
Comparing Frameworks and Layered Refinement

Richard Cardone and Calvin Lin
Department of Computer Sciences

University of Texas at Austin
Austin, TX, 78712 USA

{richcar, lin}@cs.utexas.edu

ABSTRACT
Object-oriented frameworks are a popular mechanism for
building and evolving large applications and software
product lines. This paper describes an alternative approach
to software construction, Java Layers (JL), and evaluates JL
and frameworks in terms of flexibility, ease of use, and
support for evolution. Our experiment compares Schmidt’s
ACE framework against a set of ACE design patterns that
have been implemented in JL. We show how problems of
framework evolution and overfeaturing can be avoided
using JL’s component model, and we demonstrate that JL
scales better than frameworks as the number of possible
application features increases. Finally, we describe how
constrained parametric polymorphism and a small number
of language features can support JL’s model of loosely
coupled components and stepwise program refinement.

Keywords
Frameworks, parametric polymorphism, mixins, layers.

1 INTRODUCTION
Surveys show that nearly three quarters of all large
software projects are cancelled, over budget, or late [20].
To address this problem, various methods of reusing code
and reducing design complexity have been proposed. In
terms of reusing both code and design to build large
applications, object-oriented frameworks [2,17,27] repre-
sent the current state of the art when using general-purpose
programming languages. Frameworks are starter kits that
use abstract classes to provide partially implemented
applications. Different applications can be created from a
single framework by providing different implementations
of these abstract classes, so frameworks are ideal for
supporting software product lines, which are families of
related software products.

This paper introduces a language-based alternative to
frameworks called Java Layers (JL). JL [12] is an
extension of Java that supports a layered software

component model. Like frameworks, JL can be used to
provide partially implemented applications. Unlike
frameworks, starter kits in JL consist of a set of
components, or layers, that are then composed to generate
applications. The key idea behind the JL component model
is that each layer encapsulates exactly one design feature,
which is a high-level requirement that defines some
application attribute or capability. This one-feature-per
layer property maximizes code reuse since each feature is
implemented only once. This property also facilitates the
composition of layers, making it easy to include or exclude
individual features. Finally, this property preserves
modularity in terms of both code and design.

To compare JL against object oriented frameworks, we use
JL to re-engineer the Adaptive Communication
Environment (ACE), an object oriented framework
developed in C++ by Schmidt and colleagues [28]. ACE is
a well-documented, well-engineered framework that has
been used in dozens of commercial and academic
applications. Thus, ACE represents proven and mature
framework technology and provides a standard against
which new technologies can be measured. In this paper, we
compare application development in ACE and in JL using
the following qualitative measures:

Usability – How easy is it to develop applications?
Application Flexibility – How easy is to customize

applications?
Starter Kit Flexibility – How easy is it to evolve the

starter kit?
Contributions
This paper makes the following contributions.

1. We present the first experimental comparison of JL’s
component model against a large, mature, object-
oriented framework (ACE).

2. Compared to frameworks, we describe how JL
employs simpler, more precise interfaces that reduce
memory overhead, runtime overhead, and code
complexity. We also show how JL provides better
support for evolution, and how JL avoids the
framework problem of overfeaturing.

3. We briefly describe JL’s novel features, which
enhance usability and efficiency, and how these

 2

features can be integrated into Java.

This paper proceeds as follows. Section 2 explains the JL
component model, and Section 3 describes the foundation
of the JL language. Section 4 provides context by
sketching the ACE architecture and its key design patterns.
Section 5 then uses ACE to compare JL against
frameworks. In Section 6, we describe novel JL features
that simplify component-based programming. Finally, we
present related work and conclusions.

2 THE JL COMPONENT MODEL
JL is based on the GenVoca software component model [7].
This component model encourages a programming
methodology of stepwise refinement in which types are
built incrementally in layers. Stepwise refinement is
important because it allows design features to be mixed and
matched, allowing applications to be flexibly and precisely
customized.

Another advantage of stepwise refinement is that it solves
the feature combinatorics problem [10]. For a domain with
n optional features, the feature combinatorics problem
occurs when all valid feature combinations must be
predefined or in some way materialized in advance. In the
worst case, n! concrete programs would have to be
instantiated. With stepwise refinement, only those feature
combinations that are needed are materialized.

The key to stepwise refinement is the use of components,
called layers, that encapsulate the complete implementation
of a single design feature. This encapsulation often
includes code that would be packaged separately using
today’s programming language technologies. For example,
a layer in JL can contain Java code for multiple methods or
even multiple classes, as we briefly describe in our
discussion of deep conformance in Section 6.

Once layers have been defined, the features that they
encapsulate can be composed if the layers have compatible
interfaces. Layers export an interface and import zero or
more interfaces. New types are defined by matching the
exported interface of one layer to the imported interface of
another layer.

To see how layer composition works, consider interface
TransportIfc, which declares methods send() and
recv():

interface TransportIfc {
 send(Data d);
 recv(Data d);
}

Assume that three layers use this interface: The TCP layer
provides data transport using TCP; the Secure layer
provides data encryption/decryption; and the KeepAlive
layer automatically exchanges liveness notifications
between communicating peers. Assume that all three
layers export the TransportIfc interface and that

Secure and KeepAlive also import TransportIfc. The
declaration below of variable trans uses a new type
defined by composing these three layers:

 KeepAlive<Secure<TCP>> trans;

We say that the type of trans, which implements a secure
TCP transport with the automatic keep-alive feature, is
generated in the above composition. This generated type
implements TransportIfc because that is the interface
exported by the leftmost, or top, layer in the composition
stack.

Figure 1 - Transport Layer Composition

Layers in a composition can be thought of as stacked
virtual machines that perform feature-specific processing
(see Figure 1). Though we haven’t shown method
implementations, we can walk through a hypothetical
invocation of the send() method to illustrate this idea of
virtual machines. When trans.send() is invoked, the
KeepAlive layer at the top of the stack gets control first.
KeepAlive’s send() simply calls the Secure layer’s
send(). The Secure layer then encrypts the message and
invokes the TCP layer’s send() to transmit the encrypted
data. The ordering of layers is important in this scheme—if
the KeepAlive and Secure layers were reversed, then
liveness messages would be sent in the clear rather than
encrypted.

To demonstrate the flexibility of stepwise refinement, we
could now create a new layer, UDP, which also exports
TransportIfc and is analogous to the above TCP layer.
This new layer could be composed with the Secure layer
to create a secure UDP transport type. In this way, features
are easily selected and composed to create new types.

3 JL’S FOUNDATION
We now introduce JL, which implements the component
model just presented. Since layers can be viewed as type
parameters in compositions, constrained parametric
polymorphism [11] is a natural implementation choice for
our component model. In this section, we describe the
parametric implementation of Java that serves as JL’s
foundation. Language features built on top of this
foundation, some of which can be applied as standalone
features outside of JL, are described in Section 6.

Layer composition in Java Layers is based on the use of
mixins [3,25]. Mixins are types whose supertypes are
parameterized. Mixins are not supported in standard Java,
but are available in some languages that support
parameterized polymorphism such as C++ [32]. In this

KeepAlive

Secure

TCP

 3

section, we describe how mixins support reuse and how
they serve as a basis for JL.

Mixins are useful because they allow multiple classes to be
specialized in the same manner, with the specializing code
residing in a single class definition. For example, suppose
we wish to extend three unrelated classes–Car, Box and
House—to be "lockable" by adding two methods, lock()
and unlock(). Without mixins, we would define
subclasses of Car, Box, and House that each extended their
respective superclasses with the lock() and unlock()
methods. The lock code would be replicated in three
places. With mixins, we would instead write a single class
called Lockable that could extend any superclass, and we
would instantiate the Lockable class to extend Car, Box,
and House. The lock() and unlock() methods would
only be defined once. In JL syntax, the Lockable mixin
would be defined as follows:

class Lockable<T> extends T {

 public lock(){…}

 public unlock(){…} }

We base JL’s implementation on a parametrically
polymorphic Java with mixin support. Adding parametric
polymorphism to Java is both feasible and desirable, and a
number of good solutions have been proposed [1,4,14,22,
24]. The best fit for JL is an extension that supports
constrained parametric polymorphism and mixins [1]. To
simplify our discussion, we assume such an extended Java
exists and we discuss JL in terms of it. This separates the
problem of integrating parameterized polymorphism into
Java from the problem of supporting JL’s programming
model, allowing us to concentrate on the latter.

Programming with mixins, however, does have a number of
drawbacks. We defer a deeper discussion of mixins until
Sections 5 and 6, where we describe additional JL language
features that enhance support for our component model.

JL Syntax
We now describe JL syntax that is compatible with most
proposals for parameterizing Java, though the current JL
implementation [12] uses a different notation. Layers in JL
are simply Java types, so we will use the terms classes and
layers interchangeably in this paper.

Continuing our Transport example from Section 2, we
sketch three layer definitions below:

 class TCP implements TransportIfc {…}

 class Secure<T implements TransportIfc>

 extends T {…}

 class KeepAlive<T implements TransportIfc>

 extends T {…}

The TCP class is a standard, non-parameterized class. The
Secure and KeepAlive classes are mixins that inherit
from their type parameter, T. In both classes, type

parameter T is constrained by TransportIfc—any
instantiation of either Secure or KeepAlive requires an
actual type parameter that implements the TransportIfc
interface. JL also supports parameterized interfaces, F-
bounded polymorphism [10], and class constraints on type
parameters using the extends clause. Instantiations of
parametric types take the conventional form:

 KeepAlive<Secure<TCP>> trans;

 class TP extends KeepAlive<Secure<TCP>> {}

The first statement above declares a variable, trans, with
an instantiated type. We also say that JL composes or
generates this type. The second statement is an idiom used
to name an instantiated type, TP in this case. In both
statements, the use of mixins generates a new class
hierarchy with parent TCP, child Secure and grandchild
KeepAlive. The second statement also creates the class
TP as a subclass of KeepAlive.

Aside from its support for mixins, we see from this brief
description that JL is built upon a fairly standard
implementation of constrained parametric polymorphism
for Java. We now introduce the ACE framework and then
our experiment that re-engineers ACE using mixins.

4 ACE FRAMEWORK
Schmidt and colleagues developed the Adaptive
Communication Environment (ACE) [27,28] as a C++
framework for constructing client/server applications.
ACE implements a core set of concurrency and distribution
design patterns that provides an infrastructure for building
customized applications. In general, C++ applications built
using ACE require less effort to develop and exhibit greater
flexibility, reliability and portability than C++ applications
built using ad-hoc methods.

ACE is implemented in three broad layers [33]. The
System Adaptation layer provides operating system
portability. The System Services layer provides an object-
oriented interface to the Adaptation layer. The Distributed
Design Patterns layer implements collaborations useful in
distributed applications. In this section, we briefly describe
some of the services and design patterns essential to
building client/server applications using ACE.

System Services
ACE provides a Timer interface and a set of concrete
classes that allow applications to create, schedule, cancel,
and expire timers. Timers can be reoccurring and can be
stored in specialized data structures for efficient access.
ACE also provides Message Queues modeled after those
found in UNIX System V [31].

Task
The ACE Task (see Figure 2) is a design pattern for
asynchronous processing. In its simplest form, an ACE
Task is an object-oriented encapsulation of zero or more
threads that perform application-specific work. A Task

 4

also contains a Message Queue to store client requests for
later processing by the Task’s worker threads.

Figure 2 - ACE Task Object

The Task interface includes methods to initialize, activate
and terminate a Task. Worker threads execute a virtual
call-back method whose implementation is supplied by the
user through subclassing. Tasks communicate by queuing
requests on each other’s Message Queues.

Reactor
The ACE Reactor [30] implements a design pattern for
concurrent event dispatching among multiple clients.
Clients, who implement the Event Handler interface,
register interest in particular events monitored by the
Reactor. When an event occurs, the Reactor issues a
callback to the appropriate method in registered client
objects. Figure 3 shows that Reactors can monitor multiple
event sources, including timers, I/O ports, operating system
signals, and application level notifications.

Figure 3 - ACE Reactor and Client Objects

The Reactor interface supports static methods that provide
access to a default Reactor instance, as well as methods to
create and manage multiple Reactors. Other methods allow
clients to register, cancel, suspend and resume interest in
events of all types.

Acceptor/Connector
The ACE Acceptor/Connector [29] design pattern
decouples session establishment and initialization from
application processing in a distributed environment. The
pattern also abstracts the underlying transport stream so
that different types of streams, such as TCP, Unix sockets,
and pipes, can be substituted for one another. Acceptors
and Connectors are factory classes [21] that come in
complementary pairs: Acceptors handle the passive side of
session initiation and Connectors handle the active side.
These factory classes orchestrate a session initiation
protocol by creating and invoking the other classes that
participate in the collaboration.

Collaborators in the Acceptor subpattern are the Acceptor
factory itself, a concrete stream-acceptor, a Service
Handler, and a Reactor. Similarly, collaborators in the

Connector subpattern are the Connector factory, a concrete
stream-connector, a Service Handler, and a Reactor.
Service Handlers are ACE Tasks that implement the Event
Handler interface and have a stream field. Concrete
acceptors and connectors provide passive and active
session initiation for specific types of transport streams.

The three-phase Acceptor protocol is illustrated in Figure 4.
Each Reactor notification is preceded by an appropriate
event registration (not shown). The Acceptor factory
directs the first two phases of the protocol, the connection
initialization and service initialization phases. The
Acceptor has no role in the third phase in which the Service
Handler communicates independently with its peer, using
the Reactor as needed. The three-phase Connector protocol
is defined similarly. Both protocols can be customized by
overriding methods that implement each phase.

Figure 4 - Acceptor Collaboration

5 COMPARING JL AND FRAMEWORKS
Both JL and frameworks rely on interfaces defined during
domain analysis to guide the development process. Both
approaches provide starter kits of partially assembled
applications, but they differ in the way in which
applications are created. Frameworks provide partially
assembled applications that use interfaces to define
variation points; programmers then create applications by
supplying concrete classes at all variation points. JL uses
interfaces to define groups of interchangeable components
that programmers then compose to build complete
applications. In this section, we compare these two
approaches using the three measures described in the
Introduction: usability, application flexibility, and starter
kit flexibility.

To compare JL against frameworks, we used JL to re-
engineer a subset of ACE that captures the sophistication of
the original. Thus, we implemented the primary design
patterns found in ACE necessary for building ACE-style
client-server applications, but we typically did not
implement all of the features in an ACE class. The result is
a few thousand lines of JL code that delivers a deep slice
through ACE's layered architecture, from the application
interface down to the network protocols. While our system
does not come close to replicating all the function of ACE's
125K lines of code, missing functionality can be added by
writing additional layers that are conceptually identical to
those we have already written.

Timers I/O Handles Signals Notifications

Event
Handler

Event
Handler

Reactor

Clients

Stream Acceptor

Acceptor Factory Service
Handler

Reactor

1.Connection
Notification

3.I/O
Notification

2.Activate

Worker
Threads

Message
Queue

 5

For the purpose of comparing development techniques, a
complete and exact replication of ACE is not necessary.
For example, our implementation uses the standard Java
sockets library, which does not support a multiple port I/O
call like Unix select() [31]. We simulate this capability by
using a thread for each port, which is clearly undesirable in
real-world applications, but sufficient for studying the
structure of JL applications built using ACE design
patterns.

We also ignore differences between JL and ACE that stem
from disparities between Java and C++. For instance,
many ACE classes explicitly declare synchronization
parameters and methods to manage concurrency. In JL,
this function is largely handled by Java’s built-in
multithreading support. Similarly, small differences in
function, such as support for tracing and inspection during
debugging, are also factored out of the comparison.

All of the services and design patterns described in Section
4 have been implemented in JL. Throughout this paper, all
ACE C++ classes are prefixed with “ACE_.” JL classes and
interfaces have unprefixed names, though all JL interfaces
carry the “Ifc” suffix.

ACE and JL Implementations
To provide a concrete basis for comparing JL and ACE, we
now discuss the details of the two implementations. We
focus on the Timer and Task design patterns, which are
representative of how all ACE patterns are implemented in
JL: We start with an ACE interface, decompose it into
several smaller JL interfaces, and then implement these
interfaces in single-feature JL layers. ACE code is
described, but not shown, due to its conventional nature.

Timer
In ACE, the C++ class ACE_Timer_Queue_T defines the
complete Timer public interface. The interface includes
methods to schedule, cancel and expire timers; to retrieve
and remove the next timer; to calculate the time until the
next timer pop; to manage time skew; and to set the time-
of-day source. Protected methods are also defined. Classes
that implement this interface support all methods.

By contrast, the base JL timer interface, TimerIfc, (not
shown) declares only four schedule() methods. Figure 5
shows the structure of the basic JL timer class,
TimerExtensible, that implements this interface and
takes two type parameters. The first type parameter
requires a subclass of TimerAbstract that implements the
TimerIfc. This type parameter is mixed in as the
superclass. The second type parameter implements the
TimerSortedMapIfc interface, which provides a
container for timer objects. Timer1 illustrates a simple
use of TimerExtensible appropriate for applications that
only schedule timers.

In JL, advanced timer features are encapsulated in their
own parameterized classes for easy composition. Figure 6
shows the TimerCancelByTime class that supports timer
cancellation. This class inherits from its type parameter, T,
which is constrained to implement TimerIfc. All
instantiations of TimerCancelByTime implement
interfaces TimerIfc and TimerCancelByTimeIfc.
Features that support query, expiration and other optional
operations are defined in a similar way using mixins and
constrained type parameters. Timer2 illustrates a timer
that supports both cancellation and query (not shown).

Task
In ACE, the C++ template class ACE_Task defines the
complete Task public interface. The interface includes
public methods to activate and manage threads; to initial-
ize, read, write and manage a Message Queue; and to
manage Tasks in the context of a Module. ACE Modules
are bi-directional message streams made up of pairs of
Tasks.

The JL Task interface is defined in TaskIfc and declares
only thread activation methods. As with Timers, auxiliary
interfaces are defined to support optional features. For
example, the TaskQueueIfc interface supports Message
Queue operations and the TaskInterruptIfc interface
supports the interruption of threads. Again, features are
mixed and matched to customize Tasks as needed.

class TimerExtensible<T extends TimerAbstract implements TimerIfc,

 U implements TimerSortedMapIfc> extends T {…}

class Timer1 extends TimerExtensible<TimerAbstract, TimerTreeMap> {}

Figure 5 – Simple JL Timer

class TimerCancelByTime<T extends TimerAbstract implements TimerIfc>

 extends T implements TimerCancelByTimeIfc {…}

class Timer2 extends

 TimerCancelByTime< TimerExtensible<TimerAbstract, TimerQueryId<TimerTreeMap>> > {}

Figure 6 – Complex JL Timer

 6

Interfaces
To understand the differences between JL and ACE, it is
crucial to understand how interfaces are used in the two
approaches. JL’s TimerIfc interface is narrow because it
contains four methods and supports only the most
rudimentary features used by almost all applications that
require timers. Other narrow interfaces are used to declare
optional features whose implementations can be composed.

By contrast, ACE Timers use a one-size-fits-all approach
and implement all possible features in every Timer class.
Thus, the wide ACE_Timer_Queue_T interface supports a
large number of features, many of which are not needed in
most applications. For example, the interface declares 20
methods, some exposing functors and iterators that are not
commonly used. In the Analysis Section, we argue that
wide interfaces do not stem from poor design, but rather
represent an unavoidable technology-based tradeoff.

To summarize, ACE uses a small number of wide
interfaces, while JL uses a larger number of narrow
interfaces. For each ACE interface used in our experiment,
Table 1 shows the number of declared methods, the number
of narrow JL interfaces produced, and the average number
of methods in the JL interfaces.1

 Timer Queue Task Reactor Acc. Conn.

ACE
Width 20 24 15 66 5 5

No. of JL
Interfaces 13 13 10 27 3 4

Avg. JL
Width 1.5 1.8 1.5 2.4 1.7 1.3

Table 1 - ACE and JL Interfaces

Comparison
In this section, we compare ACE and JL using the three
measures described in the Introduction.

Usability
How easy and effective is software development using the
two approaches? We answer this question by comparing
interface usage in JL and ACE.

ACE’s wide interfaces are more complex and therefore
harder to use than JL’s narrow interfaces. Wide interfaces
not only require users to learn more methods, but the
methods themselves sometimes take more parameters. For
example, the ACE_Task constructor takes a Message
Queue parameter, thereby forcing all Task users to
understand something about queuing. In JL, the Message
Queue type does not appear in Tasks that do not implement
the Message Queue feature.

1 Factoring out differences between C++ and Java.

The use of narrow, less complex interfaces in JL also leads
to smaller executables. We saw how JL Timer classes
could easily be constructed with the exact set of features
required by an application and no more. ACE Timers, on
the other hand, have uniformly large executables because
of the width of the interface that they must support.

JL’s narrow interfaces can also lead to lower execution
overhead. For example, JL Tasks that don’t implement
TaskQueueIfc avoid the overhead of allocating and
initializing a Message Queue, costs incurred by every ACE
Task.

JL’s ability to precisely customize code to its application
environment leads to simpler interfaces and smaller, faster
implementations. All these characteristics increase the
likelihood that JL code will meet the needs of application
programmers and, as a consequence, be used.

In terms of maintenance, there is a tradeoff between the
number and size of interfaces. An excessive number of
small interfaces in JL could be just as unmanageable as
excessively large interfaces in frameworks. In our
experiment, however, we found that reasonable interface
design avoids the worst-case management problems in both
JL and ACE.

Finally, while frameworks apparently give programmers
more functionality by providing partially assembled
applications, JL can do the same by delivering predefined
or canned layer compositions. These canned compositions
can even be packaged as frameworks.

Application Flexibility
To what extent do ACE and JL allow applications to be
constructed with precisely the desired set of features?

The use of wide interfaces in ACE means that any
implementation of a service, such as the Timer service,
must support all possible methods. In addition,
applications that use these services do not have the ability
to pick and choose optional features, though new
optimization techniques may remove unused code from the
application after the fact [35].

On the other hand, the use of narrow interfaces in JL allows
each optional feature to be implemented in its own class.
These optional features can then be composed to yield a
great variety of customized types for use in applications.
Table 1, for example, shows that any of 27 separately
implemented Reactor features can be used to generate a
Reactor. This yields 227 possible feature combinations,
even if we assume no duplicates and a total ordering among
features. In JL, we compose optional features on demand
rather than in advance, allowing JL to avoid the feature
combinatorics problem described in Section 2.

Starter Kit Flexibility
This section compares the ability of JL and frameworks to
support changes to their starter kits. We first consider how

 7

the two approaches support evolving client needs. We then
discuss the more specific issue of adding features to the
starter kit.

Evolving Client Needs
A well-designed framework strikes a balance between what
to include in the framework and what to exclude. The
framework will ideally include all code that is common
across many applications. If the framework includes too
many features, the interface becomes overly complex and
the framework becomes less usable. If the framework
omits commonly needed code, multiple applications will
have to implement the missing features independently.
These problems are commonly referred to as overfeaturing
and code replication, respectively [15].

As well designed as ACE is, it still exhibits overfeaturing
and code replication. For instance, ACE_Reactor includes
methods that support the singleton design pattern [21],
which is useful in applications that require only one
Reactor, but which is confusing in applications that use
multiple Reactors. Thus, what is appropriate for one
application may appear to be overfeaturing to another. On
the other hand, ACE does not support authentication,
authorization or data privacy. Unless the ACE framework
is updated, each application requiring security must
independently develop its own network security solution
outside of the framework.

The problems of overfeaturing and code replication are
rooted in the fundamental and somewhat rigid distinction
that all frameworks make between framework code and
application code [5]. Deciding what to include in a
framework is always a compromise based on domain
knowledge and the requirements of future users, both of
which are likely to change over time.

By contrast, JL promotes code reuse with its ability to
selectively mix and match features. JL classes are grouped
according to the interfaces they implement. Adding a new
capability to a set of starter kit classes usually has minimal
impact because of the loose coupling between classes and
the orthogonal nature of feature implementations. Adding
new starter kit classes is no different than adding
application classes.

Adding Features to the Starter Kit
Suppose that a framework needs a new feature that requires
changes to its core classes. One approach is to modify
existing framework classes while maintaining backward
compatibility as much as possible. This approach is not
feasible if currently supported applications are intolerant of
changes in their binary representation. Applications that
store objects persistently or that are conservatively
managed for safety reasons often fall into this category.
This need to maintain compatibility between separately
evolving framework and application code is known as the
framework evolution problem [15].

Figure 7 – Framework Evolution

An alternate approach is to implement the new feature in
new framework classes. Unfortunately, this approach
spawns a new class hierarchy that is parallel to the existing
one, creating a potentially large amount of nearly identical
new code to maintain. Figure 7 illustrates how a new
subtree is created when changes for class B are instead
implemented in a new class named b. Class b is a subclass
or a copy of class B. If child C of B needs to support the
new feature, it does so through its proxy class, c, in the new
subtree.

In JL, evolution can be implemented using the same two
approaches available to frameworks. If changing an
existing class is not desirable, a new class can be created,
typically using inheritance, to incorporate the changes. The
loose coupling of JL classes, however, means that the
original class is typically not part of a predefined hierarchy,
so no parallel subtree is spawned. There is no
compatibility problem because applications can be
generated using either the new or old classes.

Changes in the Domain Analysis
If new features require the refactoring of important
interfaces, then JL and frameworks are equally susceptible
to disruption because they both rely on good domain
analysis to define interfaces appropriately.

Analysis
In this section, we explain how mixins are the key to JL’s
power and flexibility. First, mixins allow code to be varied
in a new way. In addition to the techniques that support
code variation in ACE—subclassing, type parameters and
runtime initialization parameters—JL allows a class’s
supertype to be varied using mixins. In previous work [5],
we proposed that frameworks themselves could be
implemented more flexibly using a layered component
technology.

Second, mixins allow features to be mixed and matched so
that new types can be built in a stepwise manner. In JL, we
precisely widen interfaces to support the exact feature set
that an application requires by encapsulating features in
their own classes and composing them. JL uses mixins to
solve the feature combinatorics problem without resorting
to wider than necessary interfaces. In JL, unused feature
combinations are never materialized.

Mixins work because they defer the specification of
parent/child relationships from definition time to
composition time. This late binding promotes JL’s
stepwise refinement model that in turn encourages

A

B

C D

b

c d

Original Tree New
Subtree

 8

interfaces to be smaller, less complex, and feature-specific.
ACE, and frameworks in general, use non-parameterized
inheritance to lock in parent/child relationships and create
application skeletons. This rigidity forces the use of wide
interfaces to avoid the combinatorial explosion in the
number of classes that would result from materializing all
feature combinations in advance.

There are, however, a number of drawbacks to using
mixins in JL. First, deep class hierarchies generated by
mixins can increase runtime overhead. Second, superclass
initialization is not straightforward because a mixin’s
superclass is not known when the mixin is defined. Third,
compositional flexibility leads to questions of
compositional correctness, especially when nested types are
used. Finally, defining recursive types can be tricky
because expressing the type of a mixin composition from
within the mixins themselves is not straightforward. In the
next section, we describe JL language features that are
designed to address these limitations of mixins.

6 JL’S NOVEL FEATURES
This section briefly describes JL’s novel linguistic and
compiler support for domain-independent, stepwise
program refinement. We introduce language features built
upon the foundation of parametric polymorphism
introduced in Section 3. The features, described in more
detail elsewhere [12,13], are designed to enhance the
usability and efficiency of programming with mixins.

Deep Conformance
In Java, subtyping is shallow because subtypes are not
required to implement or extend types nested within their
supertypes. For example, consider class C that implements
an interface containing nested interfaces. Class C is a
subtype of the interface whether or not it implements the
nested interfaces. In a layering technology such as JL,
composition is easier when the structure of components is
predictable and regular, so JL supports deep conformance.
Deep conformance also allows a single layer (mixin) to
refine multiple classes if those classes are nested within a
lexically enclosing class.

JL introduces the deeply modifier on implements and
extends clauses to force the deep public structure of types
to be respected during type checking. The implementation
is based on the general notions of deep subtyping and deep
interface conformance [12,13,25] and could augment Java
in a useful way independent of JL.

Virtual Typing
Virtual typing [34] is the automatic adaptation of types
through inheritance. Using virtual types, inheritance causes
specialized types to automatically replace more general
types. For example, if class C uses virtual type V in its
definition, then subclass C’ of C could cause all
occurrences of V in C to be changed to V’, where V’ is
some subtype of V. Virtual typing leads to better static type

checking and less manual typecasting because precise
subtypes are used in place of more general supertypes. In
JL, virtual typing allows an instantiated type to be used
within the mixins that are composed to define that type.

JL supports the This virtual type, which typically gets
bound to the class type of “this” when used in mixins. This
can only be used in parametric types, so it can be treated as
an implicit type parameter to all parametric types. This
integrates a restricted form of virtual typing into a
parametrically polymorphic language and, as such, has
general application. The code below shows how virtual
typing is used in JL:

class ReactorSingle<T implements ReactorIfc>

 extends T

 {private static This _inst;

 public static This instance(){

 if (_inst == null) _inst = new This();

 return _inst;} }

The mixin above implements the singleton Reactor, which
is useful in applications that require only one Reactor
instance. The code shows how the This virtual type is used
to reference subclasses before they are created. The above
mixin is used in the following composition:

class MyReactor extends

 ReactorSync<ReactorSingle<ReactorBase>>> {}

In the MyReactor class above, all occurrences of This in
any layer are replaced by MyReactor (assume
ReactorSync is a mixin). This illustrates how the
parametric types used in a composition can refer to the type
ultimately generated by the composition.

Semantic Checking
By deferring the specification of parent/child type
relationships from definition time to composition time,
mixins offer great flexibility. With this flexibility comes
the increased likelihood that syntactically correct
compositions will be semantically meaningless. For
example, the TP type in our Transport example in Section 3
could have been defined using three KeepAlive and four
Secure layers, in any order, and still be type correct.

JL supports semantic restrictions on parametric type
compositions that go beyond syntactic type checking. JL
associates an ordered attribute space with each
composition. Attributes are identifiers chosen by the
programmer to reflect some semantic characteristic. Class
definitions use a provides clause to add attributes to the
space and a requires clause to test attributes. Using
regular expression pattern matching and a count operator,
attributes can be tested for presence, absence, ordering and
cardinality.

JL’s semantic checking mechanism provides a simple,
manual way to restrict feature compositions that are known

 9

to be invalid, but it cannot guarantee compositional
correctness, much less program correctness. For example,
consider the class definition of TimerCancelByTime in
Figure 6. Augmenting this definition with the “requires
unique” semantic check limits the class to at most one
occurrence per Timer specification. This restriction reflects
the fact that adding the same cancel method more than once
serves no purpose. This semantic check, however, makes
no claim that the cancel method will work correctly.

Constructor Propagation
Since the superclass of a mixin is not known at mixin
definition time, mixin composition can fail in an attempt to
invoke an unavailable superclass constructor. JL supports
constructor propagation as a way to automatically adjust
constructor signatures at composition time so that all
superclasses can be properly initialized.

Only constructors marked with the propagate modifier
have their parameters propagated and their signatures
adjusted. Propagation proceeds in child class C with parent
class P as follows: Each propagated constructor in C is
replaced by a collection of clones of itself, the number of
clones equaling the number of propagated constructors in
P. Each clone in the collection is uniquely associated with
a propagated constructor in P. Propagation then occurs in
two phases. First, the signatures of the clone constructors
are augmented with the parameters of their associated
constructors from P. Second, a call to the associated
constructor in P is inserted into each clone constructor.

Constructor propagation allows each class in a mixin-
generated hierarchy to call its superclass’s constructors
with the required parameters. Judicious use of constructor
propagation avoids an explosion in the number of
constructors. For example, consider the TaskQueue mixin,
which adds a message queue to a Task:

TaskQueue<TaskBase>

Assume both classes in the above composition have one
constructor specified with the propagate keyword.
TaskBase’s constructor takes a ThreadMgrIfc parameter
and TaskQueue’s constructor takes a MsgQueueWaitIfc
parameter. A constructor for the instantiated type will be
generated that takes both parameters, allowing objects of
this type to be completely initialized upon allocation.

Optimization
JL’s programming methodology of stepwise refinement can
create deep hierarchies of small classes. The use of many
small classes increases load time, especially when a
network is involved; it also requires more memory in the
Java Virtual Machine. Stepwise refinement can also result
in methods that often call superclass methods with the same
signature, as we saw with the send() method in Section 2.
When compared to an unlayered implementation, stepwise
refinement often introduces the runtime overhead of extra

method dispatches.

JL’s class flattening optimization is designed to address
these inefficiencies. Calls to superclass methods with the
same signature are aggressively inlined and the whole class
hierarchy is then collapsed into a single class. As long as
certain constraints are satisfied, this optimization can be
applied to the code of arbitrary class hierarchies.

7 RELATED WORK
JL derives its compositional power from the use of
supertype parameterization (mixins) [3]. To implement its
component model, JL also draws upon recent research into
generic extensions of Java [1,4,14,22,24,34].

JL’s This virtual type combines aspects of both Bruce’s
ThisType [9] and Thorup’s general virtual types [34]. Both
of these approaches require changes to Java’s type system
and, in the Thorup proposal, increased dynamic type
checking. JL’s This, though less expressive, avoids these
complications by limiting its use to parameterized types.

JL is based on Batory’s GenVoca research [6,7,25,26]. JL
refines the GenVoca model by incorporating layer
initialization and the semantic checking of compositions.
JL continues research into mixin programming, which
began with VanHilst’s [36] work using C++ mixins and
was later extended with the idea of mixin layers [25,26].
JL’s contribution is its novel features that enhance the
usability and efficiency of programming with mixins.

Object-oriented frameworks [2,17,27], especially when
used with design patterns [21], are a popular way to build
large applications and software product lines. A number of
framework problems have been documented [15,16],
including those described in this paper.

Aspect-oriented programming (AOP) [19] defines aspects
as encapsulations of code that crosscut multiple units of
implementation (classes, methods, etc.). In JL, a mixin can
refine multiple classes only if these classes are lexically en-
closed inside a common class. In AOP, a new program-
ming construct, the aspect, can refine the code in an
arbitrary group of classes. Gauging the value of this addi-
tional flexibility is the subject of continuing research [18].

8 CONCLUSION
This paper has introduced the Java Layers language and has
compared JL against frameworks using ACE. We have
shown how JL’s method of stepwise refinement provides
significant advantages in terms of flexibility, usability, and
reusability. JL breaks the static binding among framework
classes and delivers instead a collection of composable
classes. These classes can be combined in different ways
to meet the needs of particular applications. Mixins
provide the required compositional flexibility, while other
language features enhance usability and efficiency.

Our preliminary experiment with one real-world framework
reinforces our belief that new language-based technologies

 10

will lead to better-engineered software. Many more
experiments are needed, however, to validate whether JL
has the right mix of language features and whether
programmers will actually use this technology. We are
currently enhancing our compiler so that we, and possibly
others, can begin a new round of experimentation using JL.

ACKNOWLEDGMENTS
We thank Kartik Agaram, Don Batory, Dewayne Perry and
Thomas Wahl for their thoughts and lively conversation
concerning JL. We also thank the anonymous reviewers
for their extremely thorough and helpful comments.

REFERENCES
1. Agesen, O., Freund, S., and Mitchell. Adding Type

Parameterization to the Java Language. OOPSLA 97.
2. Bohrer, K., Christ, A. and Rubin, B. Java and the IBM

San Francisco Project. IBM Sys. Journal 37, 3 (1998).
3. Bracha, G., and Cook, W. Mixin-Based Inheritance.

OOPSLA-ECOOP (1990).
4. Bracha G., Odersky, M., Stoutamire, D. and Wadler, P.

Making the future safe for the past: Adding Genericity
to the Java Programming Language. OOPSLA (1998).

5. Batory, D., Cardone, R. and Smaragdakis, Y. Object-
Oriented Frameworks and Product-Lines. First
Software Product-Line Conference (August 2000).

6. Batory, D., Lofaso, B. and Smaragdakis, Y. JTS:
Tools for Implementing Domain-Specific Languages.
ICSE, (Jun. 1998).

7. Batory, D. and O’Malley, S. The Design and
Implementation of Hierarchical Software Systems with
Reusable Components. ACM Transactions on
Software Engineering and Methodology (Oct 1992).

8. Batory, D., Singhal, V., Thomas, J. and Sirkin, M.
Scalable Software Libraries. 1st ACM Symposium on
the Foundations of Software Engineering (Dec. 1993).

9. Bruce, K., Odersky, M. and Wadler, P. A statically
safe alternative to virtual types. ECOOP (1998).

10. Canning, P., Cook, W., Hill, W., Olthoff, W. and
Mitchell, J. F-Bounded Polymorphism for Object-
Oriented Programming. Functional Programming
Languages and Computer Architecture (1989).

11. Cardelli L. and Wegner P. On Understanding Types,
Data Abstraction and Polymorphism. ACM Computing
Surveys 17, 4 (Dec. 1985).

12. Cardone, R., Batory, D. and Lin, C. Java Layers:
Extending Java to Support Component-Based
Programming. Technical report TR2000-11. CS
Dept., University of Texas at Austin (2000).

13. Cardone, R. and Lin, C. Java Layers home page at
http://www.cs.utexas.edu/user/richcar/JavaLayers.html.

14. Cartwright, C. and Steel, G. Compatible Genericity
with Run-Time Types for the Java Programming
Language. OOPSLA (1998).

15. Codenie, W. De Hondt, K., Steyaert, P. and
Vercammel A. From Custom Applications to Domain-
Specific Frameworks. Comm. ACM 40, 10 (Oct. 1997).

16. Fayad, M., Schmidt, D. Object-Oriented Application
Frameworks. Comm. ACM 40, 10 (Oct. 1997).

17. Johnson, R.E and Foote, B. Designing Reusable
Classes. Journal of Object-Oriented Programming
(June/July 1988).

18. Kersten, M. and Murphy, G. Atlas: A Case Study in
Building a Web-Based Learning Environment using
Aspect-Oriented Programming. OOPSLA (1999).

19. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C.V., Loingtier J. and Irwin, J. Aspect-
Oriented Programming. ECOOP (1997).

20. King, J. IS Reins in Runaway Projects.
ComputerWorld (Feb. 24, 1997).

21. Gamma, E., Helm, R., Johnson R., and Vlissides, J.
Design Patterns. Addison-Wesley (1995).

22. Myers, A., Bank, J. and Liskov, B. Parameterized
Types for Java. POPL (1997).

23. Parnas, D. On the Criteria to be used in Decomposing
Systems into Modules. Comm. ACM, 15,12 (Dec. ‘72).

24. Solorzano, J. and Alagic, S. Parametric Polymorphism
of Java: A Reflective Solution. OOPSLA (1998).

25. Smaragdakis, Y. Implementing Large-Scale Object-
Oriented Components. Ph.D. dissertation, CS Dept.,
University of Texas at Austin (Dec. 1999).

26. Smaragdakis, Y., and Batory, D. Implementing
Layered Designs with Mixin Layers. ECOOP (1998).

27. Schmidt, D. An Architectural Overview of the ACE
Framework. USENIX login magazine (Nov. 1998).

28. Schmidt, D. Home page and links to ACE repository
at http://www.ece.uci.edu/~schmidt.

29. Schmidt, D. Acceptor and Connector—A Family of
Object Creational Patterns for Initializing
Communication Services. Pattern Languages of
Program Design 3, Addison-Wesley (1997).

30. Schmidt, D. and Pyarali, I. Reactor: An Object
Behavioral Pattern for Concurrent Event De-
multiplexing and Event Handler Dispatching. Pattern
Languages of Programs Conference. (Aug. 1994).

31. Stevens, R.W. UNIX Network Programming. Prentice-
Hall (1990).

32. Stroustrup, B. The C++ Programming Language, 3rd
Edition. Addison-Wesley (1997).

33. Syyid, U. The Adaptive Communication
Environment: “ACE”. Tutorial at
http://www.cs.wustl.edu/~schmidt/ACE.html.

34. Thorup, K. Genericity in Java with Virtual Types.
ECOOP (1997).

35. Tip, F., Laffra C., Sweeney P. and Streeter, D.
Practical Experience with an Application Extractor for
Java. OOPSLA (1999).

36. VanHilst, M. and Notkin, D. Using C++ Templates to
Implement Role-Based Designs. JSSST Int’l Symp. on
Object Technologies for Advanced Software,
Kanazawa, Japan, (Mar. 1996).

