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ABSTRACT
This paper introduces a method of decoupling affine computations—
a class of expressions that produces extremely regular values
across SIMT threads—from the main execution stream, so
that the affine computations can be performed with greater
efficiency and with greater independence from the main ex-
ecution stream. This decoupling has two benefits: (1) For
compute-bound programs, it significantly reduces the dy-
namic warp instruction count; (2) for memory-bound work-
loads, it significantly reduces memory latency, since it acts as a
non-speculative prefetcher for the data specified by the many
memory address calculations that are affine computations.

We evaluate our solution, known as Decoupled Affine Com-
putation (DAC), using GPGPU-sim and a set of 29 GPGPU pro-
grams. We find that on average, DAC improves performance
by 40% and reduces energy consumption by 20%. For the 11
compute-bound benchmarks, DAC improves performance by
34%, compared with 11% for the previous state-of-the-art. For
the 18 memory-bound programs, DAC improves performance
by an average of 44%, compared with 16% for state-of-the-art
GPU prefetcher.

CCS CONCEPTS
•Computer systems organization→Single instruction, mul-
tiple data;
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1 INTRODUCTION
GPUs are optimized for regular data parallel computations,
for which they provide significant power and performance
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benefits over CPUs. Much of their benefit comes from their
vector model, which allows GPUs to coalesce control flow
and memory accesses to amortize their overhead across multi-
ple data elements. To provide programming convenience, the
SIMT model is used by many GPUs to transform vector compu-
tation into data parallel threads (SIMT threads). However, the
SIMT model introduces inefficiencies for scalar computations,
which must be redundantly computed on every thread [17],
so previous work [9, 25, 26] proposes specialized hardware
support for scalar computations.

This specialized support for scalar computations can be
generalized to the notion of affine computations [6], which are
linear combinations of scalars and thread IDs, and which
can be executed efficiently by exploiting their high degree of
regularity across threads. Affine computations are common
because GPU workloads use thread IDs to map work to
SIMT lanes, so many memory address calculations and many
predicate computations are expressed in terms of these thread
IDs.

Figure 1: Operand Values–Baseline GPU and Affine Computation

Figure 1 shows how affine computations can be computed
much more efficiently than their direct SIMT counterparts.
First, we see that affine computations can be compactly repre-
sented as affine tuples: The value of A starts at 0x100 in thread
0 and then increases by 4 with each successive thread, so the
entire A vector can be represented as a tuple (0x100, 4), where
0x100 is a base and 4 is the implied offset per thread. Simi-
larly, the scalar B can be represented as the tuple (0x200,0).
Next, we see that to compute the value of C, we need just two
additions—one to add A’s base to B’s base and another to add
A’s offset to B’s offset—producing (0x300, 4), whereas a stan-
dard computation would require one addition for each SIMT
lane. C’s affine tuple can then be used as a source operand
for subsequent affine computations. Of course, at some point,
such as when accessing memory, the affine tuple must be
expanded to the different concrete values, such as those that
represent cache-line addresses (see Section 4.2).
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Previous support for affine computation [13] adds an affine
functional unit to each Streaming Multiprocessor (SM) of a
GPU, but such an approach only removes redundancy within a
single warp and does not reduce the dynamic warp instruction
count, so its performance and energy efficiency benefits are
limited.

In this paper, we show that there are two significant ad-
vantages to decoupling the execution of affine instructions
(i.e., instructions that are eligible for affine computation) from
the execution of non-affine instructions. First, unlike previ-
ous work [13], the decoupling of affine instructions allows a
single affine tuple to eliminate redundancy across multiple
warps (see Figure 2), so, for example, if an SM executes 48
warps concurrently, there is an additional 48× redundancy
to remove for each affine computation. As a result, our so-
lution decreases the dynamic warp instruction count, which
improves both program performance and energy efficiency
(see Section 4). Second, for memory-bound workloads, this
decoupling significantly reduces memory latency, allowing the
address calculations to bypass stalled instructions on a GPU’s
in-order cores, thereby providing a form of non-speculative
data prefetching.

Figure 2: A Single Affine Tuple Applies to Multiple Warps—the
value of operand C from Figure 1

.

As a redundancy reduction technique, our solution, which
we refer to as Decoupled Affine Computation (DAC), uses
decoupling to enable affine instructions to be executed just
once on an affine warp, while non-affine instructions execute
as usual on separate non-affine warps. Figure 3 illustrates the
advantages using an example with one affine instruction and
one non-affine instruction executed on four warps. The figure
shows that on a baseline GPU (left), the affine instruction is
computed using standard SIMT lanes. With previous affine
computation techniques [13] (center), the affine instruction is
executed more efficiently on scalar functional units, but the
affine instruction is still executed redundantly across multiple
warps. With DAC (right), a compiler separates the code into
two streams, with the affine instruction executing on a separate
affine warp that is executed just once.

As a memory latency hiding technique, our solution is
similar in spirit to the idea of Decoupled Access/Execute
(DAE) architectures [23], which decouple a program into a
memory access stream and an execution stream, but there
are significant differences. First, a direct adaptation of DAE
would be quite expensive on SIMT GPUs, since it would
double the number of warps in a program execution. DAC
instead allows one affine warp to service a large number of
non-affine warps. Second, rather than decouple all memory

Figure 3: Instruction Issue Trace of a Baseline GPU, Previous
Affine Computation Technique, and DAC.

access instructions, DAC decouples affine computations for
memory address computations and predicate computations,
which exhibit greater independence from the execution stream.

This paper makes the following contributions:

∙ We introduce the notion of Decoupled Affine Compu-
tation, which decouples GPU kernel execution into
affine warps and non-affine warps to reduce the dy-
namic warp instruction count and to hide memory
latency.

∙ We introduce a mechanism for decoupling affine com-
putations in the face of control flow divergence, which
further increases DAC’s coverage of affine instructions
in SIMT workloads.

∙ We implement our solution in a version of GPGPU-
sim 3.2.2 that has been modified to better model the
memory system. For a set of 29 GPGPU benchmarks,
DAC achieves a 40.7% geometric mean speedup and
a 20.2% reduction in total energy consumption (18.4%
reduction in dynamic energy) when compared to
a baseline GTX 480 GPU. Those improvements are
achieved by reducing the instruction count by 26.0%
and by decoupling 79.8% of global and local load
requests.

When compared against a generously provisioned
state-of-the-art GPU prefetcher (MTA) [15] on the
18 memory-bound programs, DAC achieves a 44.7%
mean speedup compared to MTA’s 16.7% speedup.

When compared against previous support for affine
computation (CAE) [13] (again generously provi-
sioned) on the 11 compute-bound benchmarks, DAC
achieves a 34.0% mean speedup, compared to CAE’s
11.0%.

The remainder of this paper follows a standard organization.
Section 2 describes Related Work, and Section 3 provides
background material that makes the paper more accessible.
We then describe our solution in Section 4 and our empirical
evaluation in Section 5, before concluding in Section 6.
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2 RELATED WORK
We now describe relevant prior work in the areas of affine
computation, GPU prefetching, and Decoupled Access Execu-
tion.

Scalar and Affine Computation. Previous work [9, 25, 26]
proposes a dedicated data path for scalar computation to
eliminate redundancy and to improve performance and energy
efficiency. Some GPUs [1] also include a scalar data path
alongside the vector data path.

Our solution extends the special support for affine com-
putation by decoupling its execution onto a separate warp,
which (1) reduces the dynamic warp instruction count and (2)
reduces memory latency.

Lee, et al [3] present a compiler-based technique to iden-
tify opportunities for scalar code to execute under divergent
constraints in GPU workloads. Collange, et al [6] present a
scalarizing compiler technique for mapping CUDA kernel to
SIMD architectures. We build on their insights and present
a compiler technique for identifying control-flow divergent
conditions.

Memory Latency Hiding in GPUs. Another line of work [11,
12, 15, 22, 27] builds on the regularity of memory accesses
across different GPU threads to infer prefetches based on
the observed behavior of a few threads. Unfortunately, GPU
prefetchers can sometimes be vexed by useless prefetches for
inactive threads, which can cause cache pollution and other
contention [15]. By contrast, our solution issues early memory
requests non-speculatively as a part of the program execution,
and it does not suffer from mispredictions or early evictions.

Kim et al. [14] present a technique that allows warps to
continue issuing non-dependent instructions without waiting
for long-latency instructions to complete.

Decoupled Access Execution. Decoupled Access Execution
(DAE) [7, 8, 16, 23] is a lightweight memory latency hiding
mechanism for in-order processors. The main idea is to de-
couple memory instructions (the access stream) from other
instructions (the execute stream) so that the access stream
can bypass memory stalls and issue memory requests early.
Arnau et al. [2] decouple memory accesses from a fragment
processor’s tile queue, allowing a tile’s memory requests to
be issued before dispatch. DAC employs decoupling to affine
computations both to reduce memory latency and to improve
computational efficiency.

3 BACKGROUND AND MOTIVATION
This section provides more details about affine computation
and quantifies the potential number of affine instructions in
SIMT workloads.

SIMT kernels often use scalar data, such as kernel parame-
ters (e.g. num, A[]) and the thread ID to map memory accesses
and control flow to threads. For example, Figure 4 shows a
sample CUDA kernel, and Figure 5 shows the affine tuples
that can be used by this code.

void example_kernel(int
A[],int B[],int
dim,int num)

{
int tid=blockIdx.x*

blockDim.x+
threadIdx.x;

for(int i=0;i<dim;i
++)

{
int tmp=A[i*num+tid

];
B[i*num+tid]=tmp+1;

}
}

(a) CUDA Code

1 mul r0, blockIdx.x,
blockDim.x;

2 add tid, threadIdx.x,
r0;

3 mul r1, tid, 4;
4 add addrA, A[], r1;
5 add addrB, B[], r1;
6 mov i, 0;
7 LOOP:
8 ld.global tmp, [addrA];
9 add r2, tmp, 1;

10 st.global [addrB], r2;
11 add i, i, 1;
12 mul r3, num, 4;
13 add addrA, r3, addrA;
14 add addrB, r3, addrB;
15 setp.ne p0, dim, i;
16 @p0 bra LOOP;

(b) Pseudo Assembly Code

Figure 4: Example Kernel

Operand Value Affine Tuple
operand name Thread 0 Thread 1 Thread 2 (Base, Offset)
A[] 0x80000 0x80000 0x80000 (0x80000,0x0)
#3, r1 0x0 0x4 0x8 (0x0,0x4)
#4, addrA 0x80000 0x80004 0x80008 (0x80000,0x4)
#12, r3 0x1000 0x1000 0x1000 (0x1000,0x0)
#13, addrA 0x81000 0x81004 0x81008 (0x81000,0x4)

Figure 5: Affine Values and Affine Tuples for Three Threads

An affine tuple represents values as a function of the thread
ID:

operand_value base thread_ID× offset (1)
Here, base corresponds to scalar data and offset is the constant
difference between adjacent threads. Since base and offset have
the same value for all threads, the affine tuple, (base, offset),
represents all of the thread’s values with just two registers.

Affine computation is performed directly on affine tuples.
Affine addition adds a base to a base and an offset to an offset,
e.g. add addrA, A[], r1;

b1,o2 b2,o2 b1 b2,o1 o2 (2)

Multiplication of two affine operands is not allowed, but
the multiplication of a scalar and an affine operand can be
performed by multiplying the base and offset by the scalar
value, e.g. mul r1, tid, 4;.

b1,0× b2,o2 b1×b2,b1× o2 (3)

Other similar ALU operations (e.g. sub, shl, mad, etc.) are
supported, and these simple operations constitute a large
portion of computations on scalar data and Thread IDs, as
they are frequently used for address and predicate bit vector
computations.

A sequence of affine computations can continue as long as
both source and destination operands can be represented as
affine tuples. Otherwise, affine tuples must be expanded into
concrete values. For memory instructions with affine addresses
(e.g. addrA) and for predicate computation instructions with
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affine operands (e.g. #15), expansion can be handled efficiently
in most cases. For example, addrA, has an offset of 4, and 32
consecutive threads of a warp can be serviced by a single
cache line address; thus a warp can be expanded by a single
ALU operation. We describe efficient address and predicate
bit vector expansion mechanisms in Sections 4.2 and 4.3. If
an affine tuple cannot be expanded into predicate bit vectors
or addresses, then it must be expanded into concrete vector
values by evaluating function (1) explicitly for each thread.

In Figure 4, addrA, addrB, and p0 are computed entirely from
scalar data and thread IDs. Although the example is trivial,
such program patterns are common in SIMT workloads.
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Figure 6: Percentage of Instructions Computing on Scalar Data
and Thread IDs

Figure 6 shows that for our 29 benchmarks, about half
of the static instructions are potentially affine instructions.
These are ”potentially affine instructions” because two factors—
control flow divergence and instruction type—can force them
to execute in non-affine warps. Previous affine computation
techniques [6, 13] cannot execute affine computation after
control flow divergence, but our solution uses compile-time
analysis and runtime mechanisms to execute affine instructions
after limited forms of divergence. In addition, as described
in Sections 4.4 and 4.6, our solution provides support for
additional instruction types (e.g. mod, min, max, etc), which
cannot be handled by previous affine computation solutions.

4 OUR SOLUTION
Our solution targets regular SIMT workloads, where scalar
data and thread IDs are commonly used for address and
predicate computation instructions.

We now present our solution, first describing the basic idea
and then walking through a code example to show how the
original code is decoupled, is executed, and allows memory
latency to be hidden. We then describe the overall hardware
design before describing each component in more detail.

The Basic Idea. For affine computations, the fundamental
source of redundancy is the fact that each warp executes the
same kernel code. For vector computations, this replication
is not an issue, because the same instruction operates on
different data on the different warps. For affine instructions,
this replication translates to redundancy.

To solve this problem, DAC decouples affine and non-affine
instructions into separate instruction streams and executes
them on different warps. For concurrent warps of an SM, a

single affine warp fetches and executes only affine instructions,
while non-affine warps fetch and execute only non-affine
instructions. DAC is thus able to use a single affine warp for
the affine instructions, while still launching as many warps as
needed for the non-affine instructions.

The kernel code is decoupled by a static compiler, while
specialized hardware is added to support for the affine stream
at run time.

1 LOOP:
2 mul r0, blockIdx.x,

blockDim.x;
3 add tid, threadIdx.x,

r0;
4 mul r1, tid, 4;
5 add addrA, A[], r1;
6 add addrB, B[], r1;
7 mov i, 0;
8 LOOP:
9 enq.data addrA;

10 enq.addr addrB;
11 add i, i, 1;
12 mul r3, num, 4;
13 add addrA, r3, addrA;
14 add addrB, r3, addrB;
15 setp.ne p0, dim, i;
16 enq.pred p0
17 @pred bra LOOP;

(a) The Affine Instruction
Stream

1 LOOP:
2 ld.global tmp, deq.data

;
3 add r2, tmp, 1;
4 st.global [deq.addr],

r2;
5 @ deq.pred bra LOOP;

(b) The Non-Affine
Instruction Stream

Figure 7: Decoupling the Kernel in Figure 4b

Code Example. Figure 7 shows that the original code from
Figure 4 is compiled into two instruction streams.

We see that memory accesses are decoupled into two parts:
The affine warp uses affine tuples to compute the mem-
ory addresses and then sends the affine tuples to the non-
affine warps by Enqueueing them to the address queue. The
non-affine warps then Dequeues the concrete values. For ex-
ample, the Store instruction on line 10 of the original code
(st.global[addrB], r2;) is translated into line 10 in the
affine instruction stream (enq.addr addrB;) and line 4 in the
non-affine stream (st.global [deq.addr], r2;). Predicate
computation instructions are handled in a similar manner.

Figure 8: Interaction Between the Affine Warp and the Non-Affine
Warps
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Figure 9: DAC Hardware Organization

The Enqueue and Dequeue instructions trigger hardware
mechanisms that (1) expand affine tuples into concrete values
and (2) coordinate the the two streams at run time. Figure 8
shows the interaction between the two instruction streams in
hardware. The single affine warp sends a tuple for expansion
when executing an Enqueue instruction. An affine tuple is ex-
panded into concrete values (cache line addresses or predicate
bit vectors) and buffered for each non-affine warp. Non-affine
warps then retrieve the concrete values from buffer when
executing Dequeue instructions.

DAC only decouples instructions that compute memory
addresses and predicate bit-vectors, since their end products
(i.e. addresses and bit-vectors) can be efficiently expanded in
most cases (Section 3).

To understand why the affine warp can run ahead of the
non-affine warps to hide memory latency, observe that the
affine warp operates on read-only data, such as thread IDs
and kernel parameters, and it does not modify memory, so the
affine warp can execute independently from the non-affine
stream. More importantly, the affine warp fetches memory
(but does not use it) on behalf of the non-affine warps, so the
affine warp can issue memory requests while bypassing stalls.
For example, in Figure 7a, line 9 of the decoupled kernel loads
data pointed to by addrA in a loop. The affine warp can request
[addr] for the next iteration without waiting for the requests
of the previous iteration to finish, since only non-affine warps
operate on data [addr] (tmp+1). In other words, the original
program’s data dependence on [addr] is broken by executing
the use of the data on the non-affine warps.

4.1 Design Overview
Our overall design is shown in Figure 9 with the baseline GPU
components appearing in white and the added components in
gray. Most of the added hardware is used to handle Enqueue
and Dequeue instructions, including the expansion of affine
tuples to concrete values, and to support execution of the
affine warp.

Because DAC executes only a small number of affine in-
structions, DAC does not use a dedicated functional unit for
the affine warp. Instead, the affine warp executes on SIMT
lanes (Section 4.4). Thus, both affine and non-affine warps are
fetched, decoded 1O, and issued 2O to SIMT hardware in the
same way.

DAC adds a dedicated warp context for the affine stream
and launches one affine warp per SM. DAC launches as many
warps as the baseline GPU for the non-affine stream. Due
to on-chip resource constraints, the GPU may not be able to
concurrently execute all threads of the non-affine stream, so
DAC executes the affine warp once for each batch of concurrent
non-affine warps.

The affine and non-affine warps are executed concurrently
via fine-grain multi-threading. Affine tuple expansion is per-
formed by dedicated hardware in parallel with non-affine warp
executions, so the latency of expansion is typically hidden.

When the affine warp executes an enq instruction, the as-
sociated affine tuple is enqueued 3O to the tail of the Affine
Tuple Queue (ATQ). The Predicate Expansion Unit or the
Address Expansion Unit then fetches the affine tuple from
the head of the ATQ 4O. Using the affine tuple, the expansion
units generate predicate bit masks or coarse-grain addresses
for each non-affine warp. A predicate bit mask, for example, is
then enqueued 5O to the tail of the Per Warp Predicate Queue
(PWPQ). As the name suggests, there is one PWPQ for each
concurrent non-affine warp. Finally, when a non-affine warp
executes a deq.pred instruction, the bit mask is dequeued 6O
from its PWPQ, and the bit mask is used to set the predicate reg-
ister. The process is similar for address expansion (enq.addr).
The expansion unit designs are described in Section 4.2 and 4.3.

For the enq.data instruction, which is used for global and
local load requests, DAC generates addresses and requests
data from memory as soon as the addresses are generated.
The requests 7O are sent to the L1 data cache and then to the
lower levels on cache misses. The requested data is locked in
L1 upon retrieval from L2 or DRAM. Later, when a non-affine
warp executes the deq.data instruction, the data is retrieved
from L1 8O.

At the scoreboard stage 9O, DAC checks whether enq or
deq warp instructions are eligible to be issued. For the enq
instruction, if the ATQ has no available space, or if one of the
PWPQs is full, then the affine warp is not allowed to issue. For
deq, if an non-affine warp’s PWPQ or PWAQ is empty, or the
data prefetched from main memory is not yet available, then
the corresponding non-affine warp is not allowed to issue, so
ready non-affine warps are issued instead.

Finally, a dedicated Affine SIMT Stack is used to handle
the affine warp’s control flow 10O , while the non-affine warps
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still use the baseline GPU’s SIMT stack. The Affine SIMT Stack
allows the affine warp to execute largely independently of the
non-affine warp when performing early memory accesses.

We now describe each components in more detail.

4.2 Address Expansion Unit
The Address Expansion Unit (AEU) takes affine tuples as input
and generates concrete addresses for each non-affine warp.

Figure 10: Cache Line Access Regularity: Cache Line References
by Warps with an Offset of 4

The AEU generates cache line addresses directly from the
affine tuples without generating addresses for individual
threads. For example, Figure 10 shows that with an offset of
4, warps access consecutive 128-byte cache lines, so the AEU
will generate a sequence of consecutive cache line addresses
from the starting address.

Figure 11: Address Expansion Unit

Figure 11 shows the design of the AEU, which is equipped
with a single integer ALU. For each CTA (block), the starting ad-
dress is computed once per CTA as base+block_offset×block_index
1O, and the overhead is amortized across threads of the CTA.
Thereafter, the address is incremented 2O and accumulated 3O
by 128 at a time to generate cache-line addresses for consecu-
tive threads and warps.

To indicate which word (of the 128 byte data) a thread
should access, the AEU generates a bit mask that accompanies
the address 4O. For instance, an offset of 4 will generate a bit
mask 111111... to indicate that all 32 words are accessed;
similarly, an offset of 8 generates 101010... to indicate the
access of every other word in the region. To reduce the stor-
age and computation overhead of address generation, the
address and bit mask are then pushed to the PWAQ as a
warp address record 5O, which is a compact encoding of each
individual thread’s addresses. The non-affine warps later de-
queue the records to perform memory accesses, and data are

mapped to threads by the bit masks and the line addresses.
The granularity bits indicate whether each thread access a
word, a half word, or a byte, so the bit mask and line address
are interpreted differently.

To avoid stalls (e.g. when a non-affine warp’s PWAQ is
full), the AEU uses one accumulated address register for each
concurrent CTA 6O, allowing it to switch among CTAs to
generate addresses. For multi-dimensional thread indices, it is
possible for the consecutive increments to be disrupted when
threadIdx.y is incremented by 1. In this case, an adjustment
7O is added to the current accumulated value. The adjustment
has the same value for all threads so is computed only once.

For the enq.data instruction (global and local loads), the
AEU also sends requests to the L1 cache or the lower levels
of the memory hierarchy on a miss. To avoid the eviction
of requests that arrive before their demand accesses, DAC
adds lock counters to the tag array, which temporarily disable
replacement for a cache line. The AEU locks cache lines upon
issuing memory requests, and the the non-affine warp unlocks
cache lines upon access. Unlike speculative prefetching, the
early requests are guaranteed to be accessed by the non-affine
warp and eventually unlocked, so this locking is safe. Memory
accesses that are not affine must be issued by the non-affine
warps, but deadlock is avoided because the AEU can lock at
most (N−1) sets of an N-way cache. It is possible to create
contention between locked cache lines and non-affine cache
lines, but we do not observe this to be a problem because
usually only a small portion of the cache is locked at any given
time.

Early memory accesses can cause conflicts with barrier op-
erations (syncthreads). To avoid conflicts, barrier instructions
are replicated to both the affine and the non-affine warps. The
AEU handles barrier operations on behalf of the affine warp.
When the affine warp executes a barrier instruction, the AEU
disables expansion for the target non-affine blocks; the AEU
only issues memory requests for non-affine blocks that pass
the barrier. Affine warps themselves do not access memory
(the only access read-only data such kernel parameters), so
they are not affected by these barriers.

4.3 Predicate Expansion Unit
The Predicate Expansion Unit (PEU) generates predicate bit
vectors for the non-affine warps.

Predicate bit vectors are generated by comparisons (e.g.
greater-than) between two operations. For a predicate com-
putation to be decoupled, DAC requires that one operand
(the scalar operand) be a scalar, where all threads in the same
block have the same value. If the other operand is also a scalar,
then only a single comparison is needed for all threads in the
block. For our 29 benchmarks, this case constitutes 64% of the
decoupled predicate computations.

In general, the decoupled affine instructions correspond to
the regular portion of the original kernel, so the control flows
are more likely to be convergent for threads in a warp or in a
block/CTA.

6



If the other operand is not a scalar, then as with the AEU,
an accumulation is performed. The idea is that if a warp’s
first and last thread’s values are larger or smaller than the
scalar operand, then due to the constant offset of the affine
operand [13], all threads in between must have the same result.
Thus, a convergent bit mask is generated for a warp with only
2 comparisons. This case constitutes of 93% of the decoupled
predicate computations, including the scalar case. For the
remaining 7%, the SIMT lanes are used to compare all 32
threads of a warp. Therefore, the PEU optimizes the common
cases for bit vector generation.

4.4 Affine Tuple Computation
Instead of using dedicated scalar functional units, DAC per-
forms affine computations on the SIMT lanes, which means
that additional ALU operations are available to support more
sophisticated affine computations, thereby increasing cover-
age.

Since CUDA supports up to 3 dimensions of block indices
(x,y,z) and thread indices, DAC allows each dimension to
have its own offset. Thus, DAC maps one base and up to
6 offsets onto SIMT lanes. Each base or offset of an affine
tuple is mapped to a SIMT lane for computation, as shown in
Figure 12. For a scalar tuple, the base is mapped to all used
lanes to facilitate multiplication between affine and scalar
values.

Figure 12: Mapping Affine Tuple(s) to SIMT Lanes

Additional lanes also allow DAC to support modulo opera-
tions with a scalar divisor, which are used by some workloads
to map addresses. The idea is that threads’ values still ex-
hibit regularity after the mod operation, but they must be
adjusted by the divisor. The destination operand of a mod
operation becomes a special mod-type affine tuple: (base, off-
set, mod_base, divisor). The mod_base is the old base mod
divisor, the divisor is value of the scalar divisor, and the new
base is set to 0. In subsequent computations, the mod-type
tuple works with addition (i.e. add to base) with a scalar value,
and multiplication with a scalar value (i.e. multiply all fields
including the divisor).

The remaining lanes are used to support affine computation
after control flow divergence (Section 4.6), where multiple sets
of affine tuples are potentially used.

4.5 Affine SIMT Stack
The affine and non-affine instruction streams work as a single
kernel, so the control flow that affects affine instructions is
replicated to both types of warps. For example, consider a
pair of corresponding statements in the affine and the non-
affine streams—“if(tid<bound) enq” and “if(tid<bound)
deq”. The if-statement means that the affine warp should
only enqueue and expand the tuple for non-affine threads
that require the data (i.e. the non-affine warps with tid less

than bound). Therefore, for these decoupled instructions, the
control flow of the affine warp corresponds to that of the non-
affine threads, and the affine warp ”executes” those threads
in lock-step, except it replaces vector computation with affine
computation.

The decoupled affine stream can have control flow diver-
gence, which potentially reduces efficiency. However, in gen-
eral, there are two reasons why the affine warp can still be
executed efficiently. First, DAC decouples the regular portions
of workloads, which tend to exhibit less divergence. Second,
scalar loops, where all threads execute the same number of
iterations, are common for decoupled instructions. In our ex-
periments, the affine warp instructions only constitute 4% of
total warp instructions on average.

In most cases, the affine warp and the Predicate Expansion
Unit already produce the non-affine warps’ bit vectors, which
are also used by the affine warp for control flow. Otherwise,
such as when data dependent control flow occurs, non-affine
warps must provide bit-vectors for the affine warp.

To enable affine warps to run ahead of the non-affine warps,
we equip the affine warp with its own SIMT stack (the Affine
SIMT Stack) for handling control flow. DAC use a two-level
Affine SIMT Stack, which exploits convergence at the warp
level to reduce the need to check and update control flow on a
thread-by-thread basis.

Figure 13: Re-Convergence Stack for the Affine Warp

Figure 13 depicts the two-level stack. The functionality is
similar to that of a baseline GPU (and the non-affine SIMT
stack). For the code example on the left, threads re-converge at
Basic Block D (BBd), and the affine warp is currently at BBb 1O.
The Warp Level Stack (WLS) encodes each non-affine warps’
bit vector with only 2 bits. “11” indicates that all threads in
the warp are 1s; ”00” denotes all 0s; ”10” denotes otherwise.
The PC and RPC (re-convergence PC) fields are shared by all
warps. The “11” and “00” cases only require checking the WLS
without inspecting each threads’ bits. The WLS reduces the
number of bits that are checked and updated. For the “10” case,
Per Warp Stacks (PWSs) are used for threads within a warp.
On a Fermi GPU, 48 PWSs are used for concurrent warps on
an SM. In the example, only warp 2 (w2) must update its PWS
2O, and 4O and 5O show the content. All other warps use only

WLS, and their PWSs have no data 3O. The PWSs do not have
PC and RPC fields, which reduces storage.

4.6 Divergent Affine Tuples
When control-flow divergence occurs, a single affine tuple
may not be enough to sustain affine computations. To increase
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the coverage of affine instructions, DAC uses a combination of
compiler-based static analysis and a runtime hardware mech-
anism to exploit affine computations after limited divergence.
Here, we discuss the impact of control-flow divergence and
the hardware mechanism.

Figure 14: Divergent Base-Offset Pairs on SIMT Lanes

The code on the left of Figure 14 represents a case where
a single tuple suffices even after control flow divergence. In
this case, the affine warp will not Enqueue addr1 for inactive
threads. All active threads’ addr1, however, are still computed
by the same base and offset 1O, so active threads still use
the same affine tuple. In this case, it is suffice to mask off
the inactive threads when expanding the affine tuple; this is
handled by the Affine SIMT Stack (Section 4.5).

The code on the right represents a case where affine tuples
become divergent. The common case is that threads compute
addresses or predicates differently depending on whether
boundary conditions are met. In the example, a thread’s value
for offset can be either 0 or tid*4, so addr1 has two affine
tuples for all threads: (base,4) and (base,0).

Since DAC computes affine tuples on SIMT lanes, both Path
AO and Path BO tuples can be mapped to SIMT lanes to be
computed simultaneously 2O. The basic idea is to perform two
affine tuples computations for two sets of threads in lock-step,
just as in vector computation. In general, at most 2 divergent
conditions (or 4 tuples) can affect an affine operand; otherwise,
the related affine instructions will not be decoupled. In addi-
tion, divergent affine tuples with loop carried dependences
will also not be decoupled.

The AEU selects whether to expand Tuple AO or Tuple
BO based on the control flow of each thread. The compiler
technique for detecting divergent tuples and the hardware
mechanism for expansion selection are described in Section 4.7.

We also extend the concept of divergence to instructions,
such as max, min, and abs, which incorporate both value assign-
ment and predication. For instance, ”max dst, src1, src2;”
is equivalent to ”dst = (src1 > src2) ? src1 : src2”.

4.7 Compilation
The compiler is responsible for taking unmodified kernel code
and decoupling it into affine and non-affine instruction streams.
This decoupling involves two main tasks: (1) identifying affine
operands and instructions, and (2) identifying divergent affine
tuples and conditions.

Identifying Affine Operands. Our technique for identifying
affine operands is derived from previous solutions [6, 13].
Each operand is classified as one of three possible types: scalar
(e.g. kernel parameters), affine (e.g. threadIdx), or non-affine
(e.g. memory), which are listed in order from most specific
to most general. The compiler initially assigns types to non-
register operands. By creating a control-flow graph (CFG) and
performing reaching definition analysis on the CFG, the initial
types are iteratively propagated through register operands
and instructions.

At each instruction, if more than one definition reaches a
source operand, the most general type among the definitions
is assigned to the source operand. The destination operand of
an instruction is assigned the most general type among the
source operands. Instructions with operations not supported
by affine computation produce non-affine destination operands
directly.

After the classification process, memory access and predi-
cate computation instructions with scalar and affine type source
operands are candidates for decoupling into the affine stream.
We refer to instructions that define another instruction’s source
operands as predecessors. From each candidate memory and
predicate instruction, the compiler recursively traverses the
CFG backwards to checks its predecessor instructions for di-
vergence by performing Divergent Affine Analysis, which we
explain in the next section.

Figure 15: Using SIMT Entry as Divergent Condition
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Divergent Affine Analysis. The goal of Divergent Affine Anal-
ysis is to identify divergent affine tuples (described in Sec-
tion 4.6) along a recursive predecessor chain. At each prede-
cessor, the compiler recognizes divergent affine tuples when
a source operand has two or more reaching definitions. For
example, in Figure 15 (a), “offset" is defined at BBb and BBc
before reaching BBd, so “addr" has two affine tuples to expand.
At run time, for each thread, expansion units choose one of the
affine tuples according to the thread’s control flow. We call the
conditions for making the choice divergent affine conditions.

Since the affine warp uses the Affine SIMT Stack for handling
control flow, we use SIMT stack entries as divergent affine
conditions. Using Figure 15(a) as an example, the compiler
identifies the re-convergence point of two reaching definitions’
basic blocks 1O. The last SIMT stack entry before re-convergence
2O is the divergent affine condition, since it distinguishes
threads that use BBb’s definition from those that use BBc’s.

The use of SIMT stack entries as divergent conditions poten-
tially reduces the amount of condition checking. The example
in Figure 15(b) shows that multiple branches may cause a
single divergent reaching definition. However, only one SIMT
stack entry is needed for divergent affine condition 3O. There
is no need to check multiple branch conditions, since the SIMT
stack already checks and merges those conditions for handling
control-flow.

Divergent reaching definitions can occur at an arbitrary
predecessor of an affine instruction, where expansions are
required. Thus, DAC saves to a dedicated Divergent Con-
dition Register File (DCRF) the required SIMT stack entries
(bit-vectors) at re-convergence points, so that they can be
checked by expansion units later. As with the Affine SIMT
Stack (Section 4.5), the DCRF has a two-level structure but
used as a register file rather than a stack.

After detecting a divergent affine tuple, the re-convergence
points are marked by the compiler, and a DCRF entries is
allocated by the compiler.

Decoupling. After divergent analysis, if a candidate affine
memory or predicate computation instruction has two or
fewer divergent conditions for all its recursive predecessor
instructions, then it is eligible for decoupling.

Eligible affine instructions become Enqueue instructions
in the affine stream and Dequeue instructions in the non-
affine stream. Their predecessor instructions are placed in the
affine stream. The predecessor instructions are removed from
the non-affine stream provided that no non-affine instruction
depends on them.

4.8 Area Estimation
Most of DAC’s hardware budget goes to expansion units,
which add 2 ALUs per SM, and to the various SRAM compo-
nents, which add 6 KB per SM. The Affine Tuple Queue (ATQ)
has 24 entries, with a total size of 393 bytes. The Per Warp
Address Queue (PWPQ) has 192 entries partitioned among
warps, with a total size of 1560 bytes. Similarly, the Per Warp
Address Queue (PWPQ) has 192 entries and a total size of 768
bytes.

The Affine SIMT Stack has a depth of 8. It has (1) a Warp
Level Stack (WLS) with bit masks, PC, and RPC, which require
224 bytes, and (2) per warp stacks with bit masks only, which
require 1536 bytes. The Divergent Condition Register File
(DCRF) has the same amount of storage as the Affine SIMT
Stack.

We model the SRAM components using CACTI [19], which
yields 0.21 mm2 of estimated area per SM. We estimate the
area of 2 ALUs with the model used in GPUWattch [18], which
yields 0.16 mm2 per SM. On a GTX 480, with a die size of 520
mm2 [10], the area overhead is 1.06%.

5 EVALUATION
We now evaluate DAC by comparing it against both affine
computation and GPU prefetching solutions.

5.1 Methodology
To evaluate performance, we use GPGPU-sim 3.2.2 [4], and to
evaluate energy, we use GPUWattch [18]. The baseline GPU is
modeled after a Fermi GTX 480 with simulation parameters
shown in Table 1. We use CACTI 5.3 [19] to model the energy
overhead of DAC’s added SRAM components.

Baseline GPU
GPU Fermi (GTX480), 15 SMs, 48 warps/SM
SM 32 SIMT lanes, 128KB register file
Scheduler 2 Schedulers/SM, Two Level Active [20]
L1 48 KB/SM, 4 Ways, 32 MSHRs
L2 769 KB, 6 Partitions, 8 Ways

GPU Prefetcher (MTA)
Prefetch Buffer 16KB/SM (in addition to the 48KB L1)

Compact Affine Execution (CAE)
Affine Units 2 Affine Units per SM (one per 16 lanes)

Decoupled Affine Computation (DAC)
ATQ (per SM) 24 Entries, 392 bytes, 5.3 pJ/Access
PWAQ (per SM) 192 Entries, 1560 bytes, 3.4 pJ/Access
PWPQ (per SM) 192 Entries, 768 bytes, 1.5 pJ/Access
PWS (per SM) 8×48 Entries, 1536 bytes, 2.7 pJ/Access
PWS (per SM) 8×48 Entries, 1536 bytes, 2.7 pJ/Access

Table 1: Simulation Parameters

We simulate all benchmarks with SASS, which is the native
instruction set executed directly on GPU hardware. GPGPU-
sim parses the SASS assembly code produced by the CUDA
tool-chain and generates PTXPLUS, which is the instruction set
used by the simulator. PTXPLUS corresponds almost exactly
with SASS; the conversion is merely syntactic.

For DAC, the compiler’s decoupling of kernels (Section 4.7)
is performed on the PTXPLUS instructions in GPGPU-sim’s
front-end before simulation starts.

5.1.1 Baseline Techniques. To evaluate both the compu-
tational and memory latency-hiding aspects of DAC, we also
implement two other state-of-the-art designs based on previ-
ously proposed techniques, which we now describe. In each
case, we provision these techniques with extra hardware that
we do not give to DAC.
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Figure 16: Speedup of CAE, MTA, and DAC over the Baseline GTX 480 GPU

Compute Intensive Memory Intensive (cont)
Name Abbr. Suite Name Abbr. Suite

CP CP G imghisto IMG G
STO STO G histogram HI R
AES AES G LBM LBM R
mri_q MQ G SPMV SPV R
tpacf TP G b+tree BT C
FFT FFT G LUD LUD C
backprop BP C sradv2 SR2 C
sradv1 SR1 C stream cluster SC C
hotspot HS C KMEANS KM C
pathfinder PF C BFS BFS C
blackscholes BS P CFD CFD C

Memory Intensive monte carlo MC P
LIB LIB G mersenne twister MT P
sgemm SG R Scalar Product SP P
stencil ST R Convolution Sep. CS P

Table 2: List of Benchmarks – G: GPGPU-sim distribution [4], R:
Rodinia benchmark suite [5], C: CUDA SDK, P: Parboil benchmark
suite [24]

Compact Affine Execution (CAE). To evaluate DAC’s effi-
ciency in handling affine computations, we compare against
CAE, which augments the baseline GPU with an affine data
path based on Kim et al’s design [13].

CAE tracks affine operands at run time to determine which
warp instructions are eligible for affine computation. After
fetch-decode, eligible warp instructions are sent not to the
SIMT lanes but to the affine function units for execution. CAE
improves efficiency by replacing vector computations with
affine computations for threads within a warp.

The original work adds a single affine unit to each SM. As
mentioned by Kim, et al [13], for a 32 lane GPU, the affine unit
yields little performance benefit, since a warp with 32 threads
will take the same number of cycles to execute whether it is

using the SIMT lanes or the affine unit. Still, the affine unit has
the benefit of reducing SIMT lane occupancy.

The original CAE work [13] uses one affine functional unit
for each SM, but to illustrate the benefit of reduced lane
occupancy, our implementation of CAE uses two affine units
for each SM. The baseline GTX 480 has two schedulers, where
each scheduler individually issues instructions to 16 SIMT
lanes [21]. For the baseline GPU, each scheduler takes two
cycles to issue one warp instruction, since a 32 thread warp is
issued to 16 lanes. For our CAE with two affine units (one for
each scheduler), each scheduler takes only one cycle to issue
an affine instruction, since affine instructions do not occupy
SIMT lanes. Ideally, the computation throughput is doubled
for affine instructions on CAE. However, CAE still executes
the same number of instructions as the baseline GPU, and the
instruction issue-scheduling rate is doubled to fully utilize the
affine units.

GPU Prefetcher (MTA). To evaluate DAC’s ability to hide
memory latency, we compare it to a system that augments the
baseline GPU with a data prefetcher based on Many-Thread
Aware prefetching (MTA) [15].

MTA detects both intra-warp memory access offsets (e.g.
load instructions in loops within a warp) and inter-thread
offsets (e.g. load instructions issued by adjacent warps) for a
few SIMT threads. The regularity is then speculatively gener-
alized to all warps to achieve scalable prefetching. In addition,
a throttling mechanism is used to control the aggressiveness
of prefetching based on the number of evicted cache lines that
are prefetched but not used by the GPU [15].

To alleviate cache pollution [12, 15], we give MTA a ded-
icated 16KB prefetch buffer on each SM, in addition to the
48KB L1 cache.

10



5.1.2 Benchmarks. We evaluate 29 benchmarks from 4
suites as shown in Table 2. We divide them into two cate-
gories: memory intensive and compute intensive. We consider
a benchmark to be memory intensive if the baseline GPU can
achieve a speedup of at least 1.5 when using a perfect mem-
ory system (i.e. no latency and unlimited bandwidth). The
remaining benchmarks are considered to be compute intensive.

5.2 Speedup
Figure 16 shows the speedup of DAC, CAE, and MTA over
the baseline GTX 480 GPU for our 29 benchmarks. DAC’s
geometric mean speedup of 1.40 is significantly better than
either CAE’s or MTA’s. As expected, CAE provides benefits for
just the compute-intensive benchmarks, while MTA provides
benefits for just the memory-intensive benchmarks. Not only
does DAC improve the performance of both classes of pro-
grams, but it offers the best performance within each class of
programs. For the compute-intensive benchmarks, DAC has a
speedup of 1.34, while CAE achieves a speedup of 1.15. For
the memory-intensive benchmarks, DAC produces a speedup
of 1.44, while MTA achieves a speedup of 1.16.

5.3 Instruction Execution Reduction
Figure 17 shows that for the 29 benchmarks, DAC executes
on average 0.74× as many warp instructions as the baseline
GPU. So DAC reduces the dynamic instruction count by
26%, which in turn reduces execution time and improves
energy efficiency; the effect is particularly evident for compute-
intensive benchmarks. Only 4.6% of the instructions executed
on DAC are affine instructions (See Figure 17), showing that
DAC does not require a dedicated affine functional unit.
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Figure 17: Number of Warp Instructions Executed by DAC
Normalized to the Baseline GPU

With two affine units per SM (and two warp schedulers),
our implementation of CAE doubles the affine instruction
throughput compared to the baseline. By contrast, DAC exe-
cutes a single affine instruction to replace 9 instructions on the
baseline GPU on average, so it increases execution throughput
for affine instructions by 9× over the baseline GPU.

5.4 Affine Instruction Coverage
The coverage of affine instructions is the percentage of warp
instructions executed by the baseline GPU that could be han-
dled as affine instructions by CAE or DAC. For the the 11
compute intensive benchmarks, Figure 18 shows that DAC
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Figure 18: Affine Instruction Coverage of DAC and CAE

achieves a geometric mean coverage of 34%, compared to 25%
for CAE.

Because DAC identifies affine computations statically and
because DAC uses SIMT lanes to execute affine instructions,
DAC supports affine computations after limited control flow
divergence and uses offloaded affine SIMT stack entries to
reduce overhead. By contrast, CAE has no facilities for per-
forming affine computations after divergence. While CAE’s
scheme for identifying affine instructions is more flexible, CAE
must use the SIMT lanes to expand any affine tuples involved
in divergence back to vector values [13]. Moreover, CAE’s
affine functional unit uses a single ALU for offset computa-
tions, which requires all 32 threads of a warp to have the same
offset pattern. For benchmarks, such as HT and BP, whose
last-level dimension is smaller than 32, CAE only handles
scalar computations (i.e. an offset of 0), since the threads in a
warp do not follow a single offset pattern.

5.5 Memory Latency Hiding
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Figure 19: Percentage of Affine Global and Local Load Requests
on DAC

DAC can hide memory latency because the affine warp
can run ahead of non-affine warps and issue load requests
without waiting for previous requests to finish. An indicator
for DAC’s latency hiding ability is the percentage of global and
local load addresses that are produced by affine instructions,
which can be issued by the affine warp. Figure 19 shows that
for our memory-intensive benchmarks, an average of 79.8%
of the global and local load requests are issued by the affine
warp. Many benchmarks have close to 100% coverage, because
regular SIMT workloads often use scalar data and thread IDs
to map memory addresses for coalesced memory accesses.

For benchmarks such as BFS and BT that make heavy use of
indirect memory addresses to access complex data structures,
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DAC sees little performance improvement. In addition, bench-
marks may also be constrained by bandwidth, row buffer
locality, or bank conflicts; in such cases, the affine warp might
not run ahead sufficiently. Therefore, some benchmarks (e.g.
LBM) show little performance improvement despite the high
percentage of affine memory requests.

MTA and DAC use different mechanisms to hide memory
latency. In DAC, affine memory requests are non-speculative
and are generated by instruction executions of the affine
warp. By contrast, MTA hides latency by speculatively issuing
prefetch requests when triggered by on-demand memory
accesses.
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Figure 20: MTA Prefetcher Coverage

Many SIMT workloads have highly regular memory ac-
cesses, so the MTA prefetcher has high prediction accuracy.
MTA’s latency hiding ability is correlated with prefetcher cov-
erage (see Figure 20), which is defined to be the number of L2
and DRAM accesses that are covered by the prefetcher. We see
that MTA’s throttling mechanism reduces harmful prefetches,
but it also reduces coverage when additional bandwidth are
available in some cases. In some other cases (e.g. SC), the
throttling mechanism does not prevent cache pollution.

5.6 Energy Efficiency
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Figure 21: Energy Consumption of DAC Normalized to the
Baseline GPU

Figure 21 shows the total energy consumption (dynamic
and static) of DAC normalized to the baseline GPU. For our
29 benchmarks, the geometric mean is 0.798. Thus, DAC
reduces total energy by 20.2%, and it reduces dynamic energy
alone by 18.4%. The major sources of savings are reduced
ALU operations and reduced register accesses due to reduced
dynamic instruction executions. DAC reduces the number of

ALU operations by 44% and the energy consumption of ALUs
by 34%. DAC also reduces the number of register accesses
by 17% and the energy consumption of the register file by
32%. By reducing execution time, DAC reduces static energy
consumption by 29%.

The overhead of DAC is only 0.96% of the dynamic energy
consumption. Most of the overhead comes from the expansion
of affine tuples. The expansion units are efficient since they
typically use only one or two ALU operations to expand an
affine tuple for a given warp.

6 CONCLUSIONS
In this paper, we have shown how two distinct ideas—affine
computations and Decoupled Access Execution (DAE)—can be
synergistically combined to greatly improve the performance
and energy efficiency of SIMT GPUs.

First, specialized support for affine computations on SIMT
GPUs has until now preserved the model in which a single
instruction stream executes on all warps, which limits the
redundancy reduction to within a single warp. By decoupling
the affine computations to a separate affine instruction stream,
DAC overcomes this limitation, allowing a single affine warp
to produce values for many non-affine warps and to reduce
warp instruction count.

Second, a naive implementation of DAE on GPUs would
imply a doubling of the number of threads, but because affine
computations represent such a large reduction in computation,
DAC focuses on affine memory accesses and adds one warp
per SM to significantly hide memory latency.

The result is a system that improves performance and energy
efficiency for both memory-intensive and compute-intensive
workloads, reducing total energy consumption by 20.2%, and
achieving a speedup of 40.7%.

Acknowledgments. We thank Don Fussell, Akanksha Jain,
and the anonymous referees for their valuable feedback on
early drafts of this paper. This work was funded in part by
NSF grants CNS-1543014 and DRL-1441009 and by a gift from
the Qualcomm Foundation.

REFERENCES
[1] AMD. 2012. AMD GRAPHICS CORES NEXT (GCN) ARCHITECTURE.

(2012). https://www.amd.com/Documents/GCN_Architecture_whitepaper.
pdf

[2] José-María Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. 2012.
Boosting Mobile GPU Performance with a Decoupled Access/Execute Frag-
ment Processor. In Proceedings of the 39th Annual International Symposium
on Computer Architecture (ISCA ’12). IEEE Computer Society, Washington,
DC, USA, 84–93. http://dl.acm.org/citation.cfm?id=2337159.2337169

[3] Krste Asanovic, Stephen W. Keckler, Yunsup Lee, Ronny Krashinsky, and
Vinod Grover. 2013. Convergence and Scalarization for Data-parallel
Architectures. In Proceedings of the 2013 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO) (CGO ’13). IEEE Computer
Society, Washington, DC, USA, 1–11. https://doi.org/10.1109/CGO.2013.
6494995

[4] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and
Tor M. Aamodt. 2009. Analyzing CUDA workloads using a detailed GPU
simulator. In 2009 IEEE International Symposium on Performance Analysis of
Systems and Software. 163–174. https://doi.org/10.1109/ISPASS.2009.4919648

[5] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for
Heterogeneous Computing. In Proceedings of the 2009 IEEE International

12

https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://dl.acm.org/citation.cfm?id=2337159.2337169
https://doi.org/10.1109/CGO.2013.6494995
https://doi.org/10.1109/CGO.2013.6494995
https://doi.org/10.1109/ISPASS.2009.4919648


Symposium on Workload Characterization (IISWC) (IISWC ’09). IEEE Com-
puter Society, Washington, DC, USA, 44–54. https://doi.org/10.1109/IISWC.
2009.5306797

[6] Sylvain Collange, David Defour, and Yao Zhang. 2010. Dynamic Detection
of Uniform and Affine Vectors in GPGPU Computations. In Proceedings
of the 2009 International Conference on Parallel Processing (Euro-Par’09).
Springer-Verlag, Berlin, Heidelberg, 46–55. http://dl.acm.org/citation.cfm?
id=1884795.1884804

[7] Neal Clayton Crago and Sanjay Jeram Patel. 2011. OUTRIDER: Efficient
Memory Latency Tolerance with Decoupled Strands. In Proceedings of
the 38th Annual International Symposium on Computer Architecture (ISCA
’11). ACM, New York, NY, USA, 117–128. https://doi.org/10.1145/2000064.
2000079

[8] Roger Espasa and Mateo Valero. 1996. Decoupled vector architectures. In
Proceedings. Second International Symposium on High-Performance Computer
Architecture. 281–290. https://doi.org/10.1109/HPCA.1996.501193

[9] Syed Zohaib Gilani, Nam Sung Kim, and Michael J. Schulte. 2012. Power-
efficient Computing for Compute-intensive GPGPU Applications. In Pro-
ceedings of the 21st International Conference on Parallel Architectures and
Compilation Techniques (PACT ’12). ACM, New York, NY, USA, 445–446.
https://doi.org/10.1145/2370816.2370888

[10] John L. Hennessy and David A. Patterson. 2011. Computer Architecture, Fifth
Edition: A Quantitative Approach (5th ed.). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[11] Hyeran Jeon, Gunjae Koo, and Murali Annavaram. 2014. CTA-aware
Prefetching for GPGPU. Technical Report CENG-2014-08. Dept. of Electri-
cal Engineering, University of Southern California. http://ceng.usc.edu/
techreports/2014/Annavaram%20CENG-2014-08.pdf

[12] Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur
Mutlu, Ravishankar Iyer, and Chita R. Das. 2013. Orchestrated Scheduling
and Prefetching for GPGPUs. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA ’13). ACM, New York, NY, USA,
332–343. https://doi.org/10.1145/2485922.2485951

[13] Ji Kim, Christopher Torng, Shreesha Srinath, Derek Lockhart, and Christo-
pher Batten. 2013. Microarchitectural Mechanisms to Exploit Value Struc-
ture in SIMT Architectures. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA ’13). ACM, New York, NY, USA,
130–141. https://doi.org/10.1145/2485922.2485934

[14] Keunsoo Kim, Sangpil Lee, Myung Kuk Yoon, Gunjae Koo, Won Woo
Ro, and Murali Annavaram. 2016. Warped-preexecution: A GPU pre-
execution approach for improving latency hiding. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 163–175.

[15] Jaekyu Lee, Nagesh B. Lakshminarayana, Hyesoon Kim, and Richard
Vuduc. 2010. Many-Thread Aware Prefetching Mechanisms for GPGPU
Applications. In Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’43). IEEE Computer Society,
Washington, DC, USA, 213–224. https://doi.org/10.1109/MICRO.2010.44

[16] Yunsup Lee. 2016. Decoupled Vector-Fetch Architecture with a Scalarizing Com-
piler. Technical Report UCB/EECS-2016-117. EECS Department, University
of California, Berkeley.

[17] Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, Derek Lockhart,
Christopher Batten, and Krste Asanović. 2011. Exploring the Tradeoffs
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