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Abstract

This paper presents three techniques for improving the
effectiveness of the recently proposed Adaptive Stream De-
tection (ASD) prefetching mechanism. The ASD prefetcher
is a standard stream buffer that takes a probabilis-
tic feedback-based probabilistic approach to identifying
streams. Its strength lies in its ability to effectively prefetch
streams that are as short as two consecutive cache lines,
which allows it to exploit spatial locality even for programs
that have irregular access patterns.

The first technique improves a stream buffer’s ability to
detect short streams, which significantly increases the po-
tential of stream-based prefetching. For example, for the
SPECFfp milc benchmark, this new technique doubles the
number of detectable streams from 33% to 67%. The sec-
ond technique improves the quality of the ASD prefetcher’s
feedback mechanism by adaptively adjusting theepoch
length—the length of time used to represent the recent past
behavior—according to a simple similarity metric. The
third technique improves the timing of prefetches by sup-
porting variable-length prefetching of multiple cache lines.

Collectively, these techniques almost double the effec-
tiveness of the ASD prefetcher, improving the performance
of the ASD prefetcher by 11.2% for the SPECfp bench-
marks, by 10.3% for the NAS benchmarks, and by 13.2%
for a set of commercial benchmarks that exhibit poor spa-
tial locality. The improved performance in turn decreases
DRAM energy consumption by 7.3%, 8.3%, and 9.4%, re-
spectively, for the same three benchmark suites.

1. Introduction

As DRAM access times continue to grow relative to
processor cycle time, latency-hiding techniques such as
prefetching continue to grow in importance. One common

commercially used prefetching mechanism is the stream
buffer [12], which works well when programs exhibit large
amounts of spatial locality in the form of sequentially
accessed streams of data. Stream buffers have histori-
cally been biased towards long streams, because a useless
prefetch operation is required to terminate the prefetch-
ing of a particular stream. Adaptive Stream Detection
(ASD) is a recent improvement to the stream buffer [9]
that increases prediction effectiveness by keeping a his-
togram of the lengths of recently detected streams. Given
these histograms—known as Stream Length Histograms
(SLHs)—the ASD prefetcher probabilistically determines
whether to prefetch the next line of particular stream, which
allows it to stop prefetching without incurring a useless
prefetch. Thus, the ASD prefetcher can efficiently prefetch
streams that are as short as two cache lines, which makes
the technique profitable for irregular applications such as
commercial workloads, because even these irregular appli-
cations exhibit locality in the form of very short streams.

In this paper, we significantly improve upon the ASD
stream buffer through the use of three techniques.

First, to improve upon the stream buffer’s basic stream
detection mechanism, which has remain unchanged since
Jouppi’s first introduction, we introduce Length-Based
Stream Detection. Length-Based Stream Detection removes
the original stream buffer’s bias towards long streams by de-
creasing the lifetime—that is, the amount of time that we
are willing to wait for the next element of a stream—as
the length of a stream increases. With this new detection
mechanism, we find that most irregular applications exhibit
a significantly larger number of short streams than was pre-
viously thought. For example, for the SPECfp milc bench-
mark, the number exploitable streams—those of length 2
or greater—grows from the previously reported 33% [9] to
about 67%.

Second, we introduce the notion of Adaptive Epoch
Lengths, which improves the effectiveness of the SLH feed-
back mechanism. Because SLHs vary over time—even for



a given application—each SLH is computed for one time
period, known as anepoch, and used in the next epoch. Pre-
vious results used a fixed epoch length, but we show that
an adaptive epoch length improves performance by an av-
erage of about 5% for a set of benchmarks that includes
representative subsets of the SPECfp benchmarks, the NAS
benchmarks, and a set of IBM commercial benchmarks.

Third, we evaluate the concept of Variable-Length
Prefetching, which uses the SLH information to prefetch
multiple lines at a time. This idea was suggested previ-
ously [9] but never evaluated. We show that for this same
set of benchmarks, Variable-Length Prefetching improves
performance by an average of about 5%.

To summarize, this paper makes the following contribu-
tions.

• We introduce two new techniques that enhance the
ASD prefetching approach, and we evaluate a third
technique that had been proposed but never evaluated.
While two of these techniques are specific to the ASD
prefetcher, the other, Adaptive Epoch Lengths, defines
a state machine that can be used by any epoch-based
technique that determines current behavior based on a
model of the recent past behavior.

• We evaluate our techniques using the SPEC2006 float-
ing point suite, the NAS benchmarks, and a set of five
commercial benchmarks. Using a detailed simulator
for the IBM Power5+, we evaluate our new prefetcher
as it would reside in the memory controller. We find
that our new techniques almost double the perfor-
mance improvements of the original ASD prefetcher.
When compared with a stripped down Power5+ that
has its processor-side prefetcher turned off, our en-
hanced ASD prefetcher improves performance on our
three benchmark suites by 23.1%, 20.7%, and 21.4%,
respectively.

• We evaluate the collective DRAM power and energy
impact of our new techniques. For the three bench-
mark suites, we find that our enhanced ASD prefetcher
increases DRAM power consumption—relative to the
Power5+—by 1.5%, 3.2%, and 2.9%, respectively,
while it decreases DRAM energy consumption by
7.3%, 8.3%, and 9.4%.

This paper is organized as follows. The next section
places our work in the context of prior work. Section 3
describes the original ASD prefetcher, while Section 4 de-
scribes our enhancements. We present our experimental
methodology in Section 5 before presenting our empirical
evaluation in Section 6 and then concluding.

2. Related Work

Stream buffers [12] are a logical extension of next-
line prefetching [22]. Over the years, the model of a
stream has been enhanced by adding non-unit strides [19],
by predicting strides [2, 7], and by supporting irregular
strides using Markov predictors [11, 21]. The efficiency
of stream prefetching has been improved by Nesbit and
Smith [18], who introduce theGlobal History Bufferto im-
prove prefetch effectiveness and reduce table sizes. None of
these prefetchers successfully exploits low amounts of spa-
tial locality. Instead of devising more complex models of
streams, our work attempts to exploit the basic model more
effectively.

Another line of research focuses on detecting and
exploiting spatial locality without tracking individual
streams [10, 14, 16, 5]. Instead, variations of theSpa-
tial Locality Detection Table, introduced by Johnsonet
al. [10], track accesses to individual regions of memory
so that spatially correlated data can be prefetched together.
A problem with these approaches is the need for large ta-
bles to detect locality. Somogyiet al. [24] show that much
smaller tables can be used by correlating spatial locality
with the program counter in addition to parts of the data
address. As a result,Spatial Memory Streamingcan de-
crease table sizes to 64KB. Of these techniques, only So-
mogyi et al. have demonstrated success with commercial
workloads, in particular, showing dramatic improvements
for one benchmark. By contrast, Adaptive Stream Detec-
tion cannot prefetch as aggressively across irregular locality
patterns but instead attempts to use a much smaller amount
of hardware to prefetch the very small streams that likely
make up these larger patterns.

Wenischet al. [28] introduceStreamed Value Bufferto
exploit temporal locality. Our approach is different and sim-
pler to implement.

Our Variable-Length Prefetching is not the first to use
feedback to modulate the aggressiveness of the prefetcher.
Scheduled Region Prefetching (SRP)[15] prefetches large
regions of memory, such as 4KB at a time, and uses the state
of the system to reduce the opportunity cost of prefetches.
Prefetches to open banks are given priority, and prefetched
data are brought into the LRU position of the L2 sets. In
addition, prefetched commands are given low priority in the
memory controller. In particular, the SRP prioritizer issues
prefetch commands only if the channels are idle and there
is no pending request from the L2 cache. One issue with
SRP is the high memory bandwidth pressure that it incurs
because of its large regions. Wanget al. [27] solve this
problem by using the compiler to help select the region size.
Our solution instead uses a modest amount of hardware to
prefetch at a much finer granularity.

Any instantaneous measure of utilization, such as



whether a channel is idle, can be misleading because it does
not consider the larger behavior of the system. Srinathet
al. [25] address this issue by devising methods of estimat-
ing a prefetcher’s accuracy, its timeliness, and its impacton
cache pollution and showing how such feedback can effec-
tively modulate the aggressiveness of the prefetcher.

Finally, others have studied memory-side prefetching [1,
4, 29, 30, 23] and have shown that memory-side prefetching
is largely orthogonal to processor-side prefetching [4, 8].
Unlike our approach, previous methods do not monitor the
status of the memory system, so they can increase latencies
for regular memory commands.

3. Background

This section briefly describes the memory controller of
the IBM Power5+, the original Adaptive Stream Detection
(ASD) prefetcher [9], and the implementation of the ASD
prefetcher on the Power5+.

3.1. The Power5+ Memory Controller

As shown in Figure 1, the Power5+ memory controller
resides between the L2/L3 caches and DRAM. As mem-
ory commands enter the memory controller, they are placed
in Reorder queues. On each cycle, the scheduler selects a
command from the Reorder queues, which is then sent to
the Centralized Arbiter Queue (CAQ), which in turn trans-
mits commands to DRAM in FIFO order. Note that the
Power5+’s processor-side prefetcher emits commands that
bring data into the L2 and L1 caches, and these commands
appear in the memory controller indistinguishable from any
other command.
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Figure 1. The IBM Power5+ Memory System.

3.2. Prefetching Using Adaptive Stream
Detection

The ASD prefetcher [9] uses Stream Length Histograms,
SLHs, to capture spatial locality and guide prefetch deci-
sions. Figure 2 shows an exampleSLH for the GemsFDTD
benchmark from the SPEC2006 suite, where the height of
the bar at locationm represents the number of Read com-
mands that are part of a stream of lengthm. Depending
on the detected stream length of the current Read request,
the prefetcher checks theSLH and determines whether to
prefetch the next cache line.
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Figure 2. Stream Length Histogram ( SLH) for
an arbitrary epoch of the GemsFDTD bench-
mark.

TheSLH of Figure 2 shows that 21.8% of all Read re-
quests belong to streams of length 1 and that 43.7% of the
Reads are part of streams of length 2. Thus, when a Read
request,Rn, arrives and is the first element of a new stream,
a prefetch request should be issued becauseRn is more
likely to be part of a stream of length 2 or longer (78.2%
probability) than to be part of a stream of length 1 (21.8%).
On the other hand, ifRn were the second line of a stream,
a prefetch shouldnot be issued because there is a 43.7%
probability thatRn is part of a stream of length 2, which is
greater than the 34.5% likelihood that it is part of a longer
stream (34.5%= 100%− 21.8%− 43.7%).

3.2.1. Making Prefetch Decisions

To determine whether to issue a prefetch for the next line,
the ASD prefetcher checks whether the following condition
is satisfied for a Read request,Rn, that is theith element of
a stream:

P (i, i) < P (i + 1, fs) (1)

whereP () is defined as follows:P (i, j) is the sum of prob-
abilities that a Read is part of any stream of lengthk, where



i ≤ k ≤ j and1 ≤ i, j ≤ fs, and wherefs is the longest
stream that we track. To simplify a subsequent proof and
the hardware implementation, we defineP (i, j) in terms of
lht() as follows:

P (i, j) =
lht(i) − lht(j + 1)

lht(1)
(2)

wherelht(i) is the number of Reads that are part of streams
of length i or longer, where1 ≤ i ≤ fs and fs is the
longest stream that is tracked. For anyi > fs, lht(i) = 0.

Note that the value of theith bar of anSLH equals
P (i, i).

3.2.2. Prefetcher Design

Because memory access behavior typically varies over time,
the ASD prefetcher creates a newSLH after everye Read
requests, wheree is known as an epoch. Thus, every epoch
constructs anSLH for use in the next epoch.

Figure 3 shows the implementation of the ASD
prefetcher as a memory-side prefetcher inside the Power5+
memory controller, with the gray boxes representing the
ASD’s additions to the memory controller. Read commands
enter the memory controller and are sent to both the origi-
nal memory controller and to the Stream Filter. The Stream
Filter keeps track of Read streams and generates theSLH .
This information from the Stream Filter is then fed to the
Prefetch Generator, which decides whether a prefetch com-
mand should be issued, and if so, places the prefetch com-
mand in the Low Priority Queue (LPQ), where the Final
Scheduler can consider it, along with other commands in
the LPQ and CAQ, when selecting commands to issue to
DRAM. Any prefetched data are then stored in the Prefetch
Buffer.

4. Our Enhancements

In this section, we present our enhancements to the ASD
prefetcher.

4.1. Length-Based Stream Detection

Length-Based Stream Detection improves the effective-
ness of the stream detection mechanism, which operates as
follows. Stream buffers detect streams based on astream
lifetime,which is the number of cycles that the Stream Fil-
ter will wait for the next element of its given stream. If
the next element arrives in time, the Stream Filter’s associ-
ated counter,t is reset to the stream lifetime; otherwise, the
Stream Filter is free to be allocated to a new stream. The
stream lifetime thus represents a tradeoff. If the lifetimeis
too short, it will underestimate a stream’s length, so it will
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Figure 3. Overview of the ASD prefetcher.

not prefetch all lines of a stream. If the lifetime is too long,
it needlessly ties up the stream buffer, preventing the detec-
tion of other streams.

While existing stream buffers use a fixed stream lifetime,
Length-Based Stream Detection decreases the stream’s life-
times as the stream’s detected length becomes longer. In
particular, for every unit increase in the stream length, the
reset lifetime is reduced by half. For example, we uset cy-
cles for streams of length 1,t/2 for streams of length 2, and
t/4 for streams of length 3.

This policy may seem counter-intuitive, but the idea
is to give the prefixes of streams a greater chance to be
prefetched, which has the side effect of giving shorter
streams a greater chance to be fully prefetched. The ratio-
nale is that the shorter the actual stream length, the greater
the penalty of underestimating the stream length as a per-
centage of prefetch potential. For example, in the best
case, streams of length 2 will have their second cache line
prefetched (a stream buffer never prefetches the first line of
a stream), but if the stream buffer were to always under-
estimate the length of such streams, it would not prefetch
any cache lines from these short streams, thereby squander-
ing the opportunity to prefetch 50% of these streams’ cache
lines. By contrast, if a stream buffer were to underestimate
the length of a 5-line stream by one cache line, it would
prefetch 3 of the 4 prefetchable cache lines, so the penalty
for underestimating the stream length would be just 25% of
the prefetchable cache lines. In general, as we detect longer
streams, we are moving to the right on theSLH , so the
likely payoff of holding onto the stream buffer decreases.
More precisely, by definition ofP () in Section 4.3.1, for
any two streamssa andsb, with lengthsa andb, a < b, the
probability of a new Read request being the next element of



sa, P (a + 1, fs), is greater than the probability of it being
the next element forsb, P (b + 1, fs).1

4.2 Adaptive Epoch Length

The effectiveness of the ASD prefetcher depends on the
faithfulness of theSLH—which was computed in the pre-
vious epoch—to the behavior of the data accesses in the
current epoch. This subsection explains how we adaptively
adjust the epoch length to produceSLHs that faithfully rep-
resent the current behavior.

The original ASD prefetcher uses a fixed epoch length
for all applications, where the length is defined in terms of
the number of Read requests. The epoch length is impor-
tant to performance: If it is too short, theSLH becomes
overly sensitive and small changes in memory access be-
havior can produce consecutiveSLHs that are significantly
more dissimilar than they should be; if the epoch length is
too long, the prefetcher becomes too insensitive and may
miss the fine details of the application’s memory access be-
havior.

To adjust the epoch length according to program be-
havior, we first define a metric that indicates whether two
SLHs are similar. We then define a state machine for
changing the epoch length based on the similarity of the
two most recent epochs. We now describe these two com-
ponents in turn.

Similarity Metric. To determine whether theSLHs of
the previous two epochs are similar, we first normalize
the SLHs such that each represents the same number of
Read commands. We then compare corresponding entries
of the twoSLHs to compute the average differences. More
specifically, we sum the absolute differences of correspond-
ing SLH entries and divide this sum by the normalized
number of Read commands. If this average difference is
smaller than some threshold, then the twoSLHs are con-
sidered to be similar and the epochs are said to have similar
behavior; otherwise theSLHs are considered to be dissim-
ilar.

Determining the Epoch Length. At the beginning of
each epoch, the similarity of the two most recentSLHs is
checked, and the epoch length for the current epoch is mod-
ified according to the state machine given in Figure 4. Since
the computation of epoch length is performed only once in
an epoch, its cost is negligible.

In the state machine, each state indicates how the epoch
length should be modified. Transitions among the states are
labeled with the outcome of the similarity test:s indicates

1Length-Based Stream Detection might appear to adversely affect pro-
grams with long streams, but we have not seen this in our benchmarks. For
example, results for daxpy show no performance difference at all.

similarSLHs andd indicates dissimilarSLHs. The states
have one of three labels. The states labeled “same” aregood
states, meaning that the state machine has found a desirable
epoch length. The states labeled2× will double the epoch
length, and those labeled1/2× will cut the epoch length in
half.
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Figure 4. State diagram for SLH epoch length
computation. 2× doubles the epoch length,
1/2× reduces it by half, Same doesn’t change
it. Transitions are performed depending on
the similarity of the previous two SLHs,
s:similar, d:dissimilar.

The basic idea of the state machine is as follows.

• If the state machine is in a good state and the two most
recent epochs have similar behavior, then the state ma-
chine remains in the same good state. We define a good
state to be one which follows two consecutive pairs of
similar epochs.

• The state machine maintains two distinct good states,
so that when it detects a phase change as indicated by
a pair of dissimilar epochs, it will know whether to in-
crease or decrease the epoch length. If it had arrived
at the good state by previously increasing the epoch
length, it now decreases the epoch length, and vice
versa. Without this affinity to change directions, the
state machine would attempt to either always increase
or always decrease the epoch length upon detecting
dissimilarSLHs.

• If the state machine decreases (increases) the epoch
length from a good state with a positive result, i.e.,
the next pair of epochs have similar behavior, then it
again decreases (increases) the epoch length. Note that
two consecutive successful decreases (increases) are
needed to transition into a good state. If we allowed



just a single positive result to transition into a good
state, then the epoch length would toggle between just
two distinct epoch lengths.

• If the previous modification to the epoch length pro-
duced a negative result, i.e. dissimilar behavior, then
the state machine changes directions. The state ma-
chine might now toggle between two bad states, but
as soon as a phase change occurs that creates an
appropriate-sized epoch length, the epoch length will
move in the right direction to a good state.

• Finally, we set minimum and maximum values for the
epoch lengths. Any action that would cause the epoch
lengths to exceed these bounds is ignored. For our re-
sults, we set these bounds to be 256 and 8K memory
commands.

4.3. Variable-Length Prefetching

We now explain how Variable-Length Prefetching can
improve the timing of prefetch requests. If a line is
prefetched too early, it can be overwritten in the prefetch
buffer by other prefetched data, generating a useless
prefetch that unnecessarily occupies the LPQ, the command
bus, the data bus, and the DRAM banks. If the line is
prefetched so late that the prefetch command is issued to
DRAM after the actual memory request is issued, then the
prefetch is useless and is squashed in the LPQ. This second
problem occurs when memory requests arrive in bursts at
the memory controller. By generating up tom consecutive
prefetch requests at a time, multiline prefetching can reduce
the occurrence of late prefetches. The key to profitability is
to initiate multiline prefetches only when a burst ofm con-
secutive memory requests is expected.

The next subsection shows how the prefetch decision
logic can be modified to support multiline prefetching in
anticipation of bursty requests. In addition, we can modu-
late the aggressiveness of multiline based on the occupancy
of the Read Reorder Queue: If it is at least half full, then
we suppress multiline prefetching because the memory con-
troller is likely to be too busy. We refer to this suppression
as a Queue Status Check, and we evaluate its impact in Sec-
tion 6.2.

4.3.1. Prefetch Decision for Multiple Lines

The original ASD prefetcher decides whether to prefetch
the next line by comparing the likelihood that a Read re-
quest will be the last element of a stream against the likeli-
hood that it will be part of a longer stream. To support the
prefetching ofm lines at a time, we extend (1) as follows:

P (i, i + s − 1) < P (i + s, fs), ∀s ∈ [1, m] (3)

which states that for alls, 1 ≤ s ≤ m, the probability that
the most recent Read request,Rn, is part of a stream of
length betweeni andi+ s−1 is smaller than it being a part
of a stream of length longer thani+ s− 1. We can simplify
inequality (3) as follows:

P (i, i + s − 1) < P (i + s, fs), ∀s ∈ [1, m] (4)

≡
lht(i)− lht(i + s)

lht(1)
<

lht(i + s) − lht(fs + 1)

lht(1)
(5)

≡ lht(i) < 2 × lht(i + s), ∀s ∈ [1, m] (6)

Our extended ASD prefetcher uses inequality (6) to make
prefetch decisions form lines.

5. Methodology

We now describe our simulation methodology, our sim-
ulated system, and the benchmarks that we use to evaluate
our techniques.

5.1 Simulation Methodology

To evaluate performance, we use a cycle-accurate sim-
ulator for the IBM Power5+, which has been verified to
within 1% of the performance of the actual hardware. This
simulator, one of several used by the Power5+ design team,
uses execution traces to simulate both the processor and the
memory system. To simulate our benchmarks, which have
billions of dynamic instructions, we use uniform sampling,
taking 50 uniformly chosen samples that each consist of 2
million instructions. The Power5+ simulator is integrated
with Memsim [20], a DRAM simulator that jointly models
the power and performance of the main memory subsystem.
Memsim models all the memory system activity, including
refreshes, while synchronizing with the Power5+ simulator
on every processor cycle.

5.2. Simulated System

The Power5+ [6, 13] has one memory controller and
two processors per chip, where each processor supports two
SMT threads and has split L1 D and I caches. The chip has
a unified L2 cache shared by the two processors, along with
an optional L3 cache. Our simulator models all three levels
of the cache. The L1D cache is 32KB with 4-way set asso-
ciativity and the L1I cache is 64KB with 2-way set associa-
tivity. The L2 cache is a 3×640KB shared cache, with 10-
way set associativity and a line size of 128B. The off-chip
L3 cache is 36MB. We simulate the DDR2 SDRAM chips
running at 533MHz and the Power5+ running at 2.132GHz.

The Power5+ memory controller has two ports to mem-
ory. Each port is connected to memory via Synchronous



Memory Interface (SMI) chips [26]. We evaluate our tech-
niques on a configuration with 4 SMIs and DDR2 SDRAM
running at 533MHz, a common configuration for high-end
Power5+ systems. More details about the DRAM chips that
we model can be found in the datasheet from Micron [17].

The Power5+ [13] has an aggressive processor-side
prefetching unit [26] that prefetches from memory to L2
and from L2 to L1. The prefetcher implements a sequen-
tial prefetching policy that waits to issue prefetches until
it detects two consecutive cache misses. There are 12 en-
tries in the stream detection unit, and eight streams can be
prefetched concurrently. When the steady state is reached,
each stream brings one additional line into the L1 cache,
and one additional line into the L2 cache.

5.3 Benchmarks

Our evaluation uses the NAS [3] and SPEC2006fp
benchmarks suites, along with a set of internal IBM com-
mercial benchmarks. The commercial benchmarks consist
of five server applications, namely,tpcc, cpw2, trade2, sap,
andnotesbench. Tpcc is an online transaction processing
workload; cpw2 simulates the database server of an online
transaction processing environment; trade2 is an end-to-end
web application that models an online brokerage; sap is a
database workload; and notesbench is a tool that evaluates
the performance of a set of systems which are running Lotus
Notes.

6. Evaluation

We compare the results of five configurations, where
any mention of the processor-side prefetcher refers to
the Power5+’s traditional stream buffer: no-prefetching
(NP); processor-side prefetching only (PS); processor-
and memory-side prefetching, where the memory-side
prefetcher uses the original ASD approach (PMS);
memory-side prefetching only using the enhanced ASD ap-
proach (EMS); and processor- and memory-side prefetch-
ing with the enhanced ASD prefetcher (EPMS).

We evaluate our ideas along several dimensions. We
first present overall performance results for all three bench-
mark suites. To save space, we then use a subset of eight
benchmarks to illustrate additional points, choosing the two
best and two worst benchmarks—in terms of EPMS perfor-
mance improvement over PMS—from SPEC, and the best
and worst benchmarks from both the NAS and commercial
benchmarks.

6.1. Benchmark Results

From our simulations, we find that the enhancements to
ASD prefetching show substantial benefit. The EPMS con-

figuration performs best, and the benefits from memory-side
and processor-side prefetching are largely complementary
but not completely orthogonal.
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Figure 5. Performance improvements for the
SPEC2006fp Benchmarks.
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Figure 6. Performance improvements for the
NAS Benchmarks.

We use the 13 most memory intensive benchmarks of the
SPEC2006fp suite (Figure 5), and we find that the average
performance benefit of EMS over NP is 27.8%.

SMT Results. We have repeated the above experiments
on a system that uses two SMT threads on the same pro-
cessor, and we now summarize our findings. In the SMT
experiments we use two threads of the same benchmark,
but we start the second thread one million instructions af-
ter the first thread. For these experiments, we leave the
Prefetch Buffer size unchanged, but we double the size of
the Stream Filter, so that each thread can track its own set
of streams. We find that SMT performance improvements
are about the same as for the single-threaded case. For ex-
ample, EPMS improves performance over PMS by 10.1%,
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Figure 7. Performance improvements for the
commercial benchmarks.

9.6%, and 12.6%, respectively, for the SPEC2006fp, NAS,
and commercial benchmarks. The improvements for EPMS
over NP are 34.2%, 18.9%, and 20.2%, respectively.

6.2. Analysis

We now analyze our enhancements and policies in more
detail.

Effects of Individual Enhancements. In Figure 8, we
show the performance effects of each of the three en-
hancements to the ASD prefetcher. We find that Variable-
Length Prefetching alone improves performance by 3.0%-
7.3%; Length-Based Stream Detection alone improves per-
formance by 3.2%-7.2%; and Adaptive Epoch-Length im-
proves performance by and 1.6%-9.1%. We see that these
three methods are not completely orthogonal to each other.
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Figure 8. Performance improvements of the
enhancements of EPMS over PMS.

Impact of Length-Based Stream Detection. We find
that Length-Based Stream Detection significantly increases
the potential impact of stream-based prefetching. As an
example, in Figure 9 we show this effect for the milc
benchmark. The vertical dotted line on the left represents
the percentage of Read commands that might possibly be
prefetched (that is, those that are not the first line of a
stream) using the traditional fixed-lifetime stream detec-
tion scheme. The line on right represents the percentage of
possibly prefetched Read commands using Length-Based
Stream Detection.

Figure 9 also indicates how close our enhanced ASD
Prefetcher comes to aperfect memory-side prefetcher,
which we define as a prefetcher that can predict what to
prefetch and when to issue prefetch requests such thatx% of
all Read requests find their data in the prefetch buffer and no
memory commands are delayed because of the prefetch re-
quests. As we vary the value ofx from 0% to 100%, where
x = 100% represents theidealmemory-side prefetcher, we
get the solid line that represents a family of perfect prefetch-
ers. The distance of the two “+” signs from the solid line
and vertical dotted lines shows that there is still consider-
able room for improvement for the benchmark.
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Figure 9. Comparison of the perfect
prefetcher (solid line) to PMS and EPMS.

Impact of Adaptive Epoch Length. Table 1 provides a
closer look at the benefits of Adaptive Epoch Length. Us-
ing the EPMS configuration, the table compares the use of
Adaptive Epoch Length against various fixed epoch lengths,
where each table entry represent speedup relative to a fixed
epoch length of 256 memory commands. For each row, the
value in bold font represents the best fixed epoch length
for that benchmark. We observe that no single fixed epoch
length yields the best performance for all benchmarks. We



Benchmark Epoch Length
256 512 1024 2048 4096 8192 Average Variable

milc 1.00 1.01 1.03 1.03 1.05 1.04 1.03 1.13
gromacs 1.00 1.00 0.98 0.97 0.97 0.97 0.98 1.01
soplex 1.00 0.99 1.00 1.01 1.02 1.02 1.01 1.08
tonto 1.00 0.95 0.98 0.99 0.99 0.99 0.98 1.01
is 1.00 1.01 1.01 1.01 1.01 1.00 1.00 1.02
lu 1.00 1.02 1.02 1.03 1.03 1.03 1.02 1.11
tpcc 1.00 1.03 1.04 1.02 1.00 0.99 1.01 1.08
sap 1.00 1.01 1.01 1.00 0.99 0.97 1.00 1.02

Table 1. Performance of EPMS with fixed and
variable length epochs. Results are normal-
ized to that of a fixed epoch length of 256.
Among the fixed epoch lengths, none is al-
ways best. Variable length epochs always
achieves better performance than any fixed
length epoch.

also find that using variable epoch length is always superior
to all of the fixed epoch lengths.

How effective is the state machine given in Figure 4?
To graphically answer this question, Figure 10 shows the
epoch lengths over time for the milc benchmark, as gener-
ated by our state machine. We see that all 6 epoch lengths
are well represented, and we see that there is reasonable sta-
bility in the epoch length, as illustrated by the fairly wide
lines. To answer the above question quantitatively, we mea-
sure the percentage of memory requests that reside in an
epoch that is dissimilar (as defined in Section 4.2) from an
adjacent epoch. The percentage is quite low when Adap-
tive Epoch Lengths is used, ranging from 4.1%-6.7% for
our eight representative benchmarks, but it is quite high for
the fixed epoch lengths, ranging from 24.2%-36.7%.
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Figure 10. Changes in epoch length with the
EPMS, for the milc benchmark. Epoch length
varies between 256 and 8192 continuously
during program execution.

Impact of Variable-Length Prefetching. Figure 11
shows the sensitivity of EPMS to Variable-Length Prefetch-
ing policies. We evaluate the performance effect of the
number of lines to prefetch and the effect of the queue status
check before generating multiple-line prefetches. We find
that as the number of lines to prefetch increase from 2 to 3,
the LPQ becomes occupied by multiple-line prefetches, and
the benefit from the ASD prefetching approach degrades.
We also find that the simple Queue Status Check heuristic,
which suppresses multiline prefetching if the Read Reorder
Queue is at least half full, has a significant positive impact
on performance.
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Figure 11. Performance effects of the
variable-length prefetch generation policies,
EPMS vs PMS.
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Figure 12. Effectiveness of the prefetching
approaches.

Prefetch Effectiveness. Figure 12 illustrates the effec-
tiveness of our enhancements by comparing PMS and
EPMS using three metrics: (1) the percent of useful
prefetches, (2) the prefetch coverage, that is, the percentof



Read commands (including processor-side prefetches) that
get its data from the prefetch buffer, and (3) the percentage
of regular memory commands—both Reads and Writes—
that are delayed because of memory-side prefetches. The
values in the figure pertain only to prefetches gener-
ated by the memory-side prefetcher, not the processor-
side prefetcher. We see that for both PMS and EPMS
the percentage of useful prefetches is between 78.4% and
92.1%. Although our enhancements increase the number
of prefetches, the percentage of useful prefetches does not
decrease with EPMS. Furthermore, the percentage of de-
layed regular memory commands increases only slightly.
The prefetch coverage, on the other hand, improves sig-
nificantly with EPMS. With the enhancements that we in-
troduce to the PMS method, the average coverage for the
benchmarks increase from 24.8% to 45.7%.

Sensitivity to Prefetch Buffer Size. Figure 13 shows, for
the EPMS, the performance effect of the prefetch buffer
size. In our simulations we use a configuration with a 16-
block prefetch buffer, and we find that increasing buffer size
beyond this configuration improves performance but with
diminishing returns.
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Figure 13. Sensitivity of the EPMS to prefetch
buffer size.

Power and Energy Effects. To understand the power and
energy effects of our techniques. in Figure 14, we compare
DRAM power usage and energy consumption of PMS and
EPMS with respect to PS. We find that, on average, PMS
and EPMS increase power consumption by 3.2% and 3.3%,
respectively, and they reduce energy consumption by 10.4%
and 17.8%, respectively. Of course, the implementation of
the enhancements in the EPMS itself also consumes power.
We do not have benchmark-specific analyses of this power
usage, but using an area-based estimation we calculate it to
be negligible.
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Figure 14. DRAM power and energy effects.

6.3. Hardware Costs

The current Power5+ memory controller occupies about
1.61% of the entire chip area, with the dominant portion of
the memory controller being control logic. Using detailed
estimates of transistor counts, earlier work [9] finds that the
original ASD prefetcher increases the area of the memory
controller by about 6.08%, resulting in a 0.098% increase in
the total chip area. Our enhancements in this paper do not
increase any table sizes in the memory controller, but using
the same methodology, we estimate they do increase control
logic of the memory controller by about 6.54%, resulting in
a 0.106% increase in the total chip area compared to the
original Power5+.

7. Conclusions

This paper has evaluated three techniques for improving
the ASD prefetcher.

One technique, Adaptive Epoch Lengths, improves the
quality of the feedback that is used to guide prefetching
decisions. More broadly, this technique provides a frame-
work that can be useful for other adaptive microarchitec-
tural structures that base their current behavior on informa-
tion gathered from some fixed-sized window into the recent
past; this technique is generally useful because, due to phase
behavior, the best choice of a window size typically varies
over the lifetime of a workload. The specifics of the finite
state machine for adapting behavior and the specifics of the
similarity metric would, of course, need to be modified to
be suitable for the particular structure in question.

A second technique, Length-Based Stream Detection,
changes the mechanism that detects streams, thereby dis-
covering a significantly larger number of short streams than
was possible with previous stream buffers. The lesson is
that if we wish to support both short and long streams, we
need to revisit all aspects of the stream buffer so that they



do not bias against short streams.
The third technique, Variable-Length Prefetching, is

a tiny conceptual advance over the previously evaluated
single-line ASD prefetcher. Variable-Length Prefetching
supports multiple-line prefetching, where the number of
lines prefetched is selected based on the Stream Length His-
togram and state of the Read Reorder Queue, with the lat-
ter state being used to decrease the aggressiveness of the
prefetching in cases where the memory system is busy.

The three techniques share some common characteris-
tics. Each is adaptive and simple, using a simple mea-
sure of past behavior to guide its behavior. Each is effec-
tive, as each alone improves the performance of the ASD
prefetcher by about 5% on our representative set of bench-
marks. Collectively, these techniques improve the effective-
ness of stream buffers, particularly for short streams, which
leads to both improved performance and decreased energy
consumption. When coupled with the Power5+’s processor-
side stream buffer, the stream buffers provide a combined
performance boost of 41.0% for the SPEC2006fp bench-
marks, 20.8% for the NAS benchmarks, and 21.3% for a set
of commercial benchmarks.
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