
CS 380C — Spring 2015 Handout #1
Compilers January 21, 2015

Professor Teaching Assistant
Name: Calvin Lin Jia Chen
Email: lin@cs.utexas.edu jchen@cs.utexas.edu
Office Hours: Mon/Wed 3:30-4:30 Tue 3:30-4:30, Thu 3:30-4:30
Office: GDC 5.512 GDC 5.440

Course Objectives
To learn the basics of static analysis and transformation techniques, to understand how static analysis can play a role
in many different aspects of systems, and to prepare students to do research in compilers or related fields. Students
will learn this material by building new pieces of an existing compiler, reading papers, and proposing and completing
a course project.

Prerequisites
Facility with C++. Reasonable programming skills. Good English communication skills. Time and motivation.

Reading Material
• Assorted technical papers. (There is no textbook.)

Lecture Topics
We will cover roughly the following topics, though this listis subject to change.

Part 1: Basics

– Control flow analysis

– Dataflow analysis

– Reuse optimizations

– Static Single Assignment

Part 2: Interprocedural Analysis

– Motivation

– Pointer analysis

– Dimensions of the analysis space

– Flow-Sensitive analysis

– Flow-Insensitive analysis

∗ Subset-based
∗ Equality-based

– Context-Sensitive analysis

Part 3: Modern Uses

– Modern goals

1



– Correctness and security

– Dynamic optimization

– Object-oriented languages

Part 4: Classical Uses

– Register allocation

– Instruction scheduling

– Locality and parallelism

– Dependence analysis

Programming Assignments
There will be approximately 4 programming assignments thatwill build upon theLLVM compiler. LLVM is written in
C++, makes heavy use of the Standard Template Library, and runs on the CS Department’s Linux boxes. The following
is a tentative list of programming assignments, although the list is likely to change.

• Assignment 1: Introduction to LLVM

• Assignment 2: Local Optimizations

• Assignment 3: Data-flow Analysis Framework

• Assignment 4: Global Analysis and Optimizations

Course Projects
The course project allows students to explore one area of compilation in some depth. These projects will typically
involve implementation, but with proper justification could take on many flavors—including a careful survey, an
implementation, or an experiment—and they can be done individually or in groups. However, all course project ideas
must be approved by the instructor, and students who do not propose a suitable project will be assigned one. Ideas for
course projects will be circulated shortly.

Reading Assignments
There will be 6-9 assigned papers to read. These will sometimes reinforce the lectures and sometimes expose you to
new ideas. All reading assignments are fair game on the exam.

Exams
There will be a comprehensive final exam.

Communication Skills
Good communication skills, and in particular good English writing skills, will be important to succeed in this course.
For each programming assignment, students will write a report, and the assignments will be graded on clarity and
presentation as well as program correctness. In addition, good communication will be needed skills to propose,
narrow, and define the course projects.

Grading
Assignments and Homework: 35%
Project: 30%
Final exam: 30%
Class participation: 5%

2



Assignment 0
Due: January 28.

Part 0: Join our Piazza group so that you can participate in online discussions about the course and the assignments:
piazza.com/utexas/spring2015/cs380c

Part 1: Read and understand our class rules on Academic Dishonesty (see below) and the University’s rules on
plagiarism:
http://deanofstudents.utexas.edu/sjs/acadint plagiarism.php

If you have any questions about academic dishonesty or plagiarism, please post to the Piazza page (use Piazza’s
private message facility if you do not want your questions tobe made public).

Part 2: Send a brief email message to both the professor and TA:

(a) Please tell us your academic status (eg, 2nd year PhD student in CS). If you have an advisor and/or a research
topic, please let us know what they are.

(b) Let us know if you have read and understood the University’s rules on plagiarism. If you still have questions
that were not answered by the Piazza discussion, please let us know.

(c) If you have any specific reason for taking this course or any particular topics that you would like to better
understand, please let us know.

Part 3(a): As specified in the Piazza post, download the virtual machineimage from
http://www.cs.utexas.edu/ ˜ jchen/380c.ova . This virtual environment will be the canonical en-
vironment for the entire class. It provides a prebuilt LLVM development environment and the clang compiler so that
you do not have to worry about setting up the infrastructure yourself. If you are happy with the performance of this
virtual machine, you can skip part 3(b). If instead you want better performance, go to part 3(b).

Part 3(b): Build and install LLVM libraries and the clang compiler on your own Linux ma-
chine. We will use LLVM version 3.5.1 (or 3.5.0) in this class. Instructions can be
found on http://llvm.org/docs/GettingStarted.html if you use GNU Make or on
http://llvm.org/docs/CMake.html if you prefer CMake. While reading the guides, please note that
you do not want to check out any codes from the svn repository as the guide says; instead, source codes should be
downloaded fromhttp://llvm.org/releases/download.html .

There is nothing to turn in for Part 3; just let us know if you have problems.

Open/Closed Door Policy
Feel free to stop by any time my door is open, which will be mostof the time. If my door is closed,please do not
knock unless you have a scheduled appointment.

Academic Dishonesty
Understand the difference between cheating and collaboration. Allowable collaboration is encouraged.Cheating will
lead to failure of the course.

There are manyexamples of cheating, but these include accessing another student’s account, looking at someone
else’s code, copying or downloading someone else’s code, orallowing others to copy or access your code. Of course,
this means that you should not look on the Internet for code tosolve your problems.

Examples of allowable collaborationinclude discussions and debates ofgeneral concepts (including C++, STL, build
systems, etc.) and solution strategies.Examples of unallowable collaborationinclude discussions and debates of
implementation details such as code structures and what APIs to use. A good way to ensure that you are collaborating
fairly is to follow the Gilligan’s Island Rule:

3

http://www.cs.utexas.edu/~jchen/380c.ova
http://llvm.org/docs/GettingStarted.html
http://llvm.org/docs/CMake.html
http://llvm.org/releases/download.html


The Gilligan Island Rule
You are free to discuss a problem with others1, but you may not bring from these discussions any written
or electronic notes. After the meeting, engage in a half-hour of mind-numbing activity, such as watching
a rerun of Gilligan’s Island, before you resume work. This rule ensures that you are able to reconstruct
what you learned during your discussion using only your own brain.

Always cite your collaborators with a brief explanation of the degree of collaboration (eg. “Susan and I discussed var-
ious approaches to testing our code.” eg. “I am using the dominators algorithm described in Chapter 7 of Muchnick’s
book”).

Code Reuse.The code you submit should be your own. You may include LLVM headers and look into their imple-
mentation file for ideas, butdo not copy any code from LLVM into your own source, and do not use any APIs that
are private in the sense that they are not accessible throughthe LLVM include files. We may occasionally ban parts
of the LLVM APIs because they will trivialize some of the assignments. Of course, you shouldnot include any file
from any banned parts of the LLVM library .

Using Outside Learning Material. Materials from the internet should only be used for educational purposes. Thus,
you can read about C++ smart pointers (and these examples could well contain code), but you must not copy any code
or be looking at any of this code when writing anything that you turn in.

If you have any doubts about what is allowed, please ask the instructor or TA.

1Of course, the rule about not looking at anyone else’s code still applies.

4


