PROCEEDINGS OF THE IEEE 1

Broadway: A Compiler for Exploiting the
Domain-Specific Semantics of Software Libraries

Samuel Z. Guyer, Calvin Lin

Abstract— This paper describes the Broadway compiler and target multiple domains, even within the same program.
our experiences using it to support domain-specific compife Our solution targets software libraries rather than domain
optimizations. Our goal is to provide compiler support for a gnecific Janguages, and our annotations identify librany- ro
wide range of domains and to do so in the context of existing .. ’ . e . .
programming languages. Therefore we focus on a technique #h in€S that serve as domain-specific operations. During com-
we call library-level optimization, which recognizes and exploits pilation, the annotations guide the Broadway compiler & it
the domain-specific semantics of software libraries. The keto analysis and optimization of these operations.
our system is a separation of concerns: compiler expertiss built - Qur design yields a number of benefits. First, as mentioned
into the Broadway compiler machinery, while domain expertse above, it allows us to handle multiple domains. A great many
resides in separateannotation files that are provided by domain ! . . - . '
experts. We describe how this system can optimize paralléhear MOre domains are provided as libraries than are formulated
algebra codes written using the PLAPACK library. We find as languages. Second, since libraries are already widely, us
that our annotations effectively capture PLAPACK expertise at we can bring domain-specific compilation to existing sofeva
several levels of abstraction, and that our compiler can awimat- jth little or no change to current programming practices.

ically apply this expertise to produce considerable perfamance — riq the incremental cost of adding new domains or new
improvements. Our approach shows that the abstraction and

modularity found in modern software can be as much as asset OPtimizations is low because it does not require modificetio
to the compiler as it is to the programmer. to the compiler. The Broadway compiler consists primarily o

domain-independent compiler machinery, such as a dataflow
analysis framework, a code transformation system, and a set

) ___of traditional optimization passes.
As the study of compilers has matured, the capabilities |, ihe spectrum of domain-specific compilers, Broadway

of traditional optimizing compilers have been stretched tQhresents a tradeoff that favors breadth of applicabdlitgr

the limit, with increasingly complex optimization algams etk of capabilities. Our system produces competitiveltes
that yield diminishing returns. This situation reflects thg,, many domains but often cannot compete with custom
extreme difficulty of wresting ever better performance fromympilers for individual domains. In deciding what to indéu
the same set of low-level programming language construGi$groadway, we consider the general utility of the featurd a
By contrast, domain-specific languages offer new hightlevge ¢omplexity of configuring it from an annotation language
primitive operations for compilers to analyze and manifila paiafiow analysis, for example, is a general static analysis

Thus, domain-specific compilation is one of the few remaninecpnique for collecting information about the dynamic be-
frontiers for optimizing compilers. havior of a program. Our formulation of dataflow analysis

A number of domain-specific compilers already exist. Somgh|y supports a subset of analysis problems, which limiés th
are tied to a particular language, such as MATLAB [8lannotation writer's exposure to the underlying latticeotlye
[11], [31] and Spiral [29], while others are tied to partiaul Nevertheless, these capabilities can express a wide yarfet
domains, such as sparse matrices [9], [27]. A great stremigthgomain-specific compilation tasks, from optimizing peell
these approaches is the compiler’s ability to make importaghear algebra codes to checking system software for sgcuri
assumptions about a specific domain. A problem with thegginerabilities [17], [21].
approachgs is their limited applicability: the capalsbtithat This paper presents an overview of our system, explains its
they provide do not translate to other languages or othgksign rationale, and summarizes our results and expesenc
domains. Such approaches make it difficult for programnerstne remainder of this paper is organized as follows. Sedtion
use multiple domains in a single program, and make it difficUleyiews related work. Section Il describes the Broadway
to develop compilers for new domains. system and the general notion of library-level optimizatio

In this paper we describe an alternate approach to domagection Ill then explains how the Broadway system can be
specific compilation that supports a wide range of domaiagplied to a parallel linear algebra library. Section |Vgmets
with a single compiler infrastructure. The key idea is tperformance results, and Section V concludes and identifies
separate general-purpose compiler mechanisms from demairospects for future work.
specific information and expertise. Rather than hard-code
domain knowledge into the compiler, our solution encapsu-
lates such information through the use of a small annotation
language. By using different annotations for different @dms, Many domain-specific compilers are designed expressly
our configurable compiler, called the Broadway compilen cdor particular domains. These systems include Matrix++ for

Index Terms— Library-level optimization, domain-specific,
compiler

|. RELATED WORK

PROCEEDINGS OF THE IEEE 2

optimizing matrix operations based on a specification of 1. BROADWAY

the matrix structure [9], the Falcon compiler for optim@gin | this section we describe various opportunities for ligra

MatLab programs [11], and the FFTW system for generatinge| optimization and we show how the Broadway compiler

fast Fourier transform implementations [15]. By focusing ogypoits them.
a single domain, such systems can employ the best represen-

tation and the most aggressive optimizations for that domai _ L
By contrast, the Broadway compiler and annotation Iangua’é‘e Library-level optimization

are not tailored to any specific application domain, and thusSoftware libraries provide a simple and flexible mecha-
trade off power for generality. nism for including domain-specific functionality in genkera

purpose programming languages. A library represents the

The Telescoping languages [23] project shares many go&/ges and operators of a domain as a collection of ordinary
and ideas with our research. A recent proposal describes-an@atatypes and procedures, so programmers can add domain-
notation language similar to ours that captures propeofiéis ~ specific functionality to any application simply by inclugi
brary interfaces [5]. Currently, this work focuses on gatiag the appropriate header files and making calls to the library
optimized code from scripting languages, such as MatLab [#]terface. Programmers can develop new libraries for new
The system uses offline compilation to generate alternatifémains at any time and can easily combine substantially
library implementations and uses a type inference systemdiferent domains in a single application.
select from among these. Broadway targets general-purposé/nlike the built-in operators of a programming language,
programming |anguages_which Support a wider range bpwever, the domain-specific operators of a Iibrary have no
domains—and uses dataflow analysis to drive optimizatiorgfecial meaning to the compiler. As a result traditional eom
Dataflow analysis can solve many type inference problems Hifers cannot analyze and optimize these operators, lgalia
can also track the state of a computation, which is awkwal@sk of using libraries correctly and efficiently entirety the
to express using types. programmer.

The goal of the Broadway project is to solve this problem

It is useful to view Broadway as a specific instance of By providing a new kind of compiler that can perfoliorary-
system for supportingctive libraries [36]. Active libraries level analysisand library-level optimization Our strategy is
represent a broad class of reusable software compondftsextend existing compiler mechanisms so that they can
that, unlike traditional libraries, are actively involvénl the recognize and manipulate library routine calls in much the
compilation process. One category of active libraries I& sesame way that they do for built-in operators. We show that
tuning libraries, such as ATLAS [10]. Another category inthe same mechanisms that have proven effective for the built
cludes meta-programming techniques, such as expressinn té operators are also effective for library operators. Teg k
plates [35], programmable syntax macros [37] and metaebbjés to capture some of the domain-specific information about

protocols [7], [24], which allow library developers to sffgc €ach library in a form that a compiler can use. _
code customizations that take effect at application caenpil 1) Opportunities: Our compiler targets three kinds of
time. While these techniques provide powerful compileetinlibrary-level optimizations:

program manipulation capabilities, they suffer from twojona «
drawbacks. The first is that the meta-program itself is often
complex and error prone. The second is that these systems
work primarily at the syntactic level—none of them include
advanced program analysis. Our system drives program-trans
formations using dataflow analysis, which captures deep se-
mantic information about how programs work, and our system
operates on a larger scope than typical meta-programs.
Previous research has also explored a number of different
ways of making compilers more flexible, and often this work
is motivated by the desire to support high-level and domain-
specific compilation. Existing approaches, however, take a
considerably different view of the tradeoff between usgpil
and power. In particular, they often provide a more compre-
hensive set of tools for defining new compiler components, bu
using these tools can be difficult and error prone. Examples
include open compiler infrastructures such as SUIF [22], «
optimizer generators such as Genesis [38], the Magik com-
piler [14], and analyzer generators such as Sharlit [33] and
PAG [28]. Our view is that such approaches are not viable for
domain-specific compilation because they require too much
compiler expertise to be used by most domain experts.

Domain-independent extensionsThese optimizations
are direct extensions of traditional optimizations, such
as dead-code elimination and loop-invariant code motion,
applied to library routine calls. They are enabled by sim-
ple dependence information about each library routine.
For example, by knowing that many of the math library
operators have no side-effects the compiler can safely
hoist them out of loops.

Single domain optimizations Library interfaces often
include a range of different routines, many of which are
designed to provide better performance for special cases.
For example, a matrix library might have special routines
for handling triangular matrices. Knowing when and how
to use such routines can require significant expertise.
This class of optimizations automates the selection of
specialized routines, including identifying opportuedi
and ensuring correctness.

Cross domain optimizations The layering and encapsu-
lation of library code often carries a performance penalty.
Libraries are compiled ahead of time, making it difficult
to take advantage of information about how they are used
in particular applications. Cross domain optimizations
provide a systematic way to break open the layers,

PROCEEDINGS OF THE IEEE 3

Library Property Action

Linear algebra | Special forms: triangular, tridiagonal Replace general purpose routines with special-purposinesu
Graphics Drawing state: lighting and shading options Inline and specialize routines to avoid unused filters

File access File state: open or closed Report error if accessing a closed file

Threads Lock state: locked, unlocked Report double locking bugs

PLAPACK Matrix distribution: row and column distribution Remove unused code that handles distributed cases
(many libraries)| Validity: check or unchecked T Remove redundant error checking

Fig. 1. Libraries often have domain-specific properties t@n be exploited by a compiler, but only if it is aware of them

exposing a library’s implementation to the compiler in the The overall Broadway optimization process, based on type-

context of the application. These optimizations combirgate properties, proceeds as follows:

the application and libraries into a single integrated and 1) A library expert designs a set of domain-specific opti-

customized piece of code. mizations and encodes this information using the anno-
tation language. This step involves:

« ldentifying abstract properties and property values

B. Identifying optimization opportunities using typestat) X
that are significant for the library.

The central task in |ibral‘y-|eve| Optimization is to |déyt| . Spec|fy|ng the behavior of each |ibrary routine in
places where it is both legal and profitable to change the terms of these abstract properties.
library calls in an application. The changes themselves are « Specifying code transformations for each library
typically straightforward: single domain optimizatioreptace routine, which are predicated on the property values
a general-purpose library call with a special-purpose osll of the arguments.

with a series of low-level library calls; cross domain opti-

mizations consist of inlining followed by further optimiaan.

The challenge lies in expressing the conditions under which
an optimization applies and in identifying the parts of the
application that satisfy the conditions.

The conditions that enable library-level optimizationg ar
analogous to those of traditional optimizations: they aebe
on the states of the objects or on some global fact about the
state of the computation. The difference is that for librkayel
optimization these states are expressed in terms of theryibr
domain. For example, a series of linear algebra computation
might result in matrices with special forms, such as tridagu
or tridiagonal. By knowing that the matrices have these-char
acteristics, the compiler might be able to replace a genefal Beyond performance

matrix multiply call with a more efficient one that exploits Typestate information can also be used to deteoorrect

the special forms. We refer to these domain-specific at@tu o, ynsafeuses of library routines. In these cases, the results
(such as “special form”) aproperties and we refer to their of yynestate analysis are used to emit compile-time erra-me
possible states (such as triangular or tridiagonalp@perty sages rather than to guide code transformations. Thisréeatu
values Many aspects of efficiency and correctness can B@ips produce more robust systems and improves program-
expressed as conditions on the property values of objeGifer productivity. Library-specific error messages are ulsef
Table 1 shows several concrete examples of libraries apd.qyse they provide immediate feedback on coding mistakes
associated properties, along with the actions that a c@mpilather than delaying problems to run-time. In additions thi
might take upon deriving this information. Our previous Worfacility can be used to check for deeper security flaws [17],
on automatic error detection includes detailed descritiof LZl]_ Security has become more critical for high-perforan

several such properties designed to model the domains of .Eh‘lputing with the growing popularity of grids and distried
manipulation and network security [17], [21]. computing.

Our notion of a property is a form ofypestate[32]: it
includes features of both types and states. They behave as)
types because property values can be related by a subtygthg\nnotation language
relation. For example, diagonal matrices can be defined adn the Broadway system, all domain-specific information is
subtypes of triangular matrices. Specifically, the properprovided as annotations: each library specifies its ownyaisal
values for each property are explicitly organized into &idat problems, code transformations, and error messages. Here w
(See Section II-D.2 for details). Properties can also behagive a brief overview of the language; a more complete discus
as states, because they can have different values at diffedon can be found elsewhere [16], [19], [20]. The annotation
points in the program. For example, a matrix might start olanguage conveys four kinds of information to the compiler:
empty, then be filled with values, then finally be factoreaint(1) dependence information about the library interface, in
a triangular form. cluding the uses, defs, and pointer structures manipulayed

2) The application programmer obtains the annotation file
and passes it to Broadway.

3) During compilation, Broadway consults the annotations
to determine how to interpret and manipulate the library
routine calls:

« It solves the typestate analysis problem, yielding
an assignment of property values to objects in the
application.

« It evaluates the predicates at each call site and ap-
plies the code transformations where the predicates
are true.

PROCEEDINGS OF THE IEEE

each routine, (2) domain-specific program analysis problem
which are solved by the compiler's analysis framework, (3)
domain-specific optimizations, which are expressed as code
transformations and are contingent on the analysis results
and (4) compile-time messages, which emit messages on the
command line according to the analysis results.

The annotation file for a library is organized around the «
routines that make up the interface. Each routine has ag entr

the interface or to names introduced by the ent ry
annotations.

The nodi f y annotation identifies the objects that the
routine modifies. Since this information is only used for
dependence analysis there is no need to desholghe
routine modifies them.

The on_exi t annotation describes any changes to the
pointer structure effected by the routine.

in the file that contains all of the information related to thghe example in Figure 2 (b) indicates that fh@pen routine

routine. In addition, there are several global annotatiaéch tgkes two pointers as arguments, it accesses the targéissef t

apply to all routines. We show the grammar for each kind @fvo pointers, and it allocates and returns a new object. sl ea

annotation and use the standard C library for examples. callsite, the compiler binds the actual objects involvedhe
The grammar descriptions below adopt the following comames given in the annotations.

ventions:italics indicate non-terminalg, el et ype indicates In compiler terms, thaccess andnodi f i es annotations

literal keywords, and anything iIBMALLCAPS is an identifier. specify the “uses” and “defs” of the routine, respectivilpte

that a pointer dereference is automatically recorded as an

(a) Dependence annotation grammar

property-vals — { property-val-list }
procedur e fopen(path, mode) { property-val-list — property-val[, property-val-list]
on_entry { path --> path_string property-val — PROPVAL[property-vals]

nmode --> node_string } .
access { path_string, node_string } dir
on_exit { return --> new file_handle }

procedure — procedure PROCNAME(identifier-list) { access, and a pointer update is automatically recorded as a
(pointers| usesdefs analyze| transform| report) * e .
modification.
_ With this information Broadway can compute data depen-
pointers — on.entry { structurex } dence information for the whole application, includingréiby
\ on_exit { structurex } ls. This inf . includ del of h bi
structure — VARNAME calls. This in ormation inclu es a model of heap of jects,
| VARNAME --> [new] structure pointer aliases, and use-def chains. This dependenceriafor
| VARNAME { structurex } tion allows our compiler to perform on library calls a number
\ del et e VARNAME i, N L
of traditional optimizations, such as dead-code elimorati
usesdefs — access { identifier-list }
| nodi fy { identifier-list } property — property PROPNAME: [dir] property-vals

[initially PROPVAL]

— @orward
| @ackwar d

}

procedure fclose(file) {
on_entry { file --> file_handle }

(a) Property annotation grammar

on_exit { delete file_handle } property FileState : { Open, Closed } initially O osed

}

(b) Example

property Kind : { Socket { Local, Renpte }

File }

Fig. 2. Pointer and dependence annotations provide a wagsiribe how the
library traverses and updates pointer-based data stesctlihe- - > operator
declares a “points-to” relationship.

1) Library interface information:All of the annotations for
a library routine are enclosed in@ ocedur e annotation.
Figure 2 shows the grammar for this part of the language,
along with example annotations for two standard file 1/O
routines. Within thepr ocedur e annotation each library
routine has a set of four pointer and dependence annotations
that describes its behavior:

« The on_entry annotation describes the pointer strucg;y 3

(b) Example property definitions
T
N
Renmpte Local Open d osed
T File Ay
Socket
\/ J-
1

(c) Lattices for the properties above

3

Property annotations define flow-values for librapgcific analysis

tures expected as input to the library routine. This apasses. The syntactic structure implies the underlyirgpdat

notation tells the compiler how to traverse the pointer

structures and provides names to the internal objects. The) Library-specific analysis passe#s mentioned above,
arrow - - > can be thought of as a “points-to” operatorlibrary-level optimizations and error messages are triggoy
which leads to a natural declarative description of pointébrary-specific typestate information (properties). Amata-
structures. tion writer defines a property by specifying (1) the name ef th
« The access annotation identifies the objects that th@roperty and its set of property values, and (2) the effetts o
routine accesses. This list can refer to variables froeach library routine on these values. The property values ar

PROCEEDINGS OF THE IEEE 5

organized into a lattice, which expresses the subtypiragioel. 3) Optimizations and error reportd.ibrary-level optimiza-

Broadway uses dataflow analysis to push the property valugms and error reports are defined on a per-routine basis.
through the application and derive an assignment of prgpeRigure 5 shows the grammar for these annotations, along with
values to objects at different points in the program. example uses. An optimization consists of a code transfor-

The property and property values are defined using naation and a guarding condition. Broadway applies the code
property annotation, and the effects of the library routinegansformation at each callsite for which the conditiornriset
are defined usingnal yze annotations (one for each routine)Similarly, an error report consists of a message to emit and a
Figure 3 shows thpr oper t y annotation grammar, including guarding condition.
examples of the annotations and the lattices that they imply The guarding conditions on these annotations test thetsesul
Properties also have a direction, forward or backward, Wwhiof the property analysis. We provide several operatorsgb te
indicates which way the information flows in the progranthe property values and their lattice relationships:

Backward properties are useful for describing how objects
will be used at a later point in the program’s execution. The
annotation writer chooses the direction of information flow
and the compiler uses the appropriate algorithm to propagat |
the information.

The anal yze annotations describe how each library rou-
tine updates the property values of objects. Figure 4 shberss t
grammar for these annotations along with examples for the
standard C library. Analyze annotations can be unconditjon *
as in thef open example, which always produces a file handle .
in the “open” state. Analyze annotations can also be guarded
as in thesocket example, which produces either a “remote”

socket or a “local” socket, depending on the domain argument o)]
The property value tests are described below. The optimization annotations can specify one of two trans-

formations to apply at each satisfying callsite: (1) replac
the library call with an arbitrary C code fragment, or (2)
inline the library routine implementation (assuming lityra
source is available). The replacement mechanism works much
like hygienic macros [26]: the compiler parses and checks
code fragments, and then ensures that expansion results in

« i s-exact | y: evaluates to true only if the object on the
left-hand side ends up with exactly the property value on
the right-hand side.

i s-atleast andi s-atnost: these two operators
represent lattice “less-than-or-equal” and “greatentha
or-equal” tests, respectively. In the socket example of
Figure 3, property valueocal i s- atl east Socket .

i s- ?7?: this unary operator evaluates to true if the object
ends up with lattice bottom.

coul d- be: this operator evaluates to true if at any point
in the program the object ever takes on the value on the
right.

analyze — anal yze PROPNAME{ analysis-rulex }
\ anal yze PROPNAME{ effect* }

analysis-rule — i f (condition) { effectx }
\ defaul t { effectx }

numeric-comparison
condition| | condition
condition && condition

condition — [PROPNAME:] test
\
\
\
\

! condition

VARNAME i s-exact|y PROPVAL
VARNAME i s- at | east PROPVAL
VARNAME coul d- be PROPVAL

syntactically correct code. Figure 5 shows a code replaneme
example for thef get s routine: when the size is 1 we can
just usef get ¢ and store the returned character directly in the
string. The compiler will replace thiés token with the actual
argument at the call site.

The code replacement facility is most useful for expressing
single-domain optimizations, and the inlining facility nsost

test — VARNAME i s-??
| VARNAME i s- at nbst PROPVAL

useful for cross-domain optimizations because it expdses t
implementation of a library routine. As with the code re-
placements, inlining can be made contingent on the results
of dataflow analysis. This feature enables domain-specific
inlining policies, which help ensure that inlining takesaqé

effect — VARNAME <- PROPVAL
| VARNAME <- VARNAME

(a) Analysis annotation grammar

only when it is likely to be beneficial.
Figure 5 also shows an error report example: the compiler
anal yze Kind { file_handle < File } will emit a message whenever a program attempts to read from
, analvze Rilestate {file handle < open } a file handle that is not open. The compiler will replace the
@al | si t e token with the line number and file name of the
erroneous the call site.

procedure fopen(path, node) {
on_entry ...
on_exit ...

procedure socket (domain, type, protocol) {
on_entry ...
on_exit ...
anal yze Kind {
if (domain == AF_INET) { return <- Renote }
if (domain == AF_UNIX) { return <- Local }
} . . .
} Broadway is a source-to-source translator for C written in

E. Compiler design

C++. It is built on top of the C-Breeze compiler infrastruc-
(b) Examples ture [18] and inherits many components from it, including
Fig. 4. Analysis annotations specify how library routindtee property the _front-end pgrser, 'nte_mal repre:se_nta_tmn, and a ??)jlte
values. In the compiler these serve as transfer functions. traditional compiler analysis and optimization passegufé 6
shows the overall architecture of the system. Broadwaystake

PROCEEDINGS OF THE IEEE 6

Application || Library

C source code Header & source

Analysis Framework Optimizer
Whole-program, interprocedural

Traditional optimizations

. . . Pointer analyzer Dead-code elimination, Optimized
Basic mterfa_ce mformf_;\tlon Builds model of memory Constant propagation, etc. p
Uses, defs, pointer behavior * System
- - Integrated library and
D-S program analysis Dataflow analyzer Code transform engine application
Dataflow values and functions Solves library-specific N Driven by analysis results

dataflow analysis problems

Library-specific optimizations
Macro-like code transformations Report Generator Compile-time

Compile-time messages Emit messages Messages

X Based on analysis results F i
In terms of analysis results y Library-specific errors
and reports

Fig. 6. The architecture of the Broadway compiler: an artimtdfile accompanies the usual library files and tells the giten how to perform library-level
analysis and optimization on applications that use thedibr

It -W [)
transform - ‘éhcec?D(E condition) replace-w th 9% that improve both its precision and its scalability. We fdun

%S these features critical for exploiting the opportunitiesgented
by real, industrial-strength software.

First, the framework includes an integrated pointer arelyz
report — report i f (condition) report-element ; that provides alias information for surface variables, al as
a detailed model of heap-allocated structures. Pointerrimé-
tion is critical for library-level optimization becausenadst all

| when (condition) i nline ;

report-element — “Sone string literal..."
| PROPNAME: VARNAME

| @allsite non-trivial library objects are accessed through pointeiany
| [VARNAME] of these objects also have internal structure and are remies
(a) Action annotation grammar as pointer-based data structures. Since dataflow depegglenc

might exist between internal components we must have a

p’gﬁegﬁ{fyfge‘s(& size,) { sound model of memory to avoid applying optimizations
on_exit ... incorrectly.
wh oo Second, the framework employs an interprocedural, whole-
en (size == 1) . : i . .
replace-with % (*${s}) = fgetc(f); }% program analysis, allowing the compiler to gather inforiorat
report if (! FileState : file handle is-exactly Open) about library routine usage over a large scope. Unllke-hm!llt
"Error_at " ++ @allsite ++ ": File_is_not_open\\n"; language operators, library routines are not bound by &mpl
} lexical scoping rules. In conjunction with the use of poiste

library objects can flow throughout a program. Whole-pragra
analysis is required not only for correctness, but is also
Fig. 5. Action annotations specify optimizations and emeports. valuable for exposing optimization opportunities.
Third, the framework supports a range of analysis pre-
cision policies, including our own client-driven analysit
as input an application written in ANSI C along with annotaggrithm [21], which automatically adapts its precision in
tion files that describe the libraries used by the applimtioresponse to the needs of the analysis problem. At its most pre
During each compilation phase the compiler consults these the system is flow-sensitive and context-sensitivechy
annotations to determine the effects of each call to thatibr provides accurate analysis information even for nontisip-
Two compiler mechanisms are central to our domaipsications, such as those with complex software architestu
specific optimizations: (1) a configurable dataflow analysiq heavy code reuse. This level of precision, however, can
framework, which solves the domain-specific typestate-angcrease analysis costs to an intolerable level. The etieinen
ysis problems given by the annotations, and (2) a cog@@alysis algorithm provides both accuracy and scalalility

transformation engine, which tests the conditions andiepplapplying flow-sensitivity and context-sensitivity only tbe
the optimizations specified by the annotations. In addjtiba parts of the program where they are needed.

error reporting mechanism visits all library call sites amdits
any messages specified by the annotations.
The dataflow analysis framework uses a traditional itegativ Il OPTIMIZING PLAPACK
analysis algorithm to solve each library-specific analpsih- In this section we demonstrate the application of our tech-
lem [1], [25]. It also includes a number of powerful featuregique to the PLAPACK parallel linear algebra library [34].

(b) Examples

PROCEEDINGS OF THE IEEE 7

We first provide background about PLAPACK abstractions and PLAPACK kernel routines, such as parallel matrix multipli-
their role in optimization: we present a layered decompmsit cation, are implemented using a lower level set of routihas t
of the PLAPACK system and describe the abstractions at eanhake data distribution and movement explicit. At this letked
layer. We then describe the library-level optimizationasttive library creates objects with special distribution projesrtand
specified for PLAPACK. We will show the impact of theseghen uses a communication routift, A_Copy/() , to transfer
optimizations in Section V. data between them.

To explain our technique, we go into considerable detail For example, Figure 8 shows how to compute an outer
about the target library and its abstractions, the meckaofic product from a matrix column panel and a matrix row panel.
the optimizations, and their representation in the aniwtat Initially, the column panel A resides on one column of
Before diving into these details, we enumerate the importgsrocessors, and row panel B resides on one row of processors.
points of this section: In the first step, B is duplicated on each row of processors. In

. Complex domains, like parallel linear algebra, contain &€ second step, A is duplicated on each <_:o|umn of processors
wide range of potential optimizations. We show that op0th of these steps are accomplished usingfh& Copy()
annotations can capture many of these optimizations wiutine. The result is that each processor contains the righ
a small number of language constructs. pieces of A ar_ld B to compute its part of the out_er produ<_:t.

. The complexity of the PLAPACK interface makes it! ne final step is for each processor to compute this part using
challenging for programmers to apply optimizations. Th@ local matrix multiply routine. In PLAPACK parlancecal
compiler mechanisms we provide help to overcome theSBerations are sequential computations that serve asiriiild
difficulties by automating the process. blocks for their parallel counterparts.

« Most of these optimizations are valid only under partic-
ular conditions that are highly domain-specific. WithouB. Optimizations

the configurable dataflow analyzer, the compiler could not\we now describe the specific optimizations that we use to
collect the necessary information. produce the results in Section IV. We categorize them aecord
ing to the PLAPACK layer to which they apply. Figure 9 shows
the three conceptual layers of the PLAPACK implementation.
Each layer has its own programming abstractions, and thus
PLAPACK is a library for writing parallel linear algebraits own optimizations. We derive our PLAPACK optimizations
programs in C. It consists of approximately 45,000 lines ®fom a number of sources. In some cases, we codify techniques
C code and provides parallel versions of many of the sarggggested in PLAPACK publications [3]. In other cases, we
kernel routines found in the BLAS [12] and LAPACK [2]. At examine PLAPACK programs ourselves to determine possible
the highest level, it provides an interface that hides much gerformance improvements. When we discover a potential
the parallelism from the programmer. optimization, we determine the circumstance under which it

A PLAPACK application operates on linear algebra obapplies and then formulate a program analysis pass to detect
jects, such as matrices and vectors, that are partitiondd aRat circumstance.

distributed over a grid of processors on the target computer
The application manipulates these objects indirectly ¢fou
handles callediiews A view specifies a set of matrix indices
that can be used for subsequent computations. PLAPACK Sequential BLAS + Data Distribution
provides routines to create views, shift views, and sphivg
into pieces. Figure 7 shows a split that logically divides a
matrix A into four smaller ones.

A. Concepts

Parallel BLAS

Message Passing Interface

Fig. 9. Logical layers of the PLAPACK implementation. Maripréries

consist of multiple layers, each with its own domain-specsemantics.
PLA bj _split_4
A - Al A, The simplest way to use PLAPACK is to program at the
highest layer of abstraction because it provides the mast po

erful abstractions. It also leverages a large body of rdasab
Fig. 7. PLAPACK algorithms operate at a higher level thadlitranal linear code underneath. However, by working at this high level,
algebra algorithms by splitting matrices into logical gieccalledviews and programmers miss many optimization opportunities. Thus,
operating on these views. programmers would ideally write code at the highest level
and let a tool compile this code down to the lowest level. Our
A typical algorithm starts with an entire object, suchAs system provides a way to do this.
and splits it into manageable pieces. It computes direatly &lobal Layer: Parallel BLAS
A1, A;» and A,, and then continues iteratively by splitting The highest layer provides parallel linear algebra openati
the large remaining pieceds», until the entire data set hasthat hide parallelism from the application developer. hsists
been visited. A view often captures part of a matrix thaif operations that work on any view, regardless of where the
has special properties. Understanding and exploitingethedata resides. At this level, optimizations work in termsod t
properties can lead to significant performance improvemeninatrix domain.

PROCEEDINGS OF THE IEEE 8

PLA Copy() PLA_Copy() PLA Local _Gemm()
: | —r— .
| | H Ha Processor grid
| | A AXB H
I]]
—

B

Fig. 8. Algorithm to compute distributed outer-product wbtmulti-vectors (matrix panels), A and B, using explicitalaeplication and local computation.

o Scalar algebra. The PLA Scal () routine multiplies of sequential BLAS calls, which operate only on local pieces
the elements of a matrix or vector by the given scalaf data, and invocations of theLA_Copy() routine, which
constant. If the constant is known to be one, then the cafiove data around on the processor grid.
has no effect and can be removed. If the constant is zero;The most effective optimizations that we have found come
we can replace the call with a special PLAPACK call theffom breaking open the global layer routines to expose their
sets all elements to zero. middle layer implementations. The reason is that the global

« Matrix algebra. Like the scalar algebra above, weayer routines are designed to work with any kind of linear
can exploit the matrix multiplication identities. Thealgebra object, regardless of their size and distributidmw-
PLA_Gem() routine computes something of the formever, applications often pass particular special distioios
C < A=x B + C, so the optimizations are slightly into these routines, and we can exploit this extra inforomati
different. If A or B are zero matrices, then the codeo create a customized version of the routine for that paletic
has no effect and can be removed. Howeved ibr B distribution.
is the identity matrix, then the call essentially computes Rather than enumerate all of these special cases, we define
a matrix addition. We can replace this call with codg set of optimizations that together can transform a general

that explicitly adds the elements, which is an entirelgurpose implementation into a customized version:
local operation that requires no communication between

« Special-case routine selectioninternally, many PLA-
processors.

PACK routines have multiple implementations that are
Middle Layer: Data Distribution specialized for different situations. For example, the
general matrix multiply routinePLA_.Gemm{(), is im-
plemented internally as three different algorithms for
different matrix shapes. At runtime the routine chooses
- from among the algorithms by comparing the relative
sizes of the input matrices. Often we can use library-
specific analysis to identify these cases at compile time,
O Processor local 1 On processor row thus avoiding the runtime cost.
« View optimizations. We can often simplify the matrix
splitting routines when the input view is already a special-

Split_4 E‘ E Processor grid

Fig. lQ. PLAPACK (_jistribut_es matrix‘ dgta across the prmsSpIit case distribution. For example, there is no need to verti-
operations often result in special-case distributionshsas sub-matrices that . . .
reside entirely on one processor. cally split a column panel because it already resides on

a single column of processors. Such optimizations can
eliminate entire loops from the code.

« Empty views. Any computation on an empty view can
be removed. The computational routines (for example,
PLA Germm{() andPLA_Tr sn{)) check for empty views
already, but this is done at runtime and can incur syn-
chronization overhead. Not only can we avoid this cost
by removing the code at compile time, but the static
removal of the code can expose additional optimization
opportunities, such as dead code elimination.

The middle layer uses structured forms of communication
to expose the notions of data distribution and locality. In
Figure 10 we show the same four-way split as Figure 7 with
an overlaid grid that represents the partitioning of theadat
over a grid of processors. The actual partitioning is more
complex than a simple block distribution [13], but the basic
observations still hold. The figure shows that a four-wayt spl
of A yields onelocal view (A411), which resides entirely on
one processor, omlumn pane(A2;), which resides entirely
on a column of processors, ormv panel(4;,), which resides Lower layer: MPI communication
entirely on a row of processors, and one vietyp, which is The lower layer contains explicit communication using MPI,

a fully distributed submatrix. We can take advantage of suthe Message Passing Interface. We have identified several
information to improve performance. In particular, algloms optimizations at this level. For example, we could analyee t
that are designed to process distributed matrices can b#enmatrix splitting pattern in an application to determine whe
significantly simplified when customized for row panels oa point-to-point broadcast might yield software pipelgin
column panels. The middle layer is implemented as a numbdowever, these experiments require additional annotsitizait

PROCEEDINGS OF THE IEEE 9

we leave as future work. structure, which will allow us to change the type of an object
when it suits the computation better. For example, we cat tre
C. Object type analysis a panel of a matrix as a projected multi-vector, which helps

We are now ready to describe how we encode specifeduce the amount of work in the copy routine.
PLAPACK optimizations using the annotation language. In
PLAPACK thePLA Obj data type represents all linear algebyar ocedure PLA Matrix_create(datatype, |ength, width,
objects. However, the library can create and manipulateyman f,fgf: ;;e—ﬁt_; ign, matrix_out)
different kinds of objects, such as matrices, vectors, aathss |{))

(which are callednulti-scalarswhen they are replicated across ononit” t the mivix -oa X

processors). The internal library data structures mairitsis new the_view { length, width,

type information at runtime so that the various library ines data --> new data } }
can handle these objects in the appropriate manner. [Thenalyze QojType { the_view <- Matrix }

PLA Copy routine, in particular, needs to know the type Ni
the objects to decide how to perform data copying.

We use the annotation language to track this information - 12. The object creation routines set the type of theatbje
compile time. Since object types are explicit in the craatio
routines, this analysis often succeeds at accuratelyrdatig
their type_s statically. We use this information for two PUD Distribution analysis
poses. First, we can make sure that the types passed into o o
a computation match the expected types. For example, thd he most significant PLAPACK optimizations result from
PLA Genv routine expects a matrix and a vector as inpufec0gnizing and exploiting special-case object distrdns.

We use the object type analysis to validate this requiremériguré 13 shows the property annotations for tracking idistr
at compile time. If the compile-time check succeeds, we C(Jt]aHtlon_. We define two separate properties, one for the rows of
improve performance by eliminating the runtime check. & tha" object and one for the columns of an object, because the
compile-time check fails, we issue an informative messagétribution of rows and columns can vary independently.

describing the nature and location of the error, which adlow

the programmer to fix it without having to execute and debwgoperty Rowbistribution : o
{ Unknown { NonEnpty { Distributed,

the program. Local { Duplicated },
The second use of the object type information is to perform Vector },

algorithm selection at compile-time. In combination witret Epty } }
distribution analysis described below, we can often avoidoperty Col Distribution : o
the cost of the runtime switches that ordinarily make these b Unknonn £ RonEmRty L e 2 bunt i cated } .
choices. By itself, this optimization does not yield sigrafit Empty } }
performance improvements. With runtime switches removed,
however, the compiler can often inline and further optimizeg. 13. These two annotations describe the different wagsthe rows and
the implementation of the chosen algorithm. columns of a matrix can be distributed.

The Ooj Type property, shown in Figure 11, provides o .]) o
names for the different kinds of linear algebra objects. The The distribution of an object is determined initially by
base types are matrix, vector, projected vector (Pvecin, the routine that.creates_ it a}nd subsequently by any S@IFtln
multi-scalar (Mscalar). An ordinary vector is distributeder OPerations applied to it. Figure 14 (a) graphically depicts
the processor grid in a manner that improves matrix-veqter ohe effects of the?LA Gbj spl i t -4 routine on the possible
erations [13]. A projected vector is a vector that is disttéul shapes of the input matrix. Figure 14 (b) shows represestati
like a column or row of a matrix. Multi-vectors consist of2nalysis annotations for this routine, which codify theeef
several vectors stored together. A duplicated projectelimu@s @ Set of rules. The actua_lll annotations contaln_alllof the
vector is a projected multi-vector that is replicated asro§2Ses, and they model the ability of the routine to split axat

the rows or columns of the processor grid. Figure 8 shovglative to any of the sides of the matrix, not just the top lef
graphically two examples of projected multi-vectors beingCrner.

copied to duplicated projected multi-vectors. In many instances the split routine produces empty views,
as often happens when a general-purpose routine, such as
property Cbj Type : { Matrix, PLA Trsn(), is specialized for a context where the input
Vector, Mector, matrices are not fully distributed. The compiler can eliai
Pvector, Pnvector, Dpnvector, . . .
Mscal ar } subsequent operations on these empty views. Figure 15 shows

an example of this optimization. We see thataify of the
Fig. 11. The ObjType property captures the different kinfiinear algebra dimensions of the_lnputs is empty, then we remove th_e _Ca"'
objects supported by PLAPACK. Furthermore, consider a loop that repeatedly splits a matri
the matrix is already in the desired form, then the first tiera
Figure 12 shows the annotations for the routine that createfsthe loop consumes all of the data and all other views are
matrices. Note that we associate the type with the vieempty, so the loop can be removed.

PROCEEDINGS OF THE IEEE

S .

Fig. 14. Analysis annotations for tHeLA_Obj _Spl i t _4() routine. Depending on the distribution of the input matthe split routine can create special

case views or even empty views.

anal yze RowDi stribution {

if (view A is-exactly Distributed)
{ view_All <- Local
view_Al2 <- Local
view A21 <- Distributed
view A22 <- Distributed }

if (view A is-atleast Local)
{ view All <- Local
view_Al2 <- Local
view _A21 <- Enpty
view A22 <- Enpty }

if (view A is-exactly Enpty)
{ view All <- Enpty
view Al2 <- Enpty
view A21 <- Enpty
view A22 <- Enpty }
}

anal yze Col Di stribution {

if (view A is-exactly Distributed)
{ view All <- Local
view Al2 <- Distributed
view_A21 <- Local
view A22 <- Distributed }

if (view A is-atleast Local)
{ view All <- Local
view Al2 <- Enpty
view_A21 <- Local
view A22 <- Enpty }

if (view A is-exactly Enpty)
{ view _All <- Enpty
view Al2 <- Enpty
view_A21 <- Enpty
view A22 <- Enpty }

(b) Annotations codifgithese effects.

10

procedure PLA Trsn(side, uplo, transa, diag, alpha, a, b) with multiple right-hand sides.
{
on_entry { alpha --> view_ al pha
a-->viewa procedure PLA Trsn(side, uplo, transa, diag, alpha, a, b)
b -->viewb } {
when (RowDi stribution : view a is-exactly Enpty || on_entry { alpha --> view al pha
Col Distribution : view a is-exactly Enpty || - a-->viewa
RowDi stribution : viewb is-exactly Empty || b -->viewb }
Col Di stribution : viewb is-exactly Enpty) when (RowDistribution : view a is-atleast Local ||
replace-with % ; }% Col Distribution : view a is-atleast Local ||
} RowDi stribution : viewb is-atleast Local ||
Col Distribution : view.b is-atleast Local)
inline;
Fig. 15. This annotation states that operations on emptwsviean be |}
removed.
Fig. 16. This annotation uses dataflow analysis informatmrdefine a

library-specific inlining policy.
E. Special-case inlining

The first step towards generating customized routines is S
to expose the implementations of the global layer routinds. Algebraic simplifications
We use library-specific analysis to decide when to perform At both the global layer and the middle layer, we define
inlining, so inlining is only performed where it is likely to optimizations that take advantage of algebraic identitiég-
be useful. For most of the level 3 BLAS routines, we use thee 17 shows two examples for tHeLA Scal () routine,
following policy: if either the row or the column distribatais which applies a scalar multiplier to all elements of a matrix
of input objects is local, then inline the implementatiomisT When the scalar is equal to one, the multiplication has no
policy exposes operations on local objects, which tendedyi effect, and we can remove it. When the scalar is zero, we can
the most benefit. Figure 16 shows the annotations for irdiniravoid the multiplication operations and just set the matiwix
the PLA_Tr sm() routine, which performs a triangular solvezero.

PROCEEDINGS OF THE IEEE 11

?rocedure PLA_Scal (al pha, a) optimizations, so the process typically requires four oe fiv
on_entry { alpha --> view al pha { length, wdth, Iterations.
data --> data_al pha }

a-->viewa }

when (data_al pha == 1.0) B. Programs
lace-with % ; }% .
\m;ﬁp(ggte aimal pha{ == %). %) We use three programs for these experimentsCfiglesky
replace-with % PLA_Coj _set_to_zero($a); }% factorization, (2) LU factorization, and (3) theKernel of

a Lyapunov equation solver. The baseline version of the

Cholesky factorization is shown in Figure 18. The Lyapunov
equation [4] arises in control theory applications. It isrmo
complex than the other two and poses a more challenging op-

Such opportunities might seem to be rare, but they Oftéimization problem for our approach. The PLAPACK authors

appear after inlining. For example, iRt A Scal () routine Provided our baseline implementation [30].

is called inside the implementation BEA_Genm() to handle —

the coefficients alpha and beta. In almost all cases theses/a"™" e\) L1 (i Jor o next. LA s 0E TP,

are zero, one, or minus one. However, we cannot exploit this ~ - & size_top, & owner_top);

: : : : [T PLA_Obj _split_size(a_next, PLA_SIDE_LEFT,
information until the routine is inlined. & size left. & omner left):

Fig. 17. This annotation exploits domain-specific algebidentities.

. if (size = nmin(size_top, size_left)) break;
G. Redundant copy removal idiom |1 size = mn(size_top, sizeleft) brea

PLAPACK programs use the copy routine to redistribute PLACO] _splTt_4(a_next, size, size, iizigfi EL'::,?SW;;
data so that they are in a suitable form for subsequent con PU- Local chol N
tations. If, however, the input submatrices are alreadiablyi - ~chol (uplo, a_cur);
distributed for a given call site, no copying is necessahisT| PLA_Trsn(PLA SIDE_RIGHT, PLA LOAER TRI ANGULAR
. . ; AT . PLA TRANS, PLA NONUNI T_DI AG
situation occurs in the specialization of the triangulalveo one. a_cur, a col):
routine PLA_Tr sn{() . Unfortunately, the current annotation

. AT : . PLA_Syrk(PLA_LOAER TRI ANGULAR PLA_NO TRANS,

language cannot express this optimization because it nesjui min_one, a_col, one, a_next):
the compiler to recognize and replacesequenceof library
calls. (We have defined the syntax for such an optimization
and we anticipate having this capability in the future [R1]Fig. 18. The main loop of the baseline Cholesky factorizatio
For the experiments in Section IV we show results for both
the fully-automated system and results that include they cop
remove optimization applied by hand. C. Annotations

-

We have shown several examples of the PLAPACK anno-
tations, but due to space limitations we do not include the
This section presents performance results obtained by-apmntire annotation file. The following summary charactesize

ing our system to a set of PLAPACK applications and kernelghe annotation file and the annotation effort.

We find that the annotations effectively specify libraryde « The PLAPACK library consists of about 45K lines of C

IV. RESULTS

optimizations and that these optimizations produce st code. The PLAPACK annotation file consists of about
performance gains across layers of abstraction. 3400 lines of annotations.
« We annotated 85 PLAPACK routines. Each routine aver-
A. Methodology ages about 40 lines of annotations. While most routines
We start with well-written versions of three PLAPACK pro- require about 20 lines to annotate, several routines, such

grams, which serve as a baseline and represent our ideal pro- as the view splitting routines, require as many as 200
gramming style: the code clearly expresses the algorithth an lines to handle all of the analysis cases.

is unobscured with hand-coded optimizations. The programs About 30% of the annotation file is devoted to the pointer
generally use the highest layer of PLAPACK, but they are by ~and dependence information. In our current language this
no means poor implementations. They perform competitively ~information must be repeated in each routine.

with similar programs written using other parallel program « The annotations define seven library-specific program
ming technologies. We apply library-level optimizationath analyses (property annotations). Only one of them, the
three programs using a single set of PLAPACK annotations. ~ ViewUsed property, is a backward analysis.

We apply a series of optimization passes to each programe There are 48 error reporting and debugging annotations.
Each pass first performs the |ibrary_speciﬁc ana'ysisomd « There are 70 code transformation annotations. Of these,
by the library-specific code transformations. We then agply ~ the majority remove useless computations—e.g., com-
set of “cleanup” optimizations, including constant proaton, puting on an empty view. Many others describe the
control-flow simplification, and dead-code elimination. We conditions for inlining the implementation of a routine.
repeat this process until no new code transformations occur This emphasis reflects our goal of generating customized
We find that there is considerable synergy between these code from general-purpose routines.

PROCEEDINGS OF THE IEEE 12

D. Platform Percent improvement (64 processors)

30
.) S ——EE
For these experiments we use Broadway as a cross compiler: / \
we compile the programs locally on a Pentium 4 workstation B

running Linux, and then copy the source to the parallel \
environment, an IBM Power4-based multiprocessor. This mul §

o 20
o

tiprocessor consists of a tightly-bound network of three 16%% ey ‘
way symmetric multiprocessors (SMP), one 32-way SMP, angl: i
32 4-way SMPs. Each processor runs at 1.3Ghz. We comp'rééf B
using the vendor-supplied tools, and we link against theluven
supplied Message Passing Interface (MPI), which handkes th
non-uniform memory architecture.

n

over b
=
S}

Hand-coded —+—
roadway + copy idiom --%--
Broadw‘a K-

E. Performance results 0
A 1000 2000 3000 4000 5000 6000 7000 8000
For each of the three programs, we measure the execution Problem size
time of the baseline version and two Broadway Optlmlzelgi 19. Percent improvement for Cholesky on 64 proces3drs.curves for

. . _-) e}
Versions: one.W|th the redundant copy idiom _anq one WIthO@HE hand-coded and Broadway-+copy-idiom versions sit orofame another.
(see Subsection 1lI-G). For Cholesky factorization, weoals

time a version that is hand-optimized by the PLAPACK Percent improvement (64 processors)
implementation team. We run each program on a range of’ prosavey T copy Idion ——

input matrix sizes, from 10001000 to 80068000, and on Rrostm o

a range of processor grids, fromx2 processors to 1010 ;

processors.

o

We find the following general results:

« Our PLAPACK annotations consistently improve perfor-;
mance. Depending on the program, the problem size, aﬁjd4
the number of processors the improvement ranges from
just a few percent to 30 percent.

« Overall, the per-processor performance improvement in- 2
creases as we increase the number of processors and

ovment

o

Perl®n

3

decreases as we increase the problem size. This suggests e S
that our annotations are effectively eliminating the soft- Jooo 2000 3000 4000 5000 6000 7000 8000
ware overhead associated with the library layers. problem size

« While the redundant copy idiom noticeably improveﬁig. 20. Percent improvement for LU on 64 processors.
performance, the rest of the annotations also contribute
significantly.

For each program, we show the performance improvement ¢@vel of abstraction. (For problems larger than 4000 by 4000
tained by using Broadway. The three program-specific grap%’@ improvement obtained without the copy idiom is negli-
show the percent improvement in execution time over tigdble, and even falls slightly below the baseline for 5000 by
baseline version for 64 processors (axn8grid) over a range 500_0-))
of problem sizes. Figure 21 shows the result for the Lyapunov equation solver.

Figure 19 shows the results for the Cholesky factorizatioh1€S€ results represent a more significant test of our approa
program. The code generated by the specialization stratdififause of the program’s complexity. The specializaticat-st
alone runs 13 to 18 percent faster than the baseline versigfly improves performance by 5 to 10 percent. The addition of
When we include the redundant copy idiom, the improvemetfte redundant copy idiom improves performance by 9 to 15
jumps to between 22 and 29 percent. In this case, ogrcent.
Broadway-generated version runs as fast as the hand-codegigure 22 shows the results for all three programs on a
Cholesky factorization written by the library authors, uini large fixed-size problem, plotted against the number of pro-
serves as an upper bound for our approach. In fact, maf§SSOrs. For Chole_sky faptonzatm_n and th_e Lyapunov solve
of the optimizations codified in our annotations come frorhi€ library-level optimizations provide consistent andlable
insights into this hand-coding process [3]. In annotatiomy, Performance improvement. The LU factorization appears to
however, we can easily apply the same optimizations to ot§@le more poorly beyond 36 processors, but still maintains
programs, including the other two test programs. consistent improvement. F|gur_e 23 shows th_e executionstime

Figure 20 shows results for LU factorization. This prografif the three programs for varying problem sizes.
is dominated by calls the triangular solve routine, so the)
redundant copy idiom makes a significant difference. Manufal Discussion
inspection of the Broadway-generated code indicateslieatt The experiments described above lead us to believe that
are few additional optimization opportunities at the PLARA library-level optimization is an effective way to optimize

PROCEEDINGS OF THE IEEE

Percent improvement (64 processors)

Percent improvment
©

Toadway + copy idiom —F—
Broadhia X

1000 2000 3000 4000 5000 6000 7000 8000

Problem size

Fig. 21. Percent improvement for Lyapunov on 64 processors.

Percent improvement (7000x7000 matrix)

30
holesky —F—
yapunov —---
LU ---%-- //
25
g 20 A
b
g
>
3
2
8
E1s
2
2 - _
8 * -
° e e
£ 10
o R 2 S R
/X//
5
X
0
0 10 20 30 40 50 60 70 80 20 100

Number of processors

Fig. 22. Percent improvement for all three problems, acddfesrent numbers
of processors.

Performance on 64 processors

T T
[Cyapunov baseline ——
[Lyapunov Broadway --—--

LU baseline ---%--

LU Broadway -&
| kholesky baseline — -
Cholesky Broadway ---O---

(sec.)

Execution time

\
)
A

 SerSESRE R

4000 5000
Problem size

2000 3000 6000 7000 8000

Fig. 23. Execution time for the three programs, with and aithBroadway
optimization.

13

layered scientific systems. Several observations about the
experiments contribute to this conclusion:

« The technique works because it exploits domain-specific
semantics that would otherwise be ignored by conven-
tional compilers. Without a notion of matrices and data
distributions, none of the optimizations we applied to
PLAPACK are possible.

« The technique is effective because it crosses software lay-
ers, optimizing each layer in the context of the application
and the layers above. Our design allows the compiler
to shift from one domain to the next, systematically
processing each layer.

« Even with limited configurability, the annotations capture
useful and interesting properties of the layer abstrastion
We find only a few optimizations that we could not
adequately express in the language; these optimizations
work on MPI routines and require an accurate model of
communication.

« The annotations can be difficult to develop, but this dif-
ficulty is mitigated by two factors. First, we can develop
annotations incrementally, adding new optimizations as
we discover them. Second, the cost of the annotations
can be amortized across a large number of applications
that use the library.

« The manual application of the PLAPACK optimizations is
infeasible because it is tedious and because the resulting
code is incomprehensible and unmaintainable.

V. CONCLUSIONS AND FUTURE WORK

In order to provide better optimization and error detection
services, programming tools such as optimizing compilads a
software checkers need improved information about program
behavior. Existing systems have focused almost entirely on
obtaining this information directly from application pragn-
mers. We believe that by using software libraries, progransm
are already providing a wealth of domain-specific informati
By capturing and codifying this information, we can signif-
icantly improve the quality of compilation without requig
any changes to existing programs or existing programming
practices.

While this foundational work has produced promising re-
sults, we believe that it only scratches the surface of aelarg
untapped source of optimization. We have identified a number
of potential improvements and future directions:

« Richer types of dataflow analysis.Our annotation
language currently supports a relatively simple class of
program analysis problems. More generalized dataflow
analyses would allow our compiler to construct more
complex models of the library’s domain.

o Code patterns. The current compiler only allows the
annotations to replace individual library calls with other
code. We can expand our range of optimizations by
supporting annotations that recognize stylized pattefns o
library routine usage and can replace or alter the entire
sequence.

« Domain-specific traditional optimizations. In the cur-
rent compiler implementation, the traditional optimiza-

PROCEEDINGS OF THE IEEE

tions, such as constant propagation and dead-code elinst
ination, work on library routines in exactly the same
way that they work on primitive operations. For other
traditional optimizations, however, we can formulate op-
timizations that work on library routines by analogy
to their primitive counterparts. For example, if we tell
. . . ; . (7]
the compiler that a particular library routine effectively
creates a copy of an object, then it can apply a domain-
specific version of copy propagation. Other traditional®!
optimizations lend themselves to this technique: common
subexpression elimination, management of resources, arg
scheduling. By exploiting existing algorithms, we can

continue to keep the annotations simple. [10]

Our work also suggests a new approach to designing software
libraries that takes advantage of compiler support. In the
future, such a library might consist of two distinct intexés,

one for the programmer to use and one for the compiler]
target. The programmer’s interface would focus on proydin

straightforward and intuitive access to the library’s doma

12]

without exposing implementation and performance details.
This high-level interface serves two purposes: first, it agk[13]
the programmer’s job easier, and second, it provides domain
specific information for the compiler. The compiler intexda [14)
consists of low-level library routines that serve as the piben
target and that give the compiler fine-grained control otaer t

implementation. At this level, the routines implement tlasib

[15]

building blocks of the domain. The compiler analyzes thédahig

level interface and generates an appropriate implementhti

[16]

assembling these building blocks.

Our technique is not strictly limited to libraries: it can-ex[17)
ploit module boundaries—wherever they occur in software—
to convey domain-specific information to the compiler. Our
research is part of a wider trend in programming languagg,
research towards using software modularity to improve the
capabilities and the performance of software engineedotpt
We hope that by providing tools that are practical as well &5
powerful, we can help to move some of the valuable advances
in compiler research into everyday programming practice. [20]

ACKNOWLEDGMENTS [21]

We thank Robert van de Geijn for many useful discussiorﬂzcz]
about PLAPACK and Teck Bok Tok for his recent improve-
ments to the Broadway compiler. This work is supported by

NSF grants CCR-0085792, EIA-0303609, ACI-0313263, a

%

ACI-9984660, and by DARPA Contract #F30602-97-1-0150.

[1] Alfred Aho, Ravi Sethi, and Jeffrey D. UllmarCompilers: Principles,

(2]

(3]

(4]

REFERENCES

[24]
Techniques, and ToolsAddison-Wesley, Englewood Cliffs, NJ, 1986.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. DongartaDd Croz, [25]
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchoy an
D. Sorensen. LAPACK Users’ Guide SIAM, Philadelphia, second
edition, 1995. [26]
G. Baker, J. Gunnels, G. Morrow, B. Riviere, and R. van deijiG
PLAPACK: High performance through high-level abstractiom Pro-
ceedings of the International Conference on Parallel Pasieg pages
414-423, 1998.

P. Benner and E.S. Quintana-Orti. Parallel distribusetiers for large
stable generalized Lyapunov equations.Parallel Processing Letters
1998.

[27]

14

Arun Chauhan. Telescoping Matlab for DSP applicatioriechnical
Report Thesis Proposal, Dept. of Computer Sciences, Rideeksity,
June 2002.

6] Arun Chauhan, Cheryl McCosh, and Ken Kennedy. Automatje-

driven library generation for telescoping languages.Pmceedings of
SC: High-performance Computing and Networking ConfergNmyem-
ber 2003.

S. Chiba. A metaobject protocol for C++. KCM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages anticAppns,
pages 285-299, October 1995.

Ron Choy and Alan Edelman. Parallel MATLAB: Doing it righ
Proceedings of the IEEE93(2), 2005. special issue on "Program
Generation, Optimization, and Adaptation”.

Timothy Scott Collins. Efficient Matrix Computations through Hier-
archical Type SpecificationsPhD thesis, The University of Texas at
Austin, 1996.

Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Ftem) Antoine
Petitet, Rich Vuduc, Clint Whaley, and Katherine Yelick.lfS&lapting
linear algebra algorithms and softwareProceedings of the IEEE
93(2), 2005. special issue on "Program Generation, Optitioz, and
Adaptation”.

Luiz A. DeRose. Compiler techniques for MATLAB program$>hD
thesis, University of lllinois at Urbana-Champaign, 1996.

J.J. Dongarra, |. Duff, J. DuCroz, and S. Hammarling. eA of level 3
basic linear algebra subprogram&CM Transactions on Mathematical
Software 16(1):1-28, 1990.

Carter Edwards, Po Geng, Abani Patra, and Robert vaneiia.@arallel
matrix distributions: Have we been doing it all wrong? TechhReport
CS-TR-95-39, University of Texas, Austin, 1995.

Dawson R. Engler. Incorporating application semantad control into
compilation. INUSENIX Conference on Domain-Specific Languages
pages 103-118, October 1997.

Matteo Frigo and Steven G. Johnson. The design and imggiéation
of FFTW3. Proceedings of the IEEE93(2), 2005. special issue on
"Program Generation, Optimization, and Adaptation”.

Samuel Z. Guyer.Incorporating Domain-Specific Information into the
Compilation Process PhD thesis, University of Texas, Department of
Computer Sciences, 2003.

Samuel Z. Guyer, Emery Berger, and Calvin Lin. Detegtarors with
configurable whole-program dataflow analysis. TechnicgldReTR 02-
04, Dept. of Computer Sciences, University of Texas at Augtebruary
2002.

Samuel Z. Guyer, Daniel A. Jiménez, and Calvin Lin. T@dreeze
compiler infrastructure. Technical Report TR 01-43, DeptComputer
Sciences, University of Texas at Austin, November 2001.

Samuel Z. Guyer and Calvin Lin. An annotation language dpti-
mizing software libraries. IRUSENIX Conference on Domain-Specific
Languagespages 39-52, October 1999.

Samuel Z. Guyer and Calvin Lin. Optimizing the use ofhigerfor-
mance software libraries. Mlorkshop on Languages and Compilers for
Parallel Computing pages 221-238, August 2000.

Samuel Z. Guyer and Calvin Lin. Client-driven pointamadysis. In
International Static Analysis Symposiupages 214-236, June 2003.
M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Mwpl$.-
W. Liao, E. Bugnion, and M. S. Lam. Maximizing multiprocesso
performance with the SUIF compilelEEE Computer 29(12):84—89,
December 1996.

Ken Kennedy, Bradley Broom, Arun Chauhan, Rob FowlennJGarvin,
Charles Koelbel, Cheryl McCosh, and John Mellor-Crummeste3cop-
ing languages: A system for automatic generation of donwiguages.
Proceedings of the IEEE93(2), 2005. special issue on "Program
Generation, Optimization, and Adaptation”.

G. Kiczales, J. des Rivieres, and D. G. Bobrovhe Art of the Meta-
Object Protocal MIT Press, Cambridge (MA), 1991.

Gary A. Kildall. A unified approach to global program opization.

In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languagespages 194-206, 1973.

Eugene Kohlbecker, Daniel P. Friedman, Matthias kedle and Bruce
Duba. Hygienic macro expansion. IRroceedings of the ACM
Conference on LISP and Functional Programmirgages 151-181,
1986.

Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. Compiling
parallel code for sparse matrix applications. Mmoceedings of the
1997 ACM/IEEE conference on Supercomputing (CDROp4pes 1—
18, 1997.

PROCEEDINGS OF THE IEEE

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

Florian Martin. PAG — an efficient program analyzer geser. Interna-
tional Journal on Software Tools for Technology Transf{l):46-67,
1998.

Markus Puschel, José M. F. Moura, Jeremy Johnson,dDBadua,
Manuela Veloso, Bryan W. Singer, Jianxin Xiong, Franz Fheatit, Aca
Gacit, Yevgen Voronenko, Kang Chen, Robert W. Johnsod, Mick
Rizzolo. SPIRAL: Code generation for DSP transforni&oceedings
of the IEEE 93(2), 2005. special issue on "Program Generation,
Optimization, and Adaptation”.

Enriqgue S. Quintana and Robert van de Geijn. Specihligarallel
algorithms for solving linear matrix equations in contreéobry. Journal
of Parallel and Distributed Computing1:1489-1504, 2001.

Luiz De Rose and David Padua. Techniques for the trédoslaf MAT-
LAB programs into Fortran 90.ACM Transactions on Programming
Languages and Systentl(2):286—323, March 1999.

Rob Strom and Shaula Yemini. Typestate: A programmimggliage
concept for enhancing software reliabiityEEE Transactions on Soft-
ware Engineering12(1):157-171, 1986.

Steven W. K. Tjiang and John L. Hennessy. Sharlit—A tiwolbuilding
optimizers. InSIGPLAN Conference on Programming Language Design
and Implementatignpages 82-93, 1992.

Robert van de Geijn. Using PLAPACK — Parallel Linear Algebra
Package The MIT Press, 1997.

Todd L. Veldhuizen. Expression template€++ Report 7(5):26-31,
1995.

Todd L. Veldhuizen and Dennis Gannon. Active librari@ethinking
the roles of compilers and libraries. IRroceedings of the SIAM
Workshop on Object Oriented Methods for Inter-operablee&dic and
Engineering Computing (OO’98B5IAM Press, 1998.

Daniel Weise and Roger Crew. Programmable syntax nsacrén
SIGPLAN Conference on Programming Language Design andehmpl
mentation pages 156-165, June 1993.

Deborah Whitfield and Mary Lou Soffa. Automatic genaratof global
optimizers. ACM SIGPLAN Notices26(6):120-129, June 1991.

15

