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Abstract
This paper extends the reach of General Purpose GPU
programming by presenting a software architecture that
supports efficient fine-grained synchronization over
global memory. The key idea is to transform global syn-
chronization into global communication so that conflicts
are serialized at the thread block level. With this struc-
ture, the threads within each thread block can synchro-
nize using low latency, high-bandwidth local scratchpad
memory. To enable this architecture, we implement a
scalable and efficient message passing library.

Using Nvidia GTX 1080 ti GPUs, we evaluate our new
software architecture by using it to solve a set of five
irregular problems on a variety of workloads. We find
that on average, our solutions improve performance
over carefully tuned state-of-the-art solutions by 3.6×.

CCS Concepts • Computer systems organization →
Single instruction, multiple data; • Software and its
engineering→Mutual exclusion; Message passing.
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1 Introduction
GPUs provide significant performance advantages over
traditional CPUs, particularly for highly regular data-
parallel workloads. Given the potential performance
gains, there has been strong interest in applying GPUs to
irregular computations. For example, there has been sig-
nificant work in graph and tree-based algorithms [7, 8,
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18, 22, 33], and Nvidia’s recently released Volta [29] GPU
supports a new SIMT execution model that makes it eas-
ier for programmers to use fine-grained synchronization
without worrying about SIMT-induced deadlocks [12].

Unfortunately, despite hardware support for atomic
instructions, more general forms of fine-grained
synchronization—such as those that use fine-grained
locks to provide mutual exclusion to global memory
updates—are one of the most expensive operations that
can be performed on a GPU. Two properties of GPUs
contribute to this problem. First, GPUs typically run
thousands of threads, which can lead to massive lock
contention. Second, unlike CPUs, GPUs do not have
coherent caches that could allow lock retries to be con-
fined to local caches, so GPU retries must access the last
level cache. With these two properties, lock contention
can trigger a massive number of retries that need to
touch the last level cache, creating a serious bottleneck.
Moreover, fine-grained synchronization is often used
for irregular workloads, so these retries often involve
non-coalesced accesses that further degrade global mem-
ory throughput. Finally, lock retries also increase the
latency of lock operations, which can significantly limit
performance when many threads contend for a small
number of locks. Thus, fine-grained synchronization can
cause both throughput and latency problems. As a result,
GPU programmers typically avoid fine-grained synchro-
nization, often resorting to less efficient algorithms that
admit less parallelism.

In this paper, we present a new software architec-
ture that supports efficient fine-grained synchronization
on GPUs by moving lock operations from slow global
memory to the GPU’s faster word-addressable local
scratchpad memories (i.e. shared memory in CUDA or
local memory in OpenCL). However, these scratchpad
memories are not visible to all threads, so our solution
views the GPU chip as a distributed system, where
each thread block (TB) is a node equipped with a fast
private memory (i.e., scratchpad memory), and the mul-
tiple nodes share a communication medium (i.e., global
memory). Thus, our architecture decouples a baseline
GPU kernel into two types of thread blocks that run
concurrently on the GPU. Server TBs handle updates to
critical section data1. Client TBs execute all other aspects
of the baseline kernel, with added procedure calls to the
1We define critical section data to be the data accessed in a critical
section.
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server TBs, which access the critical sections on behalf
of the client TBs.

More specifically, our solution partitions critical sec-
tion data among server TBs so that each server TB
works on an exclusive set of data without conflicts.
When a client TB needs to update some critical section
data, it sends a message to the appropriate server TB.
Threads within a server TB use locks implemented in
the scratchpad memory to maintain mutual exclusion
when processing the clients’ requests. To support this
architecture, we implement a software message passing
library so that client TBs can efficiently communicate
with server TBs via global memory. The benefit of our
solution is that clients send these messages just once
over global memory—subsequent lock requests and re-
tries are performed by the server TBs without accessing
global memory.

From the programmer’s perspective, our software
architecture is straightforward to implement—in most
cases, the code in critical sections is moved to server
threads, while the remaining code remains in Client
threads.

This paper makes the following contributions:

∙ We implement a software client-server architec-
ture that supports efficient global synchronization
on GPUs by moving lock operations from global
memory to fast scratchpad memories.
∙ We describe a highly optimized software inter-TB

message passing system that supports this client-
server architecture.
∙ Using Nvidia GTX 1080 ti GPUs, we evaluate

our solution on a set of irregular problems, in-
cluding graph-based problems and microbench-
marks, showing that our approach yields an av-
erage speedup of 3.6× over the best known GPU
solutions for these same problems.
∙ We provide a performance analysis that explains

why our solution is profitable.

The remainder of this paper is organized as follows.
In Section 2, we place our work in the context of prior
work. After describing our solution in Section 3, we
present our evaluation methodology in Section 4 and
our empirical evaluation in Section 5, before concluding.

2 Related Work
We now describe relevant prior work in the area of
fine-grained synchronization for both CPUs and GPUs.

2.1 CPU-Based Solutions
We begin by comparing our solution with previous work
that applies similar ideas to CPUs.

The idea of designating one or more threads as servers
(or delegates) to handle critical sections has been pro-
posed for multi-core and many-core CPUs [9, 14, 20, 27,
32, 34, 35, 41, 43] The server threads can be chosen either
statically [9, 27, 35, 41] or dynamically [14, 20, 32, 34].
While their designs differ, these solutions share the
principle of transforming synchronization into com-
munication, that is, to let clients offload (via message
passing) the updates for the same data to the same server
so that critical section updates can be serialized at the
server. Our work is the first to apply similar principles
for GPUs. Since GPU architectures differs significantly
from that of CPUs, our solution differs from previous
work in a number of key ways.

First, CPUs have fewer hardware threads, so previ-
ous work uses individual threads as servers, and since
conflicts are serialized to a single thread, no further
synchronization is needed for processing requests. Since
GPUs have large thread or warp counts, our solution
uses thread blocks (TBs) as servers so that when requests
are processed, threads in the TB synchronize via the fast
scratchpad memory.

Second, CPUs have implicit hardware inter-core com-
munication mechanisms in the form of cache coherence
and, in many cases, sophisticated on-chip interconnects.
So previous solutions employ software message passing
systems on top of these mechanisms for a relatively
small number of threads. By contrast, our solution must
scale to the much larger number of threads on GPUs,
which lack such hardware support for inter-SM (inter-
TB) communication.

2.2 GPU Solutions
Yilmazer, et al. [46] propose a hardware-accelerated fine-
grained lock scheme for GPUs, which adds support for
queuing locks in L1 and L2 caches and uses a customized
communication protocol to enable faster lock trans-
fer and to reduce lock retries for non-coherent caches.
ElTantawy, et al. [13] propose a hardware warp sched-
uling policy that reduces lock retries by de-prioritizing
warps whose threads are spin waiting. In addition, hard-
ware accelerated locks have also been proposed for
CPUs [4, 25, 42, 47].

By contrast, our solution does not require hardware
modification. Moreover, a rough comparison with their
published results (see Section 5.4) suggests that our
solution performs as well if not better than previous
hardware solutions, likely because our solution solves
the problem at higher level by using scratchpad memo-
ries for global synchronization.

Li, et al [24] propose a lightweight scratchpad memory
lock design in software for older Nvidia GPUs (Fermi
and Kepler) that uses software atomics for scratchpad
memories. Their solution improves local (i.e. intra-TB)



synchronization performance, whereas our solution
solves global (i.e. inter-TB) synchronization problems.

Instead of focusing on performance, others have fo-
cused on the programmer productivity aspect of fine-
grained synchronization. ElTantawy, et al [12] introduce
a compiler and a hardware scheme that avoids SIMT-
induced deadlocks. Xu, et al [44] present a lock design
that reduces memory storage and uses lock stealing
to avoid deadlock. Liu, et al [26] describe a compiler
scheme that eliminates redundant locks in the program.

In addition, previous work attempts to improve the
performance and programmability of GPUs by support-
ing transactional memory [10, 11, 15, 16, 37, 45] and by
providing memory consistency and memory coherence
on GPUs [5, 19, 36, 38–40].

3 Our Solution
Our solution is a software architecture that uses synchro-
nization servers to enable efficient global fine-grained
synchronization. The key idea is to replace global lock
operations with (1) scratchpad memory lock operations
and (2) message passing implemented in global memory.
We describe our architecture in Section 3.1.

Our software message passing system, described in
Section 3.2, makes efficient use of global memory by
employing optimizations that reduce the overhead of
message passing operations and that promote coalesced
memory accesses.

The synchronization server design described in Sec-
tion 3.1 handles cases where the original kernel code
does not have nested lock acquisition. Additional com-
ponents and optimizations are needed to handle nested
locks, and these are described in Section 3.3.

3.1 Synchronization Server Architecture
Consider a baseline kernel that uses locks to protect
some data for mutually exclusive updates. In the scheme
shown in Figure 1(a), the protected data can be refer-
enced by threads in any TB, so locks are implemented
in global memory. The slow global memory becomes a
throughput bottleneck for lock retries on conflicts, and
it becomes a latency bottleneck for transferring lock
ownership among threads.

Our solution separates the original kernel into two
kernels—the client kernel, which handles the non-critical
sections, and the server kernel, which executes the critical
section on behalf of the client kernel. The two kernels
run concurrently; each kernel launches a number of TBs,
where the combined TB count of the two kernels does
not exceed the maximum occupancy of the GPU. An
overview of our scheme is shown in Figure 1(b).

On the client side, client threads can still update
arbitrary protected data items, but they do so indirectly
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Figure 1. Fine-grained mutual exclusion with (a) global locks
(baseline) and (b) our solution

.

by sending messages to server TBs; this is handled by
our software message passing system.

On the server side, the ownership of protected data
is partitioned among server TBs so that each data item
is accessible exclusively through a unique server TB.
Client threads choose the appropriate server TBs as
destinations of messages based on data IDs. Threads
within each server TB service clients’ requests in parallel
and use scratchpad memory locks to maintain mutual
exclusion.

In essence, our solution replaces global lock opera-
tions with a two-level mutual exclusion scheme. At the
global level, instead of synchronizing among themselves
with locks, client threads send messages to server TBs
when they need to update protected data items. Since
data item IDs have a one-to-one mapping to server TBs,
all update requests for the same data are guaranteed
to be sent to the same server TB, so mutual exclusion
is maintained at the global level, which allows threads
within each server TB to synchronize using scratchpad
memory locks at the local level. Scratchpad memories are
high-bandwidth, low-latency on-chip SRAM that sup-
port word-granularity accesses, where accesses waste
no bandwidth due to unused cache-line data. Thus,
scratchpad memories are ideal for lock accesses and
retries with irregular memory accesses.

Compared to a baseline kernel with global lock oper-
ations, our solution makes better use of global memory
bandwidth. Instead of contending for locks through
global memory, contentions are handled in scratchpad
memories. In addition, since fine-grained locks are usu-
ally used for irregular workloads, lock accesses tend
to be non-coalesced memory accesses; by contrast, our
message passing system has various optimizations that
allows clients and servers to access global memory in a
more coalesced manner (as we will show in Section 3.2).
Aside from bandwidth benefits, our solution also avoids



transferring lock ownership in the high latency global
memory, since locks are now implemented in the low
latency scratchpad memories. Because the latency of
transferring lock ownership is on the critical path, the re-
duced latency is beneficial when protected data updates
are distributed in a manner that concentrates a large
number of updates to a small number of data items.

3.1.1 Implementation
Our solution is implemented at the source code level
without modifications to the compiler or the hardware.
This section shows how a baseline kernel with global
locks (Listing 1) would be modified to use our synchro-
nization server architecture (Listing 2).

Listing 1. Original Kernel with Global Locks
1 void kernel ( . . . ) {
2 / / b e g i n c r i t i c a l s e c t i o n
3 bool success = f a l s e ;
4 do {
5 i f ( t r y _ l o c k ( data_id ) ) {
6 c r i t i c a l _ s e c ( data_id , arg0 , arg1 ) ;
7 __threadfence ( ) ;
8 unlock ( data_id ) ;
9 success = t rue ;

10 }
11 } while ( ! success ) ;
12 / / end c r i t i c a l s e c t i o n
13 }

Listing 1 shows how a critical section is encapsulated
into a function (line 6) and is protected by a try-lock
loop. Data_id, which can be a single word or a data
structure, refers to the data item to be updated, and arg#
are additional arguments—generated by computations
in the non-critical sections—passed to the critical section.

Listing 2 shows how our software architecture uses
two new procedures, send_msg and recv_msg (lines 2-3),
to pass messages from a client TB to a server TB, where
dst in send_msg denotes the server TB. The message
size (in terms of words) corresponds to the number of
arguments of the critical section function.

The client_kernel (lines 5-16) corresponds to the origi-
nal baseline kernel in Listing 1, where the critical section
in the try-lock loop has been replaced with message
sending to server TBs. The code at line 8 maps offloaded
work to server TBs based on data IDs. The mapping in-
terleaves the ownership of data items to server TBs. This
fine-grained partitioning provides better load balance
among server TBs than a coarse-grained partitioning.
However, data_IDs are dynamically generating by client
TBs depending on data inputs, so load imbalance can
still occur when a large number of threads serialize on
relative a small number of data items. Even in these
scenarios, the original kernel with global locks suffers

much more due to high latency global memory and the
interference caused by lock retries.

Listing 2. Pseudocode Code For Our Solution
1 / / p r o c e d u r e c a l l s f o r message p a s s i n g
2 void send_msg ( i n t dst , i n t data_id , any arg0

, . . . ) ;
3 bool recv_msg ( i n t& data_id , any& arg0 , . . . ) ;
4
5 void c l i e n t _ k e r n e l ( . . . ) {
6 / / e x e c u t e non− c r i t i c a l s e c t i o n
7 . . .
8
9 / / map d a t a t o s e r v e r

10 i n t s e r v e r _ i d = data_id % num_server_TB ;
11
12 / / o f f l o a d c r i t i c a l s e c t i o n e x e c u t i o n
13 send_msg ( server_id , data_id , arg0 , arg1 ) ;
14 / / e x e c u t e non− c r i t i c a l s e c t i o n
15 . . .
16 }
17
18 void s e r v e r _ k e r n e l ( . . . ) {
19 / / s c r a t c h p a d memory l o c k s
20 __shared__ i n t locks [ 4 0 9 6 ] ;
21
22 / / l o o p t o h a n d l e c l i e n t r e q u e s t s
23 bool terminate = f a l s e ;
24 while ( ! terminate ) {
25 i n t data_id , arg0 , arg1 ;
26 i f ( recv_msg ( data_id , arg0 , arg1 ) ) {
27 / / r e c e i v e d msg , do c r i t i c a l s e c t i o n
28 bool success = f a l s e ;
29 do {
30 i f ( t r y _ l o c k _ l o c a l ( data_id ) ) {
31 c r i t i c a l _ s e c ( data_id , arg0 , arg1 ) ;
32 __threadfence_block ( ) ;
33 unlock_ loca l ( data_id ) ;
34 success = t rue ;
35 }
36 } while ( ! success ) ;
37 }
38 terminate=check_terminat ion ( ) ;
39 }
40 }

The server_kernel (lines 18-40) executes the critical
section on behalf of the clients, so any try-lock loop in the
original kernel is now in the server kernel (lines 29-36),
which uses locks implemented in scratchpad memories
rather than global memory. Since scratchpad memories
have limited size, there can be a limited number of
locks; multiple data_IDs can be mapped (aliased) to the
same lock. On modern Nvidia GPUs, for example, the
maximum TB is 1K threads; we use 4K locks per server
TB to reduce the chance of unnecessary serializations
caused by aliasing.

Server threads execute a loop (lines 19-34) that listens
to clients’ messages and terminates when all clients
are finished. The termination condition is a flag (set
by clients) in global memory, which is only checked



periodically by servers; the overhead of checking for
termination is negligible because only one thread per
TB checks the flag and then informs the other threads of
the condition.

Our solution is mostly straightforward for program-
mers. For most cases, our code in Listing 2 can be used
as a template; the programmer needs to insert code
for both non-critical sections and critical sections into
the indicated places. The server architecture for nested
locks (discussed in Section 3.3) is more complex, but a
template is also provided for that case.

The maximum occupancy of the GPU (i.e. the number
of TBs that can be executed concurrently) can be deter-
mined by API calls. Some of those TBs are used by the
server kernel, and remaining TBs are used by the client
kernel. The ratio of server to client TBs is based on the
relative amount of work performed in the critical sec-
tions versus the non-critical sections. The programmer
is responsible for setting this parameter based on the
characteristics of the specific application. This may also
require some tuning by the programmer.

3.2 Our Message Passing System
This section describes our software message passing
system, where client threads send messages and server
threads receive messages. Message passing is achieved
by reading and writing buffers that reside in global
memory. There is one message buffer per receiver TB,
which is shared by all threads of that TB and not accessed
by other receiver TBs. To send a message, a thread writes
to the specific buffer associated with the receiving TB.

We first describe our basic algorithm for sending and
receiving messages, before describing optimizations for
efficiently using global memory.

3.2.1 Our Basic Algorithm
Each message buffer is a large array accessed as a circular
buffer (we use 4K message entries as a default); our data
structure is lock-free and does not use global barriers.
The message buffer has the following metadata as shown
in Figure 2.

The write_idx is atomically incremented by the sender
to reserve a buffer index for writes. To determine
whether the reserved index is free to write, the sender
checks the read_idx, which is atomically incremented by
the receiver after reads. The bit-mask has one bit corre-
sponding to each buffer location; it is set by the sender
after the message data has been successfully written to
L2 (i.e. after the memory barrier2), and it is checked by
the receiver to find available messages for reads. The

2Memory barriers are supported in CUDA by calls to __threadfence(),
and they are supported in OpenCL by calls to mem_fence(CLK_-
GLOBAL_MEM_FENCE).
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Figure 2. The data structure of a single message buffer and
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bitmask is needed because concurrent sender threads
may finish writing out-of-order, e.g. in the figure, buffer
location 1 is reserved before location 2, but location 2 is
written before location 1, so the receiver must be able to
determine whether a specific location is valid.

3.2.2 Our Optimized Algorithm
Each message buffer is concurrently accessed by tens of
thousands of threads, so our system’s buffer accesses
need to be highly efficient. Unfortunately, our basic algo-
rithm is inefficient, because threads access the message
buffer individually, so each message send or receive
incurs the overhead of accessing metadata in global
memory (e.g. bit-mask, etc.); moreover, the lanes of a
sender warp may have different destination buffers (re-
ceiver TBs), and the lanes of the receiver warp might not
read consecutive buffer locations, so memory accesses
can be non-coalesced.

Our optimized solution amortizes the cost of global
memory accesses by aggregating both messages and
their metadata. Senders aggregate messages by collect-
ing them in local buffers residing in scratchpad memory
before being written to global message buffers in bulk.
Receivers aggregate message passing metadata access
by having a single warp, known as a leader warp, manip-
ulate the metadata on behalf of the other warps, which
we refer to as the follower warps.

For senders, each TB has a set of small message buffers
in the scratchpad memory, with each local buffer corre-
sponding to one receiver TB. Messages from multiple
warps are aggregated in local message buffers before
being written to global message buffers, so metadata
overhead is amortized and global memory accesses are



typically coalesced. In addition, the metadata overhead
of accessing read_idx (Figure 2(a)) can be further reduced
by keeping a local scratchpad copy and updating it lazily.
The design is described in Section 3.2.4.

For receivers, with one warp-granularity global mem-
ory access, the leader warp reads multiple bit-masks
to find available messages and then uses a set of as-
signment buffers in local scratchpad memory to assign
these messages to follower warps. The leader warp only
reads the bit-mask, while the actual message data is
read by follower warps. The messages assigned to each
follower warp are stored in consecutive buffer locations,
so accesses to message data are coalesced memory ac-
cesses. Since the warp can read 32 bit-masks which each
represent 32 buffer locations, the leader warp can with
one memory access read the bit-mask of up to 1024
messages. The design is described in Section 3.2.3.

Benefits Over Global Locking. Our message passing
system makes much more efficient use of global mem-
ory than codes that access global locks.3 The key in-
sight is that global lock operations must directly access
specific lock variables that are spread throughout the
address space, so memory accesses are inherently non-
coalesced. By contrast, because our solution handles
locking indirectly and locally in the server TBs’ scratch-
pad memories, a client’s send messages are not bound
to specific global memory addresses; therefore, these
messages can be placed consecutively in circular buffers,
allowing our optimized solution to perform coalesced
reads and writes of global memory.

3.2.3 Receiver Design
For receiving messages, the heavy lifting is performed
by the leader warp. Figure 3(a) shows the operations
performed by the leader warp in one iteration. In step
a1, 4 lanes of the leader warp read 4 bit-masks (words)
from global memory. Here, head_idx denotes the cur-
rent progress of bit-mask read. The leader warp only
handles consecutive available messages (i.e. consecu-
tive 1s) starting from head_idx; in the figure, the last
message to handle is at location 12. This requirement
simplifies buffer management for two reason. First, the
leader warp does not have to backtrack to check previ-
ously unavailable messages. Second, when assigning
messages to follower warps, the set of valid messages
can be simply represented as a range starting from the
head_idx.

To derive the total number of consecutive available
messages, the leader warp performs a reduction on
bit-masks read by individual lanes, which is achieved

3Of course, our overall software architecture has the added advantage
that it does not perform lock retries in global memory.
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by two intra-warp communication functions—vote_-
ballot and shuffle_idx, which are register-like operations
supported by hardware. Vote_ballot accepts a 0 or 1
bit (ballot) from each lane as its argument and returns
the entire warp’s vote as a bit-vector (all lanes get the
same bit-vector), so each lane knows how other lanes
have voted. For our purpose, any lane that has a 0 in its
bit-mask (i.e. unavailable messages) votes 1; otherwise
it votes 0. In the figure, lane 3 votes 1, and other lanes
vote 0, so we know that the sequence of consecutive
1s ends somewhere in lane 3’s bit-mask. Next, we just
need to know exact bit position of the first 0 in lane 3’s
bit-mask, and this is done by using shuffle_idx, which
allows all lanes to read a register value from a specific
lane. With this information, the warp determines that
there are 13 consecutive valid messages starting from
the head_idx (at 0).

In step a2, these valid messages are assigned to fol-
lower warps via assignment buffers, which are packed
32-bit words in scratchpad memory. Each assignment
buffer corresponds to one follower warp. The assign_idx
and the assign_size fields indicate the starting location
and the number of messages to read. As shown in step b1
(Figure 3(b)), each follower warp reads message data ac-
cording to its assignment buffer, where assign_size, the
number of assigned messages for each follower warp,
has a maximum value of the GPU’s warp size (e.g. 32).
To wait for work from the leader warp, the follower
warps poll the assignment buffers. Similarly, when fol-
lower warps are busy, the leader warp polls assignment



buffers to wait for available follower warps. Both types
of polling only generate accesses to scratchpad memory.

Once messages are read, their buffer locations are freed
by resetting the bit-masks and updating the read_idx
(see Figure 2(b)). Reset_counters in scratchpad memory
are used to aggregate these global memory metadata
operations, so the overhead can be paid once for a large
number of messages. Step a2 shows that when assigning
messages, the leader warp initializes the target field of a
reset_counter to the number of message assigned and the
current field to 0. In step b1, the follower warps increment
the current field atomically after reading messages; once
the target field matches the current field, the follower
warps have finished reading a range of consecutive
messages, so the leader warp resets multiple bit-mask
words with one warp-granularity memory access and
then updates the read_idx.

After message assignment, the leader warp proceeds
to the next iteration without waiting for the follower
warps to finish reading, thereby allowing the leader
warp and follower warps to execute concurrently. In the
next iteration, the head_idx (step 1a) is set to 13. Step
2b, shows that each of the multiple reset counters can
be used for different iterations, and the reset_counter_ID
field of the assignment buffers indicates the reset counter
that the follower warps should use.

Design Benefits. Our receiver design has several bene-
fits. First, since consecutive messages are assigned to
each follower warp, memory accesses for message data
reads are coalesced. Second, on a GPU with 32 lanes per
warp, the metadata overhead of bit-mask read, bit-mask
reset, and read_idx update are amortized across as many
as 1K messages (32 lanes of the leader warp can each
process 32 messages per iteration). The actual number
processed per iteration depends on message availability.
Since we use relatively large message buffers (4K en-
tries), and since the buffer free is not on the critical path,
we can accumulate each reset counter for multiple itera-
tions (not shown) so that the overhead of bit-mask reset
and read_idx update are guaranteed to be amortized
across a large number of messages. Third, when senders
send messages to a receiver TB infrequently, the use of
a leader warp reduces the amount of useless polling of
the bit-mask, since the bit-mask is polled only by the
leader warp rather than all of threads in the TB.

3.2.4 Sender Design
To reduce global memory metadata overhead and to
promote coalesced memory accesses, each sender TB
is equipped with a set of small message buffers in the
scratchpad memory

Figure 4 shows how the message write operations
use local message buffers; the 4 local buffers correspond

to 4 destination receiver TBs. Local message buffers
have data structures similar to those in global message
buffers—the default size is 64 entries.

L0 L1 L2 L3
msg 
dst:

Recv0

2 1 0

m00 m01 n/a n/a

local msg
buffers:

m10 m11 n/a n/a

m20 m21 m22 m23

m30 m31 m32 m33

Recv1

Recv2

Recv3

3

warp 0
L0 L1 L2 L3

warp 0

m31 m32 m33m30

Msg Buffer Server TB3
(Global)
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Data ....

Write 
Idx 
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overhead 

Step 1: Aggregate in Local Buffers Step 2: Write to Global Buffers

L0 L1 L2 L3
warp 1

Figure 4. Local Message Buffers on a Sender TB—assuming 4
receiver TBs and 4 lanes per warp

.

A message send is a two-step process. In step 1, sender
warps aggregate messages in the local buffers; each lane
of a warp writes its message to the appropriate local
buffer based on the destination. In step 2, after writing
its own messages to local buffers, a sender warp chooses
one local buffer from which to copy its messages to
the global buffer. Sender warps select local buffers in
a round-robin fashion by atomically incrementing a
pointer in scratchpad memory. The local buffers coa-
lesce messages from multiple warps according to their
destinations. Thus, buffer writes to global memory are
coalesced memory accesses, and metadata overheads
are now amortized over multiple messages.

To further optimize the overhead of checking read_idx,
recall that read_idx is incremented by the receiver after
reads, so senders check read_idx to determine whether
buffer locations can be reused. Since senders do not
always need up-to-date value of read_idx, each sender
TB keeps a local copy of read_idx for each receiver TB,
and each sender TB updates the local copy with the
global value only when necessary (see Figure 5).

monotonic increment

0 1 2 3 4 5 6 7

read_idx
(copy): 

6 

read_idx
(global): 

10 

write_idx: 
12 

0 1 2 3 4 5 6 7

read_idx
(copy): 

6 

read_idx
(global): 

10 

write_idx:
15 

(a) safe to write (b) must update the copy

Figure 5. Read_idx checking using local copy
.

In Figure 5(a), the sender has reserved index 12 to
write one message. The local copy of read_idx is not
up-to-date, but it still guarantees that the receiver has
finished reading indices 0 to 5, so those buffer locations



can be reused by senders for indices 8 to 13; index 12 is
safe to write, and there is no need to access the global
value. In Figure 5(b), the sender has reserved index
15, and it can no longer determine whether the buffer
location can be reused by the local copy, so the local
copy must be updated with the global value.

Since that we use relatively large message buffers,
this lazy update shields global memory from most of
the read_idx checking. Furthermore the local copies are
shared by all threads of the TB, so if one thread updates
a copy, all threads will see the updated value.

3.3 Handling Nested Locks
Listing 3 shows the original kernel code with two nested
locks, where the critical section manipulates two data
items, so a thread must acquire the locks for both data
items before entering the critical section.

Listing 3. Original Kernel With Two Nested Lock
1 / / b e g i n c r i t i c a l s e c t i o n
2
3 / / d a t a _ i d 1 < d a t a _ i d 2
4 bool success1 = f a l s e ;
5 bool success2 = f a l s e ;
6 do {
7 i f ( ! success1 ) {
8 i f ( t r y _ l o c k ( data_id1 ) )
9 success1 = t rue ; / / a c q u i r e d 1 s t l o c k

10 }
11
12 i f ( success1 ) { / / a c q u i r e 2nd l o c k
13 i f ( t r y _ l o c k ( data_id2 ) ) {
14 c r i t i c a l _ s e c ( data_id1 , data_id2 , . . . ) ;
15 __threadfence ( ) ;
16 unlock ( data_id1 ) ;
17 unlock ( data_id2 ) ;
18 success2=t rue ;
19 }
20 }
21 } while ( ! ( success1 && success2 ) ) ;
22 / / end c r i t i c a l s e c t i o n

Just as with non-nested locks, our solution partitions
data items among server TBs so that lock operations
can be handled in scratchpad memories. As shown in
Figure 6, server TB0 has ownership of data D0 and D1,
so TB0 has exclusive access to the associated locks (L0
and L1) in the scratchpad memory. TB1 similarly has
exclusive access to L2 and L3. The client’s offload request
now contains two data items (D0 and D2) belonging to
two different server TBs.

Our solution lets a client send an offload message
to the server TB that owns the first lock (TB0), which
then acquires the remote lock (L2) from the other server
TB (TB1) by sending to TB1 a request message for L2,
which will try to lock L2 locally. Once successful, TB1
sends a reply message back to TB0, temporarily granting
the ownership of lock L2 to TB0 and preventing other
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Figure 6. Synchronization Server for Two Nested
Lock—operations for handling an offloaded request from
client that involves two server TBs

requests from modifying D2. Upon receiving the reply
message, TB0 acquires L0 locally and executes the critical
section. Once finished, TB0 sends an unlock message back
to TB1 to unlock L2. As with non-nested locks, our
solution handles lock retries in scratchpad memories,
so server TBs send messages only once over global
memory.

To avoid deadlocks, we use a lock hierarchy prevent
circular dependences. In particular, the lock hierarchy
is defined by the global ID of the locks to which they
are mapped. Global_ID uniquely identifies a local lock,
where global_ID= server_ID× locks_per_server+ local_ID.
Furthermore, we avoid deadlock caused by insufficient
buffer space availability by using different message
channels for different message types, similar to the
idea of using virtual channels to prevent protocol-level
deadlocks.

The reply and unlock messages are on the critical path
of lock acquisition and release, so to reduce their latency,
we replace the receiver’s leader warp (see Section 3.2.3)
with a reply handler warp and an unlock handler warp.
These two warps handle metadata in the same manner
as the leader warp, but instead of assigning messages
to follower warps, they read message data directly and
then perform their associated action—setting reply_-
bits or resetting local locks—directly, thereby reducing
latency. This modification is possible because reply and
unlock are simple tasks that are guaranteed to succeed
without retry, so follower warps are not needed. At
the sender side, we do not aggregate reply and unlock
messages in local buffers (see Section 3.2.4), since local
buffering increases latency. Instead, the two types of
messages are sent directly to global buffers.

4GPU Max Clock rate reported by devicequery on our GPU



Compute Capability sm_61 Scratchpad Mem per SM 96KB
Shader Clock Rate4 1.68 GHz Max Scratchpad Mem per TB 48KB
SM Count 28 L2 Size 2.75MB
Max Threads Per SM 2048 L2 Cache Line Size 128 Byte

Table 1. GTX 1080 ti Specifications

4 Evaluation Methodology
Before describing the experimental evaluation of our so-
lution in the next section, we first describe our empirical
methodology.

We evaluate our solution on an Nvidia GTX 1080
ti GPU (Pascal, GP102) [28, 31] using CUDA toolkit
version 9.2 with driver 410.57. Table 1 summarizes this
hardware platform.

To gather kernel execution statistics, such L2
misses and DRAM traffic, we use the Nvidia Profiler
(nvprof) [30] that comes with CUDA 9.2. This profiler
records statistics by replaying kernel executions and
periodically accessing hardware performance counters
on the GPU.

4.1 Benchmarks and Inputs
To evaluate our solution, we use three state-of-art GPU
implementations of irregular algorithms, which have
been shown to compare favorably against CPU imple-
mentations [18, 22, 33], and we use two microbench-
marks. which have been used in previous work on
fine-grained locking [12, 13, 46] and transactional mem-
ory [10, 15, 16, 37, 45] on GPUs. The two microbench-
marks represent commonly used lock patterns for work-
loads that manipulate irregular data structures, such as
graphs and trees.

We now describe each of our five baseline benchmark
programs.

Hash Table (HT). HT is a microbenchmark in which
threads randomly select an element from a pool of
elements and inserts the element into a hash table, where
each hash table entry is a linked list. Locks are used to
provide mutual exclusion on entry updates. We use a
large hash table with collision factors of 256, 1K, 32K,
and 128K, where the collision factor is the pool size.
Thus, smaller collision factors lead to a larger number
of lock conflicts.

Bank Account (ATM). ATM is a microbenchmark with
two nested locks. Each thread performs a transaction that
withdraw funds from one account and deposits them
into a second account. A lock is associated with each
account, so each thread acquires two locks to perform a
transaction. Similar to HT, threads randomly choose the
source and destination accounts with collision factors
256, 1K, 32K, and 128K.

Minimum Spanning Tree (MST). MST finds a spanning
tree that connects all vertices of a graph with minimum
weight. Our baseline is a GPU implementation of Boru-
vka’s algorithm from the newly released LonestarGPU
3.0 benchmark suite [7, 33]. Each thread works on a
vertex of the graph and updates a data structure called
a component. Since multiple vertices can be mapped to
the same component, fine-grained locks are used to pro-
vide mutual exclusion for component updates. We use
as inputs the three largest graphs from the benchmark
suite—rmat22 (power law), USA-road-d.USA (high di-
ameter), and r4-2e23 (random).

Stochastic Gradient Descent (SGD). SGD works on
bipartite graphs, e.g., a movie rating graph with some
vertices representing movies, with other vertices rep-
resenting users, and with weighted edges between a
user and a movie representing a rating. SGD predicts
missing edges (ratings) based on existing edges. We use
Kaleem, et al’s [22] edge-lock implementation, where
edges are assigned to threads and two nested locks are
used to guard movies and users. We use three commer-
cial inputs—Netflix (NF) [2, 6], reuters (RT) [3, 23], and
movie-lens 10M (ML) [1, 17].

Maxflow (MF). MF is a push-relabel algorithm that
finds the maximum flow of a weighted graph, where
edge weights represent network capacity. The algorithm
iteratively pushes excess capacity at a node to an eligible
neighboring node; if a node’s excess capacity cannot be
moved, then the vertex is relabeled.

He, et al [18] present a GPU implementation that
works on general graphs. The implementation is topo-
logical, which means that all nodes are checked at each
iteration, regardless of whether they have excess. Nodes
are parallelized and fixed to threads, so the algorithm
does not need locks or worklists, but it performs a
considerable amount of useless work.

Our baseline implementation is based on He’s im-
plementation but uses a worklist, where threads only
push neighbor nodes with useful work to the worklist.
However, our algorithm needs locks to guard each node,
since multiple threads can push the same neighbor node
onto the worklist, so multiple threads may work on the
same node.

Because the behavior of these benchmark programs
can vary greatly depending on their inputs, we use
a variety of inputs for each benchmark. Our inputs
are mesh graphs (2k×2k, 4k×4k, and 8k×4k) generated
by a Washington generator [21]. Compared to He, et
al’s algorithm, our baseline implementation performs
worse on smaller inputs and better on larger inputs.
The speedups over the original are 0.78× (2k×2k), 0.98×
(4k×4k), and 2.05× (8k×4k), with a 1.27×mean.



Besides the use of locks, another major inefficiency of
our baseline implementation is the worklist. On GPUs,
current lock-free worklist implementations use double
buffering, where threads read from one buffer and write
to another. When the read buffer is empty, the two buffers
are swapped at a global barrier (implemented as a GPU-
side kernel launch), and the process repeats. Besides its
overhead, the global barrier limits concurrency. For some
algorithms, this may not be a problem provided that a
large number of work-items are processed each round.
But with this algorithm, especially for later more sparse
phases, each round does not have enough work-items
for double buffering to be efficient.

For this particular benchmark, our server implemen-
tation both replaces the worklist and handles mutual
exclusion. All TBs are both servers and clients; a TB ac-
cepts work (node update requests) and then sends work
to others. The message passing system connecting the
TBs essentially performs global work redistribution and
buffering, which is similar to the functionality of a work-
list. Since mutual exclusion already requires message
passing, the worklist overhead can be regarded as free.
More importantly, our message passing system is both
lock-free and asynchronous, so it has more concurrency
and no barrier overhead.

5 Evaluation
This section evaluates our solution by first presenting
speedups over the current state-of-the-art and then
examining in detail the causes of the performance gap.

5.1 Performance
Figure 7 shows the speedup of our solution over state-of-
the-art baseline implementations of each of our bench-
marks. Our solution achieves a mean speedup of 3.6×
by addressing the throughput and latency bottlenecks of
lock operations.

When compared with the baselines, our solution im-
proves throughput by shielding global memory from
non-coalesced locks operations, which are instead per-
formed in scratchpad memories and supported by an
efficient message passing system. The end result is a re-
duction in L2 and DRAM traffic, which be will examined
in details in Section 5.2.

In addition to reduced bandwidth waste, our solution
also improves lock transfer latency, which is the difference
between the time at which one thread releases a lock
and another thread acquires that lock. When threads
contend on a relatively small number of locks, lock
transfer latency significantly affects performance, which
we find to be the case for ATM-256, ATM-1k, HT-256,
HT-1k, MST-rmat and MST-2e23. The baseline performs
lock transfers via global memory, so its transfer latency
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Figure 7. Speedup of our solution over the state-of-the-art

is affected both by the global memory latency and by
the interference caused by lock retries. For HT and MST,
our solution performs the acquire, retry, and release
operations entirely in scratchpad memories, so we see
significant performance improvements for these inputs.
ATM uses two nested locks, where an offloaded request
requires a local lock and a remote lock. For our ATM
solution, global memory latency is on the critical path
of handling the remote lock, but lock retries are still
handled entirely in scratchpad memories, so global
memory latency is not affected by lock retries. Therefore,
our solution achieves lower latency than the baseline.
We describe in detail the latency benefits of our solution
in Section 5.3.
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5.2 L2 and DRAM Efficiency
This section shows that our solution alleviates band-
width bottleneck by reducing global memory traffic.
Figure 8 shows the L2 and the DRAM traffic of our
solution as a percentage of the baseline. The traffic
includes overhead due to non-coalesced accesses (i.e.
unused words in cache lines). In most cases, our solution
significantly reduces both L2 and DRAM traffic.

While our scheme generally reduces both DRAM and
L2 traffic, in most cases, our DRAM traffic reduction
over the baseline is greater than the L2 traffic reduction
because our message passing system enjoys locality in
the L2 cache. Each receiver buffer has just one write_idx
and read_idx, so access to those pointers will cause L2
traffic but most likely result in a cache hit. Furthermore,
for message data writes, when multiple senders make
non-coalesced writes to the same buffer (same receiver)
at similar times, they are likely to write to adjacent
locations of the buffer, since the (circular) buffers are
reserved incrementally for writing. So individually, each
sender causes non-coalesced L2 accesses, but the cache
lines of the buffer are evicted to DRAM and are read by
the receiver with coalesced messages.

ht 32k ht 128k atm 32k atm 128k
L2 DRAM L2 DRAM L2 DRAM L2 DRAM

21.45% 17.75% 23.66% 10.32% 76.1% 26.19% 73.51% 14.00%
Table 2. The net global memory traffic of our solution as
percentage (%) of the baseline solution, which uses global
fine-grained locks

Figure 8 shows total traffic generated by the entire
kernel. The profiler can only measure entire kernel ex-
ecution. To directly compare message passing against
locking for the two microbenchmarks, we replace the
critical section that accesses memory with arithmetic
loops of similar latency, without fundamentally chang-
ing the execution characteristics of the workload. This
allows us to extract the net L2 and DRAM traffic, which
is shown in Table 2.

5.3 Lock Transfer Latency
To understand our results, we first identify the sen-
sitivity of each benchmark-input combination to lock
transfer latency. We conduct an experiment that adds
an arithmetic loop to the baseline’s critical section and
measures the increase in execution time. Thus, this loop
simulates increased lock transfer latency because it de-
lays unlock operations without generating additional
memory traffic.

Figure 9 shows the empirical results with different
loop sizes. A 1× loop has approximately a 1K cycle
latency, and this latency increases proportionally with
loop size. The arithmetic instructions can overlap with
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Figure 9. Execution time of the baseline with additional
latency by arithmetic loop inside critical section,
normalized to no additional latency—this figure
demonstrates latency sensitivity

memory accesses, so for small loops, the overall critical
section latency has little or no increase. On the other
hand, very large loops will increase execution time
regardless of the workload being used.

We see that under moderate latency increase, ATM-
256, ATM-1k, HT-256, HT-1k, MST-ramt, and MST-2e23
noticeably increase execution time, while the others do
not.

Latency (Cycle)
Baseline Our Solution

atm_256 24269 8292
atm_1k 18234 13831
ht_256 2192 248
ht_1k 2679 863

mst_rmat 3601 490
mst_r4 3537 533

Latency (Norm.) Run Time (Norm.)
Our Solution Our Solution

atm_256 0.34 0.31
atm_1k 0.75 0.68
ht_256 0.11 0.13
ht_1k 0.32 0.25

mst_rmat 0.14 0.11
mst_r4 0.15 0.13

Table 3. Latency and Total Execution Time

Table 3 shows that execution time strongly correlates
with latency. In particular, the table shows average un-
lock and reacquisition latency, including measurement
overhead, where latency is measured using the %glob-
altimer register, which is a nanosecond hardware timer
that has a consistent time for all SMs.

For HT and MST, our solution handles locks and
unlocks entirely through server TBs that access scratch-
pad memory. By contrast, the baseline must go through
higher latency global memory, which is also affected by



memory contention caused by lock retries. Therefore,
our solutions have significantly lower latencies. For our
ATM solution, global memory is used to send messages
to acquire and release locks, but the critical path opera-
tions in global memory are not inhibited by lock retries,
and some of the lock transfers are handled in scratchpad
memories, so our solution has lower latency than the
baseline.

5.4 Comparison Against Previous Solutions
In this section, we compare our solution with two hard-
ware solutions for improving the performance of global
memory lock operations. HQL [46] embeds hardware
locks in the L1 and L2 caches, where cache tag entries
act as queue locks. A cache coherence-like protocol for
lock operations between L1 and L2 is used. BOWS [13]
is a warp scheduler that reduces retry traffic by de-
prioritizing warps that are spinning on locks.

Because HQL and BOWS are hardware solutions eval-
uated on simulators, a direct comparison is impractical,
but to get a rough sense of how our solution compares,
Table 4 shows—for common benchmarks—the speedup
of our solution along with those from published results
of HQL and BOWS. Because of the numerous methodologi-
cal and implementation differences, these numbers should be
taken with a large grain of salt.

Speedup over Baselines
HT-32 HT-128 HT-512 HT-1K ATM-1K

HQL 10x 1.6x 1.1x 0.9x
BOWS 1.3x 1.8x
Ours 18.3x 8.9x 4.0x 3.9x 1.5x

Table 4. Speedup over respective baselines—For HQL, the
results are from Figure 12 of the paper [46]; the baseline is a
simulated Radeon HD 5870 GPU. For BOWS, the results are
from Figure 15 of the paper [13]; the baseline is a simulated
GTX 1080ti. The HQL paper only provides results for the HT
microbenchmark, and the BOWS paper only provides results
for HT-1K and ATM-1K; unavailable results are left blank in
the table.

At low lock count, HQL achieves speedup for HT
because lock transfers are partially handled in the L1,
which decreases latency compared to the baseline; the
effect is similar to the use of scratchpad memories in our
solution. However, hardware locks are bound to lim-
ited cache resources, namely, the cache capacity and the
number of tags, so HQL’s performance benefit decreases
rapidly as the number of locks increases; at 1K, HQL de-
grades performance. Since our solution is implemented
in software, it does not have these limitations, so our
solution achieves much higher speedups and does not
see performance degradation at high lock counts.

BOWS improves performance by reducing lock re-
tries. However, global synchronization is still handled

in L2 and DRAM, which limits the performance gain
(particularly for HT) compared to our solution, which
implements locks in scratchpad memories.

6 Conclusions
A common research trend is to add hardware support
to make GPUs more efficient and effective for irregu-
lar computations. In this paper, we have shown that
in one respect, GPUs are already much more efficient
than has been commonly recognized: With the right pro-
gramming model, existing GPU hardware can support
efficient fine-grained synchronization.

The main idea is to greatly reduce the use of slow
global memory by distributing work to the faster local
scratchpad memories. In particular, our solution uses
global memory to distribute work to server TBs, each
associated with a single scratchpad memory. Lock retries
are then handled at the scratchpad memories, which are
more efficient than global memory, particularly for non-
coalesced memory accesses. To support this solution,
we have implemented an efficient software message
passing system built on top of global memory.

This new software architecture is straightforward
for programmers. The main task is to decompose the
critical sections from the rest of the code. For example,
instead of writing a single kernel with a critical section,
programmers implement two kernels, one representing
client threads that execute the non-critical sections and
make non-blocking procedure calls to the servers, and
the other representing server threads that execute the
critical sections on behalf of the clients.

We have evaluated our solution on five irregular
benchmarks, each with three different inputs. On Nvidia
GTX 1080 ti GPUs, our solutions are on average 3.6×
faster than the previous best state-of-the-art solutions
for each problem.
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