
PROCEEDINGS OF THE IEEE 1

Broadway: A Compiler for Exploiting the
Domain-Specific Semantics of Software Libraries

Samuel Z. Guyer, Calvin Lin

Abstract— This paper describes the Broadway compiler and
our experiences using it to support domain-specific compiler
optimizations. Our goal is to provide compiler support for a
wide range of domains and to do so in the context of existing
programming languages. Therefore we focus on a technique that
we call library-level optimization, which recognizes and exploits
the domain-specific semantics of software libraries. The key to
our system is a separation of concerns: compiler expertise is built
into the Broadway compiler machinery, while domain expertise
resides in separateannotation files that are provided by domain
experts. We describe how this system can optimize parallel linear
algebra codes written using the PLAPACK library. We find
that our annotations effectively capture PLAPACK expertise at
several levels of abstraction, and that our compiler can automat-
ically apply this expertise to produce considerable performance
improvements. Our approach shows that the abstraction and
modularity found in modern software can be as much as asset
to the compiler as it is to the programmer.

Index Terms— Library-level optimization, domain-specific,
compiler

As the study of compilers has matured, the capabilities
of traditional optimizing compilers have been stretched to
the limit, with increasingly complex optimization algorithms
that yield diminishing returns. This situation reflects the
extreme difficulty of wresting ever better performance from
the same set of low-level programming language constructs.
By contrast, domain-specific languages offer new high-level
primitive operations for compilers to analyze and manipulate.
Thus, domain-specific compilation is one of the few remaining
frontiers for optimizing compilers.

A number of domain-specific compilers already exist. Some
are tied to a particular language, such as MATLAB [8],
[11], [31] and Spiral [29], while others are tied to particular
domains, such as sparse matrices [9], [27]. A great strengthof
these approaches is the compiler’s ability to make important
assumptions about a specific domain. A problem with these
approaches is their limited applicability: the capabilities that
they provide do not translate to other languages or other
domains. Such approaches make it difficult for programmers to
use multiple domains in a single program, and make it difficult
to develop compilers for new domains.

In this paper we describe an alternate approach to domain-
specific compilation that supports a wide range of domains
with a single compiler infrastructure. The key idea is to
separate general-purpose compiler mechanisms from domain-
specific information and expertise. Rather than hard-code
domain knowledge into the compiler, our solution encapsu-
lates such information through the use of a small annotation
language. By using different annotations for different domains,
our configurable compiler, called the Broadway compiler, can

target multiple domains, even within the same program.
Our solution targets software libraries rather than domain-

specific languages, and our annotations identify library rou-
tines that serve as domain-specific operations. During com-
pilation, the annotations guide the Broadway compiler in its
analysis and optimization of these operations.

Our design yields a number of benefits. First, as mentioned
above, it allows us to handle multiple domains. A great many
more domains are provided as libraries than are formulated
as languages. Second, since libraries are already widely used,
we can bring domain-specific compilation to existing software
with little or no change to current programming practices.
Third, the incremental cost of adding new domains or new
optimizations is low because it does not require modifications
to the compiler. The Broadway compiler consists primarily of
domain-independent compiler machinery, such as a dataflow
analysis framework, a code transformation system, and a set
of traditional optimization passes.

In the spectrum of domain-specific compilers, Broadway
represents a tradeoff that favors breadth of applicabilityover
depth of capabilities. Our system produces competitive results
for many domains but often cannot compete with custom
compilers for individual domains. In deciding what to include
in Broadway, we consider the general utility of the feature and
the complexity of configuring it from an annotation language.
Dataflow analysis, for example, is a general static analysis
technique for collecting information about the dynamic be-
havior of a program. Our formulation of dataflow analysis
only supports a subset of analysis problems, which limits the
annotation writer’s exposure to the underlying lattice theory.
Nevertheless, these capabilities can express a wide variety of
domain-specific compilation tasks, from optimizing parallel
linear algebra codes to checking system software for security
vulnerabilities [17], [21].

This paper presents an overview of our system, explains its
design rationale, and summarizes our results and experiences.
The remainder of this paper is organized as follows. SectionI
reviews related work. Section II describes the Broadway
system and the general notion of library-level optimization.
Section III then explains how the Broadway system can be
applied to a parallel linear algebra library. Section IV presents
performance results, and Section V concludes and identifies
prospects for future work.

I. RELATED WORK

Many domain-specific compilers are designed expressly
for particular domains. These systems include Matrix++ for

PROCEEDINGS OF THE IEEE 2

optimizing matrix operations based on a specification of
the matrix structure [9], the Falcon compiler for optimizing
MatLab programs [11], and the FFTW system for generating
fast Fourier transform implementations [15]. By focusing on
a single domain, such systems can employ the best represen-
tation and the most aggressive optimizations for that domain.
By contrast, the Broadway compiler and annotation language
are not tailored to any specific application domain, and thus
trade off power for generality.

The Telescoping languages [23] project shares many goals
and ideas with our research. A recent proposal describes an an-
notation language similar to ours that captures propertiesof li-
brary interfaces [5]. Currently, this work focuses on generating
optimized code from scripting languages, such as MatLab [6].
The system uses offline compilation to generate alternative
library implementations and uses a type inference system to
select from among these. Broadway targets general-purpose
programming languages—which support a wider range of
domains—and uses dataflow analysis to drive optimizations.
Dataflow analysis can solve many type inference problems but
can also track the state of a computation, which is awkward
to express using types.

It is useful to view Broadway as a specific instance of a
system for supportingactive libraries [36]. Active libraries
represent a broad class of reusable software components
that, unlike traditional libraries, are actively involvedin the
compilation process. One category of active libraries is self-
tuning libraries, such as ATLAS [10]. Another category in-
cludes meta-programming techniques, such as expression tem-
plates [35], programmable syntax macros [37] and meta-object
protocols [7], [24], which allow library developers to specify
code customizations that take effect at application compile
time. While these techniques provide powerful compile-time
program manipulation capabilities, they suffer from two major
drawbacks. The first is that the meta-program itself is often
complex and error prone. The second is that these systems
work primarily at the syntactic level—none of them include
advanced program analysis. Our system drives program trans-
formations using dataflow analysis, which captures deep se-
mantic information about how programs work, and our system
operates on a larger scope than typical meta-programs.

Previous research has also explored a number of different
ways of making compilers more flexible, and often this work
is motivated by the desire to support high-level and domain-
specific compilation. Existing approaches, however, take a
considerably different view of the tradeoff between usability
and power. In particular, they often provide a more compre-
hensive set of tools for defining new compiler components, but
using these tools can be difficult and error prone. Examples
include open compiler infrastructures such as SUIF [22],
optimizer generators such as Genesis [38], the Magik com-
piler [14], and analyzer generators such as Sharlit [33] and
PAG [28]. Our view is that such approaches are not viable for
domain-specific compilation because they require too much
compiler expertise to be used by most domain experts.

II. B ROADWAY

In this section we describe various opportunities for library-
level optimization and we show how the Broadway compiler
exploits them.

A. Library-level optimization

Software libraries provide a simple and flexible mecha-
nism for including domain-specific functionality in general-
purpose programming languages. A library represents the
types and operators of a domain as a collection of ordinary
datatypes and procedures, so programmers can add domain-
specific functionality to any application simply by including
the appropriate header files and making calls to the library
interface. Programmers can develop new libraries for new
domains at any time and can easily combine substantially
different domains in a single application.

Unlike the built-in operators of a programming language,
however, the domain-specific operators of a library have no
special meaning to the compiler. As a result traditional com-
pilers cannot analyze and optimize these operators, leaving the
task of using libraries correctly and efficiently entirely to the
programmer.

The goal of the Broadway project is to solve this problem
by providing a new kind of compiler that can performlibrary-
level analysisand library-level optimization. Our strategy is
to extend existing compiler mechanisms so that they can
recognize and manipulate library routine calls in much the
same way that they do for built-in operators. We show that
the same mechanisms that have proven effective for the built-
in operators are also effective for library operators. The key
is to capture some of the domain-specific information about
each library in a form that a compiler can use.

1) Opportunities: Our compiler targets three kinds of
library-level optimizations:� Domain-independent extensions.These optimizations

are direct extensions of traditional optimizations, such
as dead-code elimination and loop-invariant code motion,
applied to library routine calls. They are enabled by sim-
ple dependence information about each library routine.
For example, by knowing that many of the math library
operators have no side-effects the compiler can safely
hoist them out of loops.� Single domain optimizations. Library interfaces often
include a range of different routines, many of which are
designed to provide better performance for special cases.
For example, a matrix library might have special routines
for handling triangular matrices. Knowing when and how
to use such routines can require significant expertise.
This class of optimizations automates the selection of
specialized routines, including identifying opportunities
and ensuring correctness.� Cross domain optimizations. The layering and encapsu-
lation of library code often carries a performance penalty.
Libraries are compiled ahead of time, making it difficult
to take advantage of information about how they are used
in particular applications. Cross domain optimizations
provide a systematic way to break open the layers,

PROCEEDINGS OF THE IEEE 3

Library Property Action
Linear algebra Special forms: triangular, tridiagonal Replace general purpose routines with special-purpose routines
Graphics Drawing state: lighting and shading options Inline and specialize routines to avoid unused filters
File access File state: open or closed Report error if accessing a closed file
Threads Lock state: locked, unlocked Report double locking bugs
PLAPACK Matrix distribution: row and column distribution Remove unused code that handles distributed cases
(many libraries) Validity: check or unchecked Remove redundant error checking

Fig. 1. Libraries often have domain-specific properties that can be exploited by a compiler, but only if it is aware of them.

exposing a library’s implementation to the compiler in the
context of the application. These optimizations combine
the application and libraries into a single integrated and
customized piece of code.

B. Identifying optimization opportunities using typestate

The central task in library-level optimization is to identify
places where it is both legal and profitable to change the
library calls in an application. The changes themselves are
typically straightforward: single domain optimizations replace
a general-purpose library call with a special-purpose callor
with a series of low-level library calls; cross domain opti-
mizations consist of inlining followed by further optimization.
The challenge lies in expressing the conditions under which
an optimization applies and in identifying the parts of the
application that satisfy the conditions.

The conditions that enable library-level optimizations are
analogous to those of traditional optimizations: they depend
on the states of the objects or on some global fact about the
state of the computation. The difference is that for library-level
optimization these states are expressed in terms of the library
domain. For example, a series of linear algebra computations
might result in matrices with special forms, such as triangular
or tridiagonal. By knowing that the matrices have these char-
acteristics, the compiler might be able to replace a general
matrix multiply call with a more efficient one that exploits
the special forms. We refer to these domain-specific attributes
(such as “special form”) asproperties, and we refer to their
possible states (such as triangular or tridiagonal) asproperty
values. Many aspects of efficiency and correctness can be
expressed as conditions on the property values of objects.
Table 1 shows several concrete examples of libraries and
associated properties, along with the actions that a compiler
might take upon deriving this information. Our previous work
on automatic error detection includes detailed descriptions of
several such properties designed to model the domains of file
manipulation and network security [17], [21].

Our notion of a property is a form oftypestate[32]: it
includes features of both types and states. They behave as
types because property values can be related by a subtyping
relation. For example, diagonal matrices can be defined as
subtypes of triangular matrices. Specifically, the property
values for each property are explicitly organized into a lattice
(See Section II-D.2 for details). Properties can also behave
as states, because they can have different values at different
points in the program. For example, a matrix might start out
empty, then be filled with values, then finally be factored into
a triangular form.

The overall Broadway optimization process, based on type-
state properties, proceeds as follows:

1) A library expert designs a set of domain-specific opti-
mizations and encodes this information using the anno-
tation language. This step involves:� Identifying abstract properties and property values

that are significant for the library.� Specifying the behavior of each library routine in
terms of these abstract properties.� Specifying code transformations for each library
routine, which are predicated on the property values
of the arguments.

2) The application programmer obtains the annotation file
and passes it to Broadway.

3) During compilation, Broadway consults the annotations
to determine how to interpret and manipulate the library
routine calls:� It solves the typestate analysis problem, yielding

an assignment of property values to objects in the
application.� It evaluates the predicates at each call site and ap-
plies the code transformations where the predicates
are true.

C. Beyond performance

Typestate information can also be used to detectincorrect
or unsafeuses of library routines. In these cases, the results
of typestate analysis are used to emit compile-time error mes-
sages rather than to guide code transformations. This feature
helps produce more robust systems and improves program-
mer productivity. Library-specific error messages are useful
because they provide immediate feedback on coding mistakes,
rather than delaying problems to run-time. In addition, this
facility can be used to check for deeper security flaws [17],
[21]. Security has become more critical for high-performance
computing with the growing popularity of grids and distributed
computing.

D. Annotation language

In the Broadway system, all domain-specific information is
provided as annotations: each library specifies its own analysis
problems, code transformations, and error messages. Here we
give a brief overview of the language; a more complete discus-
sion can be found elsewhere [16], [19], [20]. The annotation
language conveys four kinds of information to the compiler:
(1) dependence information about the library interface, in-
cluding the uses, defs, and pointer structures manipulatedby

PROCEEDINGS OF THE IEEE 4

each routine, (2) domain-specific program analysis problems,
which are solved by the compiler’s analysis framework, (3)
domain-specific optimizations, which are expressed as code
transformations and are contingent on the analysis results,
and (4) compile-time messages, which emit messages on the
command line according to the analysis results.

The annotation file for a library is organized around the
routines that make up the interface. Each routine has an entry
in the file that contains all of the information related to the
routine. In addition, there are several global annotations, which
apply to all routines. We show the grammar for each kind of
annotation and use the standard C library for examples.

The grammar descriptions below adopt the following con-
ventions:italics indicate non-terminals,teletype indicates
literal keywords, and anything inSMALLCAPS is an identifier.

procedure ! procedure PROCNAME(identifier-list) f
(pointers j usesdefsj analyzej transformj report) ?g

pointers ! on entry f structure? gj on exit f structure? g
structure ! VARNAMEj VARNAME --> [new] structurej VARNAME f structure? gj delete VARNAME

usesdefs ! access f identifier-list gj modify f identifier-list g
(a) Dependence annotation grammar

procedure fopen(path, mode) {
on_entry { path --> path_string

mode --> mode_string }
access { path_string, mode_string }
on_exit { return --> new file_handle }

}

procedure fclose(file) {
on_entry { file --> file_handle }
on_exit { delete file_handle }

}

(b) Example

Fig. 2. Pointer and dependence annotations provide a way to describe how the
library traverses and updates pointer-based data structures. The--> operator
declares a “points-to” relationship.

1) Library interface information:All of the annotations for
a library routine are enclosed in aprocedure annotation.
Figure 2 shows the grammar for this part of the language,
along with example annotations for two standard file I/O
routines. Within theprocedure annotation each library
routine has a set of four pointer and dependence annotations
that describes its behavior:� The on entry annotation describes the pointer struc-

tures expected as input to the library routine. This an-
notation tells the compiler how to traverse the pointer
structures and provides names to the internal objects. The
arrow --> can be thought of as a “points-to” operator,
which leads to a natural declarative description of pointer
structures.� The access annotation identifies the objects that the
routine accesses. This list can refer to variables from

the interface or to names introduced by theon entry
annotations.� The modify annotation identifies the objects that the
routine modifies. Since this information is only used for
dependence analysis there is no need to describehow the
routine modifies them.� The on exit annotation describes any changes to the
pointer structure effected by the routine.

The example in Figure 2 (b) indicates that thefopen routine
takes two pointers as arguments, it accesses the targets of those
two pointers, and it allocates and returns a new object. At each
callsite, the compiler binds the actual objects involved tothe
names given in the annotations.

In compiler terms, theaccess andmodifies annotations
specify the “uses” and “defs” of the routine, respectively.Note
that a pointer dereference is automatically recorded as an
access, and a pointer update is automatically recorded as a
modification.

With this information Broadway can compute data depen-
dence information for the whole application, including library
calls. This information includes a model of heap objects,
pointer aliases, and use-def chains. This dependence informa-
tion allows our compiler to perform on library calls a number
of traditional optimizations, such as dead-code elimination.

property ! property PROPNAME: [dir] property-vals
[initially PROPVAL]

property-vals ! f property-val-listg
property-val-list ! property-val [, property-val-list]
property-val ! PROPVAL [property-vals]

dir ! @forwardj @backward

(a) Property annotation grammar

property FileState : { Open, Closed } initially Closed

property Kind : { Socket { Local, Remote }
File }

(b) Example property definitions

T

Socket
File

Remote Local

T

T

T

Open Closed

(c) Lattices for the properties above

Fig. 3. Property annotations define flow-values for library-specific analysis
passes. The syntactic structure implies the underlying lattice.

2) Library-specific analysis passes:As mentioned above,
library-level optimizations and error messages are triggered by
library-specific typestate information (properties). An annota-
tion writer defines a property by specifying (1) the name of the
property and its set of property values, and (2) the effects of
each library routine on these values. The property values are

PROCEEDINGS OF THE IEEE 5

organized into a lattice, which expresses the subtyping relation.
Broadway uses dataflow analysis to push the property values
through the application and derive an assignment of property
values to objects at different points in the program.

The property and property values are defined using a
property annotation, and the effects of the library routines
are defined usinganalyze annotations (one for each routine).
Figure 3 shows theproperty annotation grammar, including
examples of the annotations and the lattices that they imply.
Properties also have a direction, forward or backward, which
indicates which way the information flows in the program.
Backward properties are useful for describing how objects
will be used at a later point in the program’s execution. The
annotation writer chooses the direction of information flow,
and the compiler uses the appropriate algorithm to propagate
the information.

The analyze annotations describe how each library rou-
tine updates the property values of objects. Figure 4 shows the
grammar for these annotations along with examples for the
standard C library. Analyze annotations can be unconditional,
as in thefopen example, which always produces a file handle
in the “open” state. Analyze annotations can also be guarded,
as in thesocket example, which produces either a “remote”
socket or a “local” socket, depending on the domain argument.
The property value tests are described below.

analyze ! analyze PROPNAMEf analysis-rule? gj analyze PROPNAMEf effect? g
analysis-rule ! if (condition) f effect? gj default f effect? g
condition ! [PROPNAME:] testj numeric-comparisonj condition|| conditionj condition&& conditionj ! condition

test ! VARNAME is-??j VARNAME is-exactly PROPVALj VARNAME is-atleast PROPVALj VARNAME could-be PROPVALj VARNAME is-atmost PROPVAL

effect ! VARNAME <- PROPVALj VARNAME <- VARNAME

(a) Analysis annotation grammar

procedure fopen(path, mode) {
on_entry ...
on_exit ...
analyze Kind { file_handle <- File }
analyze FileState { file_handle <- Open }

}

procedure socket(domain, type, protocol) {
on_entry ...
on_exit ...
analyze Kind {
if (domain == AF_INET) { return <- Remote }
if (domain == AF_UNIX) { return <- Local }

}
}

(b) Examples

Fig. 4. Analysis annotations specify how library routines affect property
values. In the compiler these serve as transfer functions.

3) Optimizations and error reports:Library-level optimiza-
tions and error reports are defined on a per-routine basis.
Figure 5 shows the grammar for these annotations, along with
example uses. An optimization consists of a code transfor-
mation and a guarding condition. Broadway applies the code
transformation at each callsite for which the condition is true.
Similarly, an error report consists of a message to emit and a
guarding condition.

The guarding conditions on these annotations test the results
of the property analysis. We provide several operators to test
the property values and their lattice relationships:� is-exactly: evaluates to true only if the object on the

left-hand side ends up with exactly the property value on
the right-hand side.� is-atleast and is-atmost: these two operators
represent lattice “less-than-or-equal” and “greater-than-
or-equal” tests, respectively. In the socket example of
Figure 3, property valueLocal is-atleast Socket.� is-??: this unary operator evaluates to true if the object
ends up with lattice bottom.� could-be: this operator evaluates to true if at any point
in the program the object ever takes on the value on the
right.

The optimization annotations can specify one of two trans-
formations to apply at each satisfying callsite: (1) replace
the library call with an arbitrary C code fragment, or (2)
inline the library routine implementation (assuming library
source is available). The replacement mechanism works much
like hygienic macros [26]: the compiler parses and checks
code fragments, and then ensures that expansion results in
syntactically correct code. Figure 5 shows a code replacement
example for thefgets routine: when the size is 1 we can
just usefgetc and store the returned character directly in the
string. The compiler will replace the$s token with the actual
argument at the call site.

The code replacement facility is most useful for expressing
single-domain optimizations, and the inlining facility ismost
useful for cross-domain optimizations because it exposes the
implementation of a library routine. As with the code re-
placements, inlining can be made contingent on the results
of dataflow analysis. This feature enables domain-specific
inlining policies, which help ensure that inlining takes place
only when it is likely to be beneficial.

Figure 5 also shows an error report example: the compiler
will emit a message whenever a program attempts to read from
a file handle that is not open. The compiler will replace the
@callsite token with the line number and file name of the
erroneous the call site.

E. Compiler design

Broadway is a source-to-source translator for C written in
C++. It is built on top of the C-Breeze compiler infrastruc-
ture [18] and inherits many components from it, including
the front-end parser, internal representation, and a suiteof
traditional compiler analysis and optimization passes. Figure 6
shows the overall architecture of the system. Broadway takes

PROCEEDINGS OF THE IEEE 6

Broadway
Configurable, domain-independent compiler

Analysis Framework
Whole-program, interprocedural

Pointer analyzer
Builds model of memory

Dataflow analyzer
Solves library-specific

dataflow analysis problems

Library Annotations
Domain-specific information

Library
Header & source

Application
C source code

Basic interface information
Uses, defs, pointer behavior

D-S program analysis
Dataflow values and functions

Library-specific optimizations
Macro-like code transformations

Optimizer

Traditional optimizations
Dead-code elimination,

Constant propagation, etc.

Code transform engine
Driven by analysis results

Compile-time messages
In terms of analysis results

Report Generator
Emit messages

Based on analysis results

Optimized
system
Integrated library and
application

Compile-time
Messages
Library-specific errors
and reports

Fig. 6. The architecture of the Broadway compiler: an annotation file accompanies the usual library files and tells the compiler how to perform library-level
analysis and optimization on applications that use the library.

transform ! when (condition) replace-with %f
C CODE

%gj when (condition) inline ;

report ! report if (condition) report-element? ;

report-element ! "Some string literal..."j PROPNAME: VARNAMEj @callsitej [VARNAME]

(a) Action annotation grammar

procedure fgets(s, size, f) {
on_entry ...
on_exit ...

when (size == 1)
replace-with %{ (*${s}) = fgetc(f); }%

report if (! FileState : file_handle is-exactly Open)
"Error at " ++ @callsite ++ ": File is not open\\n";

}

(b) Examples

Fig. 5. Action annotations specify optimizations and errorreports.

as input an application written in ANSI C along with annota-
tion files that describe the libraries used by the application.
During each compilation phase the compiler consults the
annotations to determine the effects of each call to the library.

Two compiler mechanisms are central to our domain-
specific optimizations: (1) a configurable dataflow analysis
framework, which solves the domain-specific typestate anal-
ysis problems given by the annotations, and (2) a code
transformation engine, which tests the conditions and applies
the optimizations specified by the annotations. In addition, the
error reporting mechanism visits all library call sites andemits
any messages specified by the annotations.

The dataflow analysis framework uses a traditional iterative
analysis algorithm to solve each library-specific analysisprob-
lem [1], [25]. It also includes a number of powerful features

that improve both its precision and its scalability. We found
these features critical for exploiting the opportunities presented
by real, industrial-strength software.

First, the framework includes an integrated pointer analyzer
that provides alias information for surface variables, as well as
a detailed model of heap-allocated structures. Pointer informa-
tion is critical for library-level optimization because almost all
non-trivial library objects are accessed through pointers. Many
of these objects also have internal structure and are represented
as pointer-based data structures. Since dataflow dependences
might exist between internal components we must have a
sound model of memory to avoid applying optimizations
incorrectly.

Second, the framework employs an interprocedural, whole-
program analysis, allowing the compiler to gather information
about library routine usage over a large scope. Unlike built-in
language operators, library routines are not bound by simple
lexical scoping rules. In conjunction with the use of pointers,
library objects can flow throughout a program. Whole-program
analysis is required not only for correctness, but is also
valuable for exposing optimization opportunities.

Third, the framework supports a range of analysis pre-
cision policies, including our own client-driven analysisal-
gorithm [21], which automatically adapts its precision in
response to the needs of the analysis problem. At its most pre-
cise, the system is flow-sensitive and context-sensitive, which
provides accurate analysis information even for non-trivial ap-
plications, such as those with complex software architectures
and heavy code reuse. This level of precision, however, can
increase analysis costs to an intolerable level. The client-driven
analysis algorithm provides both accuracy and scalabilityby
applying flow-sensitivity and context-sensitivity only tothe
parts of the program where they are needed.

III. O PTIMIZING PLAPACK

In this section we demonstrate the application of our tech-
nique to the PLAPACK parallel linear algebra library [34].

PROCEEDINGS OF THE IEEE 7

We first provide background about PLAPACK abstractions and
their role in optimization: we present a layered decomposition
of the PLAPACK system and describe the abstractions at each
layer. We then describe the library-level optimizations that we
specified for PLAPACK. We will show the impact of these
optimizations in Section IV.

To explain our technique, we go into considerable detail
about the target library and its abstractions, the mechanics of
the optimizations, and their representation in the annotations.
Before diving into these details, we enumerate the important
points of this section:� Complex domains, like parallel linear algebra, contain a

wide range of potential optimizations. We show that our
annotations can capture many of these optimizations with
a small number of language constructs.� The complexity of the PLAPACK interface makes it
challenging for programmers to apply optimizations. The
compiler mechanisms we provide help to overcome these
difficulties by automating the process.� Most of these optimizations are valid only under partic-
ular conditions that are highly domain-specific. Without
the configurable dataflow analyzer, the compiler could not
collect the necessary information.

A. Concepts

PLAPACK is a library for writing parallel linear algebra
programs in C. It consists of approximately 45,000 lines of
C code and provides parallel versions of many of the same
kernel routines found in the BLAS [12] and LAPACK [2]. At
the highest level, it provides an interface that hides much of
the parallelism from the programmer.

A PLAPACK application operates on linear algebra ob-
jects, such as matrices and vectors, that are partitioned and
distributed over a grid of processors on the target computer.
The application manipulates these objects indirectly though
handles calledviews. A view specifies a set of matrix indices
that can be used for subsequent computations. PLAPACK
provides routines to create views, shift views, and split views
into pieces. Figure 7 shows a split that logically divides a
matrix A into four smaller ones.

PLA_Obj_split_4

A

A11 A12

A21 A22

Fig. 7. PLAPACK algorithms operate at a higher level than traditional linear
algebra algorithms by splitting matrices into logical pieces, calledviews, and
operating on these views.

A typical algorithm starts with an entire object, such asA,
and splits it into manageable pieces. It computes directly onA11, A12 andA21, and then continues iteratively by splitting
the large remaining piece,A22, until the entire data set has
been visited. A view often captures part of a matrix that
has special properties. Understanding and exploiting these
properties can lead to significant performance improvements.

PLAPACK kernel routines, such as parallel matrix multipli-
cation, are implemented using a lower level set of routines that
make data distribution and movement explicit. At this level, the
library creates objects with special distribution properties and
then uses a communication routine,PLA Copy(), to transfer
data between them.

For example, Figure 8 shows how to compute an outer
product from a matrix column panel and a matrix row panel.
Initially, the column panel A resides on one column of
processors, and row panel B resides on one row of processors.
In the first step, B is duplicated on each row of processors. In
the second step, A is duplicated on each column of processors.
Both of these steps are accomplished using thePLA Copy()
routine. The result is that each processor contains the right
pieces of A and B to compute its part of the outer product.
The final step is for each processor to compute this part using
a local matrix multiply routine. In PLAPACK parlance,local
operations are sequential computations that serve as building
blocks for their parallel counterparts.

B. Optimizations

We now describe the specific optimizations that we use to
produce the results in Section IV. We categorize them accord-
ing to the PLAPACK layer to which they apply. Figure 9 shows
the three conceptual layers of the PLAPACK implementation.
Each layer has its own programming abstractions, and thus
its own optimizations. We derive our PLAPACK optimizations
from a number of sources. In some cases, we codify techniques
suggested in PLAPACK publications [3]. In other cases, we
examine PLAPACK programs ourselves to determine possible
performance improvements. When we discover a potential
optimization, we determine the circumstance under which it
applies and then formulate a program analysis pass to detect
that circumstance.

Parallel BLAS

Sequential BLAS + Data Distribution

Message Passing Interface

Fig. 9. Logical layers of the PLAPACK implementation. Many libraries
consist of multiple layers, each with its own domain-specific semantics.

The simplest way to use PLAPACK is to program at the
highest layer of abstraction because it provides the most pow-
erful abstractions. It also leverages a large body of reusable
code underneath. However, by working at this high level,
programmers miss many optimization opportunities. Thus,
programmers would ideally write code at the highest level
and let a tool compile this code down to the lowest level. Our
system provides a way to do this.
Global Layer: Parallel BLAS

The highest layer provides parallel linear algebra operations
that hide parallelism from the application developer. It consists
of operations that work on any view, regardless of where the
data resides. At this level, optimizations work in terms of the
matrix domain.

PROCEEDINGS OF THE IEEE 8

PLA_Copy() PLA_Copy() PLA_Local_Gemm()

Processor grid
A

B

A x B

Fig. 8. Algorithm to compute distributed outer-product of two multi-vectors (matrix panels), A and B, using explicit data replication and local computation.� Scalar algebra. The PLA Scal() routine multiplies
the elements of a matrix or vector by the given scalar
constant. If the constant is known to be one, then the call
has no effect and can be removed. If the constant is zero,
we can replace the call with a special PLAPACK call that
sets all elements to zero.� Matrix algebra. Like the scalar algebra above, we
can exploit the matrix multiplication identities. The
PLA Gemm() routine computes something of the formC A � B + C, so the optimizations are slightly
different. If A or B are zero matrices, then the code
has no effect and can be removed. However, ifA or B
is the identity matrix, then the call essentially computes
a matrix addition. We can replace this call with code
that explicitly adds the elements, which is an entirely
local operation that requires no communication between
processors.

Middle Layer: Data Distribution

Split_4 Processor grid

Processor local On processor row

Fig. 10. PLAPACK distributes matrix data across the processors. Split
operations often result in special-case distributions, such as sub-matrices that
reside entirely on one processor.

The middle layer uses structured forms of communication
to expose the notions of data distribution and locality. In
Figure 10 we show the same four-way split as Figure 7 with
an overlaid grid that represents the partitioning of the data
over a grid of processors. The actual partitioning is more
complex than a simple block distribution [13], but the basic
observations still hold. The figure shows that a four-way split
of A yields onelocal view (A11), which resides entirely on
one processor, onecolumn panel(A21), which resides entirely
on a column of processors, onerow panel(A12), which resides
entirely on a row of processors, and one view,A22, which is
a fully distributed submatrix. We can take advantage of such
information to improve performance. In particular, algorithms
that are designed to process distributed matrices can oftenbe
significantly simplified when customized for row panels or
column panels. The middle layer is implemented as a number

of sequential BLAS calls, which operate only on local pieces
of data, and invocations of thePLA Copy() routine, which
move data around on the processor grid.

The most effective optimizations that we have found come
from breaking open the global layer routines to expose their
middle layer implementations. The reason is that the global
layer routines are designed to work with any kind of linear
algebra object, regardless of their size and distribution.How-
ever, applications often pass particular special distributions
into these routines, and we can exploit this extra information
to create a customized version of the routine for that particular
distribution.

Rather than enumerate all of these special cases, we define
a set of optimizations that together can transform a general-
purpose implementation into a customized version:� Special-case routine selection.Internally, many PLA-

PACK routines have multiple implementations that are
specialized for different situations. For example, the
general matrix multiply routine,PLA Gemm(), is im-
plemented internally as three different algorithms for
different matrix shapes. At runtime the routine chooses
from among the algorithms by comparing the relative
sizes of the input matrices. Often we can use library-
specific analysis to identify these cases at compile time,
thus avoiding the runtime cost.� View optimizations. We can often simplify the matrix
splitting routines when the input view is already a special-
case distribution. For example, there is no need to verti-
cally split a column panel because it already resides on
a single column of processors. Such optimizations can
eliminate entire loops from the code.� Empty views. Any computation on an empty view can
be removed. The computational routines (for example,
PLA Gemm() andPLA Trsm()) check for empty views
already, but this is done at runtime and can incur syn-
chronization overhead. Not only can we avoid this cost
by removing the code at compile time, but the static
removal of the code can expose additional optimization
opportunities, such as dead code elimination.

Lower layer: MPI communication
The lower layer contains explicit communication using MPI,

the Message Passing Interface. We have identified several
optimizations at this level. For example, we could analyze the
matrix splitting pattern in an application to determine where
a point-to-point broadcast might yield software pipelining.
However, these experiments require additional annotations that

PROCEEDINGS OF THE IEEE 9

we leave as future work.

C. Object type analysis

We are now ready to describe how we encode specific
PLAPACK optimizations using the annotation language. In
PLAPACK thePLA Obj data type represents all linear algebra
objects. However, the library can create and manipulate many
different kinds of objects, such as matrices, vectors, and scalars
(which are calledmulti-scalarswhen they are replicated across
processors). The internal library data structures maintain this
type information at runtime so that the various library routines
can handle these objects in the appropriate manner. The
PLA Copy routine, in particular, needs to know the type of
the objects to decide how to perform data copying.

We use the annotation language to track this information at
compile time. Since object types are explicit in the creation
routines, this analysis often succeeds at accurately determining
their types statically. We use this information for two pur-
poses. First, we can make sure that the types passed into
a computation match the expected types. For example, the
PLA Gemv routine expects a matrix and a vector as input.
We use the object type analysis to validate this requirement
at compile time. If the compile-time check succeeds, we can
improve performance by eliminating the runtime check. If the
compile-time check fails, we issue an informative message
describing the nature and location of the error, which allows
the programmer to fix it without having to execute and debug
the program.

The second use of the object type information is to perform
algorithm selection at compile-time. In combination with the
distribution analysis described below, we can often avoid
the cost of the runtime switches that ordinarily make these
choices. By itself, this optimization does not yield significant
performance improvements. With runtime switches removed,
however, the compiler can often inline and further optimize
the implementation of the chosen algorithm.

The ObjType property, shown in Figure 11, provides
names for the different kinds of linear algebra objects. The
base types are matrix, vector, projected vector (Pvector),and
multi-scalar (Mscalar). An ordinary vector is distributedover
the processor grid in a manner that improves matrix-vector op-
erations [13]. A projected vector is a vector that is distributed
like a column or row of a matrix. Multi-vectors consist of
several vectors stored together. A duplicated projected multi-
vector is a projected multi-vector that is replicated across
the rows or columns of the processor grid. Figure 8 shows
graphically two examples of projected multi-vectors being
copied to duplicated projected multi-vectors.

property ObjType : { Matrix,
Vector, Mvector,
Pvector, Pmvector, Dpmvector,
Mscalar }

Fig. 11. The ObjType property captures the different kinds of linear algebra
objects supported by PLAPACK.

Figure 12 shows the annotations for the routine that creates
matrices. Note that we associate the type with the view

structure, which will allow us to change the type of an object
when it suits the computation better. For example, we can treat
a panel of a matrix as a projected multi-vector, which helps
reduce the amount of work in the copy routine.

procedure PLA_Matrix_create(datatype, length, width,
template_ptr,
v_align, h_align, matrix_out)

{
on_entry { matrix_out --> the_matrix }
on_exit { the_matrix -->

new the_view { length, width,
data --> new data } }

analyze ObjType { the_view <- Matrix }
}

Fig. 12. The object creation routines set the type of the object.

D. Distribution analysis

The most significant PLAPACK optimizations result from
recognizing and exploiting special-case object distributions.
Figure 13 shows the property annotations for tracking distri-
bution. We define two separate properties, one for the rows of
an object and one for the columns of an object, because the
distribution of rows and columns can vary independently.

property RowDistribution :
{ Unknown { NonEmpty { Distributed,

Local { Duplicated },
Vector },

Empty } }

property ColDistribution :
{ Unknown { NonEmpty { Distributed,

Local { Duplicated } },
Empty } }

Fig. 13. These two annotations describe the different ways that the rows and
columns of a matrix can be distributed.

The distribution of an object is determined initially by
the routine that creates it and subsequently by any splitting
operations applied to it. Figure 14 (a) graphically depicts
the effects of thePLA Obj split 4 routine on the possible
shapes of the input matrix. Figure 14 (b) shows representative
analysis annotations for this routine, which codify the effects
as a set of rules. The actual annotations contain all of the
cases, and they model the ability of the routine to split a matrix
relative to any of the sides of the matrix, not just the top left
corner.

In many instances the split routine produces empty views,
as often happens when a general-purpose routine, such as
PLA Trsm(), is specialized for a context where the input
matrices are not fully distributed. The compiler can eliminate
subsequent operations on these empty views. Figure 15 shows
an example of this optimization. We see that ifany of the
dimensions of the inputs is empty, then we remove the call.
Furthermore, consider a loop that repeatedly splits a matrix: if
the matrix is already in the desired form, then the first iteration
of the loop consumes all of the data and all other views are
empty, so the loop can be removed.

PROCEEDINGS OF THE IEEE 10

analyze RowDistribution {

if (view_A is-exactly Distributed)
{ view_A11 <- Local
view_A12 <- Local
view_A21 <- Distributed
view_A22 <- Distributed }

if (view_A is-atleast Local)
{ view_A11 <- Local
view_A12 <- Local
view_A21 <- Empty
view_A22 <- Empty }

if (view_A is-exactly Empty)
{ view_A11 <- Empty
view_A12 <- Empty
view_A21 <- Empty
view_A22 <- Empty }

}

analyze ColDistribution {

if (view_A is-exactly Distributed)
{ view_A11 <- Local
view_A12 <- Distributed
view_A21 <- Local
view_A22 <- Distributed }

if (view_A is-atleast Local)
{ view_A11 <- Local
view_A12 <- Empty
view_A21 <- Local
view_A22 <- Empty }

if (view_A is-exactly Empty)
{ view_A11 <- Empty
view_A12 <- Empty
view_A21 <- Empty
view_A22 <- Empty }

}

(a) Effects of splitting matrices. (b) Annotations codifying these effects.

Fig. 14. Analysis annotations for thePLA Obj Split 4() routine. Depending on the distribution of the input matrix,the split routine can create special
case views or even empty views.

procedure PLA_Trsm(side, uplo, transa, diag, alpha, a, b)
{

on_entry { alpha --> view_alpha
a --> view_a
b --> view_b }

when (RowDistribution : view_a is-exactly Empty ||
ColDistribution : view_a is-exactly Empty ||
RowDistribution : view_b is-exactly Empty ||
ColDistribution : view_b is-exactly Empty)

replace-with %{ ; }%
}

Fig. 15. This annotation states that operations on empty views can be
removed.

E. Special-case inlining

The first step towards generating customized routines is
to expose the implementations of the global layer routines.
We use library-specific analysis to decide when to perform
inlining, so inlining is only performed where it is likely to
be useful. For most of the level 3 BLAS routines, we use the
following policy: if either the row or the column distributions
of input objects is local, then inline the implementation. This
policy exposes operations on local objects, which tend to yield
the most benefit. Figure 16 shows the annotations for inlining
the PLA Trsm() routine, which performs a triangular solve

with multiple right-hand sides.

procedure PLA_Trsm(side, uplo, transa, diag, alpha, a, b)
{

on_entry { alpha --> view_alpha
a --> view_a
b --> view_b }

when (RowDistribution : view_a is-atleast Local ||
ColDistribution : view_a is-atleast Local ||
RowDistribution : view_b is-atleast Local ||
ColDistribution : view_b is-atleast Local)

inline;
}

Fig. 16. This annotation uses dataflow analysis informationto define a
library-specific inlining policy.

F. Algebraic simplifications

At both the global layer and the middle layer, we define
optimizations that take advantage of algebraic identities. Fig-
ure 17 shows two examples for thePLA Scal() routine,
which applies a scalar multiplier to all elements of a matrix.
When the scalar is equal to one, the multiplication has no
effect, and we can remove it. When the scalar is zero, we can
avoid the multiplication operations and just set the matrixto
zero.

PROCEEDINGS OF THE IEEE 11

procedure PLA_Scal(alpha, a)
{

on_entry { alpha --> view_alpha { length, width,
data --> data_alpha }

a --> view_a }
when (data_alpha == 1.0)
replace-with %{ ; }%

when (data_alpha == 0.0)
replace-with %{ PLA_Obj_set_to_zero($a); }%

}

Fig. 17. This annotation exploits domain-specific algebraic identities.

Such opportunities might seem to be rare, but they often
appear after inlining. For example, thePLA Scal() routine
is called inside the implementation ofPLA Gemm() to handle
the coefficients alpha and beta. In almost all cases these values
are zero, one, or minus one. However, we cannot exploit this
information until the routine is inlined.

G. Redundant copy removal idiom

PLAPACK programs use the copy routine to redistribute
data so that they are in a suitable form for subsequent compu-
tations. If, however, the input submatrices are already suitably
distributed for a given call site, no copying is necessary. This
situation occurs in the specialization of the triangular solve
routine PLA Trsm(). Unfortunately, the current annotation
language cannot express this optimization because it requires
the compiler to recognize and replace asequenceof library
calls. (We have defined the syntax for such an optimization
and we anticipate having this capability in the future [21].)
For the experiments in Section IV we show results for both
the fully-automated system and results that include the copy
remove optimization applied by hand.

IV. RESULTS

This section presents performance results obtained by apply-
ing our system to a set of PLAPACK applications and kernels.
We find that the annotations effectively specify library-level
optimizations and that these optimizations produce significant
performance gains across layers of abstraction.

A. Methodology

We start with well-written versions of three PLAPACK pro-
grams, which serve as a baseline and represent our ideal pro-
gramming style: the code clearly expresses the algorithm and
is unobscured with hand-coded optimizations. The programs
generally use the highest layer of PLAPACK, but they are by
no means poor implementations. They perform competitively
with similar programs written using other parallel program-
ming technologies. We apply library-level optimization toall
three programs using a single set of PLAPACK annotations.

We apply a series of optimization passes to each program.
Each pass first performs the library-specific analysis, followed
by the library-specific code transformations. We then applya
set of “cleanup” optimizations, including constant propagation,
control-flow simplification, and dead-code elimination. We
repeat this process until no new code transformations occur.
We find that there is considerable synergy between these

optimizations, so the process typically requires four or five
iterations.

B. Programs

We use three programs for these experiments: (1)Cholesky
factorization, (2) LU factorization , and (3) theKernel of
a Lyapunov equation solver. The baseline version of the
Cholesky factorization is shown in Figure 18. The Lyapunov
equation [4] arises in control theory applications. It is more
complex than the other two and poses a more challenging op-
timization problem for our approach. The PLAPACK authors
provided our baseline implementation [30].

while (1) {
PLA_Obj_split_size(a_next, PLA_SIDE_TOP,

& size_top, & owner_top);
PLA_Obj_split_size(a_next, PLA_SIDE_LEFT,

& size_left, & owner_left);

if (size = min(size_top, size_left)) break;

PLA_Obj_split_4(a_next, size, size, & a_cur, PLA_DUMMY,
& a_col, & a_next);

PLA_Local_chol(uplo, a_cur);

PLA_Trsm(PLA_SIDE_RIGHT, PLA_LOWER_TRIANGULAR,
PLA_TRANS, PLA_NONUNIT_DIAG,
one, a_cur, a_col);

PLA_Syrk(PLA_LOWER_TRIANGULAR, PLA_NO_TRANS,
min_one, a_col, one, a_next);

}

Fig. 18. The main loop of the baseline Cholesky factorization.

C. Annotations

We have shown several examples of the PLAPACK anno-
tations, but due to space limitations we do not include the
entire annotation file. The following summary characterizes
the annotation file and the annotation effort.� The PLAPACK library consists of about 45K lines of C

code. The PLAPACK annotation file consists of about
3400 lines of annotations.� We annotated 85 PLAPACK routines. Each routine aver-
ages about 40 lines of annotations. While most routines
require about 20 lines to annotate, several routines, such
as the view splitting routines, require as many as 200
lines to handle all of the analysis cases.� About 30% of the annotation file is devoted to the pointer
and dependence information. In our current language this
information must be repeated in each routine.� The annotations define seven library-specific program
analyses (property annotations). Only one of them, the
ViewUsed property, is a backward analysis.� There are 48 error reporting and debugging annotations.� There are 70 code transformation annotations. Of these,
the majority remove useless computations—e.g., com-
puting on an empty view. Many others describe the
conditions for inlining the implementation of a routine.
This emphasis reflects our goal of generating customized
code from general-purpose routines.

PROCEEDINGS OF THE IEEE 12

D. Platform

For these experiments we use Broadway as a cross compiler:
we compile the programs locally on a Pentium 4 workstation
running Linux, and then copy the source to the parallel
environment, an IBM Power4-based multiprocessor. This mul-
tiprocessor consists of a tightly-bound network of three 16-
way symmetric multiprocessors (SMP), one 32-way SMP, and
32 4-way SMPs. Each processor runs at 1.3Ghz. We compile
using the vendor-supplied tools, and we link against the vendor
supplied Message Passing Interface (MPI), which handles the
non-uniform memory architecture.

E. Performance results

For each of the three programs, we measure the execution
time of the baseline version and two Broadway optimized
versions: one with the redundant copy idiom and one without
(see Subsection III-G). For Cholesky factorization, we also
time a version that is hand-optimized by the PLAPACK
implementation team. We run each program on a range of
input matrix sizes, from 1000�1000 to 8000�8000, and on
a range of processor grids, from 2�2 processors to 10�10
processors.

We find the following general results:� Our PLAPACK annotations consistently improve perfor-
mance. Depending on the program, the problem size, and
the number of processors the improvement ranges from
just a few percent to 30 percent.� Overall, the per-processor performance improvement in-
creases as we increase the number of processors and
decreases as we increase the problem size. This suggests
that our annotations are effectively eliminating the soft-
ware overhead associated with the library layers.� While the redundant copy idiom noticeably improves
performance, the rest of the annotations also contribute
significantly.

For each program, we show the performance improvement ob-
tained by using Broadway. The three program-specific graphs
show the percent improvement in execution time over the
baseline version for 64 processors (an 8�8 grid) over a range
of problem sizes.

Figure 19 shows the results for the Cholesky factorization
program. The code generated by the specialization strategy
alone runs 13 to 18 percent faster than the baseline version.
When we include the redundant copy idiom, the improvement
jumps to between 22 and 29 percent. In this case, our
Broadway-generated version runs as fast as the hand-coded
Cholesky factorization written by the library authors, which
serves as an upper bound for our approach. In fact, many
of the optimizations codified in our annotations come from
insights into this hand-coding process [3]. In annotation form,
however, we can easily apply the same optimizations to other
programs, including the other two test programs.

Figure 20 shows results for LU factorization. This program
is dominated by calls the triangular solve routine, so the
redundant copy idiom makes a significant difference. Manual
inspection of the Broadway-generated code indicates that there
are few additional optimization opportunities at the PLAPACK

0

5

10

15

20

25

30

1000 2000 3000 4000 5000 6000 7000 8000

P
e
r
c
e
n
t

i
m
p
r
o
v
m
e
n
t

o
v
e
r

b
a
s
e
l
i
n
e

v
e
r
s
i
o
n

Problem size

Percent improvement (64 processors)

Hand-coded
Broadway + copy idiom

Broadway

Fig. 19. Percent improvement for Cholesky on 64 processors.The curves for
the hand-coded and Broadway+copy-idiom versions sit on topof one another.

0

1

2

3

4

5

6

7

8

9

1000 2000 3000 4000 5000 6000 7000 8000

P
e
r
c
e
n
t

i
m
p
r
o
v
m
e
n
t

Problem size

Percent improvement (64 processors)

Broadway + copy idiom
Broadway

Fig. 20. Percent improvement for LU on 64 processors.

level of abstraction. (For problems larger than 4000 by 4000,
the improvement obtained without the copy idiom is negli-
gible, and even falls slightly below the baseline for 5000 by
5000.)

Figure 21 shows the result for the Lyapunov equation solver.
These results represent a more significant test of our approach
because of the program’s complexity. The specialization strat-
egy improves performance by 5 to 10 percent. The addition of
the redundant copy idiom improves performance by 9 to 15
percent.

Figure 22 shows the results for all three programs on a
large fixed-size problem, plotted against the number of pro-
cessors. For Cholesky factorization and the Lyapunov solver,
the library-level optimizations provide consistent and scalable
performance improvement. The LU factorization appears to
scale more poorly beyond 36 processors, but still maintainsa
consistent improvement. Figure 23 shows the execution times
of the three programs for varying problem sizes.

F. Discussion

The experiments described above lead us to believe that
library-level optimization is an effective way to optimize

PROCEEDINGS OF THE IEEE 13

0

2

4

6

8

10

12

14

16

1000 2000 3000 4000 5000 6000 7000 8000

P
e
r
c
e
n
t

i
m
p
r
o
v
m
e
n
t

Problem size

Percent improvement (64 processors)

Broadway + copy idiom
Broadway

Fig. 21. Percent improvement for Lyapunov on 64 processors.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

P
e
r
c
e
n
t

i
m
p
r
o
v
m
e
n
t

Number of processors

Percent improvement (7000x7000 matrix)

Cholesky
Lyapunov

LU

Fig. 22. Percent improvement for all three problems, acrossdifferent numbers
of processors.

0

5

10

15

20

25

1000 2000 3000 4000 5000 6000 7000 8000

E
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
.
)

Problem size

Performance on 64 processors

Lyapunov baseline
Lyapunov Broadway

LU baseline
LU Broadway

Cholesky baseline
Cholesky Broadway

Fig. 23. Execution time for the three programs, with and without Broadway
optimization.

layered scientific systems. Several observations about the
experiments contribute to this conclusion:� The technique works because it exploits domain-specific

semantics that would otherwise be ignored by conven-
tional compilers. Without a notion of matrices and data
distributions, none of the optimizations we applied to
PLAPACK are possible.� The technique is effective because it crosses software lay-
ers, optimizing each layer in the context of the application
and the layers above. Our design allows the compiler
to shift from one domain to the next, systematically
processing each layer.� Even with limited configurability, the annotations capture
useful and interesting properties of the layer abstractions.
We find only a few optimizations that we could not
adequately express in the language; these optimizations
work on MPI routines and require an accurate model of
communication.� The annotations can be difficult to develop, but this dif-
ficulty is mitigated by two factors. First, we can develop
annotations incrementally, adding new optimizations as
we discover them. Second, the cost of the annotations
can be amortized across a large number of applications
that use the library.� The manual application of the PLAPACK optimizations is
infeasible because it is tedious and because the resulting
code is incomprehensible and unmaintainable.

V. CONCLUSIONS AND FUTURE WORK

In order to provide better optimization and error detection
services, programming tools such as optimizing compilers and
software checkers need improved information about program
behavior. Existing systems have focused almost entirely on
obtaining this information directly from application program-
mers. We believe that by using software libraries, programmers
are already providing a wealth of domain-specific information.
By capturing and codifying this information, we can signif-
icantly improve the quality of compilation without requiring
any changes to existing programs or existing programming
practices.

While this foundational work has produced promising re-
sults, we believe that it only scratches the surface of a large
untapped source of optimization. We have identified a number
of potential improvements and future directions:� Richer types of dataflow analysis. Our annotation

language currently supports a relatively simple class of
program analysis problems. More generalized dataflow
analyses would allow our compiler to construct more
complex models of the library’s domain.� Code patterns. The current compiler only allows the
annotations to replace individual library calls with other
code. We can expand our range of optimizations by
supporting annotations that recognize stylized patterns of
library routine usage and can replace or alter the entire
sequence.� Domain-specific traditional optimizations. In the cur-
rent compiler implementation, the traditional optimiza-

PROCEEDINGS OF THE IEEE 14

tions, such as constant propagation and dead-code elim-
ination, work on library routines in exactly the same
way that they work on primitive operations. For other
traditional optimizations, however, we can formulate op-
timizations that work on library routines by analogy
to their primitive counterparts. For example, if we tell
the compiler that a particular library routine effectively
creates a copy of an object, then it can apply a domain-
specific version of copy propagation. Other traditional
optimizations lend themselves to this technique: common
subexpression elimination, management of resources, and
scheduling. By exploiting existing algorithms, we can
continue to keep the annotations simple.

Our work also suggests a new approach to designing software
libraries that takes advantage of compiler support. In the
future, such a library might consist of two distinct interfaces,
one for the programmer to use and one for the compiler to
target. The programmer’s interface would focus on providing
straightforward and intuitive access to the library’s domain
without exposing implementation and performance details.
This high-level interface serves two purposes: first, it makes
the programmer’s job easier, and second, it provides domain-
specific information for the compiler. The compiler interface
consists of low-level library routines that serve as the compiler
target and that give the compiler fine-grained control over the
implementation. At this level, the routines implement the basic
building blocks of the domain. The compiler analyzes the high-
level interface and generates an appropriate implementation by
assembling these building blocks.

Our technique is not strictly limited to libraries: it can ex-
ploit module boundaries—wherever they occur in software—
to convey domain-specific information to the compiler. Our
research is part of a wider trend in programming language
research towards using software modularity to improve the
capabilities and the performance of software engineering tools.
We hope that by providing tools that are practical as well as
powerful, we can help to move some of the valuable advances
in compiler research into everyday programming practice.

ACKNOWLEDGMENTS

We thank Robert van de Geijn for many useful discussions
about PLAPACK and Teck Bok Tok for his recent improve-
ments to the Broadway compiler. This work is supported by
NSF grants CCR-0085792, EIA-0303609, ACI-0313263, and
ACI-9984660, and by DARPA Contract #F30602-97-1-0150.

REFERENCES

[1] Alfred Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: Principles,
Techniques, and Tools. Addison-Wesley, Englewood Cliffs, NJ, 1986.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, second
edition, 1995.

[3] G. Baker, J. Gunnels, G. Morrow, B. Riviere, and R. van de Geijn.
PLAPACK: High performance through high-level abstraction. In Pro-
ceedings of the International Conference on Parallel Processing, pages
414–423, 1998.

[4] P. Benner and E.S. Quintana-Orti. Parallel distributedsolvers for large
stable generalized Lyapunov equations. InParallel Processing Letters,
1998.

[5] Arun Chauhan. Telescoping Matlab for DSP applications.Technical
Report Thesis Proposal, Dept. of Computer Sciences, Rice University,
June 2002.

[6] Arun Chauhan, Cheryl McCosh, and Ken Kennedy. Automatictype-
driven library generation for telescoping languages. InProceedings of
SC: High-performance Computing and Networking Conference, Novem-
ber 2003.

[7] S. Chiba. A metaobject protocol for C++. InACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications,
pages 285–299, October 1995.

[8] Ron Choy and Alan Edelman. Parallel MATLAB: Doing it right.
Proceedings of the IEEE, 93(2), 2005. special issue on ”Program
Generation, Optimization, and Adaptation”.

[9] Timothy Scott Collins. Efficient Matrix Computations through Hier-
archical Type Specifications. PhD thesis, The University of Texas at
Austin, 1996.

[10] Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine
Petitet, Rich Vuduc, Clint Whaley, and Katherine Yelick. Self adapting
linear algebra algorithms and software.Proceedings of the IEEE,
93(2), 2005. special issue on ”Program Generation, Optimization, and
Adaptation”.

[11] Luiz A. DeRose. Compiler techniques for MATLAB programs. PhD
thesis, University of Illinois at Urbana-Champaign, 1996.

[12] J.J. Dongarra, I. Duff, J. DuCroz, and S. Hammarling. A set of level 3
basic linear algebra subprograms.ACM Transactions on Mathematical
Software, 16(1):1–28, 1990.

[13] Carter Edwards, Po Geng, Abani Patra, and Robert van de Geijn. Parallel
matrix distributions: Have we been doing it all wrong? Technical Report
CS-TR-95-39, University of Texas, Austin, 1995.

[14] Dawson R. Engler. Incorporating application semantics and control into
compilation. In USENIX Conference on Domain-Specific Languages,
pages 103–118, October 1997.

[15] Matteo Frigo and Steven G. Johnson. The design and implementation
of FFTW3. Proceedings of the IEEE, 93(2), 2005. special issue on
”Program Generation, Optimization, and Adaptation”.

[16] Samuel Z. Guyer.Incorporating Domain-Specific Information into the
Compilation Process. PhD thesis, University of Texas, Department of
Computer Sciences, 2003.

[17] Samuel Z. Guyer, Emery Berger, and Calvin Lin. Detecting errors with
configurable whole-program dataflow analysis. Technical Report TR 02-
04, Dept. of Computer Sciences, University of Texas at Austin, February
2002.

[18] Samuel Z. Guyer, Daniel A. Jiménez, and Calvin Lin. TheC-Breeze
compiler infrastructure. Technical Report TR 01-43, Dept.of Computer
Sciences, University of Texas at Austin, November 2001.

[19] Samuel Z. Guyer and Calvin Lin. An annotation language for opti-
mizing software libraries. InUSENIX Conference on Domain-Specific
Languages, pages 39–52, October 1999.

[20] Samuel Z. Guyer and Calvin Lin. Optimizing the use of high perfor-
mance software libraries. InWorkshop on Languages and Compilers for
Parallel Computing, pages 221–238, August 2000.

[21] Samuel Z. Guyer and Calvin Lin. Client-driven pointer analysis. In
International Static Analysis Symposium, pages 214–236, June 2003.

[22] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-
W. Liao, E. Bugnion, and M. S. Lam. Maximizing multiprocessor
performance with the SUIF compiler.IEEE Computer, 29(12):84–89,
December 1996.

[23] Ken Kennedy, Bradley Broom, Arun Chauhan, Rob Fowler, John Garvin,
Charles Koelbel, Cheryl McCosh, and John Mellor-Crummey. Telescop-
ing languages: A system for automatic generation of domain languages.
Proceedings of the IEEE, 93(2), 2005. special issue on ”Program
Generation, Optimization, and Adaptation”.

[24] G. Kiczales, J. des Rivieres, and D. G. Bobrow.The Art of the Meta-
Object Protocol. MIT Press, Cambridge (MA), 1991.

[25] Gary A. Kildall. A unified approach to global program optimization.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 194–206, 1973.

[26] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic macro expansion. InProceedings of the ACM
Conference on LISP and Functional Programming, pages 151–181,
1986.

[27] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill.Compiling
parallel code for sparse matrix applications. InProceedings of the
1997 ACM/IEEE conference on Supercomputing (CDROM), pages 1–
18, 1997.

PROCEEDINGS OF THE IEEE 15

[28] Florian Martin. PAG – an efficient program analyzer generator. Interna-
tional Journal on Software Tools for Technology Transfer, 2(1):46–67,
1998.

[29] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua,
Manuela Veloso, Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca
Gačić, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick
Rizzolo. SPIRAL: Code generation for DSP transforms.Proceedings
of the IEEE, 93(2), 2005. special issue on ”Program Generation,
Optimization, and Adaptation”.

[30] Enrique S. Quintana and Robert van de Geijn. Specialized parallel
algorithms for solving linear matrix equations in control theory.Journal
of Parallel and Distributed Computing, 61:1489–1504, 2001.

[31] Luiz De Rose and David Padua. Techniques for the translation of MAT-
LAB programs into Fortran 90.ACM Transactions on Programming
Languages and Systems, 21(2):286–323, March 1999.

[32] Rob Strom and Shaula Yemini. Typestate: A programming language
concept for enhancing software reliabiity.IEEE Transactions on Soft-
ware Engineering, 12(1):157–171, 1986.

[33] Steven W. K. Tjiang and John L. Hennessy. Sharlit—A toolfor building
optimizers. InSIGPLAN Conference on Programming Language Design
and Implementation, pages 82–93, 1992.

[34] Robert van de Geijn. Using PLAPACK – Parallel Linear Algebra
Package. The MIT Press, 1997.

[35] Todd L. Veldhuizen. Expression templates.C++ Report, 7(5):26–31,
1995.

[36] Todd L. Veldhuizen and Dennis Gannon. Active libraries: Rethinking
the roles of compilers and libraries. InProceedings of the SIAM
Workshop on Object Oriented Methods for Inter-operable Scientific and
Engineering Computing (OO’98). SIAM Press, 1998.

[37] Daniel Weise and Roger Crew. Programmable syntax macros. In
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 156–165, June 1993.

[38] Deborah Whitfield and Mary Lou Soffa. Automatic generation of global
optimizers. ACM SIGPLAN Notices, 26(6):120–129, June 1991.

