conn-req, k)

A result(host(u),u) = ok

A outchannel(u)’ = outchannel(u) U {h}

A statusy (host(u), )’ = ready

statusz (host(u), u) = (u,conn-req, k)

A result(host(u),u) & {nil, ok}

A statusy(host(u), )’ = ready

statusy (host(u), u) = ready A h € outchannel(u)
A outchannel(u)’ = outchannel(u) — {h}

A statusy(host(u),u)’ = (u, disconn-req, k)
statusy(host(u), v) = (u, disconn-req, k)
Ainchannel(h)’ = inchannel(h) — {host(z)}

A statusp(host(u),u)’ = ready

Figure 5: Event Specifications of L

Invpy = Vi:(TL)i = (u, get-obs,0,0k)

= classification(o) < clearance(u)
Invp s = Vi:(TL)i = (u,get-obs, o, failed)

= —(classification(o) =X clearance(u))
Invp s = Vi:(TL); = (u, get-alt, 0, ok)

= clearance(u) < classification(o)
Invps = Vi:(T1)i = (u, get-alt, o, failed)

= —(clearance(u) < classification(o))
InvGuary = Invpy A Invps A Invps A Invp 4

The conjuncts Invg ; and Invyg 3 are similar to state-
ments of the Bell-LaPadula model.

Progress requirements of L

A progress requirement avoiding denial of service can
be stated for L as shown below. Note that this also
takes care of the finite response time requirement for
connection and disconnection requests.
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ProgReqsp = Yh,u:
statusg (h,u) # ready leads-to statusr(h, u) = ready

3.4 System module M
Variables of sts(M)

In addition to the variables in sts(U) and sts(L), the
system module has the following variables:

o access(u) : {(r,0) : r € {obs, alt}}

For each subject u, access(u) records all access
rights currently held by u. This variable is up-
dated by successful returns of the get-obs, get-alt,
rel-obs and rel-alt requests, and is used to deter-
mine if a read or write request from u can be hon-
ored or not. The roles of both Ty and T}, are re-
placed by access(u), and hence they become aux-
iliary variables in M. (For a formal treatment of
auxiliary variables, see {10].)



inL(u, get-obs-req, 0,n)

outy, (u, get-obs-ind, 0, n)

inz(u, get-obs-res, 0, ok)

inz (u, get-obs-res, o, failed)

outL (u, get-obs-con, o, ok)

outz (u, get-obs-con, o, failed)

inz(u, rel-obs-req, 0)

outz (u, rel-obs-con, o, ok)

inz (u, read-req, o)

outy (u, read-ind, o)

inL(u, read-res, o, v)

inz (u, read-res, o, failed)

outr(u, read-con, 0, v)

outy (u, read-con, o, failed)

The event formulas corresponding to write-* and #-alt-x are similar to those for read-+ and *-obs-*,

and are omitted for brevity.

statusy(host(u),u) = ready A host(o) € outchannel(u)
A result(host(u), u)’ = nil

A statusy (host(u),u)’ = (u, get-obs-req, 0, n)
statusy(host(u),u) = (u, get-obs-req, o, n)

A statusz (host(o),u) = ready A host(u) € inchannel(h)
A statusy (host(o),u)’ = (u, get-obs-ind, o, n)
statusy(host(0), u) = (u, get-obs-ind, 0, n)

A result(host(u), )’ = ok

A statusy(host(o),u)’ = ready

statusy(host(0), ) = (u, get-obs-ind, 0, n)

A result(host(u), u)’ = failed

A statusy (host(0),u)’ = ready

statusy(host(u),u) = (u, get-obs-req, o, n)
A result(host(u), u) = ok

ATy, = TL@(u, get-obs, 0, ok)

A statusy (host(u),u)’ = ready
statusp(host(u),u) = (u, get-obs-req, 0, n)
A result(host(u), u) € {nil, ok}

A Ti, = T @(u, get-obs, o, failed)

A statusy (host(u),u)’ = ready
statusy(host(u),u) = ready

A statusy (host(u), u)’ = (u, rel-obs-req, 0)
statusy(host(u), u) = (u, rel-obs-req, 0)

A Ty, = T @(u, rel-obs, o, ok)

A statusy (host(u),u)’ = ready
statusy(host(u),u) = ready A host(o) € outchannel(u)
A observabler (u, o)

A result(host(u), u)’ = nil

A statusy (host(u),u)’ = (u,read-req,0)
statusy(host(u),u) = (u,read-req,0)

A statusy (host(o),u) = ready A host(u) € inchannel(h)
A statusy (host(o),u)’ = (u,read-ind, o)
statusz(host(c), u) = (u, read-ind, 0)

A result(host(u),u) = v

A statusz (host(o),u)’ = ready
statusr(host(o),u) = (u,read-ind, o)

A result(host(u), u)’ = failed

A statusy (host(0),u)’ = ready

statusy (host(u),u) = (u, read-req,0)
Aresult(host(u),u) =v A vEY

A statusy (host(u),u)’ = ready
statusy(host(u), u) = (u, read-req, o)

A result(host(u),u) & {nil} UV

A statusy (host(u),u)’ = ready

Figure 6: Event Specifications of L (cont.)

o tolower(u) : {(u, disconn-req, D) : D C H}

When an input event of U naming a remote ob-

U{(u, c,0) : c € {read, write, get-*, rel-x} } ject o is submitted by a subject u, and it can-

not be handled locally, the request is encoded
in tolower(u). Most input events of L are en-
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abled by a condition on tolower(u). For exam-
ple, consider an in(u, read, 0) event submitted by
u when —local(u,0) holds. This event requests
the value content(o) of a remote object (main-
tained by host(0)) and cannot be handled locally
by host(u). If u has the observation right for o,
tolower(u) is set to (u,read, 0), which in turn en-
ables the output event out(u, read-req, o) at L. In
some sense, tolower(u) acts as a communication
channel from U to L, along which instructions for
activating the appropriate events of L are passed.

o toupper(u) : {(u,c,0,7) : c € {read, write, get-*},
r € {ok, failed}}

toupper(u) can be viewed as a reverse communica-
tion channel from L to U, along which the results
of L events are passed to the user interface so
that the appropriate output response events can
be generated at U.

Both tolower(u) and toupper(u) are initially nil.

Events of sts(M)

The event specifications of M are given in Figures 7
and 8. The following notation is used in these specifi-
cations:

Notation Let G and A be two formulas such that G
names only unprimed variables, while A names both
primed and unprimed variables. Define

G- A=(G=>AANG=>Verind:z' =x2)

where z in A is true if variable z’ appears in the for-
mula A. Informally, G — A says that if the guard G
is true, then the state change should be as specified by
action A; if G is false, then action A is not performed.

[m]

Each event of M is obtained by refining an event of U
or L. To satisfy the finer-grain atomicity requirements
of a practical programming language, each interface
event may have to be refined into a sequence of module
events. For a discussion on how to accomplish this, the
reader is referred to Section 7 of [11].

By taking advantage of the assumption that an ob-
ject’s classification is fixed, we provide implementa-
tions of get-obs and get-alt that are optimized as fol-
lows: If the appropriate right for a remote object has
already been granted previously (and not yet released),
get-obs and get-alt return immediately without invok-
ing L for network services.
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Fairness requirements of M

Fy = {e € Outputs(M) : sbj(e) = u}
Fairness requirements of M = {Fy : u € U}

These requirements ensure that no subject be denied
service because of other subjects.

3.5 Satisfaction of M using L offers U

To prove that the system module satisfies M using
L offers U, we need a state formula Invpy in
Variables(M) such that conditions C1-C9 presented
in Section 2.3 are satisfied.

We propose a formula Invps that is a conjunction of
state formulas. Those conjuncts that are sufficient for
proving satisfaction of conditions C1-C7 are shown
in Figure 9. To prove C8 by applying an invariance
proof rule [11], other state formulas in addition to the
ones shown in Figure 9 are needed.

Lastly, while it appears that condition C9 is satisfied
by module M, a formal proof applying inference rules
for proving leads-to assertions has not been carried
out.

4 Discussions

In the approach of this paper, security concerns are
stated as interface requirements. Interfaces at differ-
ent levels of a layered architecture can have different
kinds of security concerns. Furthermore, functional re-
quirements and security requirements of an interface
can be specified separately. For example, serializabil-
ity of interface U in this paper can be specified and
satisfied separately from the requirement that inter-
face U is multilevel secure.

The definition of safety in the theory of modules and
interfaces [11, 12] is general, and can accommodate
notions of secure information flow other than Bell-
LaPadula (e.g., deducibility, noninterference). The
Bell-LaPadula requirements are used herein because
their statements are relatively simple.

The theory of modules and interfaces provides a the-
oretical foundation for the design and specification of
systems structured as a linear hierarchy of layers and
also as a set of modules organized as the nodes of a
rooted tree. Applying composition theorems in the
theory, each module or layer with well-defined inter-
faces, say M with upper interface U and lower inter-
face L, can be designed, implemented, and modified



in(u, begin)

out(u, begin, ok)
out(u, begin, failed)
in(u, end)

out(u, end, ok)

in(u, get-obs, 0)

out(u, get-obs, o, ok)

out(u, get-obs, o, failed)

in(u, rel-obs, 0)

out(u, rel-obs, o, ok)

in(u, read, o)

out(u, read, o, v)

out(u, read, o, failed)

1l

iny(u, begin)
outy(u, begin, ok)
outy (u, begin, failed)
iny(u, end)
A [outchannel(u) # @
— tolower(u)' = (u, disconn-req, outchannel(u))]

outy(u,end, ok) A outchannel(u) =9
Aaccess(u)' =9
iny (u, get-obs, o)
A[(—local(u,0) A (obs,0) € access(u))
— toupper(u)’ = (u, get-obs, o, ok)]
A[(~local(u,0) A (obs,0) & access(u))
— tolower(u)’ = (u, get-obs, 0)]
outy (u, get-obs, o, ok)
A[local(u,0) => classification(o) X clearance(u)]
A [-local(u,0) = toupper(u) = (u, get-obs, o, ok)]
A access(u)’ = access(u) U {(obs,0)}
A tolower(u)' = nil A toupper(u)’ = nil
outy(u, get-obs, o, failed) .
A [local(u,0) = —(classification(o) X clearance(u))]
A [~local(u,0) = toupper(u) = (u, get-obs, o, failed)]
A tolower(u)' = nil A toupper(u)’ = nil
statusy(u) = ready A (obs,0) € access(u)
A [-local(u,0) — tolower(u)’ = (u, rel-obs, 0)]
A statusy(u)’ = (u, rel-obs, 0)
outy(u, rel-obs, o, ok)
A [~local(u,0) = toupper(u) = (u,rel-obs, o, ok)]
A access(u)’ = access(u) — {(obs, 0)}
iny(u, read, o)
A[(~local(u,0) A (obs,0) € access(u))
— tolower(u)’ = (u,read, 0)]
statusy(u) = (u,read,0) A (obs,0) € access(u)
A[local(u,0) = v = content(o)]

A[-local(u,0) = (toupper(u) = (u,read,0,v) A v # failed)]

A tolower(u)’ = nil A toupper(u)’ = nil

A statusy(u)’ = ready

outy(u, read, o, failed)

A[(obs, 0) & access(u) V toupper(u) = (u, read, o, failed)]
A tolower(u)’ = nil A toupper(u)' = nil

brevity.

The event formulas for write and *-alt are similar to those for read and *-obs, and are omitted for

Figure 7: Event Specifications of M

independently. As long as the interfaces remain the
same and M using L offers U is satisfied, the inter-
nals of M can change.
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The event formulas for write-* and *-alt-* are similar to those for read-* and *-obs-#, and are omitted
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