Fault Aware Instruction Placement for Static Architectures

Premkishore Shivakumar

Divya P. Gulati

Calvin Lin Stepherkéctkler

Department of Computer Sciences
The University of Texas at Austin

Abstract

Aggressive technology scaling, rising clock frequenaes, the
continued increase in microprocessor power density tieredioth
manufacturing yield rates and long-term reliability of égrated
circuits. While defects in dynamically scheduled micrapssor
architectures can be tolerated using mechanisms that aestr
parent to software, static architectures create differepportuni-
ties and challenges for reliability management. This paper
poses to expose the defective hardware configuration int& sta
architecture to the compiler, which can perform efficientlfae-
configuration through intelligent instruction scheduling/e con-
ducted our studies on the TRIPS architecture whose conipntat
core consists of a two-dimensional array of ALUs. The coenpil
generates blocks of instructions that are statically pthom the
distributed ALU array, which are then executed dynamicily
dataflow order. We consider two fault models, one in whicly onl
the computation elements can fail, and another that alsowa|
faults in the communication channels. We examine schegalin
gorithms that can avoid the faulty resources by exploitimgtpa-
tial redundancy inherent in the computation substrate. &set of
microbenchmarks, preliminary results demonstrate thatadgo-
rithms can reschedule the assembly code to tolerate executiit
faults with negligible loss in performance.

1 Introduction

processor chips, and memory modules, and rely on a service
processor and the operating system for fault detection and
reconfiguration. Recent microprocessor systems employ
virtualization, and dynamic reconfiguration techniqueshsu

as dynamic CPU sparing to achieve goals of system perfor-
mance, and availability [5, 4]. Fault tolerance at the psace
sor level is typically implemented through purely hardware
based techniques that are restricted to parity, ECC, and re-
dundant rows in caches; and scrubbing and redundant bit-
steering in the main storage. In the future, increasing de-
mand for greater parallelism and faster clock rates will re-
quire microprocessors to distribute their resources and re
move primitives that require single cycle global communi-
cation. We recognise that fault tolerance through purely
hardware techniques in such processor architectures can
lead to overheads in area, verification, and more impostant|
cycle time. First, we propose that future static architezgu
push dynamic fault reconfiguration within the boundaries
of a single processor to achieve greater yield and system
availability. Second, we propose that the defective proces
sor configuration be exposed to the compiler which can then
perform efficient fault reconfiguration by intelligent inst-

tion placement. We argue that fault aware physical layout
of the instructions can more effectively exploit the avail-
able spatial redundancy, and with fewer overheads than a
purely hardware based approach to achieve both better per-

Aggressive technology scaling, rising clock frequencies, formance and yield.
and the continued increase in microprocessor power density

threaten both the manufacturing yield rates and the long-

term reliability of devices. Shrinking lithography, new ma

We conducted our studies on the TRIPS architecture
whose computation core consists of a two-dimensional ar-

terials and process technologies, and lower design toler-ray of ALUs. The compiler generates hyperblocks [8] of in-
ances increase the yield sensitivity to design features, an structions that are statically placed on the distributedJAL
make integrated circuits more susceptible to manufagurin array which are then executed dynamically in dataflow or-

defects [7]. Further, rising core operating temperatunes a

der. We consider two fault models, one in which only the

power densities accelerate processor wear-out from intrin computation elements can fail, and another that also allows
sic failure mechanisms such as electromigration, leading t faults in the communication channels. We examine schedul-

reduced processor lifetimes [14].

ing algorithms that can avoid the faulty resources by ex-

Todays microprocessor based systems implement faultploiting the spatial redundancy inherent in the computatio
tolerance both at the system and the processor level. Atsubstrate. For a set of microbenchmarks, preliminary re-
the system level, they include hot spares for power supplies sults demonstrate that our algorithms can reschedule the as

sembly code to tolerate execution unit faults with negligi- the defective processor resources, failing which the next
ble loss in performance. In this study, we focus only on layer or the operating system is triggered to replace the de-
defects exposed during the static compilation time, but we fective processor. The dynamic translation layer should be
see a natural path for extending the mechanism for dynamiccapable of extracting instruction blocks from the binand a
compilation. then remapping the block instructions to produce new as-

The remainder of this paper is organized as follows. Sec-sembly code and binary that will successfully execute on the
tion 2 discusses how our work is related to, and extendsfaulty hardware by avoiding the defective resources. Ig thi
other work in this area. Section 3 introduces the TRIPS study, we focus only on defects exposed during the static
architecture, discusses the fault model and describes theompilation time and investigate scheduling algorithnad th
duties of a fault aware scheduling algorithm for this fault can perform the fault reconfiguration described above. Of
model. The base TRIPS scheduler algorithm, and our pro-course fail-in-place also requires techniques for detecti
posed fault aware algorithm are described in Section 4. Weand recovery from intermittent and transient failures that
then briefly describe our methodology in Section 5. The ex- occur during a program’s execution, and some such mecha-
perimental results are described in Section 6. Finally; Sec hisms are summarized in the literature [1, 10].

tion 7 presents our conclusions. Traditionally, VLIW processors expose the processor
pipeline details to the compiler, requiring all existingné
2 Related Work ries to be recompiled following any change in the pipeline

microarchitecture. The Transmeta Crusoe processor virtu-
alized an X86 CPU by implementing a code morphing soft-
ware layer that dynamically translated instructions from t
target X86 ISA to the VLIW host ISA [5]. The Transmeta
processor thus solved the problem by exposing the actual
VLIW hardware configuration only to the code morphing
software that does the dynamic translation. In general, dy-
namic translation can be used to isolate the details of the
hardware from the software whenever the underlying hard-
ware configuration is expected to change, thus enabling ap-
plication portability to new environments and processbrs.
this paper, we extend this concept to reliability managgmen
in static architectures.

Yield management is typically done at multiple levels of
the design. There are several ways in which additiokeal
sign for yieldguidelines can be incorporated to minimize
the effects of common yield detractors at the layout and the
circuit level [6]. Once these defects occur on the devices
in the chip, techniques can be employed at the microarchi-
tectural level to mask faults arising from these defects. In
designs with a high degree of regularity such as DRAMs
and SRAMSs, it is common to make use of extra redundant
rows to help improve yield. While defects in dynamic su-
perscalar architectures can be tolerated using dynanue har
ware mechanisms [12], static architectures provide an op-
portunity for software assisted yield management. In this
paper, we propose to extend yield management in static ar3 Yield Management in the TRIPS Architec-
chitectures to the compiler level, thus enabling fault avar ture
instruction placement and potentially achieving bettetdi
and performance [12].

Dynamic reconfiguration on logically partitioned IBM
pSeries symmetric multiprocessor systems allows move-
ment of hardware resources from one partition to another
enabling autonomic system management to optimize per-
formance, resource utilization, and reliability [4]. Itger 3.1 TRIPSArchitecture
vides the foundation for self-healing and diagnosing soft- The TRIPS architecture [2] contains a two-dimensional
ware for dynamic CPU sparing that allows systems to trans-array of computation elements connected by a thin mesh
parently replace a defective processor with a fully func- operand routing network. Each ALU includes an integer
tional processor with no impact on the application. The unit, a floating point unit, an operand router, and an in-
self-diagnosing software monitor the recoverable erm@sa struction and operand buffer for storing instructions and
for processors through firmware routines [4]. If the number their operands. The operand router follows dimension+orde
of errors exceed an internal threshold, the operatingsyste routing to communicate within the network. When routing
is notified which in turn triggerdynamic reconfiguratioto a packet from a parentto a child node, the packet first travels
substitute the defective processor. in the x-direction (along the row) until it reaches the cotum

We propose a more fine-grained technique where theofthe child. Then it travels in the y-direction until it reses
error-detection mechanisms would first trigger a dynamic the child node. Figure 1 illustrates the organization of the
translation layer that attempts to isolate the fault wittie TRIPS core.
processor. The dynamic translation layer we suggest is an The TRIPS compiler generates hyperblocks [8] and
instruction scheduler that can perform dynamic sparing of schedules each hyperblock independently. An example

We begin by describing the salient features of the TRIPS
architecture. We then argue that the instruction scheduler
is a suitable place for implementing fault tolerance in the
TRIPS processor, and explore the duties of a fault aware
scheduling algorithm for a specific fault model.

Input ports
Framé¢ A |
Operand % L |—|
bL?ffers T Frqmp B |
(]
. AU el O
53 1
1 il
(o]
F L0000
@ g
(&} Instruction —E
buffers L [|:|
cop 0OoOo-
D D-cache banks E Execution node
| I-cache banks G Global control
R Register banks
Figure 1. Example 4x4 TRIPS Processor.
schedule of instructions on2ax 2 execution array is shown Original Program Instruction Placement Instruction Encoding
in Figure 2.Readinstructions are used to fetch values from SUBI R1, R2, #0 READR2 WRITE R7 READR2 [0,0,0]
. X . . . AND R1, R1, R4 READ R4 READR4 [0,0,1] [0, 1,
the register file to the consumer instructions. Block regist ADD R3, R4, R5 READ R5 READR5 [0, 1, 0]
. . . LSH R3, R3, #3
outputs are produced hyrite instructions. In the TRIPS ADDI R6, R3, #0 SUBI #0 [0,0,1]

ISA, instructions do not encode their source operands, in- SUYB R7 RL R6 AND (1.0,1]

stead they explicitly encode the locations of their chifdre Dataflow Graph ADD w10
Figure 2 shows the instruction encoding for the above ex- A
ample. For example, theedd instruction placed at location ! ADDI #0 [1,0,0]
[0,1,0], upon execution, forwards its result to th8H in- @ {8 81 é} AND {8 11 3% on SUB R7
struction placed at location [1,1,0]. .

The TRIPS architecture follows a dataflow execution ¢ ‘ H 0, é% ~obi {11 1,0] LSH
model. The hardware fetches the actual instructions to the‘f
execution array, reads the input registers from the ragiste
file, and injects them into the appropriate ALUs. An instruc-
tion can fire once the ins_truc_tion itself and all _its operands jed resources a purely hardware based approach is required
have been received, which in turn forwards its results 10 {5 replicate the fault isolation hardware in each of them.
consumer ALUs through the operand network on comple- pyrther, a hardware based mechanism may be restricted by
tion. Temporary values that are only live within a block are 5rea and complexity constraints to simple fault models, and

communicated directly from producer to consumer through sg|ytions based on steering requests to explicitly pravide
the operand network; only register outputs are written o th spare resources, similar to caches.

register file. On the other hand, the instruction scheduler in partitioned
Each ALU contains a fixed number of instruction buffer static architectures, like the TRIPS architecture, camexa
slots. We refer to corresponding slots across all ALUs col- jne the entire distributed execution substrate in evaigati
lectively as aframe A 4x4 grid with 64 instruction buffer)| the constraints that contribute to optimal performance
entries at each ALU thus has 8 frames of 8 instructions The instruction scheduler can therefore naturally treait fa
each. A subset of contiguous frames constitutearghi- isolation as an additional constraint to the scheduling-alg
tecture framgA-frame), into which the compiler schedules rithm without any overheads in area, or dynamic execution
all instructions from a hyperblock. For example, dividing time. The scheduler can also more effectively exploit the
64 frames into 8 A-frames composed of 8 physical frames ayajlable redundancy and hence potentially scale better fo
each allows the scheduler to map a total of 128 instructionscomplex fault models and greater number of defects. We

[%2]

[

T8l
= >
%] E
T] i

B

LSH #3 [1,0,1]

Figure 2. Instruction Physical Layout

(per hyperblock) at once to the ALU array. argue that this visibility makes the instruction schedualer
32 Fault AwareInstruction Placement natural target for implementing efficient fault reconfigura
tion.

Error free execution can be achieved on a defective pro-
cessor by forcing the program to utilize only the functional 33 FaultModel
processor resources. Implementing a purely hardware based In this study, our focus is only on the execution array in
fault reconfiguration mechanism in partitioned static arch the TRIPS processor, one of the resources exposed to the
tectures, like the TRIPS architecture, can be quite ineffi- compiler for static instruction placement. The execution a
cient. First, to handle failures in all of the statically sdh ray in the TRIPS processor occupies a substantial fraction

2) Avoid Fault Nodes b) Avoid Faulty Nodes, Rou containing the assignment of instructions to ALUs. We be-

READR2 WRITE R7 READR2 WRITE R7 gin by describing the base scheduler and then proceed to
READ R4 READ R4
READ R5 READ R5 describe two simple heuristics for fault aware instruction

placement.

% — %ﬂ: 4.1 Base Scheduler Algorithm
sus| - [susi "sug=—_[anp While a VLIW scheduler assigns each instruction an
H LSH ALU and a time slot, the TRIPS scheduler assigns each in-

struction only an ALU without specifying a time slot. The

[0,0, 1] [0, 1, 1] AND [0,0, 1] [0.1,1] suB base scheduler first computes the initial set of ready iostru

[0.0.0] [0, 2,0 ADD [0.0.0] (0.1, 0] ADD tions, all of which can issue in parallel. These instrucsion

[1,0,1] sUB [L,1,1] SUBI [1,0,1] SUB [1.1,1] AND are then ordered by their criticality, which is determingd b

[1,0,0] ADDI [1,1,0] LSH [1,0,0] ADDI [1, 1, 0] LSH

_) their depth in the dataflow graph, and the instruction with
Figure 3. Fault Aware Instruction Placement the highest priority is selected for placement. The ALU as-

signed to the instruction is that which gives it tharliest

of the processor area because each node contains a full set 6gady time(ERT), which is calculated as follows:

integer and floating point functional units. While the layou ERT(3, alu) = max{ECT(p) + TransmissionTimeyp, alu]}

and routing density of logic structures is less than regular v

memory arrays, the large area occupied by the ALUs makewhere p denotes a parent of ERT(i,alu) is the ear-

it susceptible to defects. Further, the functional units ar jiest time at which the instruction can issue at this alu,
one of the hottest on-chip structures making them suscepti-ECT (p) is the earliest completion timand refers to the
ble to intrinsic failures [14, 13]. expected time at whichy will produce its results, and

The analysis in the rest of this paper assumes that an arrayr qpn.smission_Time[p, alu] denotes the time taken for
contains at most one defective ALU in the execution array. the operand to reach instructioat the node:u. To sched-

Further, we consider two different granularities for a @éfe e ;, the scheduler chooses the alu that minimizZe21 .

in the ALU node: After it schedules an instruction it adds to the ready set
any ofs’s children whose parents have all been scheduled.
e Only the local functional units, the instruction buffer, | selects the next instruction for scheduling and iterates
or the operand buffers are defective. til completion. A detailed explanation of the base TRIPS

- . scheduler is provided in [9].
e A more restrictive fault model which also allows de-

fects in the operand router that transmits the results of 42 Fault Aware Scheduler Algorithms
computation to dependent instructions. Fault aware scheduling algorithms rely on the redundancy
in the execution substrate to isolate the fault. The nattire o
Depending on the defect granularity, a fault aware the fault model influences the redundancy needed to toler-
scheduling algorithm must not only avoid placing instruc- ate the potential failures. In the particular TRIPS prooess
tions on the faulty ALUs, but additionally ensure that no configuration we consider, each hyperblock can contain a
communication path between dependent instructions in-maximum of 128 instructions and can map upto 8 instruc-
cludes a node with a defective router. Figure 3 illustrates tions on a single ALU. To tolerate one defective ALU in
the two fault models, and the corresponding fault aware in- the execution array (Section 3.3), the algorithm needs to be
struction placement for the same dataflow graph shown inable to remap the instructions scheduled on the defective
Figure 2. While in the first case the algorithm only has to ALU to other functional ALUs. Since the base scheduling
avoid placing instructions on the faulty ALUs, it can be ob- algorithm may map upto 8 instructions on an ALU, the fault
served in the second case (Figure 3.b) that the algorithmaware scheduling algorithm must find atleast 8 empty func-
avoids the faulty communication paths also. For example,tional slots in the remaining nodes to provide the minimal
theand instruction is remapped to location [1,1,1], and the redundancy for successful fault reconfiguration. This im-
childsub instruction is remappedto [1,0,1] so that the com- plies that each hyperblock can contain a maximum of 120
munication path does not include the faulty node. instructions (= 128 - 8) to have any redundancy at all for the
. algorithm to exploit.

4 Fault Aware Instruction Placement The more restrictive fault model that allows both faulty
The base scheduler for the TRIPS architecture takes asALUs and communication paths may prove this minimal re-
input the instructions, and a detailed processor model thatdundancy to be inadequate even for mapping average sized
includes the routing topology, static instruction and com- hyperblocks on a TRIPS processor, for now each instruc-

munication latencies and produces the instruction scleedul tion has to not only find a functional ALU but also one that

can be reached from all parents through functional routes. a) Bad placement of Parent Instructions and b) Insertion of extra MOV instruction
In this paper, we provide more than the minimal redun- Foulty Node

dancy by compiling all the benchmarks to contain at most Y
112 instructions in each byperblock before the fault aware
scheduling algorithm is applied. This can potentially lead
to performance loss even in the fault-free case and is the
static cost of the technique, as we have to first create redun-
dancy before it can be dynamically exploited when there are
defects. As explained earlier, this is similar in concept to
adding explicit spares for fault tolerance, which contréu

to fixed overheadsin area, and execution time. We now aug-

ment the base scheduler with two heuristics for the two fault * » Defective Path *
models. —— Good Path

Figure 4. Figure 4a. shows that there is no path from the
ALU corresponding to parent P2 to the child, since all paths
have to pass through the faulty ALU. Figure 4b. shows the

Avoid Faulty Nodes (AFN): This heuristic assumes that
only the ALUs can be defective, and everything else includ-
ing the co_mmunlcatlo_n paths are operathnal. The scheduler insertion of an extra MOV instruction that acts as an in-
ta_llfes as |.nput a deta_lled processor conflguratlon which ad- o/ mediate target. Both the routes from P2 to the MOV
ditionally includes pointers to the defective ALU nodes th instruction and from the MOV instruction to the child are
rest of the inputs are identical to the base scheduler. The fynctional.

algorithm itself is identical to the base scheduler, bubivn

considers only the functional ALUs for instruction place-

ment. node forMOV insertion. The algorithm fails if it can find no

Avoid Faulty Links (AFL): This heuristic accounts for node for successfllOV insertion.

both faulty ALUs and routing pgths, and.can be co.nsidered5 M ethodology
as an enhancement to the previous algorithm. The input pro-
cessor configuration now not only contains pointers to the The TRIPS processor [11] used in our study has an 4 x
defective ALUs, but also has infinite communication laten- 4 array of execution nodes each with a full set of integer
cies assigned to the defective nodes from all of its immedi- and floating point functional units. Each computation node
ate neighbours. This implies that any path from a produceralso has 64 reservation stations, so that the overall aaray c
to a consumer instruction that includes a defective exenuti accomodate eight blocks of 128 instructions each simulta-
node is of infinite duration, which naturally serves to eesur neously. Further, a router resides on each of the 16 nodes
that such a path is never selected to provide the instructionto dynamically route results between dependentinstrostio
with the earliest ready timg¢ERT). taking 0.5 cycles per hop. The first level banked instruction
The constraints imposed by faulty communication paths and data caches are each 64KB, two-way, three cycle la-
and dimension-order routing can potentially lead to unsuc-tency, and are located to the left of the execution array. We
cessful fault isolation frequently. Figure 4.a illustisiz@n model a 13 cycle miss penalty to a 2MB L2 cache, and a
example placement of the parent instructions and the faulty132 cycle main memory access time. The register file is
node, for which there is no node where the child can be also banked and is located at the top of the execution array.
placed that gives functional routes (that follow dimension Section 4 describes in detail both the baseline TRIPS
order routing) from both the parents. The base algorithm instruction scheduler and the new fault aware scheduling
for instruction placement is identical to the base schedule algorithms. The applications we used for evaluating the
— but now some of the routes from parent instructions to scheduling algorithms are from the TRIPS microbenchmark
children may be faulty. For every faulty path from a parent suite [3]. Table 1 lists the microbenchmarks that we used in
to the child instruction at this node, we insert an exi@V our evaluation. The microbenchmarks come from critical
instruction between the two. TIMOV instruction is placed kernels in the SPEC 2000 suite, which are then compiled
so that both the routes from the parent to it, and from it to using the TRIPS compiler. It also includes hand optimized
the child node are fully functional. The algorithm presgntl versions of some microbenchmarks that were formed by ap-
chooses the first slot that satisfies the above condition, weplying some transformations like loop unrolling more ag-
recognize that more sophisticated choices are possibde her gressively. In this preliminary exploration we are prinhari
The only function of theMlOV instruction is to pass the re- interested in whether our fault aware scheduling algorithm
sult from the parent to the child instruction and it now be- is able to discover enough redundancy to remap the block
comes the new child of the parent, and the new parent of theinstructions on the fully functional resources. To compare
original child instruction. Figure 4.b illustrates one piide performance across the two schedules, we measure instruc-

[Microbenchmark] Form Original Modified
ammp 1 C source AFL Heursitic AFL Heursitic
ammp 2 C source Micro Total MOV Max. MOV | Avg. MOV Total MOV
a1 C source Benchmarks| Inst/Program| Inst/Block | Inst/Block | Inst/Program
art 2 C source ammp 1 0 0 0 0
art 3 C source ammp 2 0 0 0 0
art 1 hand Hand optimized assembly code artl 0 0 0 0
art 2 hand Hand optimized assembly code art2 2 2 0.17 2
bzip 1 C source art 3 0 0 0 0
bzip 2 C source art 1 hand 20 16 1.11 14
bzip 3 C source art 2 hand 0 0 0 0
bzip 1 hand Hand optimized assembly code bzip 1 0 0 0 0
bzip 3 hand Hand optimized assembly code bzip 2 0 0 0 0
dhry C source bzip 3 0 0 0 0
equake C source bzip 1 hand 2 2 0.14 1
equake hand Hand optimized assembly code bzip 3 hand 0 0 0 0
gzip 1 C source dhry 0 0 0 0
gzip 2 C source equake 4 2 0.18 4
matrix C source equake hand| 3 3 0.18 3
matrix hand Hand optimized assembly code gzip 1 0 0 0 0
parser C source gzip 2 0 0 0 0
sieve C source matrix 0 0 0 0
sieve hand Hand optimized assembly code maitrix hand 1 1 0.05 1
twolf 1 C source parser 1 1 0.08 1
twolf 2 C source sieve 0 0 0 0
twolf 1 hand Hand optimized assembly code sieve hand 10 10 0.71 6
twolf 2 hand Hand optimized assembly code twolf 1 4 3 0.21 4

twolf 2 1 1 0.11 1
Table 1. Microbenchmark Suite twolf 1 hand 8 6 114 7
twolf 2 hand 2 2 0.14 2
tions per cycle (IPC) using a cycle accurate timing simulato Table 2. Extra MOV Instructions
that models the TRIPS architecture in detail.
6 Preliminary Results perblocks in the microbenchmarks with greater than 90 in-

The Avoid Faulty Nodeslgorithm succeeds in finding structions, showing promise of scaling to real benchmarks.
a legal schedule for all the microbenchmarks. The hyper- The Avoid Faulty Linksheuristic fails to schedule a
blocks in all the microbenchmarks contain at most 112 in- hyperblock in the hand optimized assembly benchmark
structions and hence can be mapped to fit on 14 ALUs eachsievehand that has 102 instructions in it. The algorithm
with 8 instructions. Since there is only one defective node failed after it had already added tMOV instructions, and
(and no faulty links) there is always enough redundancy to was unable to find a suitable node to map another. We mod-

remap the instructions. ified the Avoid Faulty Linksheuristic slightly so that when
The Avoid Faulty Linksheuristic succeeded for 24 out there is no node for the child that gives functional routes
of 25 microbenchmarks. Table 2 shows the edi@V in- from all its parents, the child node that has the least num-

structions inserted in the microbenchmark schedule teerout ber of defective routes, and hence needs the least number of
around the defective nodes and links. The total numberMOV instructions, is chosen. Although the total number of
of MOV instructions inserted in all the microbenchmarks extraMOV instructions decreases, as shown in the last col-
varies between 0 and 20; the maximum numbeMa&V umn of Table 2 (Modified AFL Heuristic), the heuristic still
instructions in any single block varies between 0 and 16. fails to remapsievehand.

For instance, the heuristic inserts 16 ext®V instruc- Since both the variants of the algorithm consider exactly
tions in a single hyperblock afrt_1_hand to successfully oneinstruction at a time for scheduling, they can potdtial
remap the instructions. Table 2 also shows that less thararrive at a bad intermediate schedule where there is neither
two MOV instructions are inserted in each hyperblock on node for the child instruction that provides functionalhsat
the average, with most benchmarks successfully reschedbetween the child and all its parents, nor is there a suit-
uled without inserting any extra instructions at all. This able node foMOV insertion between the parent-child pair
demonstrates that, for this specific fault model, restricti ~ with the faulty path. Making the algorithm more sophisti-
each hyperblock to 112 instructions provides ample redun-cated without adversely affecting the scheduling lateacy,
dancy in most cases for effective intra-processor fault re- adding lookahead to the scheduling algorithm will increase
configuration. The heuristic succeeds in scheduling the hy-its robustness but still cannot ensure its success. Figure 5

Avoid Row and Column of Faulty Node

Figure 5. Avoid all the nodes in the same row or column
as the faulty node during scheduling. This ensures that no
communication path between a parent and child can include
the defective node.

microbenchmarks, that we are able to remap the assembly
code to avoid the defective execution units and paths on a
TRIPS processor with atmost one defective node with neg-
ligible loss in performance.

Our compiler assisted solution for exploiting redundancy
and enabling fault aware instruction placement is syner-
gistic with many proposed design ideas for performance,
low power, and reliability. Future wire delay dominated
architectures may be required to use the compiler in spa-
tially scheduling the instructions on the distributed exec
tion substrate to achieve scalable performance by explic-
itly accounting for the communication latencies between
dependentinstructions [11, 15]. The Transmeta Crusoe pro-
cessors judiciously traded performance for low power con-
sumption by an innovative partitioning of the microproces-
sor functions between software and hardware [5]. Finally,
dynamic reconfiguration features have provided the foun-
dation for the relatively coarse grained self-healing aind d

shows a way for ensuring a successful schedule for eVeryagnosing features built into the IBM pseries 690 servers in
hyperblock. By avoiding scheduling instructions on all the AIX 5.2 [4].

nodes in the same row or column as the faulty node we can
ensure that no two dependent instructions include the de-

fective node in their communication path. For this to be
possible, each hyperblock can now contain a maximum o
72 (= 128 - 7x8) instructions. Although this is simple, it
is both overly conservative and can potentially have a large
negative impact on performance.

In general, we have only investigated a simple fault aware
scheduling algorithm that reschedules all the instrustian
every block avoiding all faulty execution nodes, and com-

f

munication paths between dependent instructions that in-

clude faulty nodes. This is only one solution in the spectrum
of possible scheduling algorithms that optimize concur-
rently for performance, availability, and scheduling fatg
Algorithms that reschedule the entire block of instrucsion
can potentially offer higher performance and yield, but may
have considerable scheduling latency. At the other extreme
algorithms that aim to remap the minimum number of in-
structions will incur smaller scheduling latencies butlwil
likely have poorer yield and performance.

Both the AF'N and AF' L heuristics show a very slight
(approximately 1%) drop in performance compared to the
base scheduler with no faults.

7 Conclusion

This paper proposes to enhance yield and enable graceful [5]

degradation of fail-in-place systems through efficient eom
piler assisted fault reconfiguration in future microproces

sors. We discuss the trade-offs between scheduling latency

performance and system availability, and evaluate a sim-
ple scheduling algorithm that remaps all the instructians t
avoid the faulty resources but optimizing only for perfor-

mance. Our preliminary results demonstrate, on a set of

We are planning to extend this preliminary investigation
in several ways. A detailed area, yield, and lifetime reliab
ity model will be required to determine more precisely the
fault model that primarily influences the complexity of the
scheduling algorithm. Our preliminary experiments use mi-
crobenchmarks, and it will be interesting to investigate'ho
the nature of applications influence the complexity of the
scheduling algorithm. We plan to extend our evaluation to
encompass the floating point and integer SPEC benchmark
suite. We view these as interesting opportunities for fitur
work in this area.

References

[1] AusTIN, T. DIVA: A Reliable Substrate for Deep Submi-
cron Microarchitecture Desigrnternational Symposium on
Microarchitecture(November 1999), 196-207.

[2] BURGER, D., KECKLER, S., McKINLEY, K., DAHLIN,
M., JOHN, L., LIN, C., MOORE, C., BURRILL, J., Mc-
DONALD, R., W.YODER, AND THE TRIPS TEAM. Scaling

to the End of Silicon with EDGE Architectures. p. 37:7.
(3]

[4] JANN, J., BROWNING, L. M., AND BURUGULA, R. S.
Dynamic Reconfiguration: Basic Building Block for Auto-
nomic Computing on IBM pSeries ServerdBM Systems
Journal, Vol 42, No IMarch 2003), 29-37.

KLAIBER, A. The Technology Behind Crusoe Processors.
Transmeta White Papédanuary 2000).

KOREN, |., AND KOREN, Z. Defect tolerant VLSI circuits:
Techniques and yield analysis. Rroceedings of the IEEE
(September 1998), vol. 86, pp. 1817-1836.

L1, X., STROJWAS A. J.,AND ANTONELLI, M. F. Holistic
Yield Improvement Methodology.Semiconductor Fabtech
Journal 8 7 (July 1998), 257—-265.

CHEN, X. Trips Microbenchmark suite.

(6]

(7]

[8] MAHLKE, S., LN, D., CHEN, W., HANK, R., AND
BRINGMANN, R. Effective compiler support for predicated
execution using the hyperblock. Froceedings of the 25th
Annual International Symposium on Microarchitect(dene
1992), pp. 45-54.

[9] NAGARAJAN, R., KusHwAHA, S. K., BURGER, D.,
MCcKINLEY, K. S., LIN, C.,AND KECKLER, S. W. Static
Placement, Dynamic Issue (SPDI) Scheduling for EDGE Ar-
chitectures. IfProceedings of the 13th International Confer-
ence on Parallel Architecture and Compilation Techniques
(October 2004).

[10] REINHARDT, S. K.,AND MUKHERJEE, S. Transient Fault
Detection via Simultaneous Multithreading. International
Symposium on Computer Architectydrly 2000), pp. 25—
36.

[11] SANKARALINGAM , K., NAGARAJAN, R., Liu, H., KiM,
C., HuH, J., BURGER, D., KECKLER, S.,AND MOORE,
C. Exploiting ILP, TLP, and DLP with the Polymorphous
TRIPS Architecture. InProceedings of the 30th Annual
International Symposium on Computer Architectdeine
2003), pp. 422-433.

[12] SHIVAKUMAR , P., KECKLER, S. W., MOORE, C. R.,AND
BURGER, D. Exploiting microarchitectural redundancy for
defect tolerance. IThe 21st International Conference on
Computer DesigifOctober 2003).

[13] SRINIVASAN, J., AND ADVE, S. V. Predictive Dynamic
Thermal Management for Multimedia ApplicationsPro-
ceedings of the 17th Annual ACM International Conference
on Supercomputing (ICS 200@une 2003).

[14] SRINIVASAN, J., ADVE, S. V., BosE P., AND RIVERS,
J. A. The Case for Microarchitectural Awareness of Life-
time Reliability. In Proceedings of the Annual International
Symposium on Computer Architecture (ISC2Q04).

[15] WAINGOLD, E., TAYLOR, M., SRIKRISHNA, D., SARKAR,
V., LEE, W., LEE, V., Kim, J., RRANK, M., FINCH, P.,
BARUA, R., BaBB, J., AMARSINGHE, S.,AND AGARWAL,
A. Baring It All to Software: RAW MachineslEEE Com-
puter (September 1997), 86-93.

