
502 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

Digital Signatures for Flows and Multicasts
Chung Kei Wong,Student Member, IEEE, and Simon S. Lam,Fellow, IEEE

Abstract—We present chaining techniques for signing/verifying
multiple packets using a single signing/verification operation.
We then present flow signing and verification procedures based
upon a tree-chaining technique. Since a single signing/verification
operation is amortized over many packets, these procedures
improve signing and verification rates by one to two orders
of magnitude, compared to the approach of signing/verifying
packets individually. Our procedures do not depend upon reliable
delivery of packets. They also provide delay-bounded signing,
and are thus suitable for delay-sensitive flows and multicast
applications. To further improve our procedures, we propose
several extensions to the Feige–Fiat–Shamir digital signature
scheme to substantially speed up both the signing and verification
operations, as well as to allow “adjustable and incremental”
verification. The extended scheme, called eFFS, is compared to
four other digital signature schemes (RSA, DSA, ElGamal, and
Rabin). We compare their signing and verification times, as well
as key and signature sizes. We observe that: 1) eFFS is the
fastest in signing (by a large margin over any of the other
four schemes) and as fast as RSA in verification (tie for a close
second behind Rabin); 2) eFFS allows a tradeoff between memory
and signing/verification time; and 3) eFFS allows adjustable and
incremental verification by receivers.

I. INTRODUCTION

DATA confidentiality, authenticity, integrity, and nonre-
pudiation are basic concerns of securing data delivery

over an insecure network, such as the Internet.Confidentiality
means that only authorized receivers will get the data;au-
thenticity, an authorized receiver can verify the identity of
the data’s source;integrity, an authorized receiver can verify
that received data have not been modified;nonrepudiation,an
authorized receiver can prove to a third party the identity of
the data’s source.1

Most investigations on securing data delivery over packet
networks have focused on unicast delivery of data sent as
independent packets. Exceptions include recent papers on
scalable secure multicasting [1], [13], [20] and a flow-based
approach to datagram security [14]. All of these papers are
mainly concerned with data confidentiality.

In this paper, our concerns are data authenticity, integrity,
and nonrepudiation for delay-sensitive packet flows, particu-
larly flows to be delivered to large groups of receivers. For an

Manuscript received January 27, 1999; revised June 14, 1999; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor J. Crowcroft. This
work was supported in part by Texas Advanced Research Program under
Grant 003658-063 and by the NSA INFOSEC University Research Program
under Grant MDA904-98-C-A901. An earlier version of this paper appears
in Proceedings IEEE ICNP ’98.

The authors are with the Department of Computer Sciences, the
University of Texas at Austin, Austin, TX 78712-1188 USA (e-mail:
ckwong@computer.org; lam@cs.utexas.edu).

Publisher Item Identifier S 1063-6692(99)07274-X.
1In the balance of this paper, we use “receiver” to mean “authorized

receiver” unless otherwise stated.

individual message (packet), these concerns can be addressed
by one of many available digital signature schemes [6], [15],
[17], [19]. However, these schemes are not efficient enough
for signing/verifying packets individually for delay-sensitive
flows, such as packet video.

In the Internet, multicast has been used successfully to
provide an efficient, best-effort delivery service to large groups
[2]. Consider a packet flow multicasted to a group of receivers.
A consequence of best-effort delivery is that many receivers
will not receive all of the packets in the multicasted flow.
Furthermore, many multicast applications allow receivers to
have widely varying capabilities (e.g., to receive layered video
and audio transmissions) or needs (e.g., to receive different
stock quotes, news, etc.). Consequently, receivers get different
subsequences of packets from the same multicasted flow.

A. Existing Techniques for Signing Flows

Conceptually, a digital signature scheme is defined by
functions for key generation, signing, and verification. The
signer (sender) uses the key generation function to create a
pair of keys, a signing key and a verification key . The
signer keeps the signing key private, and makes the verification
key publicly known to all verifiers (receivers).2

To sign a message using signing key the signer calls
the signing function which returns the signature of message

. The signer then sends the signed message, consisting of
message and its signature, to verifiers. Having received the
signed message, a verifier calls the verification function with
key . If the verification function returns true, then the verifier
concludes that the signer did sign the message and the message
has not been altered. Moreover, the signer cannot deny having
signed the message (nonrepudiation).

In practice, a message digest function, such as MD5 [18], is
first applied to the message to generate a fixed-size message
digest which is independent of message size. Signing a mes-
sage means signing the digest of the message. (MD5 message
digests are 128 bits long.)

A flow is a sequence of packets characterized by some
attribute [16], [21]. Packets in a flow may be obtained from
segmenting the bit stream of digitized video, digitized audio,
or a large file. They may also be related data items, such as
stock quotes, news, etc., generated by the same source.

It is easy and efficient to sign anall-or-nothing flow, that
is, a flow whose entire content is needed before any part of it
can be used, e.g., a long file. In this case, the signer simply
generates a message digest of the entire flow (file) and signs
the message digest.

2The signing and verification keys are also referred to as private and public
keys, respectively.

1063–6692/99$10.00 1999 IEEE



WONG AND LAM: DIGITAL SIGNATURES FOR FLOWS AND MULTICASTS 503

Most applications, however, create flows that are not all-or-
nothing. That is, a receiver needs to verify individual packets
(or, more generally, application data units) and use them before
the entire flow is received. For these flows, a straightforward
solution is to sign each packet individually and each packet is
verified individually by receivers. This solution is called the
sign-eachapproach.

The sign-each approach is computationally expensive. The
signing rate and verification rate are at most
and packets/s, respectively, where is
the time to compute the message digest of an-byte packet,

is signing time, and is verification time for the
message digest of a packet. The signing and verification rates,3

in packets/s, of two widely used digital signature schemes,
RSA [19]4 and DSA [15], with 512-bit modulus and using
100% processor time of a Pentium II 300-MHz machine are
shown below:

packet size Signing rate Verification rate
(bytes) RSA DSA RSA DSA

512 78.8 176 2180 128
1024 78.7 175 1960 127
2048 78.0 172 1620 126

If a slower machine is used, or only a fraction of proces-
sor time is available for signing/verification (e.g., a receiver
machine has only 20% processor time for verification because
the other 80% is needed for receiving and processing packets),
then the rates should be decreased proportionally.

The signing rate is not important for anonreal-time gener-
atedflow, i.e., a flow whose entire content is known in advance
(such as stored video). This is because packets in the flow can
be signed in advance. For a real-time generated flow, however,
the signing rate must be higher than the packet-generation rate
of the flow. Furthermore, for delay-sensitive flows, real-time
generated or not, the verification rate is important. From the
above table, we see that the signing and verification rates of the
sign-each approach, using either RSA or DSA, are probably
inadequate for many applications.

Two techniques were previously proposed for signing digital
streams [7] which, at first glance, may be used for signing
packet flows. To describe the technique in [7] for signing
a nonreal-time generated flow, consider a sequence of
packets. The sender first computes message digestof
packet (the last packet) and concatenates packet
and to form augmented packet . Then, for

the sender computes message digest of
augmented packet and concatenates packet and

to form augmented packet . Message digest
of augmented packet 1 is computed and signed. In this

manner, only one expensive signing/verification operation is
needed for the sequence of packets. However, a necessary
condition for using the above technique is the followingget-
all-before requirement: To verify packet in the sequence, a

3The signing and verification rates are rates for signing and verifying
128-bit MD5 message digests of packets.

4In this paper, we usee = 3 in RSA to obtain its fastest verification time
without affecting its signing time.

receiver must have received every packet from the beginning
of the sequence.

For a real-time generated flow, a similar technique is
suggested in [7] with the same get-all-before requirement.
For a sequence of packets, only one expensive sign-
ing/verification operation is needed, plus one inexpensive
one-time signaturesigning/verification for each packet in the
sequence. However, since one-time signatures and keys are
very large, this technique has a large communication overhead
(around 1000 bytes/packet) [9], [10].

The get-all-before requirement of both techniques in [7] is
too strong for practical Internet applications. Reliable packet
delivery is not used by many applications for flows and
multicasts. For example, reliable delivery is generally not used
for video and audio flows due to the extra delays associated
with retransmissions; either losses are tolerated or forward
error correction techniques are used instead.

For large-scale multicast applications, reliable delivery of
multicast packets is a difficult problem [5]. Moreover, even
if reliable multicasting is available, receivers with different
needs/capabilities may choose to get different subsequences
of packets in a multicasted flow. In short, the get-all-before
requirement is not satisfied.

B. Characteristics and Requirements

We have observed various characteristics in the delivery of
flows and multicasts by an unreliable packet network, such as
the Internet. They are summarized below.

• Each packet in a flow may be used as soon as it is
received.

• A receiver may get only a subsequence of the packets in a
flow. Different receivers may get different subsequences.

• Delay sensitive flows require fast processing at receivers.
Real-time generated flows require fast processing at
senders as well.

• For a multicasted flow, many receivers are limited in
resources (processing capacity, memory, communication
bandwidth, etc.) compared to the sender, which is typi-
cally a dedicated server machine. In some environments,
both senders and receivers may be limited in resources,
e.g., mobile computers using wireless communications.

• Receivers may have widely different capabili-
ties/resources. For example, receivers may be personal
digital assistants, notebook computers, or desktop
machines. Moreover, the resources available to a receiver
for verifying signatures may vary over time.

Given the above characteristics, we design procedures for
signing and verifying flows in Section II, as well as a dig-
ital signature scheme in Section III to meet the following
requirements.

• The signing procedure is efficient and, for real-time
generated flows, delay bounded.

• The verification procedure is efficient (since many re-
ceivers have limited resources).

• Packets in a flow areindividually verifiable.
• Packet signatures are small (i.e., small communication

overhead).



504 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

• Adjustable and incremental verification: The verification
operation is adjustable to the amount of resources a
receiver has. It allows a receiver/verifier to verify a
message at a lower security level using less resources, and
later increase the security level by using more resources
(e.g., if the message is important).

C. Contributions of this Paper

In Section II, we first describe and compare two chaining
techniques (star and tree) for signing/verifying multiple pack-
ets using a single signing/verification operation (without the
get-all-before requirement in [7]). We then present flow sign-
ing and verification procedures based upon the tree-chaining
technique. Since a single signing/verification operation is
amortized over many packets, these procedures improve sign-
ing and verification rates by one to two orders of magnitude
compared to the sign-each approach. The signing procedure
also provides delay-bounded signing. Thus the procedures can
be used for delay-sensitive flows.

Since signed packets in our procedures are individually
verifiable, the procedures can be used to reduce the workload
of any machine that sends out a large number of signed packets
to one or more destinations. There is no requirement that these
packets belong to flows.However, for packets that belong to a
flow, the workload of the flow’s receiver(s) is also reduced.

In Section III, we turn our attention to improving the signing
and verification operations in the procedures. Specifically, we
present several extensions to the Feige–Fiat–Shamir digital
signature scheme to speed up both signing and verification
as well as to allow adjustable and incremental verification. In
Section IV, the extended Feige–Fiat–Shamir (eFFS) scheme
is compared to four well-known signature schemes [6], [15],
[17], [19]. We compare their signing and verification times,
as well as key and signature sizes. We observe that: 1) eFFS
is the fastest in signing (by a large margin over any of the
other four schemes) and as fast as RSA in verification (tie
for a close second behind Rabin); 2) eFFS allows a tradeoff
between memory and signing/verification time; and 3) eFFS
allows adjustable and incremental verification by receivers.

II. HOW TO SIGN A FLOW

To digitally sign/verify delay-sensitive flows, the sign-each
approach is computationally too expensive for many applica-
tions, particularly those applications that generate packet flows
in real time.

As an alternative to the sign-each approach, we present two
chaining techniques (star and tree) for providing authenticity
to a group of packets, called ablock, using a single signing
operation. The basic idea is to compute a block digest which
is signed. In order to make packetsindividually verifiable,
each packet needs to carry its own authentication information
consisting of the signed block digest (block signature) together
with some chaining information as proof that the packet is in
the block.

A. Star Chaining

Consider packets that constitute a block. In star chaining,
the block digest is simply the message digest of thepacket

Fig. 1. Star-chaining technique.

digests (listed sequentially). Let denote the message
digest function being used (e.g., MD5). Consider, for example,
a block of eight packets with packet digests .
The block digest is – and the block
signature – is the block digest signed with some
digital signature scheme (such as RSA, DSA, or eFFS).

The relationship between the packet digests and the block
digest can be represented by a one-level rooted tree, called an
authentication star. Fig. 1 illustrates an authentication star for
eight packets, with packet digests at leaf nodes, and the block
digest at the root.

For packets to be individually verifiable, each packet needs
its own authentication information. Such authentication infor-
mation, calledpacket signature, consists of the block signature,
the packet position in the block, and the digests of all other
packets in the block. (We use the termchaining overheadto
refer to all information in a packet signature except the block
signature.)

Suppose the third packet in the above example is received.
Its authenticity can be individually verified as follows. The
verifier computes the digest of the packet received, and
then the block digest –
where are carried in the packet signature.
The verifier then calls the verification operation to verify–
i.e., to determine whether – is equal to block digest –
in block signature – . The packet is verified if the
verification operation returns true, i.e., – – .

Suppose the third packet is the first in the block to arrive
and its authenticity has been verified. Afterwards, the verifier
knows every node in the authentication star, i.e., all nodes in
the authentication star are verified and can be cached. With
caching, when another packet in the block arrives later, say
the sixth packet, the verifier only needs to compute the digest

of the packet received and compare it to the verified node
in the authentication star. If they are equal, the packet is

verified.

B. Tree Chaining

Tree chaining subsumes star chaining as a special case. With
tree chaining, the block digest is computed as the root node of
anauthentication tree.5 Consider, for example, a block of eight
packets with packet digests . The packet digests
are the leaf nodes of a degree-two (binary) authentication tree,
with other nodes of the tree computed as message digests of

5Tree chaining was first presented in [11]. Any rooted tree can be used as
an authentication tree with packet digests at leaf nodes and the block digest
at the root. In particular, there is no need to use a balanced tree.



WONG AND LAM: DIGITAL SIGNATURES FOR FLOWS AND MULTICASTS 505

Fig. 2. Tree-chaining technique.

their children, as shown in Fig. 2. For example, the parent of
the leaves and is where is
the message digest function being used. The root is the block
digest, with the block signature being the signed block digest.

For a packet to be individually verifiable, each packet needs
to carry its own authentication information (packet signature).
In tree chaining, a packet signature consists of the block
signature, the packet position in the block, and the siblings of
each node in the packet’s path to the root. (Again, we use the
term chaining overheadto denote all information in a packet
signature except the block signature.)

To verify a packet individually, a verifier needs to verify
its path to the root. Consider, for example, the dashed path
in Fig. 2 for the third packet. Each node in the path needs to
be verified. A verifier computes the digest of the received
packet, and then each of its ancestors in the tree. That is,

– – – – and –
– – where – and – are carried in

the packet signature. The verifier then calls the verification
operation to determine whether – is equal to block digest

– in block signature – . The packet is verified if
the verification operation returns true, i.e.,– – .

Suppose the third packet is the first in the block to arrive.
After verifying it, the verifier knows the following nodes6 in
the authentication tree: – – – – and
the block digest – . These are verified nodes which can be
cached. By caching verified nodes, the verifier only needs to
compute each node in the authentication tree at most once.

For example, after verifying the third packet, to verify
the sixth packet which arrives later, the verifier computes
the digest of the packet received its parent –

and its grandparent – – – . If

– is equal to the cached node – the sixth packet is
verified.

C. Comparison of Chaining Techniques

We performed experiments on a Pentium II 300-MHz ma-
chine running Linux, and compared star and tree chaining. We
used MD5 as the message digest function [18] for generating

6Some are carried in the packet signature and the others have been
computed.

Fig. 3. MD5 computation time (milliseconds).

128-bit message digests. Fig. 3 shows the MD5 computation
time versus input size. We observe that the MD5 computation
time can be regarded as a linear function in input size (for a
large input, i.e., 1024 bytes or more).

For each chaining technique, an authentication tree is first
built for a block of packets,7 i.e., each node is computed
as the message digest of its children. The time to build an
authentication tree (excluding time to compute packet digests
for leaf nodes) is called thetree build time. The block signature
is then obtained by signing the block digest at the root. After
that, the packet signature of each packet is built from the
authentication tree and the block signature. The time to build
a packet signature is calledpacket signature build time. The
chaining timefor a block at a signer is the sum of tree build
time and packet signature build time for all packets in the
block.8 Fig. 4(a) shows the chaining time for a block of packets
at a signer.

Consider the total signing time for all packets in a block,
which is the block’s chaining time plus the signing time of
the block digest. The block digest signing time is 12.7 ms
using 512-bit RSA and 5.6 ms using 512-bit DSA. For a block
of 16 packets, from Fig. 4(a), the chaining time is 0.21 ms
for a degree-two authentication tree. The total signing time is

ms using 512-bit RSA. Thus, the average
signing time for one packet is ms, which is
less than of the block digest signing time using 512-bit
RSA.

To verify packets in a block, an authentication tree is built
from packet signatures as packets arrive. Thechaining time
for a block at a verifier is the sum of tree build time and time
to verify chaining information in the packet signature of every
packet in the block.9 Fig. 4(b) shows the chaining time for a
block of packets at a verifierwith cachingof verified nodes.

Consider the total verification time for all packets in a block,
which is the block’s chaining time plus the verification time of
the block signature. The signature verification time is 0.40 ms
using 512-bit RSA and 7.6 ms using 512-bit DSA. For a block
of 16 packets, from Fig. 4(b), the chaining time is 0.24 ms for
a degree-two authentication tree. The total verification time is

7We will use “tree” instead of “tree/star” since star chaining is a special
case of tree chaining.

8Note that chaining time does not include time to compute packet digests
for leaf nodes and time to sign the block digest.

9Note that chaining time does not include time to compute packet digests
for leaf nodes and time to verify the block signature.



506 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

(a)

(b)

Fig. 4. Chaining time (milliseconds) for a block (a) at a signer and (b) at a
verifier (with caching of verified nodes).

ms using 512-bit RSA. Thus the average
verification time for one packet is ms, which
is of the signature verification time using 512-bit RSA.

From Fig. 4(a), note that for any block size smaller than or
equal to 64 packets, star chaining takes less time at a signer
than tree chaining (degrees two to eight). However, for a larger
block size, star chaining takes more time at a signer than tree
chaining, because the chaining time for a star is and
the chaining time for a tree is where denotes
block size.

As shown in Fig. 4(b), star chaining takes less time at a
verifier than tree chaining for all block sizes.

For each chaining technique, a packet signature has two
parts, the block signature and the chaining overhead. In
general, if a tree is not balanced and full, the chaining
overhead sizes of different packets are different. Fig. 5 shows
the average chaining overhead size per packet. The size of the
block signature is not included in Fig. 5 since it depends on
which signature scheme is used (e.g., the block signature is 64
bytes for 512-bit RSA, and 40 bytes for 512-bit DSA).

From Fig. 5, note that the chaining overhead of star chaining
is much greater than tree chaining for block sizes larger than
eight. If a small communication overhead is important, packet
signature sizes should be reduced. We recommend the use of

Fig. 5. Average chaining overhead size (bytes) per packet.

Fig. 6. Signing a real-time generated flow.

degree-two tree chaining which requires the smallest chaining
overhead. (From Fig. 4, a degree-two tree has a slightly
higher chaining time than the alternatives, but the difference
is insignificant because chaining time is much smaller than
signing/verification time of the block digest. See Figs. 7 and
8 in Section II-D.)

D. Flow Signing and Verification Procedures

A flow is signed by partitioning it into blocks of packets,
with each block signed using tree chaining. For a nonreal-
time generated flow, blocks are of the same sizechosen
to be a power of the authentication tree degree. For a real-
time generated flow, the packet generation rate is time-varying
for many applications, such as compressed video and voice-
activated audio. For these applications, partitioning the flow
into fixed-size blocks may lead to an unpredictable (perhaps
unbounded) signing delay. Instead, the flow is partitioned by
fixed time periods, and packets generated in the same time
period are grouped into a block (see Fig. 6).

For both real-time and nonreal-time generated flows, the
flow verification procedure is the same. For the first received
packet in a block, i.e., the block signature carried in the packet
signature is new to a verifier, the verifier computes the packet
digest, and every ancestor of the packet digest.10 For the
computed block digest (the root of authentication tree), the
verifier calls the verification operation to verify that it is equal
to the block digest in the block signature. If so verified, then
all computed nodes and their children are verified and cached.

For a packet that is not the first received packet in a
block, the verifier computes the packet digest. If the packet
digest has been cached and the cached value is equal to the

10An ancestor node is computed as the message digest of its children which
are either computed or carried in the packet signature.



WONG AND LAM: DIGITAL SIGNATURES FOR FLOWS AND MULTICASTS 507

(a)

(b)

Fig. 7. Flow signing rate (packets/s) for 1024-byte packets. (a) Using 512-bit
RSA. (b) Using 512-bit DSA.

computed packet digest, then the packet is verified. Otherwise,
the verifier computes every noncached ancestor of the packet
digest. For the highest noncached node computed, the verifier
then computes its parent. If the computed parent and its cached
value are equal, the packet is verified and all computed nodes
and their children are verified and cached.

We implemented the flow signing and verification proce-
dures (see Appendix) and performed experiments on a Pentium
II 300-MHz machine running Linux. We used MD5 as the
message digest function, and experimented with both 512-
bit RSA and 512-bit DSA as the signature scheme for block
signatures.

Figs. 7 and 8 show, respectively, the flow signing and
verification rates for 1024-byte packets.11 Note that tree and
star chaining are one to two orders of magnitude more efficient
than the sign-each approach. The flow signing and verification
rates increase with block size. However, the rates vary only
slightly with the chaining technique used and with the tree
degree in tree chaining. Since degree-two tree chaining has
the lowest chaining overhead (packet signature size), we
recommend the use of degree-two tree chaining.

Figs. 9 and 10 show, respectively, the flow signing and
verification rates for packets of size 512, 1024, or 2048 bytes.
We used degree-two tree chaining. From the figures, observe

11Verification rates were computed assuming no packet loss.

(a)

(b)

Fig. 8. Flow verification rate (packets/s) for 1024-byte packets. (a) Using
512-bit RSA. (b) Using 512-bit DSA.

that the flow signing and verification rates decrease as the
packet size increases. It is because more time is needed to
compute the message digest of a larger packet. The decrease
is more pronounced when the block size used is large, since
more time is used to compute packet digests for a large block
than a small block. Observe also that the flow signing and
verification rates increase with block size and the increase is
greater for a smaller packet size.

E. Bounded Delay Signing

Consider Fig. 6. Assume that, in period at most
packets are generated and their packet digests computed. The
time for signing a block of packets is
where is the chaining time for a block of
packets at a signer, and is the block digest signing time.
Therefore, the delay of any packet within the block is at most

.
Table I shows the delay upper bound for period

ms. Note that the upper bound is fairly insensitive to block
size since the block’s chaining time is much smaller than the
block digest signing time.

For a given application with a specified upper bound,
for signing a real-time generated flow at a known packet rate,
we can work backward and derive an appropriate value for
the parameter needed for the signing procedure of a real-



508 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

(a)

(b)

Fig. 9. Flow signing rate (packets/s) for degree-two tree chaining. (a) Using
512-bit RSA. (b) Using 512-bit DSA.

TABLE I
SIGNING DELAY BOUND (MILLISECONDS) FOR PERIOD

T = 50 ms USING 512-BIT RSA

time generated flow. Observe, from Fig. 6, thatmust be
larger than and must be larger than

.

F. Selecting a Digital Signature Scheme

For nonreal-time generated flows, signing efficiency is not
critical. Thus a signature scheme with an efficient verification
operation, such as RSA, can be used in the flow signing
and verification procedures. For real-time generated flows,
however, it is critical that both signing and verification are
highly efficient. Furthermore, in choosing a digital signature
scheme, we must also consider machine capabilities (sender
and receiver), as well as the fraction of processor time avail-
able for signing and verification.

Using 100% processor time of a Pentium II 300-MHz
machine, the flow signing and verification rates for 1024-byte

(a)

(b)

Fig. 10. Flow verification rate (packets/s) for degree-two tree chaining. (a)
Using 512-bit RSA. (b) Using 512-bit DSA.

packets, degree-two tree chaining, and block size 16 are shown
below:

signing rate verification rate
512-bit RSA 1090 packets/sec 7030 packets/sec
512-bit DSA 2140 packets/sec 1660 packets/sec

Note that using DSA, the flow verification rate is smaller
than the flow signing rate. This is undesirable because
receivers/verifiers are generally less powerful than the
signer/sender, e.g., the receivers may be personal digital
assistants or low-end notebook computers. Using RSA,
the flow signing rate may not be high enough for some
applications. Although we can increase the flow signing and
verification rates by using a longer period or a larger block
size, neither option is desirable. A larger block size increases
the chaining overhead (packet signature size). A longer period
increases the delay for signing real-time generated flows.

To obtain a signature scheme better than RSA and DSA
for signing/verifying flows, we propose several extensions to
the Feige–Fiat–Shamir (FFS) signature scheme. The extended
scheme, called eFFS, is presented in the next section. The
eFFS scheme has a very efficient signing operation (much
more efficient than those of RSA and DSA) and a verification
operation as efficient as that of RSA. A performance compari-



WONG AND LAM: DIGITAL SIGNATURES FOR FLOWS AND MULTICASTS 509

son of eFFS with five other signature schemes (including FFS,
RSA and DSA) is given in Section IV.

III. T HE eFFS SIGNATURE SCHEME

In Section III-A, we first describe the basic FFS signature
scheme [3], [4]. The eFFS signature scheme is derived from
FFS with two kinds of extensions. Three extensions to speed
up the signing and verification operations of FFS are presented
in Section III-B. An extension to provideadjustable and
incrementalsignature verification is presented in Section III-C.

A. Basic FFS Scheme

In the basic FFS signature scheme with parameter
[3], [4], each signer chooses two large primesand and
computes modulus . Then, the signer choosesintegers

(or integers ), and computes
(or ) by . The signing key is

and the verification key is .
To sign message the signer does the following steps:

1) choose random integers, between 1 and
and compute for 2) calculate
the message digest where the message digest
function is public knowledge and the message digest is
at least bits long; let be the first bits of
the message digest where and 3)
compute for .
The signature of message consists of for
and for and .

To verify the signature of message a verifier computes
for .

The signature is valid if and only if the first bits of
are equal to the received. (It can be

shown that computed by the verifier is equal to at the
signer.)

The security level of FFS depends on the following: 1)
the size of modulus (i.e., the size of the primesand ) and
2) the value of product . A system with a larger modulus is
more secure, and a system with a largerproduct is more
secure. If two systems have the same modulus and same
product (but different and values), then their security levels
are about the same.

Assuming and where denotes
the size of in bits, the signing/verification key size is

bits, and the signature size is bits.
The signing/verification key size only depends onbut the
signature size is proportional to. Thus, for a fixed product,
we can reduce the signature size by using a smaller(and a
larger ). For the signature size is minimized, but the
signing/verification key size is maximized. Table II shows the
signing/verification key size and signature size of FFS with
512-bit modulus.

B. Extensions to Speed up FFS

1) Small Verification Key (small v-key):In FFS, the sizes
of signing key components affect the signing time,
and the sizes of verification key components affect the
verification time. An improvement suggested in [12] is to

TABLE II
FFS SIGNING/VERIFICATION KEY AND SIGNATURE

SIZES (BYTES) WITH 512-BIT MODULUS

use the first prime numbers as verification key components
. However, since not every prime number satisfies

the condition that there exists an integersuch that
we propose to use the first prime numbers

that satisfy this condition as verification key components.12

This extension reduces both the verification time and the
verification key size.

2) Chinese Remainder Theorem (crt):The signing opera-
tion in FFS involves the computing of

. For from the Chinese Remainder
Theorem, a signer can compute from and using the
following formula:
where
and . Thus, instead of
computing directly with multiplication operations in
a signer first computes and with multiplication operations
in, respectively, and . Then is computed from

and . Since multiplication operations in and
are more efficient than in the signing time is decreased.

This Chinese Remainder Theorem improvement can only be
used by a signer because knowledge of the factors of modulus

is required. A few hundred bytes of additional memory are
needed for storing a few large integers (for 512-bit modulus).

3) Precomputation (precomp):A signer can further speed
up the signing operation by using more memory. To illustrate
the basic idea of this improvement, consider the signing
operation with . To sign a message, a signer computes

for . Since
do not change from message to message, and
are either one or zero, the signer can precompute

and store the product of every nonempty subset
of . Let denote the precomputed product

. Then, to sign a message, the signer
simply computes by .

For large it is not practical to precompute the product
of every nonempty subset of . Instead,

the signer partitions into smaller sets and pre-
computes each of them. If each smaller set contains four
then it is a 4-bit precomputation. Similarly, if each smaller
set contains eight , then it is an 8-bit precomputation. For
4-bit precomputation with and 512-bit modulus,
a signer needs to store products.
That is, additional memory of bits or 31 kB is
required. The additional memory required by 8-bit, 12-bit, and
16-bit precomputation are 261 kB, 2.88 MB, and 33.6 MB,
respectively.

12In practice, fork up to 128, the verification key componentsfvig are
less than216; and each component can be stored in 16 bits.



510 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

TABLE III
eFFS SIGNING TIME (MILLISECONDS) WITH 512-BIT MODULUS

TABLE IV
eFFS VERIFICATION TIME (MILLISECONDS) WITH 512-BIT MODULUS

Although a similar precomputation can be used in verifica-
tion, it is not effective with the small v-key extension. This is
because when small primes are used as public key components,
their products can be computed very efficiently.

4) Performance ComparisonWe implemented the three
speedup extensions using the large integer arithmetic routines
from CryptoLib [8]. Tables III and IV show the times for
signing and verifying (with 512-bit modulus) 128-bit message
digests using different speedup extensions for different values
of .13 The results were obtained on a Pentium II 300 MHz
machine running Linux. Note that, for a fixed product, the
signing/verification time is smaller whenis smaller.

In the experiments to be reported in the balance of this
paper, we used8-bit precomp crt small v-keyfor eFFS
signing, andsmall v-key onlyfor eFFS verification.

C. Adjustable and Incremental Verification

In multicast or group communications, receivers typically
have different amounts of resources, and the resources avail-
able to a receiver for verification vary over time. It is thus
desirable to have an adjustable and incremental signature
verification operation. With this extension, a signature can be
verified at different security levels. An adjustable verification
allows a receiver to verify a message at a lower security
level using less resources. An incremental verification allows
a receiver to verify a message at a lower security level first,
and later increase the security level by using more resources
(e.g., if the message is important).

Since the security level of a signature scheme depends on
its parameters, e.g., the modulus size, an obvious approach to
provide adjustable and incremental verification is to use mul-
tiple keys (with different modulus sizes) to generate multiple
signatures for different security levels. To verify at a lower
security level, the verification key with a shorter modulus size
is used to verify the corresponding signature. This approach
is simple but very inefficient. In the following, we design

13For basic FFS, we specified signing key componentsfsig. Verification
key componentsfvig were chosen by CryptoLib.

TABLE V
eFFSt-LEVEL SIGNATURE SIGNING TIMES (MILLISECONDS)

an extension to FFS that provides adjustable and incremental
verification efficiently.

Our extension to provide adjustable and incremental veri-
fication is to use greater than one, and to include for

in signatures. This is called a-level signature.14

This extension is as secure as the original scheme because
for can be computed

easily from the original signature, which consists of and
together with the verification key which

is publicly known.
To verify a -level signature of message at security level

of (where ), a verifier does the following: (1) compute
for and (2)

verify that are equal to respectively, and
the first bits of are equal to the

received.
To increase the verification security level from to , a

verifier does the following: 1) compute
for and 2) verify that

are equal to respectively.
The size of a -level signature is bits. For

512-bit modulus and product a 1-level signature is
80 bytes and a 2-level signature is 208 bytes.

Table V shows different -level signature signing times.
For the same product, the signing time increases as the
value increases. However, the signing time is still smaller than
using multiple keys to implement different security levels. For
example, the 2-level signature signing time, which is 3.98 ms
for is smaller than the time to sign two (original

14Note that the original (1-level) signature does not provide adjustable and
incremental verification.



WONG AND LAM: DIGITAL SIGNATURES FOR FLOWS AND MULTICASTS 511

TABLE VI
eFFS INCREMENTAL VERIFICATION TIMES (MILLISECONDS) FOR kt = 128.

(a) 2-LEVEL SIGNATURE. (b) 4-LEVEL SIGNATURE.

(a)

(b)

1-level) signatures, one for and the other for
which is ms.

Table VI shows the (incremental) verification times from
one level to a higher level for a 2-level signature and a 4-level
signature with . In particular, for a 2-level signature,
a verifier can first verify a message at level 1 of 2 using 0.42
ms processor time, and later increase to level 2 (of 2) by using
0.40 ms additional processor time.

IV. COMPARISON WITH OTHER SIGNATURE SCHEMES

In this section, we compare to as
well as four other signature schemes available from CryptoLib
[8], namely: DSA [15], ElGamal [8], RSA [19], and Rabin
[17]. We compare their key and signature sizes, and signing
and verification times. Then, we compare their signing and
verification rates for 1024-byte packets when each is used
as the signature scheme in our flow signing and verification
procedures presented in Section II. Experiments were per-
formed on a Pentium II 300-MHz machine running Linux.
Four different modulus sizes, 384, 512, 768, and 1024 bits,
were used in the comparison. (Note that it is difficult to
compare the security levels of different signature schemes even
if they use the same modulus size.)

A. Key and Signature Sizes

Table VII shows the signing/verification key and signature
sizes. The signing keys are from 96 to 384 bytes in all schemes
except FFS and eFFS whose signing keys are much larger,
from 6192 to 16 512 bytes. Note that a signing key is private
to a signer. We do not expect the relatively large eFFS signing
keys to pose a problem for sources/signers of packets.15

In RSA and Rabin, verification keys are from 48 to 128
bytes. In DSA, ElGamal, and eFFS, verification keys are
slightly larger, from 144 to 404 bytes. Even for receivers with
limited resources, we believe that a verification key as large
as 400 bytes would not pose a problem. (Note that without
the small v-key extension, FFS verification keys are as large
as signing keys.)

15Such signing keys are, indeed, too large for small devices, such as
smartcards, but it is unlikely that these devices would be sources of packet
flows or multicasts.

TABLE VII
SIGNING KEY, VERIFICATION KEY, AND SIGNATURE SIZES (BYTES) OF DIFFERENT

SIGNATURE SCHEMES. (a) SIGNING KEY SIZES (BYTES). (b) VERIFICATION

KEY SIZES (BYTES). (c) SIGNATURE SIZES (BYTES).

(a)

(b)

(c)

The signature of DSA is the smallest and is 40 bytes for all
modulus sizes. For all of the other schemes, the signatures are
larger and about the same size, 48 to 256 bytes. In particular,
the signature sizes of eFFS and the popular RSA are about
the same.

B. Signing and Verification Times

Table VIII shows the signing and verification times for
a 16-byte message (digest). DSA and ElGamal have been
designed to achieve efficient signing (e.g., for use in smartcard
applications), and RSA and Rabin have been designed to
achieve efficient verification. From Table VIII, note that the
signing operations of DSA and ElGamal, with times from 3.9
to 18.9 ms, are much more efficient than those of RSA and
Rabin, with times from 6.2 to 95.9 ms. On the other hand,
the verification operations of RSA and Rabin, with times from
0.14 to 1.14 ms, are much more efficient than those of DSA
and ElGamal, with times from 5.1 to 350.3 ms.

Note that the signing and verification operations of FFS
are both inefficient. However, eFFS has a signing operation
even more efficient than those of DSA and ElGamal, and
a verification operation as efficient as that of RSA. This
combination of the most efficient signing and highly efficient
verification makes eFFS the best choice for most applications.

C. Flow Signing and Verification Rates

Table IX shows the flow signing and verification rates of our
flow signing and verification procedures (for 1024-byte pack-



512 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

TABLE VIII
SIGNING AND VERIFYING TIMES (MILLISECONDS) OF DIFFERENT

SIGNATURE SCHEMES. (a) SIGNING TIME (MILLISECONDS).
(b) VERIFICATION TIME (MILLISECONDS).

(a)

(b)

TABLE IX
FLOW SIGNING AND VERIFICATION RATES (PACKETS/S) FOR 1024-BYTE PACKETS,
DEGREE TWO TREE CHAINING, AND BLOCK SIZE SIXTEEN. (a) FLOW SIGNING

RATE (PACKETS/S). (b) FLOW VERIFICATION RATE (PACKETS/S).

(a)

(b)

ets, degree-two tree chaining, block size sixteen, and 100%
of processor time of a Pentium II 300-MHz machine). Both
DSA and ElGamal have low flow verification rates, rendering
them inappropriate for receivers with limited resources, such
as personal digital assistants and low-end notebook computers.
Both RSA and Rabin have low flow signing rates, rendering
them inappropriate for real-time generated flows, such as live
video/audio applications. By comparison, eFFS provides high
flow signing rates suitable for real-time generated flows while
its flow verification rates are also very high.

V. CONCLUSION

We investigated the problem of signing/verifying delay-
sensitive packet flows to provide data authenticity, integrity,

and nonrepudiation for Internet applications. We have designed
flow signing and verification procedures, based upon a tree-
chaining technique, to meet the following requirements: 1)
flow signing is efficient and, for real-time generated flows,
delay-bounded; 2) flow verification is efficient (for receivers
with limited resources); 3) packets in a flow are individually
verifiable (for best-effort multicast delivery); 4) packet sig-
natures are small (for a small communication overhead); and
5) verification at a receiver is adjustable to different security
levels and can be carried out incrementally (for receivers with
limited resources).

We implemented our flow signing and verification proce-
dures and performed experiments to compare different chain-
ing techniques. From experimental results, we recommend the
use of degree-two (binary) tree chaining since it requires the
smallest packet signature size (i.e., smallest communication
overhead) while its signing and verification rates are compara-
ble to the rates of other chaining techniques. Our flow signing
and verification procedures are very efficient and achieve one
to two orders of magnitude improvement compared to the
sign-each approach.

Since signed packets in our procedures are individually
verifiable, the procedures can be used to reduce the workload
of any machine that sends out a large number of signed packets
to one or more destinations. There is no requirement that these
packets belong to flows. However, for packets that belong to
a flow, the workload of the flow’s receiver(s) is also reduced.

To further improve our procedures, we propose several ex-
tensions to the Feige–Fiat–Shamir digital signature scheme [3],
[4] to speed up both the signing and verification operations,
as well as to allow adjustable and incremental verification.
The extended scheme, called eFFS, is compared to four other
digital signature schemes, RSA [19], Rabin [17], DSA [15],
and ElGamal [6], on the same computing platform (Pentium
II 300-MHz machine running Linux).

The signing operation of eFFS is by far the most efficient
of all the schemes compared. The verification operation of
eFFS is as efficient as that of RSA (tie for a close second
behind the verification operation of Rabin). In addition to
efficient signing and verification, we have extended the eFFS
scheme to allow a receiver to efficiently carry out adjustable
and incremental verification. Such a capability is useful for
large-scale multicast applications with a variety of receivers
including some with limited resources.

APPENDIX

FLOW VERIFICATION PROCEDURE

procedure flowverify
for each received packet

if the block signaturesign(root) in the packet signature
is new then
/* this is the first received packet in the block*/
compute the packet digest;
compute each ancestor of the packet digest

as the message digest of its children;
let root be the computed block digest;
if (verify( root , sign(root)) = false) then

the packet is not verified



WONG AND LAM: DIGITAL SIGNATURES FOR FLOWS AND MULTICASTS 513

else
the packet is verified;
cache all computed nodes and their children

as verified
endif

else /* this is not the first received packet in the block*/
compute the packet digest;
if (packet digest has been cached) then

if (computed packet digest its cached value)
then the packet is not verified

else
the packet is verified

endif
else

compute all noncached ancestors of the
packet digest;

let nodebe the highest node computed;
compute the parent ofnode;
if (computed parent its cached value) then

the packet is not verified
else

the packet is verified;
cache all computed nodes and their children
as verified

endif
endif

endif
endfor

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive comments.

REFERENCES

[1] T. Ballardie,Scalable Multicast Key Distribution, RFC 1949, May 1996.
[2] S. E. Deering, “Multicast routing in internetworks and extended LANs,”

in Proc. ACM SIGCOMM’88, pp. 55–64.
[3] U. Feige, A. Fiat, and A. Shamir, “Zero knowledge proofs of identity,”

in Proc. 19th Ann. ACM Symp. Theory of Computing, New York, NY,
1987, pp. 210–217.

[4] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” inAdvances in Cryptol-
ogy—CRYPTO’86, 1987, pp. 186–194.

[5] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A reliable
multicast framework for light-weight sessions and application level
framing,” in Proc. ACM SIGCOMM’95, Cambridge, MA, pp. 342–356.

[6] T. El Gamal, “A public-key cryptosystem and a signature scheme based
on discrete logarithms,” inAdvances in Cryptology—CRYPTO’84, 1985,
pp. 10–18.

[7] R. Gennaro and P. Rohatgi, “How to sign digital streams,” inAdvances
in Cryptology—CRYPTO’97, 1997, pp. 180–197.

[8] J. B. Lacy, D. P. Mitchell, and W. M. Schell, “CryptoLib: Cryptography
in software,” in Proc. USENIX: 4th UNIX Security Symposium, Santa
Clara, CA, Oct. 1993, pp. 1–17.

[9] L. Lamport, “Constructing digital signatures from a one-way function,”
SRI Int., Menlo Park, CA, Tech. Rep. CSL 98, 1979.

[10] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Advances in Cryptology—CRYPTO’87, 1987, pp. 369–378.

[11] R. C. Merkle, “A certified digital signature,” inAdvances in Cryptol-
ogy—CRYPTO’89, 1989, pp. 218–238.

[12] S. Micali and A. Shamir, “An improvement on the Fiat-Shamir identifi-
cation and signature scheme,” inAdvances in Cryptology—CRYPTO’88,
1990, pp. 244–247.

[13] S. Mittra, “Iolus: A framework for scalable secure multicasting,” in
Proc. ACM SIGCOMM’97, Cannes, France, 1997, pp. 277–288.

[14] S. Mittra and T. Y. C. Woo, “A flow-based approach to datagram
security,” in Proc. ACM SIGCOMM’97, Cannes, France, 1997, pp.
221–234.

[15] National Institute of Standards and Technology.Digital Signature Stan-
dard, NIST FIPS PUB 86, U.S. Dept. Commerce, May 1994.

[16] C. Partridge,Using the Flow Label Field in IPv6,RFC 1809, June 1995.
[17] M. O. Rabin, “Digitized signatures and public-key functions as in-

tractible as factorization,” MIT Lab. Comput. Sci., Cambridge, MA,
Tech. Rep. LCS/TR-212, 1979.

[18] R. L. Rivest,The MD5 Message Digest Algorithm,RFC 1321, Apr. 1992.
[19] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining

digital signatures and public key cryptosystems,”Commun. ACM, vol.
21, no. 2, pp. 120–126, 1978.

[20] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications
using key graphs,” inProc. ACM SIGCOMM’98, Vancouver, B.C., 1998,
pp. 68–79.

[21] L. Zhang, S. E. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP:
A new resource ReSerVation Protocol,”IEEE Network Mag., vol. 9, no.
5, pp. 8–18, Oct. 1993.

Chung Kei Wong (S’88) received the B.Eng. de-
gree from the University of Hong Kong, Hong
Kong, and the M.Phil. degree from the Hong Kong
University of Science and Technology. He is cur-
rently pursuing the Ph.D. degree in computer sci-
ences and working on multicast and data flow
security at the University of Texas at Austin.

Simon S. Lam(S’71–M’74–SM’80–F’85) received
the B.S.E.E. degree (with Distinction) from Wash-
ington State University, Pullman, in 1969, and the
M.S. and Ph.D. degrees in engineering from the
University of California at Los Angeles (UCLA) in
1970 and 1974, respectively.

From 1971 to 1974, he was a Postgraduate Re-
search Engineer at the ARPA Network Measurement
Center, UCLA, where he worked on satellite and
radio packet switching networks. From 1974 to
1977, he was a Research Staff Member at the IBM

T. J. Watson Research Center, Yorktown Heights, NY. Since 1977, he has been
on the faculty of the University of Texas at Austin, where he is a Professor
of Computer Sciences. He holds two anonymously endowed professorships,
and served as Department Chair from 1992 to 1994. His research interests
in networking include protocol and switch design, performance analysis,
distributed multimedia, quality of service guarantees, and security.

Dr. Lam has served on the editorial boards of IEEE/ACM TRANSACTIONS

ON NETWORKING, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, IEEE
TRANSACTIONS ON COMMUNICATIONS, PROCEEDINGS OF THEIEEE, andPerfor-
mance Evaluation. He was Editor-in-Chief of IEEE/ACM TRANSACTIONS ON

NETWORKING from 1995 to 1999. He organized and was Program Chair of the
inaugural ACM SIGCOMM Symposium held at the University of Texas at
Austin in 1983. He is a founding Steering Committee member of the IEEE
International Conference on Network Protocols. He received the 1975 Leonard
G. Abraham Prize Paper Award from the IEEE Communications Society for
his paper on packet switching in a multiacess broadcast channel. He is a
Fellow of the Association for Computing Machinery (ACM).


