502 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

Digital Signatures for Flows and Multicasts

Chung Kei Wong,Student Member, IEEEand Simon S. Lamkellow, IEEE

Abstract—We present chaining techniques for signing/verifying individual message (packet), these concerns can be addressed
multiple packets using a single signing/verification operation. py one of many available digital signature schemes [6], [15],
We then present flow signing and verification procedures based [17], [19]. However, these schemes are not efficient enough

upon a tree-chaining technique. Since a single signing/verification S L S -
operation is amortized over many packets, these procedures for signing/verifying packets individually for delay-sensitive

improve signing and verification rates by one to two orders flows, such as packet video.

of magnitude, compared to the approach of signing/verifying In the Internet, multicast has been used successfully to
packets individually. Our procedures do not depend upon reliable provide an efficient, best-effort delivery service to large groups
delivery of packets. They also provide delay-bounded signing, 121 Consider a packet flow multicasted to a group of receivers.

and are thus suitable for delay-sensitive flows and multicast A f best-effort deli is that .
applications. To further improve our procedures, we propose consequence ol best-eflort delivery IS thal many receivers

several extensions to the Feige—Fiat—Shamir digital signature Will not receive all of the packets in the multicasted flow.

scheme to substantially speed up both the signing and verification Furthermore, many multicast applications allow receivers to
operations, as well as to allow “adjustable and incremental” have widely varying capabilities (e.g., to receive layered video
verification. The extended scheme, called eFFS, is compared toand audio transmissions) or needs (e.g., to receive different

four other digital signature schemes (RSA, DSA, ElGamal, and tock t t C " . t diff t
Rabin). We compare their signing and verification times, as well stock quotes, news, etc.). Consequently, receivers get differen

as key and signature sizes. We observe that: 1) eFFS is theSubsequences of packets from the same multicasted flow.
fastest in signing (by a large margin over any of the other

four schemes) and as fast as RSA in verification (tie for a close o Existing Techniques for Signing Flows

second behind Rabin); 2) eFFS allows a tradeoff between memory 9 q o .g 9] .

and signing/verification time; and 3) eFFS allows adjustable and ~ Conceptually, a digital signature scheme is defined by

incremental verification by receivers. functions for key generation, signing, and verification. The
signer (sender) uses the key generation function to create a
|. INTRODUCTION pair of keys, a signing ke¥;, and a verification key:,. The

ATA confidentiality, authenticity, integrity, and nonre_signer keeps the signing key private, and makes the verification
’ ' ' key publicly known to all verifiers (receiver3).

pudiation are basic concerns of securing data deIiverﬁ_l_0 Sian & message Using sianing keve. . the sianer calls
over an insecure network, such as the Inter@enfidentiality Sig! >age: Using signing yCS.’ 9
the signing function which returns the signature of message

means that only authorized receivers will get the daiia; . . o
y g - The signer then sends the signed message, consisting of

thenticity, an authorized receiver can verify the identity 0messa en and its signature, to verifiers. Having received the
the data’s sourcentegrity, an authorized receiver can verify . 9 gnature, - aving . .
sighed message, a verifier calls the verification function with

that received data have not been modifiednrepudiationan I If the verification function returns true. then the verifier
authorized receiver can prove to a third party the identity &ey A € verification function returns frue, then tné ventie
concludes that the signer did sign the message and the message

the data’s source. has not been altered. Moreover, the signer cannot deny havin
Most investigations on securing data delivery over packef‘ ' , (e sig y 9
Sl ned the message (nonrepudiation).

networks have focused on unicast delivery of data sent n practice, a message digest function, such as MD5 [18], is
independent packets. Exceptions include recent papers .0 practice, ge dig unction, su |

scalable secure multicasting [1], [13], [20] and a flow—basécI St appllgd t(.) t_he message to generate a f|xed_-5|z_e message
Igest which is independent of message size. Signing a mes-

approach to datagram security [14]. All of these papers a & - .
mainly concerned with data confidentiality. sage means signing the digest of the message. (MD5 message

In this paper, our concerns are data authenticity, integrit?/',gests are 128 bits long.)

and nonrepudiation for delay-sensitive packet flows, particgétﬁbﬂﬁgv[iSES]a[SE]un?gglfethir?zd;l?)tv?/ r%ha?i)céecr)lég?ngg ffgnn:e
larly flows to be delivered to large groups of receivers. For asegmenting the bit stream of digitized video, digitized audio,

Manuscript received January 27, 1999; revised June 14, 1999; approyada large file. They may also be related data items, such as

by IEEE/ACM TRANSACTIONS ON NETWORKING Editor J. Crowcroft. This
work was supported in part by Texas Advanced Research Program unﬁEQCk quotes, news, etc., generated by the same source.

Grant 003658-063 and by the NSA INFOSEC University Research Programlt is easy and efficient to sign aail-or-nothing flow, that
under Grant MDA904-98-C-A901. An earlier version of this paper appeais, a flow whose entire content is needed before any part of it

in Proceedings IEEE ICNP '98
The authors are with the Department of Computer Sciences, tﬁgn be used, €.g. a Iong file. In this case, the signer SImpIy

University of Texas at Austin, Austin, TX 78712-1188 USA (e-mailg€nerates a message digest of the entire flow (file) and signs

ckwong@computer.org; lam@cs.utexas.edu). the message digest.
Publisher Item Identifier S 1063-6692(99)07274-X.

lin the balance of this paper, we use “receiver’ to mean “authorized 2The signing and verification keys are also referred to as private and public
receiver” unless otherwise stated. keys, respectively.

1063-6692/99$10.001 1999 IEEE

WONG AND LAM: DIGITAL SIGNATURES FOR FLOWS AND MULTICASTS 503

Most applications, however, create flows that are not all-areceiver must have received every packet from the beginning
nothing. That is, a receiver needs to verify individual packetd the sequence.
(or, more generally, application data units) and use them beford=or a real-time generated flow, a similar technique is
the entire flow is received. For these flows, a straightforwasdiggested in [7] with the same get-all-before requirement.
solution is to sign each packet individually and each packetk®r a sequence ofn packets, only one expensive sign-
verified individually by receivers. This solution is called théng/verification operation is needed, plus one inexpensive
sign-eachapproach. one-time signaturesigning/verification for each packet in the

The sign-each approach is computationally expensive. Teequence. However, since one-time signatures and keys are
signing rate and verification rate are at mogtZy(l) + T5ien) Very large, this technique has a large communication overhead
and1/(T4(1) 4+ Tverity) packets/s, respectively, whefg(l) is (around 1000 bytes/packet) [9], [10].
the time to compute the message digest ofl-duyte packet, The get-all-before requirement of both techniques in [7] is
Tiign IS signing time, andli..isy iS verification time for the too strong for practical Internet applications. Reliable packet
message digest of a packet. The signing and verification fateglivery is not used by many applications for flows and
in packets/s, of two widely used digital signature schemeasulticasts. For example, reliable delivery is generally not used
RSA [19]" and DSA [15], with 512-bit modulus and usingfor video and audio flows due to the extra delays associated
100% processor time of a Pentium Il 300-MHz machine akgith retransmissions; either losses are tolerated or forward
shown below: error correction techniques are used instead.

For large-scale multicast applications, reliable delivery of
multicast packets is a difficult problem [5]. Moreover, even

packet size Signing rate Verification rate

(bytes) RSA DSA RSA DSA if reliable ml.JI'ti'casting is available, recejvers with different
512 78.8 176 2180 128 needs/capa_bmtles may choose to get different subsequences
1024 78.7 175 1960 127 of pqckets in a multlcgstled flow. In short, the get-all-before
2048 78.0 172 1620 126 requirement is not satisfied.

If a slower machine is used, or only a fraction of proced- Characteristics and Requirements

sor time is available for signing/verification (e.g., a receiver We have observed various characteristics in the delivery of
machine has only 20% processor time for verification becauggws and multicasts by an unreliable packet network, such as
the other 80% is needed for receiving and processing packetip Internet. They are summarized below.
then the rates should be decreased proportionally. « Each packet in a flow may be used as soon as it is
The signing rate is not important forreonreal-time gener- received.
atedflow, i.e., a flow whose entire content is known in advance ,
(such as stored video). This is because packets in the flow can
be signed in advance. For a real-time generated flow, however,
the signing rate must be higher than the packet-generation rate
of the flow. Furthermore, for delay-sensitive flows, real-time
generated or not, the verification rate is important. From the,
above table, we see that the signing and verification rates of the
sign-each approach, using either RSA or DSA, are probably
inadequate for many applications.

A receiver may get only a subsequence of the packets in a
flow. Different receivers may get different subsequences.
Delay sensitive flows require fast processing at receivers.
Real-time generated flows require fast processing at
senders as well.

For a multicasted flow, many receivers are limited in
resources (processing capacity, memory, communication
bandwidth, etc.) compared to the sender, which is typi-

: C o . cally a dedicated server machine. In some environments,
Two techniques were previously proposed for signing digital poth senders and receivers may be limited in resources,

streams [7] which, at first glance, may be used for signing ¢ ¢ mobile computers using wireless communications.
packet flows. To describe the technique in [7] for signing . Receivers may have widely different capabili-
a nonreal-time generated flow, consider a sequencenof ties/resources. For example, receivers may be personal
packets. The sender first computes message difggstof digital assistants, notebook computers, or desktop
packetm (the last packet) and concatenates packet- 1 machines. Moreover, the resources available to a receiver
and D,, to form augmented packet: — 1. Then, fori = for verifying signatures may vary over time.

L, ’mt_ d27 thEezerT‘der gomput?s nlessagekstlgié,sbt;i OL Given the above characteristics, we design procedures for
augmented packek —¢, and concatenates pac e—lan signing and verifying flows in Section II, as well as a dig-

Dy,—; to form augmented packet — i — 1. Message digest ital signature scheme in Section Il to meet the following

D; of augmented packet 1 is computed and signed. In tty quirements.

manner, only one expensive signing/verification operation is - . - .
needed for the sequence af packets. However, a necessary © 'N€ Signing procedure is efficient and, for real-time
condition for using the above technique is the followigef- generated flows, delay bounded. _

all-before requirement: To verify packetin the sequence, a ° |he Verification procedure is efficient (since many re-

ceivers have limited resources).
3The signing and verification rates are rates for signing and verifying « Packets in a flow arindividually verifiable
128-bit MD5 message digests of packets.

4In this paper, we use = 3 in RSA to obtain its fastest verification time * Packet signatures are small ("e" small communication
without affecting its signing time. overhead).

504 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

¢ Adjustable and incremental verificatiomhe verification
operation is adjustable to the amount of resources a
receiver has. It allows a receiver/verifier to verify a
message at a lower security level using less resources, and
later increase the security level by using more resources
(e.g., if the message is important). @
Dl

C. Contributions of this Paper

In Section Il, we first describe and compare two chaining. 1. Star-chaining technique.
techniques (star and tree) for signing/verifying multiple pack-
ets using a single signing/verification operation (without th&

. . . ests (listed sequentially). Lek(-) denote the message
get-all-before requirement in [7]). We then present flow SlgrE}I’igest fur(wtion beir?g used 22.9., M(D)S). Consider, for exarr?ple,

ing and verification procedures based upon the tree-chaining, .- o eight packets with packet digesBy,---,D
technique. Since a single signing/verification operation She block digest iSD,—s — h(Dy,-- Ds). and 7the 7b|08(,:k
amortized over many packets, these procedures improve si @’naturesz‘gn(Dl_g) is the block7digést s7igned with some
ing and verification rates by one to two orders of magnitu ital signature scheme (such as RSA, DSA, or eFFS)

clomparetho tjhei Slgbn-eaghdapprc.)ach_.”'ll'hetslgnlng %rocedu he relationship between the packet digests and the block
zso pr(()jv:c esd leay- OU.T, e ﬂSIgnlng. us the procedures %‘?g?est can be represented by a one-level rooted tree, called an
€ used for defay-sensitive Tows. @Jthentication starFig. 1 illustrates an authentication star for

S.'_”CG signed packets in our procedures are individua ht packets, with packet digests at leaf nodes, and the block
verifiable, the procedures can be used to reduce the worklocﬁ st at the root

of any machine that sends out a large number of signed packet or packets to be individually verifiable, each packet needs

to one or more destinations. There is no requirement that the|§§own authentication information. Such authentication infor-
packets belong to flowslowever, for packets that belong to

. . amation, callecpacket signatureconsists of the block signature,
flow, the workload of the flow's receiver(s) is also reduced.the packet position in the block, and the digests of all other

In Section I, we turn our attention to improving the signin ackets in the block. (We use the teghaining overheado

and verification operations in the procedures. Specifically, &ter to all information in a packet signature except the block
present several extensions to the Feige—Fiat—-Shamir dig nature.)

signature scheme to .speed up bqth signing and' yerificatio uppose the third packet in the above example is received.
as vv_eII as to allow adjustable_ and !ncrement_al verification. “E authenticity can be individually verified as follows. The
Section 1V, the extended Feige—Fiat—Shamir (eFFS) sche ifier computes the digesb’, of the packet received, and

is compared to four well-known signature schemes [6], [1 en the block digesD’ :3 h(Dy, Dy, D}, Dy, - - D,s)

[17], [19]. We compare their s@gning and verification time ereD,. Dy Dy.--- ,Dlg_gre carried’in t’hegp’ack’et si’gnat’ure.
as well as key anq s!gnature sizes. We opserve that: 1) e verifier then calls the verification operation to ved#y_,,

is the fastest in signing (by 2 large margin over'aimy.of t %., to determine whethdp|_ is equal to block digesb;—
other four schemes) ar?d as fa_st as RSA in verification ({2), signaturesign(D;—s). The packet is verified if the
for a close second behind Rabin); 2) eFFS allows a trade rification operation returns true, i.é_, = D

between memory and signing/verification time; and 3) eF P 8-

" diustabl di tal verification b ; Suppose the third packet is the first in the block to arrive
allows adjustable and incremental venication by TECEIVers. 5 jts authenticity has been verified. Afterwards, the verifier

II. How TO SIGN A FLOW knows every node in the authentication star, i.e., all nodes in

the authentication star are verified and can be cached. With

To digitally sign/verify delay-sensitive flows, the sign-eacll; ping when another packet in the block arrives later, say

approach is computationally too expensive for many applicgye gjyih packet, the verifier only needs to compute the digest

tions, particularly those applications that generate packet flo%sé of the packet received and compare it to the verified node
in real time.

i) Dyg in the authentication star. If they are equal, the packet is
As an alternative to the sign-each approach, we present Wified

chaining techniques (star and tree) for providing authenticity
to a group of packets, calleddock using a single signing -

operation. The basic idea is to compute a block digest whigh Tree Chaining

is signed. In order to make packeitsdividually verifiable Tree chaining subsumes star chaining as a special case. With
each packet needs to carry its own authentication informatitige chaining, the block digest is computed as the root node of
consisting of the signed block digeidgck signaturgtogether anauthentication tre@ Consider, for example, a block of eight
with some chaining information as proof that the packet is packets with packet digest®; ,-- -, Dg. The packet digests

the block. are the leaf nodes of a degree-two (binary) authentication tree,

with other nodes of the tree computed as message digests of
A. Star Chaining
ConSidem pagket's that constitute a blO_Ck' In star Chainingm authentication tree with packet digests at leaf nodes and the block digest
the block digest is simply the message digest ofithpacket at the root. In particular, there is no need to use a balanced tree.

5Tree chaining was first presented in [11]. Any rooted tree can be used as

WONG AND LAM: DIGITAL SIGNATURES FOR FLOWS AND MULTICASTS 505

@0,

Q D4 Dsg
N
Ay
N\
N

/ t
by
D, O Dy Dy D;s 0 L 1 1 L 1 L L L
/ 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
/) input size (bytes)
I
,r’\\’ Q Q Fig. 3. MDS5 computation time (milliseconds).
\ -~
D, D, D, D, D, Dy D, D,

128-bit message digests. Fig. 3 shows the MD5 computation

Fig. 2. Tree-chaining technique. time versus input size. We observe that the MD5 computation

time can be regarded as a linear function in input size (for a
Igfrge input, i.e., 1024 bytes or more).

For each chaining technique, an authentication tree is first

time (ms)

their children, as shown in Fig. 2. For example, the parent

the leavesD, and D, is D1z = h{Dy, D), whereh(.) is hyjlt for a block of packetd,i.e., each node is computed

the message digest function being used. The root is the bl th digest of its child The ti o build
digest, with the block signature being the signed block dige@f’ € message digest of 1S children. The ime 1o build an

For a packet to be individually verifiable, each packet nee gthenhcatlon tree (excluding time to compute packet digests

to carry its own authentication information (packet signature _rth]eaf ncl;?e_s) '5’ galle_d tme?hbu'tlj? tw;z?l’hetblotctlaagnattu;(\aﬂ
In tree chaining, a packet signature consists of the blo €n obtained by signing the block digest at the root. Atter

signature, the packet position in the block, and the siblings I, the packet signature of each packet is built irom the

each node in the packet's path to the root. (Again, we use t:fxlléthentication tree and the block signature. The time to build
term chaining overheado denote all information in a packeta p‘?‘%"‘“ _S|gnature IS callq;zacket sgnature build t|meThe_
signature except the block signature.) chaining timefor a block at a signer is the sum of tree build

To verify a packet individually, a verifier needs to verifyt'mekgrllfI pjckethagnattrlljre hbqllq t'?e f?r allbf)atlz(kefts mktr;e
its path to the root. Consider, for example, the dashed p ck.” Fig. 4(a) shows the chaining time for a block of packets

in Fig. 2 for the third packet. Each node in the path needs %g sig_ger.th total sianing time f I Kets i block
be verified. A verifier computes the digeBt; of the received onsider the total signing ime for ail packets in a block,

packet, and then each of its ancestors in the tree. ThatWQICh IS the_ block's chaining Flme plgs .the ?Ign".]g time of
D, = h(D},Dy), Dy = h(Di—, D)), and D_; = the block digest. The block digest signing time is 12.7 ms
2 NG e I8 7 using 512-bit RSA and 5.6 ms using 512-bit DSA. For a block
WDi—y, Ds—s), where Dy, D1— and D;— are carried in 16 kets. f Fig. 4(a) the chaining time is 0.21
the packet signature. The verifier then calls the verificati(% packets, from Fig. 4(a), the chaining time is 0.21 ms

operation to determine whethé¥,_, is equal to block digest 0 ;1&1 d?grs (it\f’; 9authent.|cat|5<))1r12trbgteh'gf Eﬁ:al sg}nmg time 1s
D, in block signaturesign(D;—g). The packet is verified if " + 12.0=12.9 ms using bl - 'hus, the average

e . ; igning time for one packet i$2.9/16 = 0.81 ms, which is
the verification operation returns true, i.8);_s = D1—s. signing . . o T .
Suppose the third packet is the first in 1th?a block to arrive: >> thani /15 of the block digest signing time using 512-bit
After verifying it, the verifier knows the following nod&sn SA. . . L : .
the authentication treeDs, Dy. Di—y. Ds—y. Di—y. Dss and To verify papkets in a block, an authgnucauop Free is built
the block digestD,—g. These are verified nodes which can b om packet signatures as packets arrive. Thaining time

cached. By caching verified nodes, the verifier only needst @ t_)locI;] a_t a ve_r|]1:|er 'S;he SutrE of treke :)u.”d t|{ne anfd time
compute each node in the authentication tree at most onc N verlfy_ chaining information In the packet signature ot every
acket in the blocR.Fig. 4(b) shows the chaining time for a

For example, after verifying the third packet, to verif)P

the sixth packet which arrives later, the verifier computé)écmk Of packets at a vs.zr-|f|en.wth gachmgof verified r_10des.
the digest of the packet receivelt;, its parentDl , — Consider the total verification time for all packets in a block,

h(Ds,DL), and its grandparend,_s = A(D' g, Drs). If which is the block’s chaining time plus the verification time of
246/ 5—8 — 562 —8 /-
: : . the block signature. The signature verification time is 0.40 ms
DL_ | to th hed node; s, th th ket ; ;) .
veoriﬁelt':is equal o the cached no 8, 1€ SIXIN packet 1s using 512-bit RSA and 7.6 ms using 512-bit DSA. For a block
' of 16 packets, from Fig. 4(b), the chaining time is 0.24 ms for
C. Comparison of Chaining Techniques a degree-two authentication tree. The total verification time is
We performed experiments on a Pentium Il 300-MHz ma- ’We will use “ree” instead of “tree/star” since star chaining is a special
chine running Linux, and compared star and tree chaining. \&&S€ of tree chaining.

; ; .~ 8Note that chaining time does not include time to compute packet digests
used MD5 as the message digest function [18] for generating > o “7 150 1 sign the block digest. pute p 9

6Some are carried in the packet signature and the others have beePiNote that chaining time does not include time to compute packet digests
computed. for leaf nodes and time to verify the block signature.

506 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

1 T T T T 1000 T T T T Al
degree 2 o—
degree 4 -+ ggg:ggi i_,
degre?B fi:‘, 800 | degres 8 -o-- 4
= star n star -x--
e = 600 | i _
E 8
oy 0.1] B X
o
£ 3 400 | -
g £
% 0>) -
o
200
0.01 L L L 0"
2 4 8 16 32 64 128 2
block size block size
(@) Fig. 5. Average chaining overhead size (bytes) per packet.
1 F T T T T
L degree 2 —— /,/' ,EJ chaing (m,) + Tign chaing (my,) + Tign
degree 4 -+ 4 4
| degree8 -a-- /’* . /
star - - — \(J«,—-\ —te
m A ‘ period T | period T
é EI"' 1 time
. X N I N 7
@ - T~ T~
E m, packets m, packets
= 0.1 B
o s X
:é Fig. 6. Signing a real-time generated flow.
£
[&]
degree-two tree chaining which requires the smallest chaining
overhead. (From Fig. 4, a degree-two tree has a slightly
0.01 i . L higher chaining time than the alternatives, but the difference
2 4 8 blo;kﬁsize 32 64 128 is insignificant because chaining time is much smaller than
signing/verification time of the block digest. See Figs. 7 and
() 8 in Section I1I-D.)

Fig. 4. Chaining time (milliseconds) for a block (a) at a signer and (b) at a

verifier (with caching of verified nodes). _— . .
(9) D. Flow Signing and Verification Procedures

, . A flow is signed by partitioning it into blocks of packets,
0.24 +0.40 = 0.64 ms using 512-bit RSA. Thus the averaggyith each block signed using tree chaining. For a nonreal-

verification time for one packet 8.64/16 = 0.04 ms, which e generated flow, blocks are of the same sizechosen
is 1/10 of the signature verification time using 512-bit RSA.4q pe a power of the authentication tree degie€or a real-
From Fig. 4(a), note that for any block size smaller than gime generated flow, the packet generation rate is time-varying
equal to 64 packets, star chaining takes less time at a sigf@rmany applications, such as compressed video and voice-
than tree chaining (degrees two to eight). However, for a largggtivated audio. For these applications, partitioning the flow
block size, star chaining takes more time at a signer than tigg fixed-size blocks may lead to an unpredictable (perhaps
chaining, because the chaining time for a sta0ign®) and unbounded) signing delay. Instead, the flow is partitioned by
the chaining time for a tree i9(m log(m)), wherem denotes fixed time periods, and packets generated in the same time

block size. period are grouped into a block (see Fig. 6).
As shown in Fig. 4(b), star chaining takes less time at aFor both real-time and nonreal-time generated flows, the
verifier than tree chaining for all block sizes. flow verification procedure is the same. For the first received

For each chaining technique, a packet signature has tpacket in a block, i.e., the block signature carried in the packet
parts, the block signature and the chaining overhead. dignature is new to a verifier, the verifier computes the packet
general, if a tree is not balanced and full, the chainindigest, and every ancestor of the packet digedtor the
overhead sizes of different packets are different. Fig. 5 shomsmputed block digest (the root of authentication tree), the
the average chaining overhead size per packet. The size ofthégfier calls the verification operation to verify that it is equal
block signature is not included in Fig. 5 since it depends dfa the block digest in the block signature. If so verified, then
which signature scheme is used (e.qg., the block signature isa@lcomputed nodes and their children are verified and cached.
bytes for 512-bit RSA, and 40 bytes for 512-bit DSA). For a packet that is not the first received packet in a

From Fig. 5, note that the chaining overhead of star chainifdpck, the verifier computes the packet digest. If the packet
is much greater than tree chaining for block sizes larger théligest has been cached and the cached value is equal to the
eight. If a small communication overhead is important, paCkethn ancestor node is computed as the message digest of its children which
signature sizes should be reduced. We recommend the user@tither computed or carried in the packet signature.

WONG AND LAM: DIGITAL SIGNATURES FOR FLOWS AND MULTICASTS 507

4500 star —+—— 7 8000
degree 8 ---&--- y

4000 = degree 4 ---o--- ya
degree 2 -4
I sign-each --»-

star —+—
degree 8 ——&--

signing rate (packets/sec)
N
w
[@]
o
T

verification rate (packets/sec)
(42}
(=3
(=]
[}
T

- - 4000 degree 4 ---o---
2000 ; degree 2 A
1500 - = 3000 Sign_each ——x—
1000 F - 2000 N
500 - b 1000 |- -
block size 2 4 8 bloc1k Gsize 32 64 128
(@) (@)
5000 75 9000
4500 - star —+—— a i
8000 star —+— .

degree 8 --&--
4000 - degree 4 ---o- .

degree 2 &
3500 | sign-each —--
3000

2500
2000
1500
1000

500 P

degree 8 --=---
7000 - degree4 ---o--- R
degreg 2 -t
6000 |- sign-each —-—»—

signing rate (packets/sec)
verification rate (packets/sec)

T T

()

U 1

T
2 4 8 16 32 64 128 ;
block size 2 4 8 bloc1k63ize 32 64 128

®) (b)

Fig. 7.~ Flow signing rate (packets/s) for 1024-byte packets. (a) Using 512-pify g Flow verification rate (packets/s) for 1024-byte packets. (a) Using
RSA. (b) Using 512-bit DSA. 512-bit RSA. (b) Using 512-bit DSA.

computed packet digest, then the packet is verified. Otherwiggat the flow signing and verification rates decrease as the
the verifier computes every noncached ancestor of the packgtket size increases. It is because more time is needed to
digest. For the highest noncached node computed, the veri 'gfnpute the message digest of a larger packet. The decrease
then computes its parent. If the computed parent and its cachigghore pronounced when the block size used is large, since
value are equal, the packet is verified and all computed nogggre time is used to compute packet digests for a large block
and their children are verified and cached. than a small block. Observe also that the flow signing and
We implemented the flow signing and verification procgyerification rates increase with block size and the increase is
dures (see Appendix) and performed experiments on a Pentigf@ater for a smaller packet size.
II 300-MHz machine running Linux. We used MD5 as the
message digest function, and experimented with both 5

. Bounded Delay Signin
bit RSA and 512-bit DSA as the signature scheme for bloc u- _ y >1gning _ _
signatures. Consider Fig. 6. Assume that, in peridl, at mostm

Figs. 7 and 8 show, respectively, the flow signing anaackets are generated and their packet digests computed. The
verification rates for 1024-byte packéisNote that tree and time for signing a block ofn packets ischains(m) + Tiign
star chaining are one to two orders of magnitude more efficieifere chain,(m) is the chaining time for a block ofn
than the sign-each approach. The flow signing and verificatiBACkets at a signer, aff;,,, is the block digest signing time.
rates increase with block size. However, the rates vary Og'gerefore, the delay of any packet within the block is at most
slightly with the chaining technique used and with the tre€s = T + chaing(m) + Tiign. _
degree in tree chaining. Since degree-two tree chaining hadable I shows the delay upper _bOUQm fer perldaz 50
the lowest chaining overhead (packet signature size), W Note that the upper bound is fairly insensitive to block
recommend the use of degree-two tree chaining. size since the block’s chaining time is much smaller than the
Figs. 9 and 10 show, respectively, the flow signing arffock digest signing time. __
verification rates for packets of size 512, 1024, or 2048 bytes.For & given application with a specified upper bound,

We used degree-two tree chaining. From the figures, obsef@ESigning a real-time generated flow at a known packet rate,
we can work backward and derive an appropriate value for

yerification rates were computed assuming no packet loss. the parametefl” needed for the signing procedure of a real-

508 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

8000 12000

7000 - 512-byte packets —+— —
1024-byte packets --->---
6000 - 2048-byte packets ---x--- 4

10000

8000
5000

4000 6000

4000 |

signing rate (packets/sec)
verification rate (packets/sec)

2000 S 512-byte packets —+—
2000 ¥ 1024-byte packets --->-—- |
1000 2048-byte packets ---%---
0]] T T T T T
2 4 8 16 32 64 128
block size block size
(@) (a)
8000 12000

512-byte packets —+—
7000 - 512-byte packets —+— ~ 1024-byte packets —x-—

- 1024-byte packets ——x--- 'S 10000 I 5048 byte packets ---%--- .
§ 6000 |- 2048-byte packets ---*--- P 4
? 2 so00 | .
2 5000 - Q |
& e
£ 4000 . @ 6000
2 s
« | [t
> 3000 S 4000
5 2000 i g
® 2 2000
1000 i}
0 T T T T T 0 T T T T T
2 4 8 16 32 64 128 2 4 8 16 32 64 128
biock size block size
(b) (b)
Fig. 9. Flow signing rate (packets/s) for degree-two tree chaining. (a) Usifdg. 10. Flow verification rate (packets/s) for degree-two tree chaining. (a)
512-bit RSA. (b) Using 512-bit DSA. Using 512-bit RSA. (b) Using 512-bit DSA.
TABLE | packets, degree-two tree chaining, and block size 16 are shown
SIGNING DELAY BOUND (MILLISECONDS) FOR PERIOD below:
T = 50 ms UsiNG 512-BT RSA elow:
number of packets generated in period T
2 4 § 16 32 64 128 signing rate verification rate
tree deg 2 | 62.9 62.9 62.9 63.1 633 638 649 512-bit RSA 1090 packets/sec 7030 packets/sec
tree deg 4 | 62.8 62.9 629 G3.0 632 635 64.2 512-bit DSA 2140 packets/sec 1660 packets/sec
tree deg 8 | 62.8 62.9 62.9 63.0 63.2 63.5 64.2

Note that using DSA, the flow verification rate is smaller

time generated flow. Observe, from Fig. 6, th&tmust be than the flow signing rate. This is undesirable because

larger thanTl,. + chain,(m), and D, must be larger than receivers/verifiers are generally less powerful than the
2T, +Ch;{in(m)) I ’ signer/sender, e.g., the receivers may be personal digital
sign Allls .

assistants or low-end notebook computers. Using RSA,
the flow signing rate may not be high enough for some
applications. Although we can increase the flow signing and
For nonreal-time generated flows, signing efficiency is netrification rates by using a longer period or a larger block
critical. Thus a signature scheme with an efficient verificaticgize, neither option is desirable. A larger block size increases
operation, such as RSA, can be used in the flow signitige chaining overhead (packet signature size). A longer period
and verification procedures. For real-time generated flowsgcreases the delay for signing real-time generated flows.
however, it is critical that both signing and verification are To obtain a signature scheme better than RSA and DSA
highly efficient. Furthermore, in choosing a digital signaturfor signing/verifying flows, we propose several extensions to
scheme, we must also consider machine capabilities (sentler Feige—Fiat—Shamir (FFS) signature scheme. The extended
and receiver), as well as the fraction of processor time avaseheme, called eFFS, is presented in the next section. The
able for signing and verification. eFFS scheme has a very efficient signing operation (much
Using 100% processor time of a Pentium Il 300-MHmore efficient than those of RSA and DSA) and a verification
machine, the flow signing and verification rates for 1024-bytgperation as efficient as that of RSA. A performance compari-

F. Selecting a Digital Signature Scheme

WONG AND LAM: DIGITAL SIGNATURES FOR FLOWS AND MULTICASTS 509

son of eFFS with five other signature schemes (including FFS, TABLE I
RSA and DSA) is given in Section IV. FFS SGNING/VERIFICATION KEY AND SIGNATURE
Sizes (ByTes) WiTH 512-BT MobuLus
. THE eFFS $SNATURE SCHEME b=l b=2 t=14
key sig| key sig | key sig
In Section 1lI-A, we first describe the basic FFS signature kt =64 | 4160 72 | 2112 136 | 1088 264
scheme [3], [4]. The eFFS signature scheme is derived from kt =128 | 8256 80 | 4160 144 | 2112 272

FFS with two kinds of extensions. Three extensions to speed
up the signing and verification operations of FFS are presented _ _ o
in Section I1I-B. An extension to providadjustable and Use the first: prime numbers as verification key components

incrementakignature verification is presented in Section I11-C{vi}. However, since not every prime number satisfies
the condition that there exists an integersuch thats? =

A. Basic FES Scheme p~'modn, we propose to use the firgt prime numbers
that satisfy this condition as verification key componéats.
This extension reduces both the verification time and the
verification key size.

2) Chinese Remainder Theorem (crffhe signing opera-
tion in FFS involves the computing af; = r; x (s¥ x
%it) mod n. Forn = pq, from the Chinese Remainder

In the basic FFS signature scheme with paramétet)
[3], [4], each signer chooses two large primesnd ¢, and
computes modulus = pq. Then, the signer choosésntegers
v, -+, v (OF k integerssy, - - -, sx), and computesy, - - -, sy
(or wi,---,vx) by s? = v;'modn. The signing key is “ s

k

{s1,--+,sr,n} and the verification key i§vy,---, v, n}. i i
5L Sk T . oLy T TRy T Theorem igner can com from a; and b; using th
To sign message:, the signer does the following steps: oo & SIgner can co puge from a; andb; using the

. o)
1) chooset random integersy1, - - -, 7;, between 1 anch, foIIowmglformijlla. vi = ((ai = b) Xb? 4 +bl:i) modn
and computer; = r?modn for i = 1,---,¢; 2) calculate whereg,™ = ¢ I?_Odp’ d =i X CAR 3)modp
the message digeBtm, z1, - - -,) where the message diges@Nd bi = 7i X (s7 X --- X s*)mod ¢. Thus, instead of
function A(-) is public knowledge and the message digest fPmputingy; directly with multiplication operations imod »,

at leastk x t bits long; let{b;;} be the firstk x ¢ bits of g5|gnerf|r§t computes, andb; with multlpl!catlon operations
the message digest wheie= 1,---,¢, andj = 1,---,k; 3) N, respect|yely1nodp a'md.mod q. Th(_enyi is computed from
computey; = r; x (sV% x -+ x s)modn for i =1,--- ¢ % andb;. Since multiplication operations imod p andmod ¢
The signature of message consists of{y;} for i = 1,..-,¢ are more efficient than imod n, the signing time is decreased.

and{b;,} fori =1,---,tandj =1,---, k. This Chin_ese Remainder Theorem improvement can only be
To verify the signature of message, a verifier computes uged by a signer because knowledge of th.e. factors of modulus
o= 2 x (Ulf“ NETR: U}l:-k)modn for i = 1,.--,¢. ™IS required. A_few hundred bytes of additional memory are
The signature is valid if and only if the first x ¢ bits of needed for storing a few large integers (for 512-bit modulus).
h(m,z,---,z) are equal to the{b,;} received. (It can be 3) Precomputation _(precomp)A signer can further _speed
shown thatz; computed by the verifier is equal tg at the UP the signing operation by using more memory. To illustrate
signer.) the basic idea of this improvement, consider the signing

The security level of FF&, t) depends on the following: 1) OPeration withk: = 4. To sign a message, a signer computes
the size of modulus. (i.e., the size of the primesandg) and ¥ = 7i X (7% X --- x s;*)modn, for i = 1,---,¢. Since
2) the value of produckt. A system with a larger modulus is51," > s+ do not change from message to message, and
more secure, and a system with a largerproduct is more Vi1~ -, bis are either one or zero, the signer can precompute
secure. If two systems have the same modulus and dgameand store the productmodn) of every nonempty subset
product (but different: andt values), then their security Ievelsol‘)c {317"'7541)}- Let 5y,...,, denote the precomputed product
are about the same. st x .-+ x s,*modn. Then, to sign a message, the signer

Assuming |v;| = |n| and |s;] = |n|, where |z| denotes SIMPly computesy; by r; X Si,...4,, mod 7.
the size ofz in bits, the signing/verification key size is FOr largek, it is not practical to precompute the product
(k+1) x |n| bits, and the signature sizefis |n|+ k x ¢ bits. (mOd_”) of every nonempty sub;et dfs1, -+, s} Instead,
The signing/verification key size only depends lanbut the the signer partitions,---,s.} into smaller sets and pre-
signature size is proportional toThus, for a fixed:t product, Computes each of them. If each smaller set contains fpur
we can reduce the signature size by using a smalfend a then it is a 4—_b|t precomputation. Slmllarly, if each_ smaller
larger k). For¢ = 1, the signature size is minimized, but the>et contains eighs;, then it is an 8-bit precomputation. For
signing/verification key size is maximized. Table Il shows thé-bit precomputation withk = 128 and 512-bit modulus,

signing/verification key size and signature size of FFS wih Signer needs to store28/4 x (2* — 1) = 480 products.
512-bit modulus. That is, additional memory o#80 x 512 bits or 31 kB is

required. The additional memory required by 8-bit, 12-bit, and

B. Extensions to Speed up FFS 16-bit precomputation are 261 kB, 2.88 MB, and 33.6 MB,
respectively.

1) Small Verification Key (small v-key)n FFS, the sizes
of signing key componentgs;} affect the signing time,
anq _the_ sizes of Ve”f'_cat'on key componetts } .affeCt the 12|n practice, fork up to 128, the verification key componerits;} are
verification time. An improvement suggested in [12] is teess thar2'®, and each component can be stored in 16 bits.

510 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

TABLE 1l
eFFS $nNinG TIME (MiLLiseconbs) WiTH 512-BT MobuLus

eFFS parameter (k, 1)
(32,1) | (32,2) (64,1) | (32,4) (64,2) (128,1)
basic FFS 3.95 7.87 721 | 1562 14.35 13.72
small v-key 3.95 7.84 7.21 | 1563 14.36 13.72
crt + small v-key 3.13 6.20 535 | 1244 10.63 9.78
4-bit precomp + crt + small v-key 1.95 3.84 299 7.61 5.92 5.08
8-bit precomp + crt + small v-key 1.47 2.87 2.02 5.67 3.98 3.14

TABLE IV
eFFS \EriFicaTiON TIME (MiLLISECONDS) WITH 512-BT MobuLus

eFFS parameter (k,t)
(32,1) | (32,2) (64,1) | (32,4) (64,2) (128,1)
basic FFS 3.65 7.07 712 14.01 13.63 13.44
small v-key 0.33 0.62 0.43 1.21 0.81 0.65
4-bit precomp + small v-key 0.32 0.60 0.41 1.16 0.76 0.59
8-bit precomp + small v-key 0.32 0.59 0.40 1.14 0.74 0.57

Although a similar precomputation can be used in verifica- TABLE V
tion, it is not effective with the small v-key extension. This is eFFS?-LEVEL SIGNATURE SIGNING TiMES (MILLISECONDS)
because when small primes are used as public key components, kt product
their products can be computed very efficiently. kt =32 kt=04 ki=128

4) Performance ComparisoMe implemented the three L-level signature 1.47 2.02 3.14
speedup extensions using the large integer arithmetic routines i’ie"ei s}g“‘”’“‘;“re 2.87 ?,’2?
from CryptoLib [8]. Tables Il and IV show the times for “OVE Slgnature =

signing and verifying (with 512-bit modulus) 128-bit message

digests using different speedup extensions for different valugs extension to FFS that provides adjustable and incremental
of (k,t).** The results were obtained on a Pentium Il 300 MHgerification efficiently.

machine running Linux. Note that, for a fixdd product, the oyr extension to provide adjustable and incremental veri-

signing/verificat_ion time is smaller Whej_nis smaller. fication is to uset greater than one, and to include;} for
In the experiments to be reported in the balance of this_ o ... ¢ in signatures. This is called falevel signaturé*

paper, we used-bit precomp+- crt 4 small v-keyfor eFFS Thjs extension is as secure as the original scheme begause

signing, andsmall v-key onlyfor eFFS verification. Y2 x (V0 x - xwi*) modn fori = 2,-- -, ¢ can be computed
easily from the original signature, which consists{6f;} and
C. Adjustable and Incremental Verification {v;}, together with the verification kefw, , - - -, v, n} which

In multicast or group communications, receivers typicall{ Publicly known. _
have different amounts of resources, and the resources availl© Verify at-level signature of message at S(.ecurlty level
able to a receiver for verification vary over time. It is thué ©f ¢ (wherel <), a verifier does the following: (1) compute

.2 b; bk .
desirable to have an adjustable and incremental signatdre= ¥ X (Vi X -~ x " jmodn fori=1,---,l and (2)
verification operation. With this extension, a signature can N§MTY thatzs, - -,z are equal tacy, - - -, 2y, respectively, and
verified at different security levels. An adjustable verificatiof'€ firstk x ¢ bits of h(m, zi,x»,---,2,) are equal to the

allows a receiver to verify a message at a lower securi{)?ii} _recelved. . .
level using less resources. An incremental verification allows 10 increase the verification security level fgolrln tols a
a receiver to verify a message at a lower security level firé’t‘?”f'erbdoes the following: 1) compute; = y7 x (v;" x
and later increase the security level by using more resourées X Vi)modn for i =y +1,---,15, and 2) verify that
(e.g., if the message is important). 41,0, 21, Are equal targ, 41, - -, 2, , r€Spectively.

Since the security level of a signature scheme depends or N€ Size of &-level signature ig:t 4 (2t — 1) x |n| bits. For
its parameters, e.g., the modulus size, an obvious approacf?$§Pit modulus and produétt = 128, a 1-level signature is
provide adjustable and incremental verification is to use mio Pytes and a 2-level signature is 208 bytes.
tiple keys (with different modulus sizes) to generate multiple 1aPle V. shows different-level signature signing times.
signatures for different security levels. To verify at a lowefOr the samet product, the signing time increases as the
security level, the verification key with a shorter modulus si2g/ue increases. However, the signing time is still smaller than
is used to verify the corresponding signature. This approatfing multiple keys to implement different security levels. For
is simple but very inefficient. In the following, we desigr®X@mPple, the 2-level signature signing time, which is 3.98 ms

for kt = 128, is smaller than the time to sign two (original

13For basic FFS, we specified signing key compondstg . Verification 14Note that the original (1-level) signature does not provide adjustable and
key componentgv; } were chosen by CryptoLib. incremental verification.

WONG AND LAM: DIGITAL SIGNATURES FOR FLOWS AND MULTICASTS 511

TABLE VI TABLE VI
eFFS NCREMENTAL VERIFICATION TIMES (MILLISECONDS) FOR kt = 128. SIGNING KEY, VERIFICATION KEY, AND SIGNATURE SiZES (BYTES) OF DIFFERENT
(a) 2-LEVEL SIGNATURE. (b) 4-LEVEL SIGNATURE. SIGNATURE SCHEMES (@) SGNING KEY SizEs (BYTES). (b) VERIFICATION

Key Sizes (BYTES). (C) SGNATURE SizES (BYTES).

To [level 1 level 2
From level 0 | 042 081 modulus size (bits)
From level 1 0.40 384 512 768 1024
RSA | 96 128 192 256
@ Rabin | 06 128 192 256
DSA| 136 168 232 296
To [level 1 level 2 level 3 level 4 ElGamal | 144 192 288 384
Fromlevel 0| 034 063 093 122 FFS(128,1) | 6192 8256 12384 16512
From level 1 0.30 ~ 0.60 089 eFFS(128,1) | 6192 8256 12384 16512
From level 2 0.30 0.60
From level 3 0.31 (@
(b) RSA| 48 64 96 128

Rabin 48 64 96 128

DSA | 164 212 308 404
ElGamal 144 192 288 384
FFS(128,1) | 6192 8256 12384 16512
eFFS(128,1) | 304 320 352 384

1-level) signatures, one fdik,¢) = (64,1) and the other for
(k,t) = (128,1), which is 2.02 + 3.14 = 5.16 ms.

Table VI shows the (incremental) verification times from
one level to a higher level for a 2-level signature and a 4-level
signature withkt = 128. In particular, for a 2-level signature, (b)

a verifier can first verify a message at level 1 of 2 using 0.42

ms processor time, and later increase to level 2 (of 2) by using RSA |48 64 9 128
L. . Rabin 48 64 96 128

0.40 ms additional processor time. DSA | 40 40 40 40

ElGamal | 96 128 192 256
FFS(128,1) | 64 80 112 144

IV. COMPARISON WITH OTHER SIGNATURE SCHEMES eFFS(128,1) 64 80 112 144
In this section, we compard'FS(128,1) to FFS(128,1) as

well as four other signature schemes available from CryptoLib
[8], namely: DSA [15], EIGamal [8], RSA [19], and Rabin
[17]. We compare their key and signature sizes, and signingThe signature of DSA is the smallest and is 40 bytes for all
and verification times. Then, we compare their signing anmdodulus sizes. For all of the other schemes, the signatures are
verification rates for 1024-byte packets when each is uskdger and about the same size, 48 to 256 bytes. In particular,
as the signature scheme in our flow signing and verificatidhe signature sizes of eFFS and the popular RSA are about
procedures presented in Section Il. Experiments were p#re same.
formed on a Pentium Il 300-MHz machine running Linux.
Four different modulus sizes, 384, 512, 768, and 1024 bits, Signing and Verification Times
were used in the comparison. (Note that it is difficult to

: ; . Table VIII shows the signing and verification times for
compare the security levels of different signature schemes eve .
) ; a 16-byte message (digest). DSA and ElGamal have been
if they use the same modulus size.)

designed to achieve efficient signing (e.g., for use in smartcard
)) applications), and RSA and Rabin have been designed to
A. Key and Signature Sizes achieve efficient verification. From Table VIII, note that the

Table VII shows the signing/verification key and signaturgigning operations of DSA and ElGamal, with times from 3.9
sizes. The signing keys are from 96 to 384 bytes in all schentes18.9 ms, are much more efficient than those of RSA and
except FFS and eFFS whose signing keys are much larggabin, with times from 6.2 to 95.9 ms. On the other hand,
from 6192 to 16512 bytes. Note that a signing key is privatBe verification operations of RSA and Rabin, with times from
to a signer. We do not expect the relatively large eFFS signifgl4 to 1.14 ms, are much more efficient than those of DSA
keys to pose a problem for sources/signers of padkets. and ElGamal, with times from 5.1 to 350.3 ms.

In RSA and Rabin, verification keys are from 48 to 128 Note that the signing and verification operations of FFS
bytes. In DSA, ElGamal, and eFFS, verification keys a@e both inefficient. However, eFFS has a signing operation
slightly larger, from 144 to 404 bytes. Even for receivers witeven more efficient than those of DSA and ElGamal, and
limited resources, we believe that a verification key as large verification operation as efficient as that of RSA. This
as 400 bytes would not pose a problem. (Note that withog@mbination of the most efficient signing and highly efficient
the small v-key extension, FFS verification keys are as largerification makes eFFS the best choice for most applications.
as signing keys.)

©

C. Flow Signing and Verification Rates

15Such signing keys are, indeed, too large for small devices, such asT ble IX sh he fl L d ificati f
smartcards, but it is unlikely that these devices would be sources of packet able shows the flow signing and verification rates of our

flows or multicasts. flow signing and verification procedures (for 1024-byte pack-

512 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

TABLE VIII and nonrepudiation for Internet applications. We have designed
SIGNING AND VERIFYING TIMES (MILLISECONDS) OF DIFFERENT flow Signing and verification procedures, based upon a tree-
SIGNATURE SCHEMES. (a) SGNING TIME (MILLISECONDS). haini hni he followi . 1
(b) VERIFICATION TIME (MILLISECONDS). chaining technique, to meet the following requirements: 1)
flow signing is efficient and, for real-time generated flows,

35;20(11;11“; Sl?%ébltls()m . delay-bounded; 2) flow verification is efficient (for receivers
RSA | 62 127 362 794 with limited resources); 3) packets in a flow are individually
Rabin | 11.3 19.5 47.5 959 verifiable (for best-effort multicast delivery); 4) packet sig-
DSA| 39 56 102 163 natures are small (for a small communication overhead); and
ElGamal | 51 68 123 139 5) verification at a receiver is adjustable to different security
FFS(128,1) | 8.8 137 229 385 levels and can be carried out incrementally (for receivers with
eFFS(128,1) | 23 31 52 82 limited resources).
(a) We implemented our flow signing and verification proce-
dures and performed experiments to compare different chain-
modulus size (bits) ing techniques. From experimental results, we recommend the
384 512 768 1024 use of degree-two (binary) tree chaining since it requires the

RSA | 026 040 0.70 1.1
Rabin | 0.14 0.20 0.38 0.56
DSA | 5.1 7.6 14.7 24.2

smallest packet signature size (i.e., smallest communication
overhead) while its signing and verification rates are compara-

ElGamal | 244 519 1575 350.3 ble to the_ rates of other chaining techniqu_es. Our flow_signing
FFS{128,1) | 85 134 221 373 and verification procedures are very efficient and achieve one
eFFS(128,1) | 053 065 082 11 to two orders of magnitude improvement compared to the
®) sign-each approach.
Since signed packets in our procedures are individually
TABLE IX verifiable, the procedures can be used to reduce the workload
FLow SIGNING AND VERIFICATION RATES (PACKETS/S) FOR 1024-BrTE PACKETS, of anv machine that sends out a large number of signed packets
DeGREE Two TREE CHAINING, AND BLOCK SizE SIXTEEN. (a) FLow SIGNING y . . g . 9 P
RATE (PACKETSS). (b) FLOW VERIFICATION RATE (PACKETS/S). to one or more destinations. There is no requirement that these
- - packets belong to flows. However, for packets that belong to
modulus size {bits) X . .
384 512 768 1024 a flow, the w_orkload of the flow’s receiver(s) is also reduced.
RSA | 1940 1090 413 193 To further improve our procedures, we propose several ex-
Rabin | 1200 739 321 163 tensions to the Feige—Fiat—Shamir digital signature scheme [3],
DSA | 2760 2140 1320 874 [4] to speed up both the signing and verification operations,
ElGamal | 2320 1850 1140 749 as well as to allow adjustable and incremental verification.
FFS(128,1) | 1550 1070 624 395 The extended scheme, called eFFS, is compared to four other
cFFS(128,1) | 3920 3140 2160 1610

digital signature schemes, RSA [19], Rabin [17], DSA [15],
(€Y and ElGamal [6], on the same computing platform (Pentium
Il 300-MHz machine running Linux).

38’:;0‘1‘;1125 s1z$6(§1ts1)024 The signing operation of eFFS is by far the most efficient
of all the schemes compared. The verification operation of
RSA | 7480 7030 6060 5290 . . :

Rabin | 7960 7610 7010 6430 eFFS is as efficient as that of RSA (tie for a close second

DSA | 2270 1660 949 609 behind the verification operation of Rabin). In addition to
ElGamal [600 295 99 45 efficient signing and verification, we have extended the eFFS
FFS(128,1) | 1590 1150 633 419 scheme to allow a receiver to efficiently carry out adjustable
eFFS5(128,1) | 6640 6370 5760 5250 and incremental verification. Such a capability is useful for
(b) large-scale multicast applications with a variety of receivers

including some with limited resources.
ets, degree-two tree chaining, block size sixteen, and 100%
of processor time of a Pentium Il 300-MHz machine). Both APPENDIX
DSA and ElGamal have low flow verification rates, rendering FLOW VERIFICATION PROCEDURE
them inappropriate for receivers with limited resources, sucprocedure flowverify)
as personal digital assistants and low-end notebook computefer each received packet
Both RSA and Rabin have low flow signing rates, rendering if the block signaturesign(root) in the packet signature

them inappropriate for real-time generated flows, such as live is new then

video/audio applications. By comparison, eFFS provides high /* this is the first received packet in the blogk
flow signing rates suitable for real-time generated flows while compute the packet digest;

its flow verification rates are also very high. compute each ancestor of the packet digest

as the message digest of its children;
let root’ be the computed block digest;
We investigated the problem of signing/verifying delay- if (verify(root’, sign(root)) = false) then
sensitive packet flows to provide data authenticity, integrity, the packet is not verified

V. CONCLUSION

WONG AND LAM: DIGITAL SIGNATURES FOR FLOWS AND MULTICASTS 513

else [12] S. Micali and A. Shamir, “An improvement on the Fiat-Shamir identifi-
the packet is verified; cation and signature scheme,”Aalvances in Cryptology—CRYPTO;88
. . 1990, pp. 244-247.
cache all computed nodes and their children [13] S. Mittra, “lolus: A framework for scalable secure multicasting,” in

as verified Proc. ACM SIGCOMM’'97 Cannes, France, 1997, pp. 277-288.

; [14] S. Mittra and T. Y. C. Woo, “A flow-based approach to datagram
endif
- . . . security,” in Proc. ACM SIGCOMM'97 Cannes, France, 1997, pp.
else /*this is not the first received packet in the blo¢k 221-234.
compute the packet digest; [15] National Institute of Standards and TechnoloBygital Signature Stan-
: : dard, NIST FIPS PUB 86, U.S. Dept. Commerce, May 1994.
if (packet digest has been cached) then [16] C. PartridgeUsing the Flow Label Field in IPVERFC 1809, June 1995.
if (computed packet digest its cached value) [17] M. O. Rabin, “Digitized signatures and public-key functions as in-
then the packet is not verified tractible as factorization,” MIT Lab. Comput. Sci., Cambridge, MA,
Tech. Rep. LCS/TR-212, 1979.
else [18] R.L.RivestThe MD5 Message Digest AlgorithiRFC 1321, Apr. 1992.
the packet is verified [19] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
endif digital signatures and public key cryptosystemSgmmun. ACMvol.
21, no. 2, pp. 120-126, 1978.
else [20] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications
compute all noncached ancestors of the using key graphs,” iffroc. ACM SIGCOMM'98Vancouver, B.C., 1998,
; . pp. 68-79.
packet dlgeSt'_ [21] L. Zhang, S. E. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP:
let nodebe the highest node computed,; A new resource ReSerVation ProtocdEEE Network Mag.vol. 9, no.
compute the parent ofode 5, pp. 8-18, Oct. 1993.
if (computed pareng its cached value) then
the packet is not verified
else
the packet is verified, Chung Kei Wong (S'88) received the B.Eng. de-
cache all computed nodes and their children gree from the University of Hong Kong, Hong
as verified Kong, and the M.Phil. degree from the Hong Kong
) University of Science and Technology. He is cur-
endif rently pursuing the Ph.D. degree in computer sci-
endif ences and working on multicast and data flow
endif security at the University of Texas at Austin.
endfor

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive comments.

(1]
(2]
(3]
(4]
(5]
(6]

(7]
(8]

(9]
[10]

(1]

Simon S. Lam(S'71-M'74-SM'80-F'85) received
the B.S.E.E. degree (with Distinction) from Wash-
ington State University, Pullman, in 1969, and the
M.S. and Ph.D. degrees in engineering from the
University of California at Los Angeles (UCLA) in
1970 and 1974, respectively.

From 1971 to 1974, he was a Postgraduate Re-
search Engineer at the ARPA Network Measurement
Center, UCLA, where he worked on satellite and

REFERENCES

in Proc. ACM SIGCOMM’'88 pp. 55-64.
U. Feige, A. Fiat, and A. Shamir, “Zero knowledge proofs of identity,"
in Proc. 19th Ann. ACM Symp. Theory of Computihgw York, NY,
1987, pp. 210-217.

A. Fiat and A. Shamir, “How to prove yourself: Practical solutions

) e : v) 3 radio packet switching networks. From 1974 to
L%;fgg&gf}%qagfgsi'g;;tulrge_plrgglems’ irdvances in Cryptol 1977, he was a Research Staff Member at the IBM

S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A reliabl®- J- Watson Research Center, Yorktown Heights, NY. Since 1977, he has been
multicast framework for light-weight sessions and application levell the faculty of the University of Texas at Austin, where he is a Professor
framing,” in Proc. ACM SIGCOMM'95Cambridge, MA, pp. 342—356. of Computer Sciences. He holds_ two anonymously endqwed profess_orshlps,
T. El Gamal, “A public-key cryptosystem and a signature scheme baséﬂd serveq as Department Chair from 1992 to 1994. His research interests
on discrete logarithms,” idvances in Cryptology—CRYPTO:8885, N networking include protocol and switch design, performance analysis,

pp. 10-18. distributed multimedia, quality of service guarantees, and security.
R. Gennaro and P. Rohatgi, “How to sign digital streams Advances Dr. Lam has served on the editorial boards of IEEE/ACRAN¥SACTIONS
in Cryptology—CRYPTO'971997, pp. 180-197. ON NETWORKING, |IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, |IEEE

J. B. Lacy, D. P. Mitchell, and W. M. Schell, “CryptoLib: CryptographyTRANSACTIONS oN CoMMUNICATIONS, PROCEEDINGS oF THEIEEE, andPerfor-
in software,” in Proc. USENIX: 4th UNIX Security SymposiuBanta mance EvaluationHe was Editor-in-Chief of IEEE/ACM RANSACTIONS ON

Clara, CA, Oct. 1993, pp. 1-17. NETWORKING from 1995 to 1999. He organized and was Program Chair of the
L. Lamport, “Constructing digital signatures from a one-way function,inaugural ACM SIGCOMM Symposium held at the University of Texas at
SRI Int., Menlo Park, CA, Tech. Rep. CSL 98, 1979. Austin in 1983. He is a founding Steering Committee member of the IEEE

R. C. Merkle, “A digital signature based on a conventional encryptiolnternational Conference on Network Protocols. He received the 1975 Leonard
function,” in Advances in Cryptology—CRYPTO;8R87, pp. 369-378. G. Abraham Prize Paper Award from the IEEE Communications Society for
R. C. Merkle, “A certified digital signature,” ildvances in Cryptol- his paper on packet switching in a multiacess broadcast channel. He is a
ogy—CRYPTO0’891989, pp. 218-238. Fellow of the Association for Computing Machinery (ACM).

