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Abstract—Users around the world have embraced new gener-
ation of mobile devices such as the smartphones at a remarkable
rate. These devices are equipped with powerful communication
and computation capabilities and they enable a wide range of
exciting location-based services, e.g., location based ads, content
prefetching etc. Many of these services can benefit from a better
understanding of the smartphone user mobility, which may differ
significantly from the general user mobility. Hence, previous
works on understanding user mobility models and predicting user
mobility may not directly apply to smartphone users. To overcome
this, in this paper we analyze data from two popular location
based social networks, where the users are real smartphone
users and the places they check-in represent the typical locations
where they use their smartphone applications. Specifically, we
analyze how individual users move across different locations. We
identify several factors that affect user mobility and their relative
significance. We then leverage these factors to perform individual
mobility prediction. We further show that our mobility prediction
yields significant benefit to two important location based appli-
cations: content prefetching and shared ride recommendation.

I. INTRODUCTION

Users around the world have embraced smartphones at
a remarkable rate [1], [2]. Global smartphone sales in the
third quarter of 2011 were up 42% from the third quarter of
2010 [3]. Unlike traditional mobile devices, these new devices
have very good computing capabilities and are equipped with
various wireless communication interfaces. This enables us
to have a wide-range of location-based services, e.g., con-
tent prefetching, targeted ads, shared ride recommendation,
predicting friendships, generating tour guides. Understanding
smartphone user mobility is critical to all of these applications.
For example, if we can accurately predict where a user will
go next, we can actively prefetch his desired content to that
location for a better download experience.

While the importance of mobility analysis has long been
recognized, most of the existing research on this subject has
been severely limited by the traces available. Most works on
mobility modeling and mobility prediction use general traces
e.g., Wi-Fi and Cellular [4], [5], [6], [7]. However these works
may not directly apply to smartphone users for two reasons.
First, the user intent of using the device at specific locations
is not captured in these traces. For example, smartphone users
may be more likely to use their device at some locations than
others, e.g., a train station vs. a meeting room. Second, the
demographics of smartphone users maybe different from the
general population.

On the other hand, recently Location-Based Social Net-
works (LBSNs) have experienced an explosive growth in
popularity as people around the world have embraced location-
sensing mobile devices at a remarkable rate. LBSNs provide
a unique opportunity to understand large scale smartphone
user mobility. For example, Foursquare [8], the most popular
LBSN, had over 10 million users with 1 billion check-ins as
of September 2011 [9]. There are many other popular LBSN
services, such as Gowalla [10], Brightkite [11], and Loopt [12].

Moreover, major social networking sites like Facebook, Twit-
ter, and Google+ have also added location-based features into
their services.

In LBSNs, people share their locations with their friends,
receive location-based recommendations, and make comments
about the places they visited. People record their geographical
locations in the form of check-ins. If a user wants to check-
in, she uploads her geographic coordinates to the server. Then
the server gives back a list of possible places and lets the
user select the location through a check-in or create a new
place if the location has not yet been registered at the server.
They differ from existing mobility data in that: (i) the check-
in volume is massive, (ii) a check-in gives more fine-grained
location information than inference based on the cell tower sig-
nals, (iii) each check-in not only contains geographic location
but also includes semantics behind the location (restaurants,
offices, shops, etc.), (iv) a check-in does not include continuous
movements but a point location, and users check in only
if they want to, so there is explicit user intention to share
the location, (v) in addition to check-ins, we have on-line
friendship information among users.

We collect and analyze the data from two major LBSNs:
Foursquare and Gowalla. We first pick factors that help predict
human mobility, and then identify their relative significance.
We then leverage these factors to perform mobility prediction.
We further show that our mobility prediction can potentially
help prefetching to increase the hit rate by 0.12x - 33x than
passive caching and help recommend shared rides in 10% -
100% of time with only 0%-26% false positives.

II. DATA COLLECTION

We collect and analyze the data from Foursquare and
Gowalla, which are two of the most popular LBSNs. As of
October 2011, Foursquare has 14 M users and Gowalla has
400K users. We collect the traces using the open APIs provided
by Foursquare [13] and Gowalla [14]. The Foursquare API
does not allow us to retrieve check-in history of individual
users, but they provide a list of visitors for a given venue
in a two-hour window. In order to get the user trajectory,
we pick popular venues and periodically fetch the recent
visitors to those places every two hours. We may miss check-
in information at unpopular places. However, we can still get
good coverage of people’s movements across popular venues.
Gowalla allows us to directly crawl all check-ins for a given
user, so we have check-in information at both popular and
unpopular venues.

We collect user and venue information. The user informa-
tion includes user’s name, home city, friends, tips on venues
and venue information includes venue’s name, latitude and lon-
gitude, categories (e.g., Airport, College & University, Food,
etc.), and numbers of visitors and check-ins. We collected
277,900 users across 13,484 venues from 01/02/2012 to
02/06/2012 from Foursquare, and 51, 363 users across 66, 578
venues from January 2009 to December 2011 from Gowalla.
We analyze 5,288 active users with 92,985 check-ins at



popular venues in Foursquare and 1,442 active users with
9,896 check-ins at popular venues in Gowalla. Active users
are those who have at least 15 check-ins in a 5-week period,
and popular venues are those that have at least 25 check-ins in
a 2-week period, starting from 01/02/2012 in Foursquare and
from 05/01/2010 in Gowalla.

III. MOBILITY PREDICTION

Predicting users’ check-ins has many important applica-
tions, such as targeted ads, content prefetching, shared-ride
recommendation, planning friends’ hang-out. In this section,
we develop a scheme to predict a user’s next check-in.

A. Predicting next check-in

We define user transition matrix M (u,t,a,b) as user u’s
transition probability from location a to location b in a time
interval ¢, which could be few hours, a day, a week, etc.
as defined by us. We specify the length of ¢ used for our
analysis below. It can be easily computed as the ratio of the
total number of transitions from a to b divided by the total
number of transitions out of a. By varying the granularity of
time interval and locations, we can get a range of different
levels of transition matrices.

We apply different levels of transition matrices for mobility
prediction. In particular, mobility pattern varies across users
and across time. Suppose we want to predict user u’s next
check-in given its current check-in venue v; at time £. At one
end of the spectrum, we can use the same user’s previous
trajectory taken around the same time to compute transition
probability. This gives the most specific information, but may
yield too few data samples to meaningfully compute the
transition probability. At the other end of spectrum, we could
take all users’ previous trajectories across all the time to derive
the transition probability. This gives us broadest coverage, but
may be too general and does not fully capture the user or
time specific information. There are many levels in between.
We first identify the following metrics that we leverage for
mobility prediction:

1. User-venue-time specific: We only consider the transitions
for the same user from the same venue in the same time bin
when computing the transition probability. That is, we compute
the transition probability for user u to transit from venue v;
to venue vy in time bin ¢, denoted as Plu,v;,vg,t], as the
ratio between the total number of such transitions and the total
number of visits of user u to venue v; in time bin ¢. We
partition a day into six time bins: (i) 0 to 6am, (ii) 6 to 10am,
(ii1) 10am to noon, (iv) noon to Spm, (v) 5 to 10pm, (vi) 10pm
to Oam. Different time-bin sizes are used according to changes
in users’ mobility patterns.

2. User-venue specific: Similar to the above, except that we
only consider visits other than those that occurred in time bin
t. We exclude these visits to avoid double counting the visits
that occurred in time bin ¢.

3. Friend-venue-time specific: Similar to the first metric,
we now consider user u’s friends instead of user u, where
friends are obtained using the friendship information of the
user published at the LBSNs. We do not consider user u’s
visits to avoid double counting.

4. Friend-venue specific: Similar to friend-venue-time spe-
cific, but now we relax the time constraint by considering all
time other than time bin ¢.

5. Venue-time specific: Similar to user-venue-time specific,
except that we now consider all users other than u and w’s
friends. Again user u and u’s friends are excluded to avoid
double counting.

6. Venue global: We compute the transition probability from
v; to vy by considering all users across all the time except user
u, u’s friends, and time bin ¢. That is, the fraction of transitions
from venue v; are to venue vy, conditioning on the transitions
that are made by anyone other than user u, u’s friends, or in
time bin ¢.

7. User global: We compute the transition probability based
on how often user w visits venue v (regardless of time and
the previous venue). That is, the fraction of user u’s visits that
are to venue vg.

8. Friend global: We compute the transition probability based
on how often user u’s friends visit venue vy, (regardless of time
and the previous venue).

Each of these metrics is intuitively useful, but how to
combine them to make a a good predictor is a challenge.
To address this, we apply regression to automatically learn
the importance of each metric based on the training traces
collected from the past. Specifically, we cast the weight
estimation into a regression problem: Az = b, where A(%, j)
denotes the transition probability into venue v; according to
the j-th metric, 2(j) denotes the weight of the j-th metric
(which is one of the above eight metrics), and b(¢) is a binary
indicator of whether the next check-in is at venue v;. From
the previous traces, we get A and b. We estimate = by finding
the closest solution that matches Ax = b. The estimated z
indicates that the above rules (1) and (7) are most important.
We use the estimated = and all the metrics for our evaluation.
Then we make predictions of future check-ins by constructing
A from the traces seen so far and applying the estimated x to
compute b. We rank the predicted venues in a decreasing order
of b, and pick the top K% venues as predicted next check-ins.
We vary K (between 1 and 100) to trade-off between false
positive (FP) and false negative (FN), where FP and FN are
computed as follows:

Fp— # incorrectly predicted next check-ins

# venues not next check-in

(1)

# next check-ins missed
FN = 2
# next check-in 2)

We use week 1 for bootstrap to accumulate enough check-
in history. Then we apply regression to learn weight = by
extracting Ax = b using weeks 2 and 3 as training traces.
Then we apply the estimated = to predict next check-ins for
testing traces beginning from week 4. We use Foursquare
trace from 01/02/2012 to 02/06/2012 and Gowalla trace from
05/01/2010 to 06/09/2010. We filter out users and venues with
too few check-ins as explained in Section II. Figure 1 (a) shows
False Positive (FP) Rate versus False Negative Rate (FN). We
make two important observations. First, our prediction scheme
achieves good accuracy: 2% - 25% false negatives with 9% -



66% false positives. Second, the accuracy varies a lot across
cities. For example, in Foursquare Paris we achieve a FN Rate
of as low as 11% at 0.3% FP Rate, whereas in Foursquare
Austin, we see a FN Rate of 64% at FP Rate of 0.4%. This is
due to varying check-in patterns of the users in cities. In Paris,
users tend to check-in at a venue regularly (e.g., train stations)
and the accuracy is high. In Austin, which does not have good
public transportation and popular locations are spread across
the town, the check-in pattern is harder to predict. Other cities
are in between.
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Fig. 1. Accuracy of next check-in prediction.

B. Predicting next check-in category

Some applications like targeted ads only require us to
predict the categories of venues that will be checked in next.
For instance, if a user is going to Italian restaurant next,
sending him ads about any Italian restaurant in the area is
useful (the ads he sees and the discounts may affect his choice
of the restaurant, if he is already not too keen on a specific
one). We can simply apply the above prediction scheme, and
then aggregate the predicted venues to predicted categories
(i.e., the probability of visiting a category is the probability
of visiting any venue that falls into the category). We again
evaluate the FP rate and FN rate by varying the top K%
categories. Figure 1 (b) summarizes the results. As before, we
see varying accuracy of prediction across different cities. For
example, Foursquare Paris has a FN Rate of 7.8% and FP Rate
of 0.2%, and Foursquare Austin has FN Rate of 67% and FP
Rate of 0.7%. Moreover, we can achieve a coverage of 87% to
98.6%, higher than in case of predicting next check-in, since
we are looking for more coarse-grained information.

IV. APPLICATIONS

Mobility prediction has many applications. We focus on
content prefetching and shared ride recommendation.

A. Content Prefetching

If we know a user’s next check-in, we can prefetch content
in advance so that by the time the user arrives, the content is
already available locally at the cellular base station or Wi-Fi
access points and the user can enjoy the much higher local
wireless capacity instead of being bottlenecked by the slow
Internet link. This is especially useful when the gap between
the access link capacity and local wireless capacity is large.
For example, 802.11n can give speeds up to 600 Mbps [15],
while the access link capacity is often on the order of a
few Mbps. The gap tends to further increase over time due
to recent advances in wireless technology compared with the
much slower deployment/upgrade in access link capacity.

To evaluate the performance of prefetching, we assume
a user has a new content request at all his check-ins. We
generate the content demand using a Zipf-like distribution
(i.e., the number of requests for the ¢-th most popular file is
proportional to 1/i%, where « is a small constant) [16], [17].
It determines the skewness of the demands. The higher the «,
the more skewed the demand is. We assume that the content
is made available at predicted venues instantaneously when
the prediction is made. Any user who visits the location after
that can download the file until it is purged out. We compare
against a pure caching scheme, where the content is cached at
the venue only affer it is viewed for the first time. For both
schemes, we assume a cache of 1 TB [18] (since storage is
getting inexpensive) and file size of 5 GB (typical movie size,
to be safe we pick a big file size, when video file sizes are
smaller, hit-rates should be even better due to less frequent
purging out) and replace using the Least Frequently used file
when the cache is full. We quantify the hit-rate, which is the
fraction of requests that can be served from the local cache.

Figure 2 (a) shows the hit-rates for Foursquare Paris and
figure 2 (b) shows the hit-rates for Foursquare Austin. We
pick these two cities since they represent two extreme cases in
terms of mobility prediction accuracy. The results from other
cities show similar trend and are omitted for brevity. In both
the figures, X-axis shows varying fraction of the predicted
venues we prefetch the content to and Y-axis shows the hit-
rate. A higher hit-rate means more requests are being served
from the local cache and is preferred. The hit-rate for passive
caching per « in a city is shown in brackets in the legend. It’s
only one number because it doesn’t change with the fraction
of venues. We first observe that we prefetch the content to
a higher fraction of the predicted venues, hit-rate is better
because there is a higher probability that the actual check-
in venue falls within the set of venues we prefetch the content
to. We also observe that prefetching consistently out-performs
passive caching. The amount of improvement depends on the
value of «, for Foursquare Austin, when a = 2, the hit rate
of both prefetching and caching are high: 64% and 47%,
respectively. Decreasing « enlarges the gap between the two.
For example, when o = 1, the hit rates of prefetching and
caching are 47% and 19%, respectively; when o = 0.5, the
corresponding numbers become 38% and 4%, respectively.
That’s because an increased « indicates popular files get more
requests (higher skewness) and the cost of fetching it for the
first time is amortized by many future requests. Further 3
shows the hit-rate for all cities when alpha = 1. We observe
that prefetching helps improve hit-rate even for cities that have
lower accuracy of check-in prediction, because the prefetched
content can be used to serve someone else even if the target
user does not check-in as predicted. In general, the level of
our mobility prediction accuracy is sufficient to significantly
benefit prefetching.

B. Recommending Shared Rides

Mobility prediction is also useful for finding shared rides.
Existing systems (e.g., [19]) require both riders and ride givers
to provide their source and destination locations and the time
of travel, based on which they perform match making. This
approach may easily miss potential riding opportunities as
users may not always keep their information up to date. In
comparison, recommending shared rides based on mobility
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prediction eliminates the need of user input and can auto-
matically recommend ride based on their current locations
and predicted future check-ins. The requester can contact the
recommended ride givers to confirm the ride.

First, we examine how often we find shared rides. We de-
fine a possible shared ride as follows: (i) the current locations
of the two users are within d. km of each other, (ii) their next
check-ins are at least d, away from the current locations (i.e.,
not walkable), (iii) their next check-in locations are within
d. km, and (iv) the next check-ins of the two users occurred
within 24 hours of each other.
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Figure 4(a) shows the average number of co-located users
i.e., the number of people who are grouped to be eligible for
shared-ride, as we vary d.. Figure 4(b) shows the fraction of
times that a user finds a shared ride (out of the number of
times that he travels farther than d, kms between consecutive
check-ins), where d. is fixed at 1 km and we vary d,. As
we would expect, in more popular cities, there are more co-
located users and it is more likely to find shared rides. For
example, in Foursquare Manhattan and San Francisco users
find shared rides 24% and 14% of the times they travel more
than 3 kms; in comparison, in Foursquare Austin and Seoul,

users find shared rides only 8% and 5% of the times.

Next we examine how accurately we can recommend
shared rides based on our mobility prediction. Specifically,
given a requester’s current location and (true) next check-in
location, where the distance between two check-ins are at least
d, away and not walkable, we want to recommend ride givers
who are currently within d. km from the requester and have
(predicted) next check-ins within d. km from the requester’s
next check-in (within 24 hours). For this evaluation since we
do not have the meta data to show who is the rider and who is
the ride-giver, we assume both the cases: where each person
becomes the rider and ride-giver, and the results are average
of both.

Figure 5 shows the FN Rate versus the FP Rate for different
sets of co-location distance d. and minimum distance for
shared-ride d,. The accuracy of ride-recommendation is gen-
erally high in all cases. London has high mobility prediction
accuracy, so its accuracy of ride recommendation is also high:
14% false negatives at 6% false positives. San Francisco has
lower mobility prediction accuracy, so its accuracy of ride
recommendation is lower but still pretty good: 24% false
negatives at 7% false positives when d. = 2 kms and d, = 2
kms. Moreover, we see that the recommendation accuracy
follows similar trend for a different d. and d,,.
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C. Discussion

We note that the LBSN check-in data is ideal to understand
the performance of smartphone applications, as these are the
venues the smartphones users tend to use their applications,
as explained in Section I. One downside of using this trace
could be — missing the locations where there is no check-in.
Due to the voluntary nature of user check-ins, we miss the
locations where a user chooses not to check-in (although he
maybe willing to use his smartphone at that location for a more
compelling application). With increasing usage of smartphones
and LBSNs, we believe this bias would reduce. Moreover,
capturing more locations would improve the performance of
our example applications, e.g., we would be able to find more
shared rides and also predict check-ins more accurately due to
the availability of richer information.

V. RELATED WORK

Our work is related to: (i) understanding and predicting
human mobility and (ii) analysis of location-based social
networks.

Understanding and predicting human mobility: There
has been significant amount of work on mobility prediction.



Some focus on coarse-grained prediction in cellular networks
(e.g., [4], [5], [20], [21]), while others use Wi-Fi records as an
indicator of user mobility (e.g., [6], [7], [22]). Different from
these works, we focus on smartphone users and use check-
in data from location based social networks, which is much
larger in scale and is associated with social information and
our results are applicable to potential future applications.

Markov models have been widely used in the past for
localization and mobility prediction. For example, [23], [24]
and several others leverage first order Markov model. Many
existing works also leverage a second order Markov model.
For example, [22] compares various predictors in the literature
and suggests that second order Markov model with a simple
fallback mechanism (when there is no prediction) performs
well. [6] builds the users’ customized mobility models on
the devices themselves, and uses a second order Markov
model to predict connection opportunities and their quality.
Our prediction algorithm also uses a first order Markov model,
partly because users do not check-in at all venues, which
means intermediary venues might be missing, so a higher order
Markov model may not be suitable. Our work differs in that
we use LBSN traces, which not only enable us to have the
exact location and the semantics of the location but also the
user intent in using a smartphone application at that location.
Moreover we derive the relative importance of several factors
we pick for mobility prediction and show that our example
applications can achieve good performance.

There are several interesting works on understanding hu-
man mobility. Authors in [25] analyze contact networks by
combining data from multiple sources and further generating
synthetic data of individuals. Authors in [26], study the mo-
bility of 100,000 phone users over six-months, conclude that
humans travel in simple reproducible patterns, and return to
a few highly frequented locations. Authors in [27], analyze
human mobility in terms of community behavior, and study
inter-community and intra-community contacts separately. The
insights from these studies can be leveraged while building the
applications we illustrate in this work.

Location-based social networks: Recently, LBSNs have
attracted the research community to analyze such massive
data [28], [29]. Unlike our work that focuses on user mobility,
most works in this area study friendship relationships in
LBSNs [30], [31]. [32] is among the few that analyze human
mobility. They look at data from Gowalla and Brightkite in
2008 to 2010 along with mobile phone location dataset. It
reports that human mobility consists of (1) short-ranged travel
that is spatially and temporally periodic (50% - 70%) and
(2) long-distance jumps which can be explained by social
relationships (10% - 30%).

VI. CONCLUSION

In this paper, we perform an in-depth analysis of smart-
phone users’ mobility using two of the largest location-based
social networks. Our findings suggest that many factors such as
time of the day and friends’ behavior affect smartphone users’
mobility pattern and it’s possible to predict user mobility with
reasonable accuracy. Our analysis also shed light on micro-
scopic human mobility across different location granularities.
These findings have significant implications on the design and

evaluation of mobile networks. As examples, we show two
applications that benefit from mobility information. As part of
our future work, we plan to develop models to capture user
mobility at different granularities and explore more mobility-
aware applications.
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