BROADWAY: A SOFTWARE ARCHITECTURE FOR
SCIENTIFIC COMPUTING *

Samuel Z. Guyer

Dept. of Computer Sciences
The University of Texas
Austin, TX 78712 USA
sammy@cs.utexas.edu

Calvin Lin

Dept. of Computer Sciences
The University of Texas
Austin, TX 78712 USA
lin@cs.utexas.edu

Abstract Scientific programs rely heavily on software libraries. Shaper describes the
limitations of this reliance and shows how it degrades safeanquality. We
offer a solution that uses a compiler to automatically oferiibrary imple-
mentations and the application programs that use them.gusiamples from
the PLAPACK parallel linear algebra library, we present soiution, which in-
cludes a simple declarative annotation language thatithesarertain aspects of
a library’s implementation. We also show how our approaahygald simpler
scientific programs that are easier to understand, modifynaaintain.

Keywords:  software libraries, optimization, meta-interfaces

*This work was supported in part by NSF CAREER Grant ACI-98®@ARPA Contract #F30602-97-
1-0150 from the US Air Force Research Labs, and an Intel Wehgp.



1. INTRODUCTION

The goal of a software architecture is to promote code rendda@allow
programs to be easily maintained and modified. These goalpaticularly
difficult to achieve in the context of scientific computinghiah can be char-
acterized by three properties: (1) efficient runtime penfance and efficient
memory usage are critical, (2) the practitioners of sciientomputing are typ-
ically not schooled in software engineering, and (3) deepafadge of the
scientific domain is required. The first property tempts progmers to em-
phasize performance over clarity, which often complic#ttedong term main-
tenance and portability of scientific codes. The secondgrtgexplains why
scientific programmers are typically unwilling to try novahguages or to use
sophisticated design methodologies. In particular, itla@rs why scientific
computing relies so heavily on software libraries. Thedhiroperty, the re-
quirement of deep domain knowledge, represents an unlilegdtopportunity
that we will attempt to exploit.

Software libraries offer several strengths. They do notiregthe user to
learn new language syntax, they can raise the level of asinato support
common operations, and they provide a simple means of iggside. Thus,
software libraries have become a de facto software artchredor scientific
programming. Unfortunately, libraries place the burdeppmtfmization on the
library user and force optimizations to be implementedatiyein the appli-
cation’s source code. As this paper will illustrate, thessuoal optimizations
adversely affect the application program by decreasingtylaeusability, and
portability, while increasing program complexity.

This paper describes a method of automating the optimizaifolibrary
implementations and the application programs that use.th&his new ap-
proach allows applications to use simpler interfaces tetigg libraries, and it
yields cleaner application programs that are easier torstated and maintain.
Furthermore, our approach allows scientific programmersottinue using
libraries in the same manner with which they have becomestaoied. In
essence, we are proposing a method of transforming softitaagies into a
viable and effective software architecture.

Figure 1 shows the overall architecture of our system. Atdhe is the
Broadway compiler, which takes as input the applicationre®icode, the
library source code, and a set of annotations that desdnibditirary. The
compiler produces as output an integrated, optimizedrljbaad application
program! The annotation language is critical because it conveyse@am-

IMany variations of this system are possible. For exampke|ithary source might be encoded to prevent
general access to the source, and the output code does Besagly need to be produced as a single unified
piece of code.



Broadway: A Software Architecture for Scientific Computing3

@nnotations) (Header fiIe} (Source c@d

Y S
Application > Integrated and optimizey
source code code

Figure 1 Architecture of the Broadway Compiler system

[ Library

piler domain-specific information that can be used in thénoigation process.
These annotations allow the Broadway compiler to analyzk raanipulate
library operations in the same way that ordinary C compieralyze and ma-
nipulate the primitives of the C language.

This paper makes the following contributions.

= We illustrate the long term maintenance and portabilityppgms caused
by the use of libraries in high performance programs.

= We describe the Broadway annotation language as a metéasdgeaand
explain how it improves the maintenance and portabilitypyleations
that use libraries.

The remainder of this paper is organized as follows. SeQi@xplains
the weaknesses of using software libraries as an archiéedtu creating
performance-critical applications. Section 3 then ex@diow performance
optimizations are typically applied to traditional libies, and Section 4 ex-
plains how our solution uses a meta interface to address éakvesses of
existing software libraries. Section 5 discusses the |lengp tboenefits of our
solution and its meta interface. We distinguish our workrfneelated work in
Section 6 and conclude in Section 7.

2. WEAKNESSES OF SOFTWARE LIBRARIES

Software libraries lead to a number of closely related perémce prob-
lems:

1 Different clients have different needs.An implementation that is ap-
propriate for one client can be inappropriate for anotheereHve use
the term “client” to refer to an application program thatakes library
routines.

2 “Separation of concerns” inhibits information flow across interfaces.
The performance of a library can typically be improved if itmplemen-
tor is made aware of the client's needs.

3 Worst case assumptions provide generality at the expense per-
formance. To provide correct behavior in all situations, librarieskaa



worst case assumptions, which can lead to excessive copyidgta,
excessive synchronization, and unnecessary initiatimaif data.

4 Modular structure leads to poor resource management.To provide
encapsulation and safety, memory management is typicelfopned
by library routines. However, resource management cam dfesim-
proved by giving the application program control so thabteses can
be managed globally.

These performance problems are significant because theyttea phe-
nomenon that we calhterface Bloat The only way that libraries can support a
diverse set of clients is to provide a wide interface thaliides a large number
of specialized routines. Such interfaces can often be aggghinto two groups,
aCoreinterface that provides all of the basic functionality o fibrary, and an
Advancednterface that provides specialized routines that areicadye only
in specific situations.

Interface Bloat leads to both short term and long term probleThe first
short term problem is that large, complex interfaces afedif to use. For ex-
ample, MPI provides 12 ways to perform point-to-point conmiation [18].
These routines don't differ in their functionality, but f@if in their buffering
of data, their completion semantiostc. The second short term problem is
that the routines in the Advanced interface are typicallyevtifficult to use,
which increases the complexity of application programs. éxample, MPI's
Ready-Send assumes that the sending and receiving preeeesaready syn-
chronized and that the receiver has prepared a sufficieferldaf the receipt of
the message. Thus, Ready-Send requires the careful oatiwsbf the send-
ing and receiving processes. Another example comes fronGiié Multi-
Precision Library [11]:

Thempn functions fhe Advanced interfa¢are designed to be as fast as pos-
sible, not to provide a coherent calling interface. The different fimts have
somewhat similar interfaces, but there are variationsrttae them hard to use.
These functions do as little as possible apart from the redfipfe precision
computation, so that no time is spent on things that not d#érsaneed.

More seriously, Interface Bloat leads to long term softwangineering
problems with respect to both portability and maintenance:

No performance portability. Ready-Send is typically the most effi-
cient form of point-to-point communication on distributegtmory machines,
but on machines with hardware support for shared menMr¥y,Get () and
MPI Put () are faster. Thus, programmers must recode their applicatio
optimize the communication for different machines. Thisang for exam-
ple, that the invasive changes required to use Ready-Semdbeaounter-
productive, as they complicate any subsequent portinguaridg efforts.



Broadway: A Software Architecture for Scientific Computing5

Premature Optimization Complicates Maintenance. The use of special-
ized routines represents a form of premature optimizatdrch is a common
source of problems [16]. Because the optimizations are dddzkin the source
code, the program’s overall logic can be obscured, makiograms more dif-
ficult to read and maintain. For example, to be profitable, smehronous
receive requires that some computation be moved aboveathe() to hide
the latency of the message:

send () send ()

recv() => irecv()

compute () ; computel () ;
wait ()
compute2() ;

This restructuring of the computation can make the prograonendifficult
to understand since it breaks a single logical unit of commpon into two
pieces. It also implicitly introduces new dependence ieiatamong the dif-
ferent pieces of code that must now be maintained. In theeabrample, the
code incomputel () cannot be dependent on the data that is being sent.

Interface Bloat Defeats Modularity.  Bloated interfaces often expose im-
plementation details to the client. This violation of Pa'naodularity prin-
ciple [19] leads to an overly strong coupling between moslul&/hereas a
buffered Send routine encapsulates all synchronizatieadiR-Send scatters it
throughout the program. Strong coupling defeats portsbds different hard-
ware environments can prefer different versions of thetgipoint commu-
nication routines [6].

3. LIBRARY-LEVEL OPTIMIZATION

This section explains how the use of libraries can be opéthwithout in-
curring the penalties described in the previous section.p¥¥eent a detailed
example using a parallel linear algebra library, and we hisestixample to draw
conclusions about library-level optimization and to cleéesize our compiler-
based solution.

3.1. PLAPACK EXAMPLE

The PLAPACK library is a set of routines for coding paraliear algebra
algorithms in C or Fortran [21]. PLAPACK aims to provide higlrformance,
and the library has been carefully designed by experts iratha of parallel
linear algebra. PLAPACK consists of parallel versions & fame routines
found in BLAS [8] and LAPACK [1]. At the highest level, it prides an
interface that hides much of the parallelism from the progreer.



PLAPACK provides abstractions that can be useful for penfog optimiza-
tions. For example, PLAPACK programs manipulate lineaelkig objects
indirectly though handles calledews A view consists of data, possibly dis-
tributed across processors, and an index range that setauis or all of the
data. A typical algorithm operates by partitioning the \éemnd working on
one piece at a time. While most PLAPACK procedures are dedigmaccept
any type of view, the actual parameters often have speatilitions. Rec-
ognizing and exploiting these special distributions cahdysignificant perfor-
mance gains [2].

while (1) {

PLA Obj _split_size(A PLA SIDE_LEFT, &size_|l, & np);
PLA Obj _split_size(A PLA SIDE_TOP, &size_r, & np);
size = min3(nb, size_l, size_t);

if (size == 0) break;

(1) Find best partition size:

(2) Logically partition A: PLA Obj _split_4(A size, size, &All, &A12,
&A21, &A22);

(3) Factor Al11: Factor (All);

PLA_TRANS, PLA_NONUNI T_DI AG,

(4) Solve A21 <~ A21*Af|. J: PLA Trsnm( PLA_SI DE_RI GHT, PLA LOW TRI AN,
one, All, A21);

(5) A22 <- A22—A21*A21T: PLA_Syrk(PLA_LOW TRI AN, PLA NO _TRANS,

. m nus_one, A21, one, A22);

(6) Continue using A22 as A: A = A22:

Figure 2 Cholesky factorization using PLAPACK.

Figure 2 shows a Cholesky factorization program writtenhwitLA-
PACK, along with graphical depictions of the matrix at eatbps The
PLA Obj_split_size routines ensure that the split occurs on a processor
boundary. Thus, the smallest pieag,1 (the black view in step 3), resides
entirely on a single processor, angi (the black view in step 4) resides on a
column of processors. We can exploit these two facts by cagahe general-
purposePLA_Trsm andPLA_Syrk routines with customized routines that run
as much as three times faster [12].

3.2. LESSONS FROM OUR EXAMPLE

A key concept in the above optimization is the replacememfenferal rou-
tines with specialized routines that can make strongemagtions about their



Broadway: A Software Architecture for Scientific Computing7

calling context, and thus can execute more efficiently. Symthmizations are
possible because most bloated library interfaces provateyrapecialized rou-
tines in their Advanced interface. In the case of PLAPACHK thterface is
technically an “open infrastructure,” which allows libyarsers to see the lower
levels of the library.

Another key to this optimization lies in analyzing the praxgrto discover
the special case matrix distributions. Human programméis ave facile with
PLAPACK can perform such analysis manually. Conventionatgilers, how-
ever, cannot perform such analysis because most prograganiguages have
no notion of a matrix, let alone matrix distributions. Thigssperform the types
of optimizations described above, the compiler must berméal of the rele-
vant domain-specific abstractions so that program anatgsisbe phrased in
these terms.

Our compiler-based solution thus uses an annotation lg@gteadescribe
domain-specific information. The language provides a mashafor identi-
fying important library-specific concepts, such as theorotf a view in PLA-
PACK, and for enumerating important properties of thosecepis, such as the
fact that a view can reside on a single processor. For exant@dollowing
annotation identifies four important properties of views:

property Distribution = {Local, Empty, Matrix, ColPanel, RowPanel };

The annotations can also describe how the various libramjines manip-
ulate these properties and how such properties can be useeplEce a
general routine with a more specific and efficient one. Fompta, the
PLA_Obj_vert_split_2() routine might have the following annotation:

int PLA_Obj_vert_split_2(obj, length, left, right)
{

// other annotations omitted

property Distribution {
(Viewl.Distribution == Matrix) => left = Local, right = Matrix;
}
specializations {
(Viewl.Distribution

Empty) => NOOP;
}
}

The property construct indicates that this routine creates two vielesEt
and right, with the specified properties; thepecializations construct
indicates that ifviewl (which is associated witlobj through an anno-
tation that is elided from this figure) impty, then an invocation of
PLA_Obj_vert_split_2() can be removed since it is a no-op. Our anno-
tation language also provides other features that faliprogram analysis.
Details of our language can be found elsewhere [12, 13].



While the optimizations described in this section can bdopered manu-
ally, two points are significant. First, such optimizati@me tedious and require
intimate knowledge of the PLAPACK library. Second, manuaimization is
limited by the library’s interface, but compiler-based ioptation is not. In
particular, the Broadway compiler can specialize libramytines in ways that
the library designer did not foresee, producing inlinedloned versions that
are optimized for their specific calling context.

4. BROADWAY AS A META INTERFACE

Section 2 enumerated four weaknesses of software librafiég first of
these has previously been identified as a limitatiohlatk boxe$14, 15, 17].
In particular, the use of black boxes leads to performancblems because
the implementation and interface that black boxes provideinevitably be
inappropriate for some client. One solution to this probierto provide two
interfaces, dase interfacewhich most clients use, and a sepamateta inter-
face which allows the black box to adapt to the needs of diffectients [14].
Figure 3 shows a Black Box and a Black Box that has been augahevith a
meta interface.

Application
Base Interface

Application
Base Interface

Meta- Meta-
Black Box Interface ] Program

Figure 3 Black Boxes (left) and Black Boxes with Meta Interfacesttlg

Black Box

The meta interface provides a controlled method of expagiagnnards of
a black box. The separation of the two interfaces is sigmifiteecause each
has different goals and each is aimed at a different user. niéta interface
is aimed at sophisticated users and is typically accesseth tess frequently
than the base interface. Meanwhile, the base interfaceriecait the typical
user who does not want to modify the black box. The separatighe two
interfaces allows the base interface to retain the simyplafian idealized black
box interface.

The remainder of this section evaluates libraries and toaddxay compiler
with respect to meta interfaces. We identify the differgmpiess of users in each
system, the interfaces that are presented to these usétbedanpe of expertise
that is expected of these users.



Broadway: A Software Architecture for Scientific Computing9

Traditional Libraries. Traditional libraries (Figure 4) have no meta inter-
face. In such systems, there are only two users: the agphsaprogrammer
who uses the library, and the library creator. The only waprovide cus-
tomized implementations is for the library creator to exptre base interface,
which forces the library user to deal with all of the probleohsterface bloat.
Bloated interfaces are poor substitutes for meta intesfhegause they do not
provide any mechanism for changing the implementation.s Theans that
all specialized routines must be anticipated in advanceneyibrary creator,
rather than created in response to specific client needs.

The shaded boxes in Figure 4 represent the amount of exgpénas is re-
quired to implement the various components. For examplé) traditional
libraries we see that the library writer must have consideraxpertise in the
library domain and must have some understanding of perfiocenand appli-
cation needs to implement algorithms efficiently. Signifiba we see that
the C/Fortran compiler is given no knowledge of the libragndin, so any
library-level optimizations must be performed by the apations program-
mer. Thus, considerable burden is placed upon the applisafrogrammer,
who must not only understand the application domain, buttrals® possess
considerable library, performance, and compiler expettisachieve good per-
formance.

Traditional Libraries Broadway

Application
[ P

Core +
Library Library Annotations

Application

ESS Application Expertise [ ] Specification
(1 Library Expertise Interface
EZZ2 Performance Expertise C .
B Compiler Expertise D Compiler

Figure 4 Comparison of Software Architectures

Broadway. = The Broadway Architecture provides a meta interface to soft
ware libraries: The annotation language provides a wayangh the library’s
implementation so that it is more suitable for a specifiontlién this approach,
there is, in addition to the library writer and user, a lilgraxpert who creates
the annotations. This person may or may not be the same ambtag/Icre-
ator. While the Broadway architecture shown in Figure 4 isexammplex than



10

the traditional library architecture, the added compieigtcompletely hidden
from the applications programmer and the library writer &mample, the fig-
ure shows how the Advanced interface can be considered @fptré meta
interface, rather than exposed to the applications program

The Broadway meta interface is a language for describingailoispecific
analysis and domain-specific transformations. For exantipéelanguage can
easily configure an analysis that determines the datatwisivh of matrices in
a PLAPACK program, as described in Section 3.1. The anmoizttan also
concisely specify code transformations that are triggésethe results of this
analysis [12, 13].

5. RESULTS AND DISCUSSION

This section evaluates our solution. We provide experialewidence that
our solution is effective, and we explain how our system’saneterface pro-
vides many benefits over traditional libraries.

Figure 5 [12] shows the result of applying our techniqueh&PLA_Trsm
routine of the Cholesky factorization program describedattion 3. The
baseline measures the performance of the high quality butrgke purpose
PLA_Trsm routine. The hand-optimized routine was optimized by mambe
of the PLAPACK development team to exploit the specific distiion of ma-
trices found in the Cholesky factorization program. Fipnalhe Broadway-
optimized version represents a compiler-based approathuties the same
principles. The gap between the hand-optimized and Brogaptimized ap-
proaches shows an important benefit of automated appread¢heg can apply
tedious transformations uniformly and completely.

5.1. BENEFITS OF THE BROADWAY
ARCHITECTURE

Provides a mechanism for improving performance. The Broadway meta
interface improves performance by addressing all four wesges of tradi-
tional software libraries (Section 2). First, our solutican create different li-
brary implementations and interfaces for different cker8econd, our solution
conveys library-specific information to the compiler anésithis information

to customize the library for different users. Thus, infotima flows across the
meta interface through the Broadway compiler. Third, olutsan replaces in-

vocations of general routines with invocations to speréaliroutines, thereby
relaxing worst case assumptions. These specialized esutmght already ex-
ist in the library’s Advanced interface, or these speatizoutines might be
created by the Broadway compiler. Finally, by integratifgdry and client

code, our compiler can schedule operations globally, remgoredundant op-
erations across procedure call boundaries. While coruaiticompilers can



Broadway: A Software Architecture for Scientific Computingl1

PLA_Trsm kernel, Cray T3E 36 processors

300
/+
250 /
. L
200
9 S .
9] V4
0] /
: /
2 150 o
~ -
12 x~ =2
2 -
a o -
100 ot L
= B¢
/ /x/
7 B
/ /,><’/ gg
50 A - - roadway optimized —+— [7
/ < hand optimized ---%---
e baseline ---%---
?*/‘,,%jj,u-»m no optimize &
O Pt T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Matrix Size

Figure 5 Performance comparison of baseline, hand-customized aoad®ay-customized
PLA_Trsm() function for the Cholesky program.

perform interprocedural analysis to remove redundantipivieroperations, our
compiler can remove redundant domain-specific operatimhg;h typically
leads to much greater runtime savings.

Improves the maintenance and portability of applications.  The Broad-
way architecture provides long term benefits in terms of teaimnce and
portability. The existence of the meta interface allowsBineadway compiler
to perform library level optimizations, reducing the apption programmer’s
temptation to perform premature optimizations. By avaidime Advanced in-
terface, the programmer improves maintenance and patyabior existing
libraries, our solution allows the Core and Advanced imategt to be sepa-
rated, with the Advanced interface being considered a gaheometa inter-
face. This separation gives the programmer a simpler vietliefibrary. For
future libraries, our solution allows library designerscteate simpler library
interfaces. Thus, as shown in Figure 4, the applicationgraromer’s task is
considerably reduced, so the predominant expertise eatjafrthe library user
is application expertise.

Enhances the value of legacy codes. The annotations are stored sepa-
rately from the application source code and are not visiblihné¢ applications
programmer, so our solution applies to existing libraried axisting appli-



12

cations without modification to the vast base of existingreewcode. Thus,
by separating the annotation language from the base io&erfhe Broadway
architecture enhances the value of legacy codes.

Amortizes costs.  From the compiler writer's point of view, the Broadway
compiler is ideally written once, and this cost is amortizetoss many dif-
ferent libraries. From the library annotator’s point ofwjghe meta interface
is ideally used once to create a set of annotations, and dsisi€ amortized
over the lifetime of the library and across many applicatioBy contrast, the
effort to perform manual library level optimization impexs/the performance
of only a single application.

Provides clean division of labor. Finally, our architecture separates the
roles of the compiler writer, the library writer, and the hpgtion writer so
that each task is simplified. All of the domain-specific exigeris localized
in the annotations, which are supplied once by a library gxpehe annota-
tion language has been designed to minimize the amount gbitemexpertise
required to use it. Thus, all of the static analysis and ogttion strategies
are encapsulated in our Broadway compiler, as specific sesignd optimiza-
tions are implicitly configured by the information supplileg the annotations.
Together, the annotation language and Broadway compdertfre application
programmer to focus on designing clean applications anddistrthe tempta-
tion to prematurely optimize their source code.

6. RELATED WORK

There has been considerable work in optimizing and cusiamioftware
libraries. The related work can be grouped into two categorT he first main-
tains the traditional library structure as shown in Figurevhile the second
uses a meta interface approach that is similar to ours. Arttomgneta inter-
face systems, our approach has the advantage of presen@raxisting base
interface exactly.

Smart Libraries. A number of libraries have been built that attempt to
select efficient implementations based on the specific sadfignput parame-
ters [3, 5, 20]. These libraries provide a restricted degfeeistomization that
is limited to a pre-defined set of implementations.

Automatically Generated Libraries. ATLAS [23], PHIPAC [4], and
FFTW [10] have shown that efficient machine-specific librarcan be auto-
matically generated. As with the “smart libraries,” thes#oaatically gener-
ated libraries preserve the traditional library structuféaese approaches ad-



Broadway: A Software Architecture for Scientific Computing13

dress the issue of portability but do not provide a mechaf@nustomizing
libraries for specific clients.

Magik Meta—Object Protocols

Application @ Application
—

- - - meta—
Library AST funcs Extensmni Library « - proggram

B Application Expertise [ ] Specification
[ ] Library Expertise Interface
EZ2Z Performance Expertise @ .
I Compiler Expertise O Compiler

Figure 6 Comparison of Software Architectures

Magik. Engler's Magik system [9] has a structure that is very sintita
ours (see Figure 6). Magik gives the programmer access toaniter’s in-

ternal representation and symbol table. Thus, Magik canskd to perform
certain compiler transformations, as well as to extend tl@GQuage in limited
ways. Magik differs significantly from Broadway in two wayBirst, Magik

theoretically provides more powerful transformationgpaailities since it ex-
poses all of the compiler’s internals to the meta programrifwever, this
power comes at a cost: the meta programmer must possessonopiiler ex-
pertise and library domain expertise. Second, Magik doepnwide the abil-
ity to define new domain-specific analyses, which are cetdréibrary-level

optimizations.

Meta-Object Protocols. The notion of meta interfaces was pio-
neered in the domain of object oriented languages and MbjeeOProtocols
(MOPs) [7]. Like Magik, these systems provide a mechanisrohtange the
way a language is compiled, which provides both optimizatiad extension
capabilities. In comparison to Broadway, MOPs provide nlionéed support
for analysis and transformations. Most MOPs also providgswta change the
syntax of the base language.

Formal Semantics. Vandevoorde [22] defines a system whose structure is
almost identical to Broadway'’s, but whose approach is fomefaally differ-

ent. Vandevoorde optimizations are based on formal sensaatid theorem
proving, so the transformations require complete formaiagics of a pro-



14

cedure’s behavior, and they depend on theorem proving,hwtan only be
partially automated.

7. CONCLUSION

In this paper we have explained how the lack of a meta interf@courages
library designers to produce bloated interfaces. Thessdddnterfaces in turn
create long term portability and maintenance problems. #ve lshown how
the Broadway solution provides a meta interface that yieldssirable division
of labor—among the library writer, the compiler writer, atig applications
programmer—that is essential in the domain of scientific ating in which
high performance is critical and both libraries and appiice require a large
degree of domain expertise. Finally, we have argued thahad®vay’s meta
interface enhances the use of software libraries and inggréive quality of
application code.

Acknowledgments. We are happy to thank Brad Chamberlain and E
Christopher Lewis for their many helpful comments on thesprgation, and
we are grateful to Robert van de Geijn for his invaluable lrelgxplaining the
innards of PLAPACK.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarta)d Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorens&PACK Users’ Guide
SIAM, Philadelphia, second edition, 1995.

[2] G. Baker, J. Gunnels, G. Morrow, B. Riviere, and R. van a1 PLAPACK: high per-
formance through high level abstractions Pimceedings of the International Conference
on Parallel Processingl998.

[3] M. Barnett, S. Gupta, D. Payne, L. Shuler, R. van de Geijig J. Watts. Interprocessor
collective communication library. IfProceedings of Supercomputing ;9¥ovember
1994.

[4] Jeff Bilmes, Krste Asanovic, Chee whye Chin, and Jim DeshmOptimizing matrix
multiply using PHIPAC: a Portable, High-Performance, ANIStoding methodology. In
Proceedings of International Conference on Supercomgiitirenna, Austria, July 1997.

[5] Eric A. Brewer. High-level optimization via automateghtstical modeling. IrProceed-
ings of the Fifth Symposium on Principles of Parallel Pragraing July 1995.

[6] Bradford Chamberlain, Sung-Eun Choi, E Christopher ise@alvin Lin, Lawrence Sny-
der, and W. Derrick Weathersby. The case for high level fmatogramming in ZPL.
IEEE Computational Science and Engineerif(B):76—86, July-September 1998.

[7] S. Chiba. A metaobject protocol for C++. Rroceedings of the Conference on Object
Oriented Programming Systems, Languages and Applicatjzages 285—-299, October
1995.

[8] J.J. Dongarra, I. Duff, J. DuCroz, and S. Hammarling. Acfdéevel 3 basic linear algebra
subprogramsACM Transactions on Mathematical Softwaté(1):1-28, 1990.



9]

(10]

(11]

(12]

(13]
(14]

(15]

(16]
(17]

(18]
(19]

(20]

(21]

(22]

(23]

Broadway: A Software Architecture for Scientific Computingl5

Dawson R. Engler. Incorporating application semandied control into compilation. In
Proceedings of the Conference on Domain-Specific Langu@#ls-97) pages 103-118,
October, 1997.

Matteo Frigo and Stephen G. Johnson. An adaptive softaechitecture for the FFT. In
IEEE Int'l Conference on Acoustics, Speech and Signal Psing, vol 3 pages volume
3, pp 1381-1384, 1998.

Torbjorn Granlund. The GNU Multiple Precision Arithmetic Library Free Software
Foundation, April 1996.

Samuel Z. Guyer and Calvin Lin. An annotation languagedptimizing software li-
braries. InSecond Conference on Domain Specific Languageges 39-52, October
1999.

Samuel Z. Guyer and Calvin Lin. Optimizing the use ofhhigerformance software
libraries. InLanguages and Compilers for Parallel Computidgigust 2000.

Gregor Kiczales. Beyond the black box: Open implemgona |EEE Software13(1):8—
11, January 1996.

Gregor Kiczales, John Lamping, Cristina Videira Lop€&ris Maeda, Anurag Mend-

hekar, and Gail Murphy. Open implementation design guigsli InProceedings of the

19th International Conference on Software Engineeripgges 481-90, Boston, Mas-
sachusetts, 17-23 May 1997. IEEE.

Donald Knuth. Literate programmingomputer Journal27(2):97-111, May 1984.

John Lamping, Gregor Kiczales, Luis H. Rodriguez Jrd &rik Ruf. An architecture for
an open compiler. IRroceedings of the IMSA'92 Workshop on Reflection and Mstel|
Architectures 1992.

Message Passing Interface Forum. MPI: A message ppsgarface standardnterna-
tional Journal of Supercomputing Applicatiqr&3/4), 1994.

D. L. Parnas. On the criteria to be used in decomposistesys into modulesCommu-
nications of the ACM15(12):1053-1058, 1972.

Anthony Skjellum and Chuck Baldwin. The MulticompufBoolbox: scalable parallel
libraries for large-scale concurrent applications. TécdinReport UCRL-JC-109251,
Lawrence Livermore National Laboratory, December 1991.

Robert van de Geijn.Using PLAPACK — Parallel Linear Algebra Packagdhe MIT
Press, 1997.

Mark T. Vandevoorde. Exploiting Specifications to Improve Program Performance
PhD thesis, MIT, Department of Electrical Engineering anzhfputer Science (also
MIT/LCS/TR-598), 1994.

R. Clint Whaley and Jack J. Dongarra. Automaticallyadrinear algebra software. In
SC’'98 1998.



