IDEAL.: Incentivized Dynamic Cellular Offloading via Auction S

Wei Dong’, Swati Rallapalli, Rittwik Jand, Lili Qiuf, K. K. Ramakrishnah Leo Razoumo¥, Yin Zhang, Tae Won Ché
* The University of Texas at Austin ¥ AT&T Labs — Research

Abstract — The explosive growth of cellular traffic and itsresources, third-party hotspot owners serve as seliegs (
highly dynamic nature often make it increasingly expensi@dders or auctionees) and submit their bids while provider
for a cellular service provider to provision enough celtulad or a trusted third party serves as an auctioneer, who
resources to support the peak traffic demands. In this paper,evaluates the bids from all hotspot owners and makes dasisio
propose iDEAL, a novel auction-based incentive frameworegarding whose services to purchase in order to satisy
that allows a cellular service provider to leverage resesirctraffic demands and minimizel's total cost. Each bidder
from third-party resource owners on demand by buying caubmits a bid that specifies the total amount of bandwidth
pacity whenever needed through reverse auctions. iDEAhe offers in the next time interval and the unit price shes ask
has several distinctive features: (i) IDEAL explicitly acmts for. After collecting all the bids, the cellular service pider
for the diverse spatial coverage of different resources addtermines (i) arallocation i.e, how to allocate her traffic
can effectively foster competition among third-party nese between different third-party resource owners (depending
owners in different regions, resulting in significant s@gn the region they cover) and her own cellular network, andx(ii)
to the cellular service provider. (ii) IDEAL provides rewen price, i.e., how much she pays each third-party resource owner
incentives for third-party resource owners to participate that offloads cellular traffic.
the reverse auction and be truthful in the bidding process.The use of reverse auction is motivated by the following
(iii) iDEAL is provably efficient. (iv) iIDEAL effectively observations. First, a key challenge in utilizing resosritem
guards against collusion. (v) iDEAL effectively copes withthird-party resource owners is that we do not know their
the dynamic nature of traffic demands. In addition, iDEAIlcost function. Their cost function may be based on multiple
has useful extensions that address important practicaésss considerations, some of which may not be revealed to the
Extensive evaluation based on real traces from a large d&llular service provider. Reverse auctions provide a &rm
cellular service provider clearly demonstrates the effeness framework for third-party resource owners to express the
of our approach. We further demonstrate the feasibility girice they demand and for the cellular service provider to
iDEAL using a prototype implementation. optimize the allocation based on the received bids. Second,
by using reverse auctions, the cellular service provideidsy
. INTRODUCTION having to negotiate a long-term bi-lateral agreement waithe

The explosive growth of cellular traffic and its highlyindividual third-party resource owner. Negotiating suohg-
dynamic nature make it increasingly expensive for a cellulgerm agreements is difficult and possibly inefficient due to
service provider to provision enough cellular resourcesuf-  dynamic traffic demands and resource availability. Instéael
port all her consumers all the time. The current best pradsic cellular service provider can now establish short-terntremts
for service providers to augment the cellular network cépacwith third party resource providers. It also potentiallytsu
by deploying alternative wireless technologiesy( Wi-Fi and costs by leveraging competition across third-party ressur
femtocells) on their own. While this approach is helpful imwners. Third, reverse auctions can be incrementally geplo
alleviating the stress at the busiest cellular regions im@ts today, yielding savings to the cellular service provideerev
term, it alone is not sufficient in the long run due to the higivhen only a subset of third-party resource owners partieipa

deployment cost and excessive interference. Unique challenges: While reverse auction has been applied to

Our solution is to IeveLagg resouraets d_emar;]drom third- jgallular offloading in the pase(g, [10]), our problem setting
party resource owners by buying capacity whenever needgceg several unique challenges. Despite their importance

O”'de’.“a”‘?' purch_ase of such resources can potennal_ly I e of these challenges have been considered earlier.
to a win-win solution: the cellular service provider aclasv

significant savings by not having to provision for the peak ® Diverse spatial coverageCellular resources can serve
traffic demands; the third-party resource owners gain addi- traffic anywhere in a cell sector (albeit at different rates
tional revenue from the otherwise wasted spare capacigy; th depending on path loss etc.), whereas Wi-Fi hotspots
overall user experience is also improved. In order for this and femtocells have a much more limited communication
approach to be successful, however, it is essential to have a fange, making it essential to consider the spatial cover-
incentive framework that can effectively foster collatiama age of different resources. However, one cannot simply
while guarding against non-truthful and collusive behavio partition resources into separate regions and launch inde-
Our approach: Incentivizing cellular offloading via auc- pendent reverse auctions W|th_|n each region, _because the
tions: We propose iDEAL, a novel auction-based incentive longer-range cellular resource introduces coupling betwe
framework to enable dynamic offloading of cellular traffic. the Wi-Fi hotspots or femtocells in different regions. For

In iDEAL, a cellular service provider purchases bandwidth o example, buying more resources from a cheaper Wi-Fi

. . —. hotspot in one region frees up more cellular resources,
demand from third-party resource owners, who may be a Wi-Fi which reduces the amount of cellular traffic to be offloaded
hotspot owner, a femtocell owner, or another cellular servi

provider. This auction problem is naturally formulated as a in regions with more expensive Wi-Fi hotspots.
reverse auctionwhere the goods of interest are bandwidth e Traffic uncertaintyCellular traffic is highly dynamic and



unpredictable. Since the cellular service provider has toThe cellular network is shared across a relatively larga are
purchase third-party resources based on predicted traffypically called a cell site. A site is further sub-divideato
demands at a future time, it can easily result in undethree or more sectors. The sector can be considered to be
provisioning or over-provisioning without an effectivedivided into m small regions based on locations of Wi-Fi
technigue to cope with traffic uncertainties. In contrashotspots and Wi-Fi range. A Wi-Fi hotspot can satisfy traffic
in conventional reverse auction settings, the total amowtémands only in its region.

of goods that the buyer wants is typically knowrpriori. Naive solution: A simple approach is to statically partition

e Non-truthful bidding and collusionlt is essential for the cellular resource into different regions and determine
us to explicitly guard against both non-truthful biddinghe amount of Wi-Fi resource needed in each regiem,(
and collusion. Due to the distributed nature of hotspdtased on the amount of user demand in the region). Then
locations, collusion in our context is quite different fromwe conduct a local auction within a region to utilize the
what was studied previously and calls for a new study tellular resource and Wi-Fi resources dedicated to themnegi
understand possible collusion strategies and mitigaim.theWe call it static local auction While simple, this approach

o . I has several important limitations: 1) Due to limited Wi-Fi

Contributions: Our paper makes three main Cont”b”t'ons'coverage, the number of hotspots in a region is limiteg,

1. We design the iDEAL incentive framework to effectivelythe competition is limited. However, adequate competii®n
address the above unique challenges. Compared with ceBsential for an auction based approach to be effective. 2)
ventional mechanisms for reverse auctions, iDEAL hagnis formulation treats different regions equally, howetree
the following distinctive features: (i) IDEAL explicitly service provider may view different regions differentlychase
accounts for the spatial coverage of different resourcegiferent regions may have different spectrum efficiencias
and can effectively foster competition among third-party different signal-to-interference-noise-ratio (SINIR)m the
resource owners in different regions, resulting in signifbase station. 3) The static allocation cannot effectivaket
cant savings to the cellular service provider. (ii) iDEALnto account the available Wi-Fi resources and their bidess
incentivizes biddersi.g. third-party resource owners) todifferent regions. For example, even when a region has highe
participate in the reverse auction and to be truthful iaffic demand, we may or may not need to allocate more
their bidding. (iii) iDEAL is provably efficient in that the cellular resources to the region depending on (i) how many
winners are the bidders who have the lowest valuationi-Fi hotspots are in the region, (i) what are their pricasd
of their resources. (iv) iDEAL can effectively mitigateiii) how the Wi-Fi hotspots and their prices compare with
collusion. (v) IDEAL can effectively cope with the highly those in other regions. If there are more Wi-Fi hotspots in a
dynamic nature of traffic demands. region offering cheaper bids than in the other regions, we ca

2. We present useful extensions to iDEAL: (i) support femtallocate less cellular resources.
cell offloading and dynamic roaming, and (ii) incorporat
quality of service consideration (in addition to cost).

3. We extensively evaluate iDEAL using simulation bas
on real traces from one of the largest US cellular servi
providers. Our results clearly demonstrate the effecégsn
of our approach. We further demonstrate the feasibility
our approach using a simple prototype implementation.

%esign goals: We seek an auction scheme to ggcount for

cfifferent spatial coverage of resourceshich has not been
nsidered in existing work, (iicope with dynamic traffic
emands (iii) achieve high efficiengywhere the winners in

6t|ae auction are the hotspot owners who really can provide

the service at a cheaper price, thereby improving the dveral

system efficiency and social welfare, (ipromote truthful

Il. PROBLEM FORMULATION biddingto prevent bidders from gaming the system, effectively

In this section, we formulate the problem of offloading ceMiscover price to ensure that the overall system is efficient
lular traffic as areverse auctionThe offloading is transparentand avoid unnecessary system fluctuation due to gaming, as
to clients and does not affect cellular pricinige( users pay unwanted switching between Wi-Fi and 3G can negatively
for the data usage regardless of whether it is carried by ti@pact user experience [14], (lgw cost which is natural but
cellular provider or third party resource owners). is challenging to achieve simultaneously with truthfuesnd

Basic auction settings: Consider a cellular networld which (vi) guard against collusion

is interested in purchasing and leveraging spare resofrmaes

third-party Wi-Fi hotspots to satisfy traffic demands froer h I1l. OUR SOLUTION: IDEAL

customers. The third-party hotspot owners should be rezdard

for opening up their services td’s customers. To facilitate In this section we introduce our solution: iDEAL. We start

such cooperation, provideA can set up an auction to letby designing the auction setting that fosters more conipetit

third-party hotspot owners submit bids to offer their netivo and captures the service provider’s regional preferenidesn

resourcese.g, dollars per bit-rate for unit timee(g, 1 hour) we describe the two stages of iDEAL: (gllocation i.e,

that a third-party hotspot owner offers. determine how to allocate traffic among third-party reseurc
This problem is naturally formulated asreverse auction owners and the cellular network itself to minimize cost give

Since the demand changes over tirag, due to diurnal vari- the bids, (ii) pricing, i.e,, decide how much should be paid

ations [26], the auction takes place periodically or whemevto individual third-party resource owners in order to powvi

demand changes. The auction frequency is chosen to balaeeeugh incentives for them to be truthful. Table | summarize

the overhead and the accuracy of traffic demand estimatioithe key notations.



m number of regions in a cellular sector : - : ; "
n number of sellers in a cellular sector n aqdltlon_tomtra_reglon competition ) ) )
d; traffic demand in region Auction objective: The goal of the cellular service provider is
ci cellular capacity in regior _ _ to minimize the total Wi-Fi and cellular cost, while satisfy
€i spectrum efficiency of cellular netvyr?rk in region the customers’ demands.g, ¢; + Zj: (=i T > d;) and
z | total cellular spectrum usage:= 3 7" c. /¢ offering appropriate incentives to the tf;ird—party Wi-FEitbpot
x; | total capacity bought from sellgr owners to share their resources
Dj the unit price selleyj asks for ’
A; | the Wi-Fi capacity offered by seller B. Preparation: (Static) Global Allocation
F(z) | cellular cost function . . o .
7(j) | the region that sellej belongs to We first ignore traffic variations and develop techniques to
TABLE | effectively utilize both cellular and Wi-Fi resources img&ag
NOTATIONS. user traffic demands.
A. iIDEAL Auction Setting > Input : ds, e, \j, pj, F(z)
. o . . > Output : x5, ¢, 2
Third-party Wi-Fi resources and bids: Supposen third- minimize: 3. p; * 5 + F(z)
party hotspot owners offer their resources to the cellular subject to: !
service provider by submitting their bids. Let; = {\;,p,} [Cll ¥, ;—iti+ei=di Vi=1,2,...m
denote hotspot ownej's bid, which indicates hotspot owner [C2] S eifes =2
j wants to sell\; amount of bandwidth at a prigg per bits- [C3] 0<az; <)\ Vi=1,2,..n
per-second. The bids aren-atomic(i.e.,, a hotspot owner is [C4] 0< ¢ Vi=1,2,...m
willing to sell a part of the capacity she offers). Functif(y) Fig. 1. Problem formulation to optimize allocation

returns the region where hotspot owngssells her capacity
(e.9, f(j) = ¢ means hotspot ownef sells her capacity in
regions). For simplicity, we assume that each hotspot own
j sells capacity in a single region (relaxed in Section IlI-F
As Wi-Fi may not cover the whole sector, areas without Wi-
coverage can be treated as special regions with no Wi-Fi bi

We formulate aglobal resource allocation problemas a lin-

&ar program in Figure 1. The formulation effectively captur

lobal cellular resources and local Wi-Fi resources bytilnga
he cellular resource as a single resource with a singleAsd.
Qown, our goal is to minimize the sum of total Wi-Fi cost
i ) ] ased on their bids) plus cellular caoB{z). The constraint
Cellular resources as a Virtual Bid: Let t_he traffic demand [C1] ensures that we have enough Wi-Fi and cellular ressurce
vector beD = {dy,ds, ..., dn, }, Whered; is the demand in g satisfy traffic demands in each regiorThe constraint [C2]
region. In order to effectively leverage both third party angg|ates the cellular capacity with the cellular spectrurhe T
cellular resources, we let the service provider also pgpete constraints [C3] and [C4] put upper and lower boundszon
in the auction by submitting wirtual bid. The virtual bid is in  and ¢, Since there is no upper bound enthere is always
the form of a cost functiod’(z), wherez is the total amount 4 feasible solution. When increases beyond the available
of spectrum used in the entire cellular sector. kete the spectrum,F(z) grows rapidly. This problem can be solved

from hotspot ownerj. To satisfy the cellular traffic demand

d; in each regiom" we must have'ci + Zj; P x; > d;. C. iDEAL DynamiC Global Allocation
To allow us to capture the different spectrum efficiency, we Traffic demand changes over time and is challenging to
denote the actual spectrum usage in regianc; /e;, wheree, predict accurately. Based on the history of observed demand
is the spectrum efficiency in region Thus, the total spectrum vectors, we can optimize for the representative demanarsct
usage isz = >_1", ¢ /e;. that are likely to occur in the next time interval. Our goatas

We considerF'(z) to be a piecewise linear convex functionfind the allocation to minimize the worst-case cost for these
capturing the fact that below a certain value the cost (reéfflec representative demand vectors.

sunk cost [28]) is very low because the service provider hﬁgorithm: Formally, suppose there ar& historical de-
already invested in buying the spectrum and needs to ke@@nq vectors, denoted ds;, — (di1,dra, - dpm) (k =

the system running; as the cellular network becomes moye .. ,K), where dy; denotes thek-th possible demand in
loaded, the cost increases; and once it is overloaded, gte GRgion i (i = 1,---,m). While it is difficult to predict
increases sharply to capture the high cost of congestion.oficyrately the demand vector for the next time interval, it
similar convex cost function has been widely used in modelifis common in robust traffic engineering to assume that the
congestion cost in the Internet.g, [15], [25]). demand vector for the next time interval is covered by the
. Because. the.cellular resource in the virtual b|d. can be usgghvex hull of all the historical demand vector3, [25].

in any region in the sector, it introduces coupling betweainger this assumption, we can minimize the worst-case cost
the regions. The entire sector can now be viewed as offjle satisfying all possible demands that may arise in the
auction instead of several independent ones as in tiee Nayext time interval. We formulate this dynamic global alltoa
solution. Even if the number of hotspots in one region iSroblem by modifying the LP formulation in Figure 1. In

small, its hotspots are not guaranteed to win since the@uctharticular, we change [C1] and [C2] to the following:
may buy more Wi-Fi from other regions and save the cellular

resource for this region,e., hotspots compete not only within  [C1-dynamic] Z o xjtek >dg; Yk andi
their regions, but also across regions. We now see a new . )=t
type of competition, which we calhter-region competition  [C2-dynamic] Zi(cki/ ei) =2 vk



to ensure that we have enough cellular and Wi-Fi resourcksunit demand. Region 1 has 2 hotspots with valuations 1
to satisfy all possible demand vectors. This is much moend 3, respectively. Region 2 has 1 hotspot with valuation
efficient than provisioning for the peak demand in each megio2. Each hotspot has 1 unit resource. The cellular resource
From now on, we will refer to our dynamic global allocatioris 1 unit and is worth 1.5. The optimal allocation in this
algorithm asDEAL, and the static global allocation algorithmcase is: 1 unit of Wi-Fi in region 1 with valuation 1 and 1
asiDEAL (static) unit of cellular resource in region 2. To compute the global

Property: A nice property of this dynamic global allocation isCPPortunity cost for the Wi-Fi winner, we remove this Wi-Fi
that it effectively leverages the global cellular resouocede- Winner and compute the optimal allocation without the winne
mand to satisfy different possible traffic demands. In patér, Th(=T new aIIocatlon_ s_hould use a_II the ce_IIuIar resource in
while the total cellular resource is fixed, the amount ofudai "€gion 1 and the Wi-Fi resource with valuation 2 in region 2.
resource used in each region can change according to the fd¥ total valuation sold by other bidders is thus+2 = 3.5,
demand. When demand shifts from one region to another o¥¥pile in the original allocation the number is 1.5. So thelgio
time, the same global cellular resource can be used, rdtaer toPPOrtunity cost we pay to the Wi-Fi winneris5 —1.5 = 2.
provisioning for the peak demand in each region. Therefold, comparison, with the same allocation, if we apply VCG in
global cellular resource has a distinctive advantage axeall ©ach region separately, the local opportunity cost is 3esinc
Wi-Fi resources in satisfying time-varying demand, which w'€gion 1 has only the Wi-Fi resource with valuation of 3

explicitly leverage in our formulation. after we remove the Wi-Fi winner. This shows that global
_ o _ opportunity cost is lower since it effectively takes int@agnt
D. iDEAL Pricing Solution resources across all regions. Note that this notion of dgloba

As discussed in section I, we want the pricing scheme to B@portunity cost and its computation work for both staticl an
truthful and efficient. Meanwhile, we want the pricing sckeemdynamic global allocations. The two versions only differ in
to fully benefit from the inter-region competition. For exaly  the allocation (as described in Section I1I-B and I1I-C).
when hotspots in one region lower their bids and offload i i ) _ ) _
more traffic, this would reduce the demand for third partiyroperties: IDEAL inherits the following three important
resources in other regions and cause hotspots in othemsegiBroperties from VCG: (i) bidders have incentives tatighful,
to sell less. To capture this unique interaction betweeraint (il) the outcome of the auction isfficient and (iii) the auction
region and inter-region competition, we cannot treat ansti IS individually rational meaning third-party resource owners
in different regions as separate auctions and computengrich@ve incentives to participate in the auction. Formally haree
separately; instead we must consider them as a single auc#e following three theorems.
and explicitly incorporate inter-region competition intbe Theorem 1:In iDEAL, truth-telling is an optimal strategy.
payment computation. Theorem 2:iDEAL is efficient, which means when bidders

The Vickrey-Clarke-Groves [29] auction is well-known.Sti 4 rational, the winners are the bidders whose valuation fo
both truthful and efficient. It pays a winner the opportuiost  heir resources is the least.

that the presence of the winner introduces on the other daye ) . ) ) )
VCG has a major weakness — its cost is generally high [51]. Theor(_am 3:|_DEAL is |nd|V|du_aIIy ra}t_|0nal,|.e., pldders pf
However, in our setting VCG is able to capture the intef® auction will get non-negative utility, assuming a bidde
region competition, which lowers the cost. Thus to prestiree d0€S not bid lower than his valuation.
nice properties of VCGif., truthfulness and efficiency) while Theorem 1 indicates that it is beneficial for a bidder to bid
achieving low cost, we apply the VCG principle globally ovetruthfully regardless of other bidders’ strategies. Se¥ for
the whole cellular sector and compute tiiebal opportunity formal proof. Theorem 2 follows from the truthfulness prop-
costto capture both inter-region and intra-region competitioerty and our allocation, which minimizes the total valuatio
Algorithm: We follow the general VCG principle and com-aSSuming everyone bids truthfully. Theorem 3 guarantess th
pute the global opportunity cost as follows. Let(D,N) Winners will be paid no less than their valuation.
denote the valuation consumed in the optimal allocatibn.  While Theorem 3 is easy to see in normal settings, it is
is a demand matrix containingd demand vectorsD, = less straightforward with our dynamic allocation because i
{dk1,dga, -+ ,dpm} (E = 1,--- K), which specify the the dynamic allocation the total amount of resource we buy is
possible demands in each regioN. is the set of bidders not fixed. Specifically, when computing the opportunity cost
(including the cellular service provider). Given the réspil  we remove a winner and compute a new allocation and use the
the allocation scheme, if we buy capacity from winner bid(s) of the newly admitted winner(s) as the payment. While
b in region r, the amount of money we pay tb will be the unit prices of the newly admitted bids are not lower than
V(D,N \ {b}) — V(D N\ {b}) where D' is derived from the winner’s, the total amount of capacity we buy in the new
D by settingdy, = maxz(0,dy, —t) for eachk and N \ {b} allocation might reduce. This is because the new allocation
is the set of remaining bidders after removing biddlefhus, may buy more cellular resource, which can be used everywhere
V(D', N\ {b}) is the total value sold by other bidders undeand may reduce the need for Wi-Fi in all regions. That makes it
the current optimal allocatiori/ (D, N\ {b}) is the total value hard to tell if the opportunity cost is higher than the wiriger
sold by the remaining bidders withremoved. The difference valuation. We prove the theorem using contradiction: if we
is the global opportunity codtimposed on other bidders. remove a winnerv, and the amount of increased valuation
Next, we show that the inter-region competition can helwe buy from othersi(e., the opportunity cost) is less than
reduce cost with an example. Consider 2 regions, each witthat w sells, thenw should not have won.



E. Understand and Guard Against Collusion First, without utility sharing, members of a bidding ring
In this section, we first identify potential collusion segtes have an incentive to leave the ringg(, do not conduct supply
in iDEAL and show how they differ from those in normal VCGreduction). Formally, we have the following lemma:
settings. We then discuss how to mitigate such strategies. WwLemma 1:Without utility sharing, for bidding ring mem-
call a set of hotspots colluding togethebalding ring bers no supply reduction is a (weakly) dominant strategy, (
1) Collusion Strategies:Due to the distributed nature ofno worse than supply reduction).
hotspot locations, collusion in our context is quite diéfer This follows from the truthfulness of VCG and the fact that
from collusion in normal settings, where the optimal cdtins ~different sellers submit separate, sealed bids and carosat p
strategy is to let one proxy bidder buy (or sell in an reverg¥ one entity in our system.
auction) for the whole bidding ring [6]. However, inour syst ~ Second, the condition of “no utility sharing” is likely
each hotspot submits a separate bid. This forbids hotspttshold in practice due to difficulties of estimating utility
to collude optimally and thus may resort to other collusiofbtained from collusion in our system. One reason is that
strategies, identified below. In particular, we considep twtraffic demands and Wi-Fi availabilities are highly dynamic
types of collusion: (|) Sing|e seller collusion, whose Qﬂ)im which makes it hard to attribute Utl'lty Changes to collusio
is to maximize the total utility of all hotspots owned by thigloreover, using sealed bids makes it hard to validate the
seller, and (i) multi-seller collusion, where each setlelludes behavior of other members in the bidding ring. We can make
with other sellers, but tries to solely maximize her owniytil it even harder through system design such as delayed payment
In both types of collusion, a bidding ring can drive up thée.g, paying the hotspots every week even though the auction
price and increase its utility b$upply Reductiori.e., drop is conducted hourly), which further obfuscates the utility
Ios@ng .bids or reduce t_he.capacity offered in winning bid%. Practical Considerations
which is equivalent to bidding an extremely high price foe th
capacity that is removed from bidding). Supply reduction caSupporting offloading to femtocells and dynamic roam-
drive up price because it increases the opportunity costhwhing: In addition to third-party Wi-Fi hotspots, femtocells
is determined by the immediate losing bids. and other cellular networks can also be used for offload-
2) Mitigating Collusion: We mitigate collusion as follows: ing. Roaming to other cellular networks considered here is
Dynamic demands: In order to benefit from supply reduction,different from traditional roaming. Traditional roaming i
a bidding ring needs to accurately predict which bids mag lognabled only outside the current cellular provider's cager
and drop them. Without that, supply reduction can cause ha@f¢a whereas dynamic roaming in our context can take place
by letting the bidding ring miss opportunities to win. Magin within the coverage area to reduce congestion. In order to
such predictions is challenging due to the dynamic nature $ipport offloading to different types of technologies, wece
the traffic demand and Wi-Fi availability. Therefore, ingtiee  to effectively handle partially overlapping spatial cage,
supply reduction does not necessarily increase the utifitge as different resources have different coverage ranges. We
hotspots, which can discourage them from colluding. extend our approach to support these scenarios by dividing
Bidding as a group: A single seller with multiple hotspots ©Verlapping regions into multiple non-overlapping regi@md
has an incentive to reduce supply because her hotspots tsusfpwing one provider to belong to multiple regions. The
separate bids. The opportunity cost of one hotspot can gstraint [C1] in Figure 1 is then replaced by the following
affected by the price/availability of her other hotspots. gy WO néw constraints:

strategically drqpping some of her hotspots or ra@sjngrthei Z oyt =d;, Vi=1,2,...m,
prices, she can increase her revenue. This strategy isialtpec JHef()

harmful as it may also increase the opportunity cost of other Z Tj; =T, Vi=1,2,...n,
sellers’ hotspots. Ultimately, it incurs a higher cost t@ th v

service provider. wherez;; is the amount of capacity bought from selleand

To address the issue, we let the hotspots owned by t#ged in region. This extension can not only support offloading
same entity bid as a groupe., the seller who owns multiple to different types of networks, but also allow a hotspot juev
hotspots discloses all her hotspots and we consider themt@gise her resources across different regioag, (hotspots
a single bidder in the auction. The seller has an incentix@longing to a single restaurant chain spread across eliffer
to choose this option, since bidding truthfully is an optimaegions but sharing the same bottleneck capacity).
strategy (Theorem 1). It is also preferred from the servigacorporating quality score: The cellular service provider
provider's perspective because it only removes compatitignay prefer some hotspots over others due to different gualit
within the group. The hotspots in this group still competéhwi (e.g, to avoid hotspots that do not guarantee the amount of
hotspots of other sellers, which helps to bring down the.coghpacity they offer). In this case, we can differentiate alihi
Stability of multi-seller collusion: When multiple parties hotspots to use based on the quality scgréd < ¢; < 1)
are involved in collusion, a natural question is whether th& hotspoti. The higher the score, the better the quality. To
collusion is stablei(e., all members of the bidding ring haveensure the auction is still truthful and individually ratad,
incentives to stay in the ring [6], [9]). [6] shows that inwe change the objective function in the allocation phase to
normal settings, collusion in VCG is stable under certaih;(z; - p;/q;) + F(z) and change the payment for winngr
assumptions. However, their conclusion does not apply tmg; times the opportunity cost, which is the quality weighted
our context because of the difference in collusion strategi opportunity cost. It is not difficult to see that the auctien i
Specifically, we make the following two observations. still truthful and individually rational.



IV. EVALUATION METHODOLOGY using the data from a large service provider. The data rates i

We evaluate our approach using trace-driven simulatiorl8€ traces are not used since they are limited by the current
We first describe the traces and how they are used. cellular capacity and may not indicate the real der_nand.
We place users randomly in the sector and assign them to

Traces: We use the following traces: (i) Locat|o_ns Of. Ce"regions according to their locations. When a single demand
towers and femtocells.from a large ceI.I.uIar prpwder In th9ector is used, we use the peak demand from each region as
US, an_d hotgpo.t locations from [30]. (ii) Deta|led. networlfhe final traffic demand. When dynamic allocation is used, we
data with periodic (every 2 seconds) reports of which sect Ise all the demand vectors corresponding to the time when any

mobile devices are using for their data communication. Baion has peak demand. This way, both static and dynamic
use one-week data from 2011, and pick the busiest sectors cation schemes can sustain the peak loads in all regions

of thousands of sectors. We then use this data to estimate the

number of users in a sector during one hour, and the amo@finerating bids: We use the distribution of backhaul data-
of time they stay in that sector. (i) 3G HTTP traces repof@€s and pick the available data rate uniformly as being-25%
detailed HTTP session information, such as HTTP duratiofi>% of the backhaul data-rate. The Wi-Fi bids are then gen-
downloaded bytes and type of the download during all ZQ{ated.based on the pricing plan of a major service provider.
hours on a single day in 2011. This is aggregated over sevefég uniformly choose 50%-150% of the price as a hotspot's
sectors and does not have information about which sector fduation for a given backhaul capacity to capture varying
user is currently in. (iv) The backhaul capacity of about 15gPSts from different service providers. We then determivee t
hotspots from a large service provider in the US. All of thBourly Wi-Fi valuations according to its capacity and mayth
network and trace data was anonymized, and no individUdllS @ssuming 30 days/month and 8 hours/day. The real bids
user information or identity was available or used. We onffepend on their bidding strategies and may differ from their

costs) when is below 80% of cellular capacity (which is set to

Generating regions: We generate regions by clustering th% carriersi.e.,, 3 times 3.84 MHz), and set totimes estimated

WI-Fi .thSDOtS using .k—means [22.]' We use 6 regions aximum Wi-Fi valuation when exceeds 80%. Note the Wi-
it minimizes partition index [8], which is a commonly use

. . . . . i valuation i r wher h rum i r Hz.
clustering metric. We run the clustering algorithi0 times aluation is per bps whereas the spectrum cost is pe

; . I . Thus we translate the maximum Wi-Fi valuation to price per
and pick the clustering that minimizes the average distafice using the lowest spectrum efficiency, such that Wi-Fi is

Wi-Fi hotspots. o th.e centers of their asmgngd FegIoNS. always preferred when the cellular network is overloaded. W
Network configuration: Based on the typical cell towersetc to 1.25 by default and vary it to evaluate its impact.

spacing of 400-500m in busy urban areas, we use 250m Berformance metrics: We compare different schemes using

the communication range for a cell sector. The Commumnat'%fficiency and cost. Efficiency is measured as the total valua

:r?n[?l?srg(s);r)e\::\?i;/lzellyar']r% I:ZT;?I;?(IEI saprgctsr 3:#2%&2&3%2 y Stion of all resources consumed, whereas cost is the tote pri
the distance between the centroid of the region and the C%ﬁlcellular and Wi-Fi resources the service provider pays.
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tower, and the distance between the centroid of the region e e, RS — 1 T
and the interfering cell towers, and compute path 10Ss USING %[ per egon vl (Loca) moe 20 b regonve ey o

Fixed Price 10

8

Fixed Price

Hata model [16]. We conside6 nearest base-stations as
interfering base-stations to calculate t6éN R. We account

Total cos
w
o
Total cost

NS

for self-interference and compute the resultifg NR’' as: 10 )

SINR = SINE__ where SINR' and SINR denote the o Ll ME I R Ll
i  14axSINR X . ) N 08 1 12 14 16 08 1 12 14 16
signal to interference and noise ratios with and withouf sel Demand Scaling Factor Demand Scaling Factor

(a) No. of hotspots =0 (b) No. of hotspots =130

interference, respectively, and = 0.005 [2]. We get the _ _ _ _
Fig. 2. Total cost comparison with truthful bids

spectrum efficiency by applying the Shannon’s Law. Since the
Shannon capacity is an over-estimate of the real capacgy, w
scale down the result to match the maximum efficiency that
is generally observed in a cellular network (2 bps/Hz). A. Comparison of Truthful Auctions

Generating traffic demands: To generate the demand for We first compare the cost incurred under different auction
an hour, we determine the number of users from the detailschemes, including iDEAL, iDEAL (static), per region VCG
network data during that hour, and pick all the HTTP requeststh global allocation, and per region VCG with local allo-
of the corresponding number of users from the 3G HTT&ation. All the auctions are truthful except per region VCG
trace. The detailed network data and the HTTP trace améth global allocation, which is included to show how VCG
both anonymized and we only use the aggregated demamitl perform without inter-region competition. In additipwe
information in our evaluation. We replace the data rate & tlalso compare with fixed pricing, where the service provider
trace with the desired demand rate according to the apigitatpays the hotspots a fixed price and uses the global allocation
types: video 350 kbps, audio 128 kbps, applicati@g{ to determine which hotspots to buy. A hotspot with higher
download binary files) 350 kbps, text 150 kbps, and image 168luation than the fixed price would not sell in this case so
kbps. We determine the rates of applications, text, and @magve use the maximum Wi-Fi price we may generate as the
according to thed0-th percentile rate that users receive fronfixed price. The result of using average Wi-Fi price as the
the 3G HTTP trace, and determine the video and audio rafe®d price is similar and omitted for brevity.

V. EVALUATION RESULTS
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Figure 2 shows the cost incurred under different schemes. PerTegion VCG me 08 Per region VCQ s
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We first observe that auction based approaches work muc
better than the fixed pricing when there is enough compatitio
In particular, iDEAL achieves lower cost than the fixed prii
even when the number of hotspots is 40. With 130 hotspots, 0

iDEAL is almost an order of magnitude better than the fixed Ratio of 36 and Hishest Wi orice Rato of 36 and riahest it arce
pricing. Second, iDEAL out-performs iDEAL (static), which () No. of hotspots =0 (b) No. of hotspots =130
Out-performs both versions of per region VCG. Per region Fig. 4. Total cost comparison with varying cellular cost ftime

VCG fails to capture the Inter-region competition and thu&o not compare with GSP (Generalized second-price auction)
may suffer from limited competition and lead to high cost. |

. : . . ; Because iDEAL does not differentiate between winning slots
comparison, b_o_th VErsions of IDEAL fully benefit from Nt GSP were used, everyone would game to be the highest paid
region competition. IDEAL further redug:es cost by Ie\{er@| winner as in the first price. We use the static global allacati
the flexibility of using cellular resource in different regis on for all schemes, except that iDEAL uses dynamic global
demand, thus reducing the demands for third party resourcafocation. There are many possible gaming strategiesutn o

Therefore, iDEAL and iDEAL (static) out-perform per regionevaluation we consider sim : .
; , ple gaming strategies as exampl
VCG by 63%-80% and 10%-61%, respectively. and show that even these simple strategies can significantly

20
15
10

Total at

Total cost

3 14 — DEAL mamm 3 12 " DEAL e degrade performance. In the first price, we assume a bidder
E 1 iDEAL (static) s £ 1 iDEAL (static) s . . . . .
g . Local ¢ z Local 77 can observe some fraction of bids from other bidders in his
s s E region. We call this fraction as Knowledge Factor (KF). He
E ° g then uses that information to guide his bid in the next round b
s p bidding the maximum between his valuation and the average
F oo Foo of the lowest losing price he sees and the highest winning
08 1 12 14 16 08 1 12 14 16 . . . . n .
Demand Scaling Factor Demand Scaling Factor price he sees (including his own bid in the last round). In
(@) No. of hotspots =10 (b) No. of hotspots =130 the first round, bidders start by bidding uniformly randomly
Fig. 3. Comparison of total true valuation consumed. between one time and two times their valuation. In the unifor

We further compare the efficiency of following allocationsprice auction, bidders can game by supply reduction. So we
all with truthful bids, namely (i) iDEAL, which can optimize let the winners who do not sell all their capacity reduce
allocation according to multiple possible demands, (iilg/&L.  their capacity to slightly below the amount they sell in the
(static), which optimizes allocation according to a siriggdfic hope of admitting new winners and potentially increasing th
demand, (iii) local allocation, which statically allocateellu- price. When they do sell all their capacity, they will try to
lar resources to different regions based on the traffic delmanincrease their offered capacity. In reality, bidders camrioge
in these regions. Note here we omit the fixed pricing becaugggressive. For example, all bidders may attempt to reduce
it is not an auction and it makes allocation decisions soledupply €.9, even when they sell all they offer, they can
based on the fixed price instead of the valuation. Figurep®tentially still gain by supply reduction), which may harm
shows the total true valuation of different allocation sokee the system even further. We conduct multiple runs, and show
as we scale the traffic demands by a constant factor from Oh@ results from one run since they are all similar.
to 1.6 and vary the total number of hotspots participating °¢ Fistprice (KF 02) —— 09 Firstprice (RF 02) ——
in the auction. As before, iDEAL out-performs its static £ ., Frstpice (08 2 or Fist e (608 2
counterpart, iDEAL (static), which further out-performiset 0s
local allocation. iDEAL reduces the total valuation to only £
8%-42% of local allocation since it can effectively adape th
cellular allocation to different regions based on real dedna

Uniform price e
iDEAL (static) ---=-- 0.6 iDEAL (static) ---=---

Total cost

03 Y / 1
0.2 B R I LY
0.1

True valuation consumed

. . . . 0
Even iDEAL (static) performs very well: its total valuation N o @ w0
consumed is only 34%-72% of local allocation. (a) True valuation consumed (b) Cost
Figure 4 further compares the cost of different auction Fig. 5. Cost of gaming

schemes as we vary the cellular cdstz) by changing its  Figure 5 (a) shows how gaming affects efficiency. We make
parameterc from 1 to 2. The absolute cost increases with a few observations. First, both versions of iDEAL consume
as we would expect. The relative performance across differéess total valuation. The total valuation of iDEAL is as
schemes is similar for all values efwe use. The total cost low as 8% of the first price due to more effective use of
reduces as competition increase®.( when the number of cellular resources in presence of multiple demands. Tla tot

hotspots goes up from 40 to 130). valuation of iDEAL (static) is only 45% of the first price.
) ) ) Second, both versions of IDEAL are stable as bidders are
B. Comparison with Non-truthful Auctions truthful. In comparison, the total value consumption flatées

In this section, we study the impact of individual hotspatonsiderably in the first price auction because the biddiapta
gaming in non-truthful auctions. We compare iDEAL withtheir bids according to the others’ bids. The uniform price
the first price and regional uniform price, both of which arperforms close to iDEAL (static), because the bidders in our
widely used [12], [18]. The first price pays winners the armtoussimulation only reduce supply slightly and they do not game
of their bids, and the regional uniform price pays all they asking higher. In reality, the damage can only be worse.
winners in a region at the first losing bid in the region. We Figure 5 (b) further compares the total cost to the provider.



Similar to the case of total valuation, both iDEAL version#\s expected, the benefit of femtocells is larger when we have
yield significantly lower cost. Specifically, IDEAL reducdse fewer Wi-Fi hotspots. For example, the femtocells reduee th
cost to 18% of the first price and regional uniform pricecost by 32% when there are only 40 hotspots. As the number
Moreover, even iDEAL (static) reduces the total cost to 63%f hotspots increases, the additional benefit from femiscel
of first price and regional uniform price. This result showatt becomes marginal since Wi-Fi has a higher communication
with the help of inter-region competition, using VCG does$ naange and is more effective in offloading.

incur higher cost than first price or regional uniform price.
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/ > s i ) Fig. 7. Benefit of femtocell offloading and roaming
Fig. 6. Auction cost under collusion and with group option

Supporting Dynamic Roaming: Figure 7 (b) shows the total
cost as the roaming capacity available varies from 0 to 4 Mbps
Collusion under dynamic demands: We first study how Where O corresponds to no roaming. The evaluation has 40
often a bidding ring can improve its utility by supply redioct hotspots. _In this case, since _the Wi-Fi resource is _msafitcl

We use two different sizes of the bidding rings: 20 and 5gV€n having 1 Mbps of available roaming capacity (around
out of 144 hotspots. For each size, we run the experimem% total cellular traffic in the sector) can significantlyt cu
10 times with different random sets of hotspots. Each rffPWn cost. Dynamic roaming reduces the cost to 17% of that
consists of 50 rounds. In each round, the bidding ring dropj4€n only Wi-Fi is used with the low roaming price (which
all losing hotspots from the previous round. If there is nt§ S€t O the maximum winning Wi-Fi bid we observe in the
losing hotspot, it brings back the cheapest previous dmbppgfault settings), and 25% under the high roaming price¢ihi
hotspot. We vary the demand during each round, but W the maximum Wi-Fi bid we may generate based on the
keep Wi-Fi bids constant. We confirm the degree of traffidistribution we use). Further increasing roaming capdeiyls
variation in the hourly traffic traces in multiple cellulazators t© @n éven lower cost but the improvement tapers off as the
from a major cellular provider is comparable to the trac&@Pacity increases beyond 2 Mbps.

used for our evaluation. We find that for the bidding ring of V1. | MPLEMENTATION

size 50, collusion reduces the hotspots’ utility for 13% of
time and improves the utility for 28% of the time. For th
bidding ring of size 20, the numbers are 20% and only 59
When collusion reduces utility, it reduces by 79% on avera
while the number for improvement is only 30%. These resul
suggest dynamic demand significantly reduces the incenq
to collude. In reality, when Wi-Fi bids are also dynamic,sit i
even harder to predict which set of hotspots will lose.

C. Collusion

Offloading involves the following three challenges: (i) nde
ifying a network to offload, (ii) automatic authenticatjcand

ii) seamless offload so that existing sessions are maiedai
uring the offload. IDEAL already solves the first issue. To
Rdress (ii), Hotspot 2.0 can be used to discover hotspot
hformation and support authentication with externallynead
hotspots. To support dynamic offloading in this paper, the
‘roaming’ partners are updated dynamically according ® th
Bidding as a group: Next we compare bidding as a groupffloading decisions of iDEAL. To address (iii), Dual Stack
with collusion using the same strategy mentioned abov@obile IP (DSMIP), DSMIPv6 [3], [1] have been proposed
Figure 6 plots the average cost as we vary the total numbergpfd various implementationg.,[20], [27]) show that there
sellers and the total number of hotspots they own and perfofgna low switching overhead.
100 random runs for each configuration, where each COﬂfig-We deve|0p a prototype imp|ementation on Linux machines
uration generates 10 sets of sellers and 10 sets of hotspgting a NetGear WAG511 NIC to demonstrate the feasibility
The results are consistent with our expectation: a sindlerse of our solution. Figure 8 shows our system architecture.
collusion does not always improve utility, but it alwaysums Through a simple web interface, biddéns., hotspot owners,
a higher cost to the service provider, especially when eaghn submit their bids to the service provider machine, wins ru
seller has a large number of hotspots. In comparison, thépgrahe auction. Hotspots are configured using hostap [17]. The
option, which is preferred by sellers, reduces the total bgs service provider sends a message to the winning hotspot with
as much as 36% and 96% when the number of hotspotsttig ssid and password it should use in the current round and
40 and 130, respectively. The damage of collusion reducesaio sends this information to the mobile client so that it ca
the number of sellers increases since there are more sillergonnect to the winning hotspot. This is achieved using TCP
competition and each seller controls fewer hotspots. sockets. Authentication between mobile client and hotspot
D. Extensions done using WPA PSK through WPA Supplicant [31]. We

' collect performance statistics from the mobile client folirg
Supporting femtocell offload: In Figure 7 (a), we let both and keeping track of hotspot quality score. We measure the
Wi-Fi hotspots and femtocells participate in the auctiore Wupload and download statistics on the wireless interfagegus
vary the number of Wi-Fi bidders while keeping 16 femtocellghe Collectl tool [11] periodically€.g, every10 secs) and send



Step 4: Associate,
Authenticate

' Hotspot 2
Step 2: Winner
determination \Q\’g
Auction Controlle o
(i)  Step 3: Send ESSID, PWD
é Hotspot n
Fig. 8. System Architecture.

back the data to the service provider PC for bookkeeping. THe!
running time of allocation and pricing is only around 100ms2]
which is small enough for practical use.

We measured the association time in our implementatiorlﬁ]
After getting the scan results, it také8 ms to associatel03  [4]
ms to perform a 4-way handshakee( defining individual
keys for unicast transmission), artl ms to perform the [5]
group handshakei.¢., defining keys for broadcasts). The [6]
authentication and scan times can be further redueeg, (
using techniques in [23], [24]). To further enhance efficien 7
after deciding how much traffic to offload to each third party(s]
resource owner (which is the focus of this paper), we caR)]
strategically select users to offload to minimize the sviitgh

time and avoid offload users who will soon leave the hotspo%s.]
10
VIl. RELATED WORK

The need to complement cellular networks with other fornisl]
of connectivity has been considered in the past. The auth
in [7] conduct measurements in a vehicular testbed, andtrepas3]
that Wi-Fi is available onlyi 1% of the time and 3G is available
87% of the time. Moreover, they find that 3G and Wi-Fit4!
availability are negatively correlateé,g, Wi-Fi is available
50% of the times that 3G is not available. Le¢ al, in [21] [15]
use daily mobility patterns of00 iPhone users to measure; 6]
the amount of data Wi-Fi can offload. They find that Wi-Fi
can offload65% of data traffic without any delay; if hour [ig}
or longer delay can be tolerated, the offload traffic increasgg;
further by 29%. Zhuo et al, in [32] leverage VCG based
auction mechanism to incentivize mobile users to wait unf®l
they come in contact with a Wi-Fi AP. Authors in [13] quantifyj21;
city-wide Wi-Fi offloading gain. They show that even a sparse
Wi-Fi network improves performance. Different from thd?2]
above existing works, our paper focuses on how to incemivipga)
third party resource owners to offload cellular traffic. The
work in [10] is closest to ours. It proposes a VCG rever
auction framework to buy femtocell resources. As mentioned
in Section 1, it does not address the three unique challenges(25]
focus on, namely, diverse spatial coverage, traffic unceyta ¢
and collusion. The scheme is similar to the local allocation
spirit in that it statically determines the amount of thpdrty
resource to buy in each region.

[27]

[28]
(29]

We propose iDEAL to enable a cellular service providggo)

VIII. CONCLUSION

with the lowest valuations as the winners, and (v) mitigates
potential collusion. Our trace-driven simulation showstth
iDEAL effectively reduces cost and is robust against cadins
Our prototype implementation demonstrates its feagjbilit
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