
All about Eve:
Execute-Verify Replication

for Multi-Core Servers

Manos Kapritsos, Yang Wang, Vivien Quema,
Allen Clement, Lorenzo Alvisi, Mike Dahlin

Dependability Multi-core

Databases Key-value stores

Coordination
& locking File servers

Dependability Multi-core

How do we build dependable
multithreaded services?

Answer:
State Machine Replication

inputinputinput

STATE MACHINE REPLICATION (SMR)

ServerServerServerServer

Guarantee: all correct replicas will
produce the same output

 Ingredients: a service
1.Implement service as a
deterministic state machine
2. Replicate
3. Provide all replicas with
the same input

SMR IMPLEMENTATION

123

123 Server

Server

123 Server

Server

Server

Server

Server

Server

Server

Server

Server

Server

Agree

1

2

3

1

2

3

1

2

3

ServerServer

How do we build dependable
multithreaded services?

Server

Server

Server

Server

Maybe use deterministic
multithreading?

Nope. Won’t support
modern replication protocols

Server

How do we build dependable
multithreaded services?

Server

Server

Dependability

Performance

Server

Server

Server

Eve
State machine replication with
multithreaded execution

Motivation

Outline

Mechanisms

Architecture

Insight

Evaluation

123

123

123

Agree-Execute enforces
sequential execution

SMR requires replica convergence

ExecuteAgree

AgreeVerify

EXECUTE-VERIFY

 First execute...
(multithreaded and without

agreeing on the order)

 ...then verify
(that replicas agree
on the outcome)

Execute

1

2

3

1

2

3

1

2

3

Verify

token

token

token

YES

YES

YES

Server

Server

Server

ON CONVERGENCE

Commit

Commit

Commit

match?

1

2

3

1

2

3

1

2

3

NO

NO

NO

Verify

ON DIVERGENCE

token

token

token

Repair : rollback and re-execute sequentially

Repair

Repair

Server

Server

Server

Repair

Motivation

Outline

Mechanisms

Architecture

Insight

Evaluation

 if (converged)
commit

 else
repair divergence

Frequent

Uncommon

1. Make divergence
uncommon

2. Detect divergence
efficiently

3. Repair divergence
efficiently

Eve’s logic at a glance

MAKING DIVERGENCE UNCOMMON

 if (converged)
commit

 else
repair divergence

1

3

2

4

1

3

2

4

token

token

token

1

3

2

4

Server

Server

Server

Idea: identify commutative requests

Mixer: group together commutative requests
• Execute requests within a group in parallel

Mixer is a hint, not an oracle

Transaction Read tables Write tables

getBestSellers item, author, order_line

doCart item shopping_cart_line,
shopping_cart

doBuyConfirm customer, address order_line, item, cc_xacts,
shopping_cart_line

EXAMPLE: TPC-W MIXER

3 frequent transactions of the TPC-W browsing workload

EFFICIENT DIVERGENCE DETECTION

Need to compare application states &
responses frequently

Application
state

Merkle tree}tokentoken

 if (converged)
commit

 else
repair divergence

GROWING DETERMINISTIC
MERKLE TREES

Ensure that all replicas add objects in the same order

Idea: postpone adding objects until token generation

Requests are ordered: requestID
Single thread per request: objectSeqNumber
(requestID,objectSeqNumber): unique and sortable

Optimization: leverage deterministic order of
references

Copy-on-write

EFFICIENT DIVERGENCE REPAIR

Need to rollback application states after every divergence

Application
state Rollback

 if (converged)
commit

 else
repair divergence

Copy-on-Write

Merkle tree

Mixer

 if (converged)
commit

 else
repair divergence

1. Make divergence
uncommon

2. Detect divergence
efficiently

3. Repair divergence
efficiently

Motivation

Outline

Mechanisms

Architecture

Insight

Evaluation

Replication of multithreaded services

Bonus: mask concurrency bugs

Dependability Performance

Independent execution Non-deterministic
order of requests

Server

Server

Server

MASKING CONCURRENCY BUGS

1

2

3

1

2

3

1

2

3

token

token

token

Verify

EXECUTE-VERIFY: AN
ARCHITECTURAL CHANGE

Synchronous Asynchronous

Crash failures

Arbitrary failures

CONFIGURATIONS

Asynchronous BFT Synchronous primary-backup

Execution Verification

Tolerates 1 arbitrary fault Tolerates 1 omission fault

Primary

Backup

EVALUATION

What is the performance benefit of Eve
compared to traditional SMR systems?

How does the quality of the mixer
affect Eve’s performance?

EXPERIMENTAL SETUP

Emulab testbed deployment

•Execution replicas: 16 cores

•H2 Database Engine (TPC-W benchmark)

•Key-value store (Microbenchmarks)

Applications

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c)

execution threads

6.5x 7.5x

Application: H2 Database Engine
Workload: TPC-W (browsing)

Unreplicated

Eve(BFT)

Eve(primary-backup)

Traditional SMR

IMPACT OF THE MIXER

False conflicts: misclassify non-conflicting requests as conflicting
•Reduces parallelism

Application: Key-value store

Mixer Quality

Undetected conflicts: misclassify conflicting requests as non-conflicting
•Can introduce divergence

Number of key-value pairs
•Determines available parallelism

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c)

False conflicts (%)

FALSE CONFLICTS REDUCE THE
AVAILABLE PARALLELISM

10000 key-value pairs

10 key-value pairs
Traditional SMR (sequential)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.01 0.1 1 10

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c)

Undetected conflicts (%) (log)

UNDETECTED CONFLICTS CAUSE
DIVERGENCE AND ROLLBACKS

10000 key-value pairs

100 key-value pairs

10 key-value pairs

Traditional SMR (sequential)

TPC-W EXPERIMENTS:
NO ROLLBACKS OBSERVED

6.5x 7.5x

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c)

execution threads

Unreplicated

Eve(BFT)

Eve(primary-backup)

Traditional SMR

CONCLUSION
Replication and multithreading are

not mutually exclusive

Redesign replication:
from agree-execute

Execute AgreeVerify

to execute-verify

