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Dependability Multi-core



How do we build dependable 
multithreaded services?

Answer: 
State Machine Replication
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STATE MACHINE REPLICATION (SMR)

ServerServerServerServer

Guarantee: all correct replicas will 
produce the same output

 Ingredients: a service
1.Implement service as a 
deterministic state machine
2. Replicate
3. Provide all replicas with 
the same input



SMR IMPLEMENTATION
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How do we build dependable 
multithreaded services?
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Maybe use deterministic 
multithreading?

Nope. Won’t support 
modern replication protocols
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Eve
State machine replication with 
multithreaded execution
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Agree-Execute enforces
sequential execution

SMR requires replica convergence

ExecuteAgree



AgreeVerify  

EXECUTE-VERIFY

 First execute... 
(multithreaded and without 

agreeing on the order)

 ...then verify 
(that replicas agree 
on the outcome)

Execute
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   if (converged)
commit

   else
repair divergence

Frequent

Uncommon

1. Make divergence 
uncommon

2. Detect divergence 
efficiently

3. Repair divergence 
efficiently

Eve’s logic at a glance



MAKING DIVERGENCE UNCOMMON

   if (converged)
commit

   else
repair divergence
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Idea: identify commutative requests

Mixer: group together commutative requests
• Execute requests within a group in parallel

Mixer is a hint, not an oracle



Transaction Read tables Write tables

getBestSellers item, author, order_line

doCart item shopping_cart_line, 
shopping_cart

doBuyConfirm customer, address order_line, item, cc_xacts, 
shopping_cart_line

EXAMPLE: TPC-W MIXER

3 frequent transactions of the TPC-W browsing workload



EFFICIENT DIVERGENCE DETECTION

Need to compare application states & 
responses frequently

Application 
state

Merkle tree}tokentoken

   if (converged)
commit

   else
repair divergence



GROWING DETERMINISTIC 
MERKLE TREES

Ensure that all replicas add objects in the same order

Idea: postpone adding objects until token generation

Requests are ordered: requestID
Single thread per request: objectSeqNumber
(requestID,objectSeqNumber): unique and sortable

Optimization: leverage deterministic order of 
references



Copy-on-write

EFFICIENT DIVERGENCE REPAIR

Need to rollback application states after every divergence

Application 
state Rollback

   if (converged)
commit

   else
repair divergence



Copy-on-Write

Merkle tree

Mixer

   if (converged)
commit

   else
repair divergence

1. Make divergence 
uncommon

2. Detect divergence 
efficiently

3. Repair divergence 
efficiently
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Replication of multithreaded services

Bonus: mask concurrency bugs

Dependability Performance

Independent execution Non-deterministic 
order of requests
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MASKING CONCURRENCY BUGS
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EXECUTE-VERIFY: AN 
ARCHITECTURAL CHANGE

Synchronous Asynchronous

Crash failures

Arbitrary failures



CONFIGURATIONS

Asynchronous BFT Synchronous primary-backup

Execution Verification

Tolerates 1 arbitrary fault Tolerates 1 omission fault

Primary

Backup



EVALUATION

What is the performance benefit of Eve 
compared to traditional SMR systems?

How does the quality of the mixer 
affect Eve’s performance?



EXPERIMENTAL SETUP

Emulab testbed deployment

•Execution replicas: 16 cores

•H2 Database Engine (TPC-W benchmark)

•Key-value store (Microbenchmarks)

Applications
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IMPACT OF THE MIXER

False conflicts: misclassify non-conflicting requests as conflicting
•Reduces parallelism

Application: Key-value store

Mixer Quality

Undetected conflicts: misclassify conflicting requests as non-conflicting
•Can introduce divergence

Number of key-value pairs
•Determines available parallelism
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TPC-W EXPERIMENTS:
NO ROLLBACKS OBSERVED

6.5x 7.5x
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CONCLUSION
Replication and multithreading are 

not mutually exclusive

Redesign replication:
from agree-execute

Execute AgreeVerify

to execute-verify


