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Abstract—

This paper shows that in the presence of data prefetchers,
cache replacement policies are faced with a large unexplored
design space. In particular, we observe that while Belady’s
MIN algorithm minimizes the total number of cache misses—
including those for prefetched lines—it does not minimize
the number of demand misses. To address this shortcoming,
we introduce Demand-MIN, a variant of Belady’s algorithm
that minimizes the number of demand misses at the cost of
increased prefetcher traffic. Together, MIN and Demand-MIN
define the boundaries of an important design space, with many
intermediate points lying between them.

To reason about this design space, we introduce a simple
conceptual framework, which we use to define a new cache
replacement policy called Harmony. Our empirical evaluation
shows that for a mix of SPEC 2006 benchmarks running on
a 4-core system with a stride prefetcher, Harmony improves
IPC by 7.7% over an LRU baseline, compared to 3.7% for
the previous state-of-the-art. On an 8-core system, Harmony
improves IPC by 9.4% compared to 4.4% for the previous
state-of-the-art.
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I. INTRODUCTION

Although caches and data prefetchers have been around
for decades [44], [LO], [21]], there has been surprisingly
little research on the interaction between the two. Most such
research focuses on identifying inaccurate prefetches so that
they can be preferentially evicted. More recent work [51]
also attempts to retain all hard-to-prefetch lines, but we argue
that there exists a much richer space of possible solutions
to explore.

We start by asking the question, what is the optimal cache
replacement policy if we assume the existence of a data
prefetcher? It would seem natural to look to Belady’s MIN
algorithm [3]] for guidance, since it provably minimizes the
number of cache misses, which in turn minimizes mem-
ory traffic. However, in the face of a prefetcher, Belady’s
algorithm is incomplete because it ignores the distinction
between prefetches and demand loads. Thus, it minimizes
the total number of misses, including those for lines brought
in by prefetches, but it does not minimize the number of
demand misses.

As an alternative to MIN, this paper introduces Demand-
MIN, a variant of Belady’s algorithm that minimizes the
number of demand misses at the cost of increased prefetcher
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Figure 1. Opportunity to improve upon MIN.

traffic. Unlike MIN, which evicts the line that is reused
furthest in the future, Demand-MIN evicts the line that is
prefetched furthest in the future—and then falls back on
MIN if no such line exists. For example, consider the ac-
cesses of line X in Figure [I] (which ignores accesses to other
lines). In the time interval between t=0 and t=1, Demand-
MIN would allow line X to be evicted, freeing up cache
space for other demand loads. Demand-MIN’s reduction in
demand misses can be significant: On a mix of SPEC 2006
benchmarks running on 4 cores, LRU yields an average
MPKI of 29.8, MIN an average of 21.7, and Demand-MIN
an average of 16.9. However, this improvement in demand
misses often comes with increased traffic. For example, in
our example above, Demand-MIN turns the prefetch at time
t=1 from a cache hit (under the MIN policy) into a DRAM
access.

What then is the best policy in terms of program per-
formance? We observe that MIN and Demand-MIN define
the extreme points of a design space, with MIN minimiz-
ing memory traffic, with Demand-MIN minimizing demand
misses, and with the ideal replacement policy often lying
somewhere in between. By plotting demand hit-rate (x-axis)
against memory traffic (y-axis), Figure 2] shows that different
SPEC benchmarks will prefer different policies within this
space. Benchmarks such as astar (blue) and sphinx (orange)
have lines that are close to horizontal, so they can enjoy
the increase in demand hit rate that Demand-MIN provides
while incurring little increase in memory traffic. By contrast,
benchmarks such as tonto (light blue) and calculix (purple)
have vertical lines, so Demand-MIN increases traffic but
provides no improvement in demand hit rate. Finally, the
remaining benchmarks (bwaves and cactus) present less
obvious tradeoffs.

Unfortunately, there are two difficulties in identifying the
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Figure 2. With prefetching, replacement policies face a tradeoff between
demand hit rate and prefetcher traffic.

best policy for a given workload. First, it is difficult to
know what the workload’s demand-hit-rate vs. increase-in-
traffic curve looks like (the curves in Figure 2] were produced
by simulating both the MIN and Demand-MIN solutions).
Second, even if we knew the point on the curve that offered
the best performance, it would be difficult to design a
replacement policy that would evict lines to reach that point.

To navigate the space between MIN and Demand-MIN,
this paper defines a simple new metric, Lines Evicted per
Demand-Hit (LED), which serves as a proxy for the slope
of the curves in Figure 2] This metric allows a policy to
dynamically select a point in the space between MIN and
Demand-MIN that is appropriate for a given workload. The
result is Flex-MIN, a variant of MIN that is parameterized to
represent different solutions within the space between MIN
and Demand-MIN[T]

Of course, Demand-MIN, Flex-MIN, and MIN are im-
practical because they rely on knowledge of the future, but
the Hawkeye Cache [15] shows how Belady’s MIN algo-
rithm can be used in a practical setting: The idea is to train
a PC-based predictor that learns from the decisions that MIN
would have made on past memory references; Hawkeye then
makes replacement decisions based on what the predictor has
learned. In this paper, we use the architecture and machinery
of the Hawkeye Cache (along with a small amount of added
hardware to measure LED values), but instead of learning
from Belady’s MIN algorithm, our policy learns from Flex-
MIN. The result is a new policy that we call Harmony.

This paper makes the following contributions:

« We demonstrate that Belady’s MIN algorithm is not
ideal in the face of prefetching, and we introduce the
Demand-MIN algorithm, which minimizes the number
of demand misses. Together, MIN and Demand-MIN
bracket a rich space of solutions.

IDespite its name, Flex-MIN is not optimal in any theoretical sense since
it is built on LED, which is a heuristic.

o Because different workloads prefer different points in
this design space, we introduce the Flex-MIN policy,
which uses the notion of Lines Evicted per Demand-
Hit (LED), described in Section to select an
appropriate point in the space for a given workload.

« We encapsulate these ideas in a practical replacement
policy, called Harmony, that in the presence of prefetch-
ing significantly improves upon the state-of-the-art.
Using the ChampSIM simulation infrastructure [24]], [[L]
with a Stride prefetcher and multi-programmed SPEC
2006 benchmarks, we show that on 4 cores, Harmony
improves IPC over LRU by 7.7%, compared with 3.7%
for an optimized version of the PACMan policy [51].
On 8 cores, Harmony sees 9.4% improvement over
LRU, while optimized PACMan sees 4.4% improve-
ment.

o We show that Demand-MIN, Flex-MIN, and Harmony
provide benefits for a variety of prefetchers. We also
provide insights and empirical results that characterize
the varying impact that prefetchers have on the tradeoff
between MIN and Demand-MIN.

This paper is organized as follows. The important new
ideas are concentrated in Section where we present the
Demand-MIN policy, and in Section [V-G| which provides
insights into the impact of prefetchers on Demand-MIN and
Flex-MIN. Section explains the largely straightforward
implementation of these ideas in the Hawkeye architecture,
and Section [V] evaluates our solution. Related Work resides
in its customary position in Section

II. RELATED WORK

We now put our work in the context of prior work. We
start by discussing variants of Belady’s algorithm and follow
with a discussion of practical replacement policies.

A. Variants of Belady’s MIN

Belady’s 1966 paper [3] presents the MIN cache replace-
ment algorithm for minimizing cache misses. Mattson et
al., propose a different replacement algorithm [29], along
with the first proof of optimality for cache replacement, but
Belady and Palermo’s 1974 paper proves that Belady’s MIN
and Mattson’s OPT are identical [4]]. More recently, Michaud
presents a new way to reason about the optimal solution [32]
and proves interesting mathematical facts about the optimal
policy. None of this work considers prefetches.

Variants of MIN in the presence of prefetching typically
focus on defining an optimal prefetching schedule based
on future knowledge. For example, Cao et al., propose two
strategies for approaching an optimal caching and prefetch-
ing strategy [5l], [25] for file systems. Temam et al. [49]
modify Belady’s MIN to generate an optimal prefetch sched-
ule that exploits both temporal and spatial locality. Our work
differs by focusing on the cache replacement policy while
assuming that the prefetcher remains fixed.



B. Practical Replacement Solutions

We now discuss practical cache replacement solutions,
starting with prefetch-aware replacement policies, which
is the subject of this paper. We then discuss advances
in prefetch-agnostic cache replacement solutions and their
implications for prefetch-aware cache replacement. Finally,
we discuss solutions that modify the prefetcher to improve
cache efficiency.

Prefetch-Aware Cache Replacement: Most previous
work in prefetch-aware cache replacement focuses on min-
imizing the cache pollution caused by inaccurate prefetch-
ers. Several solutions [47], [43] use prefetcher accuracy to
determine the replacement priority of prefetched blocks.
Ishii et al., instead use the internal state of the AMPM
prefetcher [12] to inform the insertion priority of prefetched
blocks [13]. PACMan [31] uses set dueling [38]], [37] to
determine whether prefetches should be inserted with high
or low priority. KPC [24] is a co-operative prefetching and
caching scheme that uses feedback on prefetcher accuracy
to determine whether incoming prefetches are likely to be
useful, and it uses feedback on prefetcher timeliness to
determine the level of the cache hierarchy at which to insert
the prefetch.

Like these solutions, Harmony also deals with inaccu-
rate prefetches: Flex-MIN, like all variants of MIN, dis-
cards inaccurate prefetches, because inaccurate prefetches
are always reused furthest in the future. Since Harmony
learns from Flex-MIN, Harmony learns to discard inaccurate
prefetches at the PC granularity.

However, inaccurate prefetches represent just a small part
of the Harmony strategy. The main goal of Harmony is to
evict lines that will be prefetched in the future. PACMan [51]
is the first work to state this goal, but PACMan uses a much
simpler scheme: It refrains from increasing the insertion
priority when a line receives a hit due to a prefetch. Thus,
there are two fundamental differences between PACMan and
Harmony. First, PACMan does not consider the tradeoff be-
tween hit rate and traffic but instead uniformly deprioritizes
all prefetch-friendly lines, resulting in large traffic overheads
(see Section [V-C). Second, PACMan deals with prefetched
lines, while Harmony deals with lines that are likely to be
prefetched in the future. Thus, PACMan is triggered only
on prefetches that hit in the cache, allowing PACMan to
handle just one of the three classes of references that we
define in Section By contrast, Harmony can assign low
priority to both demand loads and prefetches that are likely
to be prefetched again. Section[V-C| provides a more detailed
quantitative analysis of these differences, but we find that
on 4 cores, PACMan improves SHiP’s performance by only
0.3%.

Seshadri et al. [43]], claim that prefetches are often
dead after their first demand hit, so their policy demotes
prefetched blocks after their first hit. While this strategy is

effective for streaming workloads, it does not generalize to
complex workloads and sophisticated prefetchers. We find
that for SHiP+PACMan, this optimization provides only a
0.2% performance improvement on four cores.

Finally, unlike KPC’s replacement policy, which is ex-
plicitly co-designed to work only with its own prefetcher,
Harmony is designed to work with any prefetcher.

Advances in Cache Replacement: Much of the re-
search in cache replacement policies has been prefetcher-
agnostic [52], [40], [9], (26, [171], [37], (18], [23], (50, [8I,
(2], [38], [48].

Many replacement policies observe the reuse behavior
for cache-resident lines to modulate their replacement prior-
ity [18], [34], [27], [17], but by not distinguishing between
demand loads and prefetches, such solutions are susceptible
to cache pollution and are likely to mistake hits due to
prefetches as a sign of line reuse.

Recent solutions [50], [23[], [[15], [8], [18], [20] use load
instructions to learn the past caching behavior of demand
accesses. Such solutions can reduce cache pollution if they
distinguish between demand loads and prefetches and if
a load instruction is provided for each prefetch request.
For example, they can learn that prefetches loaded by a
certain PC are more likely to be inaccurate than prefetches
loaded by a different PC. Our Harmony solution builds on
Hawkeye [[15], which uses a PC-based predictor to provide
replacement priorities for prefetches. Our paper is the first
to use a PC-based predictor to determine whether a demand
load or a prefetch is likely to be prefetched again and to use
this information to insert such lines with a low priority.

Prefetcher-Centric Solutions: Finally, there are solu-
tions that reduce cache pollution by improving prefetcher
accuracy [14]], [22], [46] and by dynamically controlling the
prefetcher’s aggressiveness [47], [33], [53], [7], [35]. Such
solutions are likely to benefit from replacement policies that
intelligently balance prefetch-friendly and hard-to-prefetch
lines. In particular, such solutions increase available band-
width, providing more opportunities for policies such as
Flex-MIN and Harmony to trade off traffic for improved
demand hit rates.

III. DEMAND-MIN AND FLEX-MIN

This section defines our new Demand-MIN policy. We
first develop intuition by showing a concrete example of how
we can improve upon the MIN policy. We then describe the
Demand-MIN policy, followed by the Flex-MIN policy.

A. Limitations of Belady’s MIN algorithm

To see that Belady’s MIN algorithm does not minimize
demand misses, consider Figure [3] which shows an access
sequence with demand loads shown in blue and prefetches
shown in green.

For a cache that can hold 2 lines and initially holds lines
A and B, we see that Belady’s MIN algorithm produces two
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Figure 3. Belady’s MIN results in 2 demand misses.

misses. The first miss occurs at t=1, when line C is loaded
into a full cache. The MIN algorithm would evict A, which
is reused further in the future than B. The resulting cache
contains lines C and B, so the prefetch to line B at time t=2
and the demand reference to B at time t=3 both hit in the
cache. The second miss occurs at time t=4 when we load A.

Since MIN is optimal, we cannot do better than its two
misses, but we can reduce the number of demand misses.
The key observation is that B will be prefetched at time t=2,
so the demand reference to B at t=3 will hit irrespective of
our decision at time t=1, so we can decrease the number of
demand misses, as shown in Figure E} where at time t=1,
we evict B instead of A.

t=0 t=1 t=2 t=3 t=4
Load C  Prefetch LoadB Load A
B
Cache
Contents | AB) (A, C) | (A,B) (A,B) (A,B)
Evict B A hits
Miss Miss Hit Hit

Cache Capacity = 2

Figure 4. Demand-MIN results in 1 demand miss.

As a result, the prefetch to B at t=2 misses in the cache.
The subsequent demand reference to B at t=3 still hits, but
A now hits at t=4, which yields one more demand hit than
Belady’s MIN algorithm. Thus, this new caching strategy
still results in 2 misses, but it exchanges a prefetch hi for
a demand hit, resulting in just a single demand miss (to C).

In this simple example, our improvement in demand hits

2We define a prefetch hit to be a prefetch request that hits in the cache
and is not sent to memory.

did not increase overall memory traffic, but it is, of course,
possible to trade multiple prefetch hits for a single demand
hit, which can lead to extra prefetch traffic.

Note that even if MIN ignored prefetches, it would not
arrive at the Demand-MIN solution shown in Figure [} it
would still evict A at time t=1 because the load to A (t=4)
is further in the future than the load to B (t=3).

B. The Demand-MIN Algorithm

This section describes the Demand-MIN algorithm, along
with a conceptual framework for reasoning about the tradeoff
between MIN and Demand-MIN.

To minimize demand misses, we modify Belady’s MIN
algorithm as follows:

Evict the line that will be prefetched furthest in the
future, and if no such line exists, evict the line that
will see a demand request furthest in the future.

In the example in Figure i} we see that at time t=1, this
policy will evict B, which is prefetched furthest in the future.

Intuitively, Demand-MIN preferentially evicts lines that
do not need to be cached because they will be prefetched in
the future. Figure [5| shows the three classes of accesses that
Demand-MIN evicts to create room for demand loads:

o Shadowed Lines: We define a shadowed line to be a line
that is prefetched into the cache and whose next access
is a prefetch, as shown in Figure Eka). The second
prefetch can be either accurate or inaccurate.

o Prefetch-Friendly Lines: We define a prefetch-friendly

line to be a line that is brought into the cache by
a demand load and whose next access is an accurate
prefetch. (See Figure [5(b)).
These lines need not be cached to receive the sub-
sequent demand hit because the prefetcher will fetch
this line anyway. The importance of evicting these
lines is illustrated by the Venn diagram in Figure [6}
For single-core SPEC 2006 benchmarks, 31.3% of
lines are both cache-friendly and prefetch-friendly, and
34.6% are neither cache-friendly nor prefetch-friendly.
Demand-MIN improves hit rate by evicting lines in the
intersection of the Venn diagram (shown in dark gray)
to make room for lines that lie outside both circles
(shown in white).

e Dead Lines: We define a dead line (Figure Ekc)) to be
a line that is brought into the cache by a demand load
and whose next access is an inaccurate prefetch. Dead
lines represent spurious demand on the cache.

To reason about cache replacement in the presence of
prefetches, we now extend Hawkeye’s notion of a usage in-
terval [15]—defined to be the time between two consecutive
references to the same cache lineE]—to identify the endpoints
as being either a demand access (D) or a prefetch (P). Thus

3For example, in Figure a), the dashed line represents one usage
interval.



Opportunity Opportunity Opportunity
O = - ——— - — O = == ——— - — O === ——— - .
Prefetch X Prefetch X Load X Load X Prefetch X Load X Load X Inaccurate Prefetch to X
=0 t=1 t=2 =0 t=1 t=2 t=0 t=1
_ _  —
Time Time Time
(a) Shadowed Line (b) Prefetch-Friendly Line (c) Dead Line
Figure 5. Demand-MIN increases demand hit by evicting 3 classes of cache accesses.
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Figure 6. Demand-MIN increases demand hit rate by using space allocated
to prefetch-friendly lines (dark Gray) to instead cache hard-to-prefetch lines
(white space).

there are four types of usage intervals, namely, P-P, D-P, D-
D, and P-D. If we include open intervals, representing lines
that are never reused, there are two more types: P-open and
D-open.

Table [[] uses these extended usage intervals to illustrate
the uniqueness of Demand-MIN. The first four rows show
cases that are handled identically by MIN and Demand-
MIN. The first two types of intervals (D-D and P-D) are
cached by both MIN and Demand-MIN if there is room
in the cache, and the last two types (D-open and P-open)
are preferentially evicted by both MIN and Demand-MIN
because they are never reused. Since these intervals can be
handled correctly without distinguishing between demand
accesses and prefetches, state-of-the-art replacement poli-
cies, such as Hawkeye and SHiP, can handle these types of
intervals correctly.

Demand-MIN differs from MIN in its treatment of the
usage intervals shown in the last three rows. These D-P
and P-P intervals correspond to the three classes of accesses
shown in Figure 5] MIN considers these intervals for caching
even though they do not yield demand hits, but Demand-
MIN evicts these intervals to make room for other intervals
that can yield demand hits.

With this terminology, we see that Demand-MIN’s benefit
comes from evicting intervals that end with a prefetch, ie,
the P-P intervals (Figure[5(a)) and D-P intervals (Figure [5[b)
and (c)). For brevity, we collectively refer to P-P and D-P in-
tervals as *-P intervals. It is noteworthy that Demand MIN’s
benefit over MIN does not come from evicting inaccurate
prefetches, which appear as open P-open intervals.

Usage Interval Definition Cacheable | Cacheable by

by MIN Demand-MIN
D—-D Demand Reuse v v
P—-D Accurate Prefetch v v
D —open Scan X X
P —open Inaccurate Prefetch X X
P — Paccurate Shadowed Line v <

P 7Pinaccurate
1D) = I cargpavio Prefetch-Friendly Line v X
D — Pyaccurate Dead Line v X
Table I

UNLIKE MIN, DEMAND-MIN EVICTS ALL *-P INTERVALS.

1) On the Optimality of Demand-MIN: The proofs of
MIN’s optimality are rather lengthy [29], [30], [6], [41],
[28]], so rather than provide a formal proof of the optimality
of Demand-MIN, we instead give an informal argument.

The intuition behind Belady’s MIN algorithm is simple:
When faced with a set of eviction candidates, MIN chooses
the one that is referenced furthest in the future because (1)
the benefit of caching any of these candidates is the same,
namely, the removal of one cache miss in the future, but (2)
the opportunity cost is higher for lines accessed further in
the future, since they occupy the cache for a longer period of
time. Thus, MIN evicts the line with the largest opportunity
cost, which is the line that is reused furthest in the future.

But if the goal is to minimize the number of demand
misses, then we need to distinguish between lines that are
next referenced by a demand load and lines that are next
referenced by a prefetch. The caching of the former will
reduce the number of demand misses by one, whereas the
caching of the latter will not. Thus, Demand-MIN preferen-
tially caches lines that are next referenced by demand loads
over those that are next referenced by prefetches. And among
lines referenced by prefetches, it again evicts the line that
is prefetched furthest in the future, because that line has the
largest opportunity cost.

C. The Flex-MIN Algorithm

To realize a better tradeoff between demand hit rate and
traffic, we introduce the notion of a protected line, which
is a cache line that would be evicted by Demand-MIN but



not by Flex-MIN, because it would generate traffic without
providing a significant improvement in hit rate. We then
further modify Demand-MIN as follows:

Evict the line that is prefetched furthest in the
future and is not protected. If no such line exists,
default to MIN.

Thus, Flex-MIN explores the design space between MIN
and Demand-MIN. Flex-MIN is equivalent to MIN if all
lines are protected, and it is equivalent to Demand-MIN if
no lines are protected.

1) Protected Lines: Protected lines are lines that lie at
the beginning of *-P intervals and that if evicted would be
likely to increase traffic with little payoff in demand hit rate.
Thus, Flex-MIN protects these lines from being evicted.

Load X Load X Load X Load X

—_——

P, P, Py P, P,

(a) Ten *-P intervals must be
evicted to enable line X to be cached.

(b) Two *-P intervals must be
evicted to enable line X to be cached.

Figure 7. Protected lines can be identified by comparing the lengths of
*-P intervals and D-D intervals.

For example, the left side of Figure [/| shows a scenario
where ten *-P usage intervals (shown in green) would need
to be evicted to enable a single D-D interval (shown in
red) to be cached, clearly a poor tradeoff. By contrast, the
right side of Figure [/| shows a scenario where only two *-P
intervals need to be evicted to enable the D-D interval to
be cached, a much better tradeoff that yields one additional
demand hit at the cost of just two extra prefetches.

The examples in Figure |/| reveal two important insights.
First, it is more profitable to evict long *-P intervals than
short *-P intervals because both generate 1 prefetch request
(corresponding to the end of the interval), but their benefit
in terms of freed cache space is proportional to their interval
length. Second, the tradeoff between hit rate and traffic can
be estimated by comparing the lengths of D-D intervals that
can be potentially cached and the lengths of the *-P intervals
that can be potentially evicted.

Thus, we define a protected line to be a line that lies
at the beginning of a *-P usage interval whose length is
below some threshold. As we will explain in Section [[V]
the threshold can be computed using two counters that track
the average length of D-D intervals and *-P intervals.

IV. THE HARMONY REPLACEMENT POLICY

This section explains how we employ Flex-MIN as part
of a practical cache replacement policy called Harmony.
Flex-MIN, like MIN, is impractical because it requires
knowledge of the future, but the recently proposed Hawkeye
replacement policy [15] shows how MIN can be used as
part of a practical replacement policy, so Harmony takes
the same approach, replacing MIN with Flex-MIN, with the

key difference being the need to navigate the complex design
space introduced by prefetches.

For those unfamiliar with Hawkeye, we first review its
central ideas.

A. Background: Hawkeye

Hawkeye reconstructs Belady’s optimal solution for past
accesses and learns this optimal solution to predict the
caching behavior of future accesses. To compute the optimal
solution for past accesses, Hawkeye uses the OPTgen algo-
rithm [15]], and to learn OPTgen’s solution, Hawkeye uses a
PC-based predictor that learns whether load instructions tend
to load cache-friendly or cache-averse lines. Lines that are
predicted to be cache-friendly are inserted with high priority
into the cache, while lines that are predicted to be cache-
averse are inserted with low priority.

Cache
Access P N
Stream ! ! \. >

— OPTgen |

Insertion
Priority

Hawkeye
Predictor

Last Level
Cache

1 OPT

./ hit/miss

Computes OPT’s
decisions for the past

Remembers past OPT
decisions

Figure 8. Overview of the Hawkeye Cache.

Figure [8] shows the overall structure of Hawkeye. Its
main components are the Hawkeye Predictor, which makes
insertion decisions, and OPTgen, which simulates OPT’s
behavior to produce inputs that train the Hawkeye Predictor.

OPTgen: OPTgen determines whether lines would have
been cached if the optimal policy (MIN) had been used. The
key insight behind OPTgen is that for a given cache access
to line X, the optimal decision can be made when X is next
reused, because any later reference will be further in the
future and therefore a better eviction candidate for Belady’s
algorithm. Thus, OPTgen computes the optimal solution by
assigning cache capacity to lines in the order in which they
are reused.

To define OPTgen, we define a usage interval to be the
time period that starts with a reference to some line X and
proceeds up to (but not including) its next reference, X'.
If there is space in the cache to hold X throughout the
duration of this usage interval, then OPTgen determines that
the reference to X’ would be a hit under Belady’s policy.

For example, consider the sequence of accesses in Fig-
ure E], which shows X’s usage interval. Here, assume that the
cache capacity is 2 and that OPTgen has already determined
the A, B, and C can be cached. Since these intervals never
overlap, the maximum number of overlapping liveness inter-
vals in X’s usage interval never reaches the cache capacity,
so there is space for line X throughout the interval, and
OPTgen infers that the load of X’ would be a hit.



OPTgen can be implemented efficiently in hardware using
set sampling [39] and a simple vector representation of the
usage intervals [15].

Time
AccessSequence X A A B B C C X
i, Hit‘L
Cache Line 1

Cache Line 2 A|A|B|B|C]|C
Cache Contents with OPT policy

(Cache Capacity is 2 lines)

Figure 9. Intuition behind OPTgen.

The Hawkeye Predictor: The Hawkeye Predictor learns
the behavior of the OPT policy as applied to a long history
of previous memory references: If OPTgen determines that
a line would be a cache hit under the OPT policy, then the
PC that last accessed the line is trained positively; otherwise,
the PC that last accessed the line is trained negatively. The
Hawkeye Predictor has 2K entries per core, it uses 5-bit
counters for training, and it is indexed by a hash of the PC.

Cache Replacement: On every cache access, the Hawk-
eye Predictor predicts whether the line is likely to be cache-
friendly or cache-averse. Cache-friendly lines are inserted
with high priority, i.e., an RRIP value [17] of 0, and cache-
averse lines are inserted with an RRIP value of 7. When
a cache-friendly line is inserted in the cache, the RRIP
counters of all other cache-friendly lines are aged.

On a cache replacement, any line with an RRIP value of 7
(cache-averse line) is chosen as an eviction candidate. If no
line has an RRIP value of 7, then Hawkeye evicts the line
with the highest RRIP value (oldest cache-friendly line) and
detrains its corresponding load instruction if the evicted line
is present in the sampler.

B. Learning from Flex-MIN

Harmony modifies Hawkeye by learning from Flex-MIN
instead of MIN. We first describe how we modify OPTgen to
simulate Flex-MIN for past accesses, and we then describe
changes to the Hawkeye predictor that allow it to better learn
Flex-MIN’s solution. Harmony’s insertion and promotion
policies are identical to Hawkeye.

FlexMINgen: FlexMINgen determines the caching de-
cisions of the Flex-MIN policy. To simulate Flex-MIN,
we modify OPTgen to distinguish between demand loads
and prefetches, specifically, between *-P intervals and *-D
intervals.

FlexMINgen allows *-P intervals to be cached only if they
are shorter than a given threshold, because as explained in
Section the caching of short *-P intervals can avoid
significant prefetcher traffic. For *-D intervals, FlexMINgen
follows the same policy as OPTgen.

The threshold for caching *-P intervals is modulated
dynamically by computing the ratio of the average length of

D-D intervals that miss in the cache and the average length
of *-P intervals that are cache-friendly. We call this ratio
Lines Evicted per Demand-Hit (LED). Intuitively, the ratio
is a proxy for the slope of the line shown in Figure [2| and
approximates the average number of *-P intervals that need
to be evicted to enable a D-D interval to be cached. We
empirically find that the threshold should be set to 2.5 times
the LED value, which means that as the slope increases,
Flex-MIN will evict *-P intervals more conservatively.

To compute the LED value, Harmony uses four counters:

e DemandMiss;,q;: This counter tracks the total length of
all demand miss intervals. For every *-D interval that is
determined to be a miss by FlexMINgen, this counter
is incremented by the length of the interval.

o DemandMiss.oun:: This counter tracks the number of
demand miss intervals and is incremented by 1 for
every *-D interval that is determined to be a miss by
FlexMINgen.

o Supply;piq: This counter tracks the total length of all
cache-friendly *-P intervals. For every *-P interval,
FlexMINgen is probed to see if the *-P interval would
have hit in the cache; if the answer is yes, then this
counter is incremented by the length of the *-P interval.
This counter is incremented for all cache-friendly *-P
intervals irrespective of their length.

o Supplycouns: This counter tracks the number of cache-
friendly *-P intervals and is incremented by 1 for every
cache-friendly *-P interval.

In a multi-core environment, we compute the LED value
for each core and set each core’s threshold individually.
Since the length of usage intervals increases as the cache ob-
serves interleaved accesses from multiple cores, the thresh-
old is scaled linearly with the core count.

Harmony Predictor: The Harmony predictor learns
FlexMINgen’s solution for past accesses. It differs from
the Hawkeye predictor in two ways. First, it uses separate
predictors to learn Flex-MIN’s behavior for demand accesses
and prefetches. Second, to allow the predictor to learn that
long *-P intervals should not be cached, the predictors are
trained negatively when *-P intervals of length greater than
the threshold are encountered. In particular, for a *-P interval
that is longer than the threshold, the demand or prefetch
predictor for the PC that loaded the left endpoint of the
interval is negatively trained, and for a *-P interval that is
shorter than the threshold, the demand or prefetch predictor
is trained based on FlexMINgen’s decision. We find that
there is some benefit in tuning the aggressiveness with which
the predictors are trained negatively for long *-P intervals.

Hardware Overhead: Harmony adds 32 bytes of hard-
ware to Hawkeye (Hawkeye has a budget of 28KB [13]).
In particular, it needs four counters to compute the LED
value. The counters are updated using addition operations,
and the division operation to compute the LED value is
approximated using a shift operator.



L1 I-Cache 32 KB 8-way, 4-cycle latency

L1 D-Cache 32 KB 8-way, 4-cycle latency

L2 Cache 256KB 8-way, 8-cycle latency

LLC per core | 2MB, 16-way, 20-cycle latency
DRAM 13.5ns for row hits

40.5ns for row misses
800MHz, 3.2 GB/s for single-core,
and 12.8 GB/s for multi-core

2MB shared LLC

8MB shared LLC
16MB shared LLC

Single-core
Four-core
Eight-core

Table 1T
BASELINE CONFIGURATION.

V. EVALUATION

This section describes our empirical evaluation of
Demand-MIN, Flex-MIN and Harmony, as applied to the
last-level cache (LLC).

A. Methodology

Simulator: We evaluate our new policy using Champ-
SIM [24], [1], a trace-based simulator that includes an
out-of-order core model with a detailed memory system.
ChampSIM models a 6-wide out-of-order processor with a
256-entry reorder buffer and a 3-level cache hierarchy. It
models the memory effects of mispredicted branches and
includes a perceptron-based branch predictor [19].

The parameters for our simulated memory hierarchy are
shown in Table [} Caches include FIFO read and prefetch
queues, with demand requests having priority over prefetch
requests. MSHRs track outstanding cache misses, and if
MSHRs are not available, further misses are stalled.

The L1 cache includes a next-line prefetcher, and the
L2 cache includes a PC-based stride prefetcher. The L2
prefetcher can insert into either the L2 or the LLC. The
prefetcher is invoked on demand accesses only. For our
workloads, the L1 prefetcher achieves 49% accuracy, while
the L2 prefetcher achieves 63% accuracy. Together the
prefetchers achieve 53% coverage. To study the impact
of prefetchers, we also evaluate with two other state-
of-the-art prefetchers, namely, the Best Offset Prefetcher
(BO) [31] and the Access Map Pattern Matching (AMPM)
Prefetcher [12]].

The main memory is modeled in detail as it simulates data
bus contention, bank contention, row buffer locality, and
bus turnaround delays. Bus contention increases memory
latency. The main memory read queue is processed out of
order and uses a modified Open Row FR-FCFS policy. The
DRAM core access latency for row hits is approximately
13.5ns and for row misses is approximately 40.5ns. Other
timing constraints, such as tFAW and DRAM refresh, are
not modeled.

Workloads: To stress the LLC, we use multi-
programmed SPEC2006 benchmarks with 1, 4 and 8 cores.

For 4-core results, we simulate 4 benchmarks chosen uni-
formly randomly from among the 20 most replacement-
sensitive benchmarks, and for 8-core results, we choose 8
benchmarks chosen uniformly randomly. For each individual
benchmark, we use the reference input and trace the highest
weighted SimPoint [36], [11]]. Overall, we simulate 100 4-
core mixes and 50 8-core mixes.

For each mix, we simulate the simultaneous execution
of SimPoints of the constituent benchmarks until each
benchmark has executed at least 1 billion instructions. To
ensure that slow-running applications always observe con-
tention, we restart benchmarks that finish early so that all
benchmarks in the mix run simultaneously throughout the
execution. We warm the cache for 200 million instructions
and measure the behavior of the next billion instructions.

Metrics: To evaluate performance, we report the
weighted speedup normalized to LRU for each benchmark
combination. This metric is commonly used to evaluate
shared caches [23], [[L6], [45], [52]], [20] because it measures
the overall progress of the combination and avoids being
dominated by benchmarks with high IPC. The metric is
computed as follows. For each program sharing the cache,
we compute its IPC in a shared environment (IPCgpgureq)
and its IPC when executing in isolation on the same cache
(IPCgingie). We then compute the weighted IPC of the combi-
nation as the sum of IPCypgreq/IPCiingie for all benchmarks
in the combination, and we normalize this weighted IPC
with the weighted IPC using the LRU replacement policy.

It is difficult to measure IPC for MIN and its variants,
since they rely on knowledge of the future. We could apply
the optimal decisions computed from a previous simulation
to a re-run of the same simulation, but in a multi-core setting,
this approach does not work because replacement decisions
can alter the scheduling of each application, which will
likely result in a different optimal caching solution.

Therefore, for MIN and its variants, we compute the aver-
age Demand MPKI of all applications in the mix; Demand
MPKI is the total number of demand misses observed for
every thousand instructions. To measure traffic overhead, we
compute the overall traffic, including demand and prefetch
misses, and we normalize it to every thousand instructions,
yielding Traffic Per Kilo Instruction (TPKI).

Baseline Replacement Policies: We compare Har-
mony against PACMan [31], a state-of-the-art prefetch-
aware cache replacement policy. We also use as a baseline
PACMan + SHiP, an optimized version of PACMan that
uses SHiP [50] instead of PACMan’s original DRRIP [17]
policy. With respect to prefetches, PACMan + SHiP includes
two optimizations. (1) It uses a separate predictor to predict
the insertion priority for prefetches on a miss. (2) To
evict prefetch-friendly lines more quickly, it uses PACMan’s
policy of not updating the RRIP value on prefetch hits.
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Figure 10. Belady’s MIN minimizes traffic, not Demand-MPKI (results for multi-programmed SPEC 2006)

B. Demand-MIN and Flex-MIN

We first evaluate Demand-MIN and Flex-MIN. While
these are unrealizable algorithms, we can evaluate them in
a post-mortem fashion to measure demand miss rate and
prefetcher traffic.
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Figure 11. Flex-MIN achieves a good tradeoff between MIN and Demand-
MIN.
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Demand-MIN: The benefits of Demand-MIN are
shown in the left graph of Figure [I0] which compares the
MPKI of LRU, MIN, and Demand-MIN for 100 4-core
mixes of the SPEC2006 benchmarks. While Belady’s MIN
provides significantly lower MPKI than LRU (21.7 vs. 29.8),
Demand-MIN achieves even lower MPKI of 16.9.

The cost of Demand-MIN is shown in the right graph of
Figure [T0] which compares prefetcher traffic for these same
policies. We see that MIN achieves the lowest TPKI of 45.4,
while the average TPKI for Demand-MIN is as high as 79.4.
In fact, we see that the traffic-overheads of MIN-Demand
typically exceed that of LRU.

Flex-MIN: Figure [T1] plots both average MPKI (on the
left axis) and average TPKI (on the right axis), showing that
Flex-MIN achieves an excellent tradeoff, as it approaches the
miss rates of Demand-MIN and the traffic overhead of MIN.
In particular, Flex-MIN’s MPKI of 17.7 is closer to Demand-
MIN’s 16.9 than to MIN’s 21.7 (and is much better than
LRU’s 29.8). Flex-MIN’s TPKI of 60.1 is closer to MIN’s
45.5 than to Demand-MIN’s 79.4 (and is significantly better
than LRU’s 69.8).

Figure shows that the tradeoff between hit rate and
prefetcher traffic varies across mixes. For example, Fig-
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Figure 12. Tradeoff between Belady’s MIN and Demand-MIN is workload
dependent.

ures @ka) and (b) show mixes where Demand-MIN pro-
duces large traffic overheads without significant improve-
ments in hit rate, so in these cases, a solution close to
Belady’s MIN is most desirable. We see that Flex-MIN
picks attractive points for these mixes, selecting a point
midway between MIN and Demand-MIN in Figure [12(a)
and selecting a point close to MIN in Figure [[2[b), where
the tradeoff is much more skewed.

By contrast, Figures c) and (d) show mixes where
Demand-MIN achieves considerably better hit rates, and for
these mixes, a solution closer to Demand-MIN is likely to
give the best performance. Flex-MIN appropriately picks a
point close to Demand-MIN in Figure [I2c) and a point
midway between MIN and Demand-MIN in Figure [12(d).

From these results, we see that Flex-MIN is a good foun-
dation upon which to build a practical cache replacement
solution, which we now evaluate in the next section.

C. Harmony

On one core, Harmony improves performance by 3.3%
over LRU, PACMan+SHiP by 2.4% and PACMan by 1.6%.
On 4 cores, Harmony outperforms both PACMan and
PACMan+SHiP (see Figure [[3[left)), improving perfor-



* PACMan 4 PACMan+SHiP Harmony

25

20 1
€ s
2

A A

g 10 .-, L4 ik -
2 e Y I “A‘““
o 5 <A A A T g Adaags
E] 4 B 5 WY
3 X Xxx X x L A A s -
2 8220 PR 0 e
«n v & A Xy a”

5 Workload ID 4

-10

Figure 13.

mance by 7.7% over LRU, while PACMan and PAC-
Man+SHiP improve performance by 1.5% and 3.7%, re-
spectively. The average MPKI for PACMan, PACMan+SHiP
and Harmony are 27.8, 22.9, and 21.9, respectively, and the
average TPKI for the three policies are 68.0, 63.6, and 57.5.

On 8 cores (Figure [[3right)) Harmony sees a much
larger performance improvement of 9.4% over LRU, while
PACMan+SHiP improves performance by 4.4%. Harmony
performs better because it reduces both average MPKI (41.7
vs. 43.3 for PACMan+SHiP) and average TPKI (57.4 vs.
63.6 for PACMan+SHiP).
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Figure 14. Harmony’s advantage increases with more cores.

Figure [T4] shows that the performance gap between Har-
mony and SHiP+PACMan grows with higher core count.
There are two sources of Harmony’s advantage. First, in a
multi-core system, cache management decisions taken by
one core can significantly impact the cache performance
of other cores. Harmony considers the global impact of its
decisions by solving Flex-MIN collectively for all applica-
tions instead of solving it for each core in isolation, so it
successfully leverages the cache space freed by one applica-
tion to improve hit rates for other applications. Second, as
bandwidth becomes more constrained, Flex-MIN’s ability
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Harmony outperforms PACMan+SHiP and MPPPB on both 4 cores (left) and 8 cores (right).
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Figure 15. Harmony is more effective at retaining hard-to-prefetch lines
than PACMan.

to reason about the tradeoff between hit rate and traffic
becomes more important.

D. Understanding Harmony’s Benefits

To isolate Harmony’s and PACMan’s ability to deal
with prefetches, Figure [I5] compares PACMan+SHiP against
vanilla SHiP and compares Harmony against Hawkeye.
These results show the performance gain that comes from
(1) using a PC-based predictor for prefetch requests and (2)
evicting prefetch-friendly lines. We see that PACMan only
increases SHiP’s performance from 3.0% to 3.7%, while
Harmony improves Hawkeye’s performance from 3.3% to
7.7%. We further observe that for Hawkeye, PC-based
prediction alone achieves a 6.3% performance improve-
ment, and the prefetch-aware aspects of Harmony further
improve performance from 6.3% to 7.7%. (PACMan does
not combine well with Hawkeye, as it reduces Hawkeye’s
performance from 6.3% to 3.8%.)

Figure sheds insight into Harmony’s advantage. The
left graph plots PACMan+SHiP’s MPKI reduction over
vanilla SHiP on the x-axis and its traffic reduction over SHiP
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Figure 16. Our scheme (right) explores a larger and more attractive part of the design space than PACMan (left).

on the y-axis (each dot represents a workload mix). Simi-
larly, the right graph plots Harmony’s MPKI reduction and
traffic reduction over Hawkeye. We make two observations.
First, many blue dots in the left graph increase hit rate at
the expense of significant traffic (bottom right quadrant).
By contrast, fewer red dots in the right graph reside in that
quadrant, and in general, the red dots in the bottom right
quadrant provide a larger reduction in MPKI per unit traffic.
Second, if we focus on the positive cases in each graph,
Harmony explores a much larger part of the design space
than PACMan+SHiP, as it can reduce absolute MPKI by
up to 9 points and reduce traffic by up to 10 points, while
PACMan + SHiP sees a maximum MPKI reduction of 2.7
and a maximum traffic reduction of 0.9.

The smaller expanse of the blue points in the left graph
is not surprising, because of the three classes of references
shown in Figure 5] PACMan only optimizes the first class. In
particular, PACMan is triggered only when a prefetch hits
in the cache, which means that its benefit is restricted to
intervals that start with a prefetch.

The undesirable blue points in the left graph of Figure [T6]
can be explained by realizing that (1) PACMan does not
consider the tradeoff between hit rate and traffic in evicting
prefetch-friendly lines, so it is can increase prefetcher traffic
significantly for small improvements in demand hit rate,
and (2) PACMan uniformly deprioritizes all prefetches that
receive hits, so it can inadvertently evict useful P-D intervals.

E. Flex-MIN’s Impact on Performance

Because MIN requires knowledge of the future, we cannot
measure the IPC of it or its variants, but we can use
Harmony as a tool to measure their impact indirectly by
creating two new versions of Harmony, one that learns from
MIN and another that learns from Demand-MIN. We call
these versions Harmony-MIN and Harmony-Demand-MIN.
Figure shows that on 4 cores, Harmony outperforms
both Harmony-MIN and Harmony-Demand-MIN, achieving
a performance improvement of 7.7% over LRU, compared
with Harmony-MIN’s 6.3% and Harmony-Demand-MIN’s
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Figure 17. Three Versions of Harmony.

4.5%. Not surprisingly, Harmony achieves the best tradeoff
between hit rate and traffic, reducing MPKI by 26.6% and
reducing traffic by 9%. By contrast, Harmony-Demand-
MIN achieves the highest MPKI reduction of 26.6%, but
it increases traffic by 4.4%, while Harmony-MIN reduces
traffic by 6.4% but reduces MPKI by only 19.9%.
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Figure 18. A better predictor will shrink the gap between Harmony and
Flex-MIN.

Harmony Predictor Accuracy: While Harmony outper-
forms SHiP+PACMan (see Figure @]), it does not match the
behavior of Flex-MIN: Flex-MIN’s average MPKI is 17.7,
while Harmony’s is 21.9. And Flex-MIN’s traffic overhead
in TPKI is 60.1, while Harmony’s is 57.5.



Since Harmony learns from Flex-MIN, we conclude that
the MPKI gap stems from inaccuracy in Harmony’s pre-
dictor, which ranges from 80-90%, with an average across
all workloads of 87%. Thus, to match Flex-MIN, we would
need to improve Harmony’s predictor accuracy. Since an
inaccuracy of 13% results in a significant gap between
Harmony and Flex-MIN, we expect even small accuracy
improvements to have a large performance impact.

F. Comparison against CRC Entrants

We now compare Harmony against top submissions from
the 2" Cache Replacement Championship (CRC), using
the two configurations that included a prefetcher [1]. An
older version of Harmony won the championship, and the
solution presented in this paper improves upon that version
by exploring the design space between MIN and Demand-
MIN more completely and systematically.
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Figure 19. Harmony outperforms top submissions to the Cache Re-
placement Championship 2017. An older version of Harmony won the
championship.

Figure 19| compares Harmony against four CRC submis-
sions: SHiP++ (2" place), ReD (3'¢ place), as well as
MPPPB and Leeway, two solutions that have been previously
compared against Hawkeye [20], [8]]. For the single-core
configuration, Harmony’s performance is comparable to that
of other submissions, but with 4 cores its benefit over other
policies grows significantly.

To understand these results, observe that Harmony 1is the
only policy that treats prefetches as a first-class concern;
the others either treat demand accesses and prefetches identi-
cally or use existing heuristics [51], [42] to handle inaccurate
prefetches. Such heuristics can be tuned to perform well
in single-core scenarios, but they do not scale well to
multi-core systems, where different cores observe different
prefetcher accuracies, and where bandwidth contention adds
complexity that is not addressed by these heuristics.

G. Impact of the Prefetcher

To explore the impact of the prefetcher on Demand-MIN,
Flex-MIN, and Harmony, we now replace the baseline Stride
prefetcher with the winners of the last two Data Prefetching

Championship winners, namely, (1) the Access Map Pattern
Matching prefetcher (AMPM) [12] and (2) the Best Offset
Prefetcher (BO) [32]]. These prefetchers provide a range of
increasing coverage—63% for Stride, 71% for AMPM, and
73% for BO—and decreasing accuracy—83% for Stride,
75% for AMPM, and 68% for BO.
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Figure 20. Demand-MIN reduces MPKI for both BO and AMPM.

Impact on Demand-MIN and Flex-MIN: Figure
shows that Demand-MIN improves MPKI over MIN for
all three prefetchers. Flex-MIN continues to provide a good
tradeoff between MIN and Demand-MIN; Flex-MIN’s TPKI
is closer to MIN’s superior TPKI for all three prefetchers.
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Figure 21.  Distribution of D-D, P-D, D-P and P-P intervals for Stride
prefetcher, BO and ISB for 2 workload mixes.

These results show that Demand-MIN is beneficial for
prefetchers with different coverage and accuracy tradeoffs,
but interestingly, Figure [21| shows that Demand-MIN makes
different tradeoffs for each prefetcher, as the distribution of
*-P and *-D intervals depends on the prefetcher’s coverage
and accuracy. In particular, BO, the most aggressive of the
three prefetchers, has the highest proportion of *-P intervals,
which allows Demand-MIN to evict a larger number of *-
P intervals to accommodate hard-to-cache demand intervals.
Thus, Demand-MIN also shows the highest increase in TPKI
(83% over MIN) in Figure 20] By contrast, the Stride
prefetcher, the most conservative of the three prefetchers,
has the highest proportion of D-D intervals, providing the
greatest opportunity to cache demand intervals in lieu of *-P



intervals. Thus, Demand-MIN’s MPKI benefit (22.1% over
MIN) is the largest for the Stride prefetcher. Finally, AMPM
strikes a good balance between coverage and accuracy and
sees a good balance between D-D intervals and *-P intervals.

In general, Demand-MIN generates more traffic for more
aggressive prefetchers, such as BO, and it has greater
opportunity to reduce Demand MPKI for more conserva-
tive prefetchers, such as the Stride prefetcher. Along these
lines, Demand-MIN, and by extension Harmony, should
have greater MPKI benefits in the presence of prefetcher
throttling [47], [33l, [53], [7], [35]. Flex-MIN’s ability to
navigate the space becomes more important for aggressive
prefetchers where it becomes necessary to consider the cost
of Demand-MIN’s added traffic.

SHiP+PACMan M Harmony

BO

Stride AMPM
Figure 22. Harmony outperforms top submissions to the Cache Re-
placement Championship 2017. An older version of Harmony won the
championship.
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Impact on Harmony: Figure 22] shows that Harmony
outperforms PACMan+SHiP for all three prefetchers, achiev-
ing a 6.3% speedup for BO (vs. 3.3% for PACMan+SHiP)
and a 7.0% speedup for AMPM (vs. 3.5% for PAC-
Man+SHiP).

VI. CONCLUSIONS

Data caches and data prefetchers have been mainstays of
modern processors for decades, and while there has been
considerable work in modulating memory traffic from the
perspective of a prefetcher, we have shown in this paper
that the cache replacement policy can also play a role in
modulating memory traffic. In particular, we have introduced
a new cache replacement policy that selectively increases
memory traffic—in the form of extra prefetcher traffic—to
reduce the number of demand misses in the cache.

More specifically, we have identified a new design space
that resides between Belady’s MIN algorithm and our new
Demand-MIN algorithm. We have then shown that the best
solution often resides somewhere between the two extreme
points, depending on the workload. We have then introduced
the Flex-MIN policy, which uses the notion of LED values
to find desirable points within this design space.

Finally, we have shown how the Hawkeye Cache can
be modified to use Flex-MIN instead of MIN, yielding

the Harmony replacement policy. Our results show that
Harmony explores a larger design space than PACMan+SHiP
and that our solution scales well with the number of cores:
For a mix of SPEC2006 benchmarks running on 8 cores,
Harmony achieves an average speedup over LRU of 9.4%,
compared to 4.4% for PACMan+SHiP.
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