
Efficient Metadata Management for Irregular Data Prefetching

Hao Wu
Arm Research and

The University of Texas at Austin

Austin, Texas

haowu@cs.utexas.edu

Krishnendra Nathella
Arm Research

Austin, Texas

Krishnendra.Nathella@arm.com

Dam Sunwoo
Arm Research

Austin, Texas

Dam.Sunwoo@arm.com

Akanksha Jain
The University of Texas at Austin

Austin, Texas

akanksha@cs.utexas.edu

Calvin Lin
The University of Texas at Austin

Austin, Texas

lin@cs.utexas.edu

ABSTRACT

Temporal prefetchers have the potential to prefetch arbitrary memory

access patterns, but they require large amounts of metadata that must

typically be stored in DRAM. In 2013, the Irregular Stream Buffer

(ISB), showed how this metadata could be cached on chip and man-

aged implicitly by synchronizing its contents with that of the TLB.

This paper reveals the inefficiency of that approach and presents

a new metadata management scheme that uses a simple metadata

prefetcher to feed the metadata cache. The result is the Managed

ISB (MISB), a temporal prefetcher that significantly advances the

state-of-the-art in terms of both traffic overhead and IPC.

Using a highly accurate proprietary simulator for single-core

workloads, and using the ChampSim simulator for multi-core work-

loads, we evaluate MISB on programs from the SPEC CPU 2006 and

CloudSuite benchmarks suites. Our results show that for single-core

workloads, MISB improves performance by 22.7%, compared to

10.6% for an idealized STMS and 4.5% for a realistic ISB. MISB

also significantly reduces off-chip traffic; for SPEC, MISB’s traffic

overhead of 70% is roughly one fifth of STMS’s (342%) and one

sixth of ISB’s (411%). On 4-core multi-programmed workloads,

MISB improves performance by 19.9%, compared to 7.5% for ideal-

ized STMS. For CloudSuite, MISB improves performance by 7.2%

(vs. 4.0% for idealized STMS), while achieving a traffic reduction

of 11× (96.2% for MISB vs. 1082.7% for STMS).

KEYWORDS

Data prefetching, irregular temporal prefetching, CPUs

ACM Reference Format:

Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and Calvin

Lin. 2019. Efficient Metadata Management for Irregular Data Prefetching. In

ISCA ’19: ACM International Symposium on Computer Architecture, June

22–26, 2019, Phoenix, Arizona, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA ’19, June 22–26, 2019, Phoenix, Arizona, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Data prefetchers are critical components of modern memory systems,

and today’s microprocessors typically contain multiple prefetchers,

primarily for regular or strided memory accesses. In terms of com-

mercial impact, the greatest potential for growth resides in the area

of temporal prefetchers. Because these prefetchers learn pairs of

correlated addresses, they can learn arbitrary memory access pat-

terns, including those from highly irregular memory access streams.

Unfortunately, the need to memorize pairs of correlated addresses

leads to enormous amounts of metadata that must be stored off chip,

so a critical issue is the management of metadata to minimize traffic

overhead and access latency [1–3].

For GHB-based prefetchers [4], Wenisch, et al. [2] address this

problem by probabilistically updating metadata and by amortizing

off-chip lookup over many prefetch requests. Unfortunately, these

prefetchers still access significant amounts of off-chip metadata

(see Section 5.2). Moreover, while caches are a common method

of reducing both latency and traffic, these prefetchers do not lend

themselves to metadata caching because of the poor temporal locality

of GHB metadata [2, 5].

Jain and Lin’s Irregular Stream Buffer (ISB) introduces a metadata

representation that allows ISB to cache portions of its metadata on

chip.1 ISB’s metadata is cacheable because the metadata maps each

physical memory address to a new structural address, such that two

temporally correlated physical addresses are assigned consecutive

structural addresses (see Figure 1). Of course, address mappings can

be easily cached, just as they are cached in a TLB.

ISB’s metadata cache is managed implicitly by the TLB: When

a TLB entry is brought in from DRAM, its corresponding ISB

metadata is also brought in, and when a TLB entry is evicted, the

corresponding metadata is written to DRAM. Thus, in theory, the

latency of metadata access is hidden by the high cost of a TLB

eviction.

Unfortunately, ISB’s metadata management scheme suffers from

three deficiencies:

• It fetches large amounts of useless metadata (90% of its

loaded metadata is never used), which leads to poor meta-

data cache efficiency (30% hit rate) and high metadata traffic

overhead (411% traffic overhead for irregular SPEC 2006

workloads).

1As discussed in Section 3, this new metadata representation also enables ISB to use a
technique known as PC localization [3], which significantly improves both coverage
and accuracy.

ISCA ’19, June 22ś26, 2019, Phoenix, Arizona, USA Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and Calvin Lin

• It does not scale to large page sizes. Because the size of the on-

chip cache grows with the page size, ISB is infeasible for huge

pages (2MB to 1GB in size), which are orders of magnitude

larger than the standard 4K page, and which are important for

many programs that have large memory footprints.

• It does not work for modern two-level TLBs. If the metadata

cache is synchronized with the L1 TLB, the latency of L2

TLB hits is too short to hide the latency of off-chip metadata

requests. If the metadata cache is synchronized with the L2

TLB, the metadata cache would be impractically large—on

the order of 200-400KB.

In this paper, we introduce a new metadata management scheme

for ISB that addresses all three deficiencies. Instead of piggybacking

off of the TLB, our new scheme uses a simple metadata prefetcher

to load the metadata cache, and it uses an LRU replacement policy

to evict lines from the metadata cache.

There are three key insights behind our metadata management

scheme. First, TLB-based cache management is wasteful because

metadata for a physical page, which includes 64 consecutive physical-

to-structural mappings, typically exhibits poor spatial locality, yield-

ing metadata cache utilization of about 10%. Thus, metadata should

be cached at a finer granularity. Second, because structural addresses

are temporally ordered, the structural address space has precisely

the information that is needed to fill the metadata cache with useful

entries ahead of time. Thus, we prefetch metadata entries by us-

ing next-line prefetching for structural-to-physical mappings. Third,

many off-chip metadata requests are to addresses that have not been

seen before, so no metadata exists for these addresses. Thus, we

use a Bloom filter to record the physical addresses that have associ-

ated metadata; by checking the Bloom filter before issuing metadata

prefetches, we dramatically reduce the number of metadata requests

for unmapped physical addresses.

This paper makes the following contributions:

• We introduce the Managed ISB (MISB), which represents the

next step in the evolution of prefetcher metadata management,

as it includes a metadata cache that is filled by a simple

metadata prefetcher.

– Contrary to previous reports [1, 2, 5], we show that meta-

data for temporal prefetchers can be effectively cached.

For a 32KB on-chip budget, MISB’s fine-grained meta-

data cache achieves hit rates of 66%, twice that of ISB’s

metadata cache.

– We find that for temporal prefetchers, metadata caching

and metadata prefetching work synergistically to provide

high coverage and low overhead.

• We show that our new metadata management scheme allows

MISB to be commercially viable.

– MISB’s off-chip traffic overhead is reduced to 70%, com-

pared with ISB’s overhead of 411%, a reduction of 5.9×.

– MISB’s metadata management scheme scales to huge pages

and 2-level TLBs. For example, on a system with 2MB

pages, where ISB gets no performance benefits, MISB sees

a 25.5% speedup.

• We evaluate MISB using a highly accurate proprietary sim-

ulator for single-core simulations and using the ChampSim

simulator for multi-core simulations. We show that MISB

significantly advances the state-of-the-art for a variety of

workloads.

– For irregular SPEC2006 benchmarks running on a single

core, MISB improves IPC by 22.7% over a baseline that

performs no prefetching, compared to 4.5% for ISB, 10.6%

for an idealized STMS2 and 6.3% for the Best Offset (BO)

prefetcher [6].

– For irregular SPEC2006 benchmarks running on a 4-core

multi-programmed system, MISB improves IPC by 19.9%,

whereas idealized STMS and Domino improve IPC by

8.8% and 9.6% respectively.

– For CloudSuite server workloads running on multiple cores,

MISB sees IPC improvements of 7.2%, compared with

4.0% for idealized STMS and 3.9% for idealized Domino.

Thus, contrary to prior reports [5], we show that PC local-

ization is beneficial for server workloads.

– We find that MISB works well as a hybrid along with BO

and SMS, since its benefits are largely orthogonal to those

of BO and SMS.

This paper follows a standard organization. We first describe

related work (Section 2) and background material (Section 3), be-

fore presenting our solution (Section 4), our empirical evaluation

(Section 5), and conclusions (Section 6).

2 RELATED WORK

We now summarize related work in irregular prefetching and then

compare our metadata management scheme with those of other

temporal prefetchers.

2.1 Irregular Prefetchers

Irregular memory access patterns, such as those produced by pointer-

based code and indirect array accesses, are difficult to prefetch

because they do not follow simple stride-like patterns. One class of

solutions employs the compiler to insert prefetch instructions [7, 8]

for linked data structures, but these solutions suffer from poor time-

liness. Hardware solutions that detect and prefetch pointers [9–12]

are timely but suffer from poor accuracy. Other hardware prefetchers

build specialized solutions for a limited class of irregular accesses.

For example, the Spatial Memory Stream (SMS) prefetcher [13]

targets irregular spatial footprints that repeat across memory regions,

and the Indirect Memory Prefetcher (IMP) targets indirect array

accesses [14].

Temporal prefetchers—the subject of this paper—memorize pairs

of memory addresses that are correlated with each other. Joseph and

Grunwald first exploited temporal correlation by using a Markov

table [15] to record a list of possible successors for each memory ref-

erence. In 2001, Chilimbi et al., observed that correlated addresses

can form long sequences, whose length can vary from two to sev-

eral hundred [16, 17]. To exploit variable length temporal streams,

Wenisch et al.’s STMS prefetcher [2] replaces the Markov table

with the GHB, which records past memory accesses in a large FIFO

buffer that is accessed using an Index Table, which points to the

last occurrence of a given memory address. Domino improves the

2Our idealized STMS prefetcher incurs no latency and consumes no bandwidth for
metadata accesses; a similarly idealized ISB outperforms STMS.

Efficient Metadata Management for Irregular Data Prefetching ISCA ’19, June 22ś26, 2019, Phoenix, Arizona, USA

predictability of STMS by indexing the GHB with the past two ad-

dresses instead of one [5]. The Irregular Stream Buffer [3] replaces

the GHB with a new organization that enables it to find correlated

address pairs within PC-localized streams instead of the global miss

stream, providing better coverage and accuracy. Finally, Spatial

Temporal Memory Streaming (STeMS) [18] integrates temporal

prefetchers with spatial prefetchers (SMS) to prefetch both spatial

and temporal access patterns; the ideas in STeMS and MISB are

largely orthogonal.

2.2 Metadata Management

Regardless of their organization, all temporal prefetches have

megabytes of metadata that must be maintained off-chip. Wenisch et

al., identify three key goals in managing this metadata [2]: (1) low

lookup latency, (2) bandwidth-efficient lookups, and (3) bandwidth-

efficient updates to off-chip metadata. Many solutions have been

proposed to hide the latency of off-chip metadata accesses, but with

a few notable exceptions [2], surprisingly little has been done to

address the large traffic overhead of accessing off-chip metadata.

Traditional table-based methods, such as Markov tables [15],

suffer from long lookup latency and high metadata read/write traffic

because they must access off-chip metadata for each individual

prefetch request. To hide latency, some tables store in each entry

the entire stream instead of a single neighbor [19, 20], but these

schemes are complicated by the high variance of temporal stream

lengths [16, 21].

GHB-based methods [2, 5], including STMS and Domino, hide

latency for variable length temporal streams by leveraging the tem-

poral nature of the history buffer. In particular, STMS [2] amor-

tizes the cost of accessing off-chip metadata by bringing in long

prefetch sequences on every lookup. It further reduces metadata

traffic by probabilistically dropping metadata writes at the cost of

lower prefetch coverage. In spite of these optimizations, GHB-based

solutions incur significant metadata traffic (see Section 5).

Finally, the Irregular Stream Buffer (ISB) [3] hides metadata

lookup latency by caching a portion of the metadata in a small on-

chip cache, which is synchronized with the contents of the TLB.

Unfortunately, ISB also suffers from high traffic because most of the

metadata that it fetches on a TLB miss is not utilized while it resides

in the metadata cache. Furthermore, ISB’s TLB synchronization

scheme does not scale to 2-level TLBs and large pages, as it would

require an infeasible amount of on-chip storage (200-400 KB for

2-level TLBs and several MBs for large pages) to store metadata for

all TLB-resident data.

MISB differs from prior metadata management schemes in three

ways. First, it dramatically reduces traffic by improving the utiliza-

tion of ISB’s metadata cache and by decoupling metadata cache

management from the TLB. Significantly, the GHB is difficult to

cache because the history buffer is a large FIFO buffer whose entries

are not reused for long periods of time [2, 5]. Thus, no prior temporal

prefetcher, including ISB, has been able to use metadata caching as

an effective tool for reducing metadata traffic. Second, MISB uses

metadata prefetching to hide the latency of off-chip metadata ac-

cesses. STMS [2] also fetches its metadata ahead of time by packing

multiple entries within a cache lines, but MISB extends the notion

of metadata prefetching to multiple cache lines. Finally, MISB is the

first to filter useless metadata traffic using a Bloom filter.

Finally, Burcea et al.’s Predictor Virtualization [22] includes an

on-chip metadata cache for the spatial SMS prefetcher [13]. MISB

instead addresses metadata management for temporal prefetchers,

which is a harder problem, because temporal prefetchers have orders

of magnitude more metadata than SMS. Moreover, we find that

for temporal prefetchers, metadata caching alone is insufficient, as

accurate metadata prefetching is needed to hide latency.

3 BACKGROUND

We now describe in more detail the two prominent methods of

organizing metadata for temporal prefetchers, and we discuss their

implications for metadata cacheability.

A B C X Y X Y X Y A B C

Physical

Address

Structural

Address

A 19

B 20

C 21

X 22

Y 23

GHB

A

B

C

X

Y

X

Y

X

Y

A

Temporal Stream:

 (a) GHB (b) ISB

Figure 1: Metadata for GHB (left) and ISB (right).

STMS: Global History Buffer. The Global History Buffer (GHB)

records all memory references in a circular FIFO buffer. Figure 1

shows how the GHB stores repeated occurrence of a temporal stream.

On the second access to A, STMS retrieves the portion of the GHB

from the last occurrence of A (entry 0 in our example) and issues

prefetches for B. The GHB is then updated by appending A at the end.

Thus, GHB records temporal information, and its size is proportional

to the number of dynamic memory accesses.

To locate the last instance of A, the GHB is accompanied by an

Index Table. For each memory address, the Index Table contains

the GHB pointer corresponding to its last access. Thus, the size of

the Index Table is proportional to the number of unique memory

accesses.

ISB: Structural Address Space. The ISB maps correlated physical

addresses to consecutive addresses in a new address space called the

structural address space. Thus, for ISB, a temporal stream is a se-

quence of consecutive structural addresses that can be prefetched us-

ing a next line prefetcher (see Figure 1). ISB’s metadata thus consists

ISCA ’19, June 22ś26, 2019, Phoenix, Arizona, USA Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and Calvin Lin

of mappings from physical to structural addresses (PS mappings)

and mappings from structural to physical addresses (SP mappings).

Figure 1 illustrates ISB’s operation: When A is accessed the

second time, ISB finds the PS mapping for A (19), predicts structural

address 20 for prefetching, and finds the SP mapping for structural

address 20 to generate the actual prefetch.

ISB’s organization has two benefits. First, it can combine address

correlation with PC-localization, which helps improve coverage and

accuracy; PC-localization is a technique that segregates the global

stream into sub-streams for each PC, such that each sub-stream is

more predictable. Thus, addresses are considered to be correlated

only if they appear consecutively in the PC-localized sub-stream.

Second, ISB’s metadata can be cached in on-chip metadata caches.

ISB manages its PS cache and SP cache by synchronizing them with

the contents of the TLB.

Metadata Caching. It is commonly believed that metadata for

temporal prefetchers cannot be cached because the long reuse dis-

tance of metadata entries leads to poor temporal locality [2, 5]. We

argue that metadata for temporal prefetchers can be cached if orga-

nized appropriately.

The GHB is difficult to cache for two reasons. First, it is organized

as a circular time-ordered buffer, where the meaning of each buffer

entry depends on its position relative to the other entries of the GHB,

so it is difficult to cache a portion of the GHB without losing this

positional information. Second, even if the GHB could be modified

to support piecewise caching, it stores many redundant entries, which

increase the reuse distance of individual GHB entries. For example,

in Figure 1, the first GHB entry for A at index 1 will be accessed

after several accesses to X and Y, each of which create a new entry

in the GHB. Thus, to cache A’s entry, we would need a GHB cache

with 12 entries (and an Index Table with 5 entries). We find that

for SPEC and CloudSuite workloads, the GHB reuse distance is

typically in the hundreds of thousands.

By contrast, ISB’s mappings are not redundant: Each physical

address maps to one structural address, and each structural address

maps to one physical address. For the example in Figure 1, ISB

assigns X and Y structural addresses 100 and 101, so it will have a

total of 5 PS entries and 5 SP entries. For our evaluated workloads,

we find that the number of entries in the SP cache is 6× smaller than

those in the GHB, which translates to shorter reuse distances in the

SP cache.

4 OUR SOLUTION

An effective metadata management scheme has two key goals: (1)

hide the latency of off-chip metadata accesses so that prefetch de-

cisions are not delayed waiting for off-chip metadata to arrive; (2)

minimize the traffic overhead of temporal prefetching, considering

both reads and writes.

To address these goals, MISB’s metadata management scheme has

three components—(1) a metadata cache, (2) a metadata prefetcher,

and (3) a metadata filter that avoids issuing spurious metadata

requests—that together allow MISB to judiciously manage metadata.

We now describe each component in more detail.

CPU

L1

L2

LLC

Training
Unit

PS Cache

SP Cache

Bloom
Filter

SP
Mapping

PS
Mapping

Regular Data

MISB MetadataOffchip Memory

Prefetch Candidates

PC, Phys Addr

of

L2 Misses &

Prefetch Hits

Evictions

Metadata
Prefetch
Engine

Figure 2: Overview of System with MISB Prefetcher

Metadata Caching. Metadata caching is important because on-

chip metadata accesses have minimal latency and do not incur off-

chip traffic. Thus, like ISB, MISB has two on-chip caches that store

a small portion of its overall off-chip metadata. In particular, the

PS cache stores mappings from physical addresses to structural

addresses, while the SP cache stores structural-to-physical address

mappings. However, unlike ISB, MISB manages its PS and SP

caches at a fine granularity to ensure that the metadata cache is

utilized efficiently. In particular, each logical metadata cache line in

MISB’s PS and SP caches holds one mapping, and on an eviction,

the least recently used mapping is evicted. This fine granularity

ensures that only useful mappings are retained. As explained in

Section 3, such fine-grained caching is not possible with GHB-based

prefetchers [2, 5] and was not used with ISB [3].

Metadata Prefetching. While caches reduce the latency and traffic

for many metadata requests, caches alone cannot hide the latency of

all metadata accesses, so to further hide latency, MISB includes a

metadata prefetcher. The key insight behind this prefetcher is that

because temporal streams are laid out sequentially in the structural

address space, metadata can be accurately prefetched by deploying

a simple next-line prefetcher on the SP cache. Significantly, on

PS and SP metadata cache misses, MISB gets prefetching benefits

from fetching a metadata cache line with 8 mappings. Because

our metadata prefetching relies on the highly accurate temporal

information in the structural address space, our metadata prefetching

is also highly accurate.

While caches handle the latency and traffic concerns for many

metadata requests, caches alone cannot hide the latency of all meta-

data accesses, so to further hide latency, MISB includes a metadata

prefetcher. The key insight behind this prefetcher is that because

temporal streams are laid out sequentially in the structural address

space, metadata can be accurately prefetched by deploying a simple

next-line prefetcher on the SP cache. Significantly, on PS and SP

metadata cache misses, MISB gets prefetching benefits from fetch-

ing a metadata cache line with 8 mappings. Because our metadata

prefetching relies on the highly accurate temporal information in

the structural address space, our metadata prefetching is also highly

accurate.

Efficient Metadata Management for Irregular Data Prefetching ISCA ’19, June 22ś26, 2019, Phoenix, Arizona, USA

X 284

Struct
Addr
100A

Phys
Addr

Y285

102 C

Phys
Addr
B101

Struct
Addr

1

Trigger

Access: M
Miss

PS Load

to M
1023M

X 284

Struct
Addr
100A

Physl
Addr

M1023

Y285

102 C

Phys
Addr
B101

Struct
Addr

2

M maps

to 1023

Offchip req

returns
1023M

X 284

Struct
Addr
100A

Phys
Addr

M1023

Y285

102 C

Phys
Addr
B101

Struct
Addr

3

SP2 Prefetch

to 1025

SP1 Load

to 1024
1023M

X 284

Struct
Addr
100A

Phys
Addr

M1023

Y285

102 C

Phys
Addr
B101

Struct
Addr

4

Add to

Bloom

filter

Evict A

Bloom

Filter

Initiate

offchip write

Figure 3: MISB: PS and SP Transactions.

Metadata Filtering. Finally, we observe that misses in the MISB’s

PS cache generate significant amounts of spurious metadata traffic

because many PS load requests are to physical addresses for which

MISB has no mapping since they have never been seen before. In

particular, PS loads account for 65% of overall metadata traffic, and

half of these requests are found to be invalid. Such requests increase

traffic while providing no benefit. To filter these requests, MISB

uses a Bloom Filter [23], which is a storage-efficient probabilistic

data structure for tracking set membership. In particular, when a

new PS mapping is written to off-chip storage, the mapping is added

to a Bloom filter. Future PS misses are sent to memory only if the

physical address is found in the Bloom filter. Because Bloom filters

do not have false negatives, MISB does not filter any useful PS

requests, but because Bloom filters can have false positives, they do

admit useless PS requests. In Section 5.4, we analyze the impact of

of the Bloom filter’s inaccuracy on MISB.

4.1 Overall Operation

Figure 2 shows the overall design of MISB. The Training Unit finds

correlated addresses within a PC-localized stream and assigns them

consecutive structural addresses. On-chip mappings are stored in the

PS and the SP caches, and on eviction, they are written to the corre-

sponding off-chip PS and SP tables. The Bloom filter tracks valid

PS mappings and filters invalid off-chip requests for PS mappings.

Conceptually, MISB’s overall training and prediction algorithms

are similar to ISB’s, but they differ significantly in the way that

MISB manages the movement of metadata between the on-chip

metadata caches and off-chip metadata storage. We now describe

MISB’s metadata management scheme and its interactions with

ISB’s training and prediction algorithms.

Prediction. On a prediction, MISB first queries the on-chip PS

cache with the trigger physical address. If the PS request hits, MISB

predicts prefetch requests for the next few structural addresses. If

the PS request misses, MISB issues an off-chip PS load request,

delaying the prediction until the request completes. For example,

in Figure 3- 1 , the trigger address M misses in the PS cache and

initiates a PS load for M. When the request completes, the new

mappings are inserted into both the PS and SP caches, as indicated

by the shaded entries in Figure 3- 2 .

Regardless of whether the PS load hits or misses in the cache,

when we find its structural address s, we issue a data prefetch request

for structural address s+1, which causes MISB to query the on-chip

SP mapping for s+ 1 (structural address 1024 in Figure 3- 3). If

found, a data prefetch for the corresponding physical address is

issued. If not found, the predicted structural address s+1 is placed

in a small (32-entry) buffer and an SP1 load request is issued to

off-chip memory. At the same time, future requests to structural

addresses s+2, s+3 and so on are anticipated with the issuance of

SP2 prefetch requests. For example, in Figure 3- 3 , an SP2 prefetch

request is issued for structural address 1025, assuming a metadata

prefetch degree of 1. The degree of metadata prefetching can be

tuned, and like PS requests, each SP request carries mappings for 8

consecutive structural addresses. SP requests also fill both the PS and

SP caches. In Section 5.4, we show that our metadata prefetching

scheme improves hit rates for both PS and SP caches.

Training. MISB’s training is similar to ISB’s training algorithm.

The Training Unit keeps track of consecutive memory references for

a given PC and assigns PC-localized correlated addresses consecu-

tive structural addresses. The on-chip PS and SP caches are updated

with newly assigned mappings, and if mappings change, they are

marked dirty so that they can be written to off-chip memory.

Metadata Organization. As shown in Figure 3, MISB’s on-chip

metadata caches are organized at a fine granularity, where each cache

entry holds one mapping (8 bytes). A fine-grained organization en-

sures better metadata cache efficiency because individual mappings

can be retained and evicted based on their usefulness. For example,

if one portion of the stream is more likely to be reused than another,

then our metadata cache can selectively retain mappings for the first

portion and discard mappings for the second portion. To maximize

off-chip bandwidth utilization, off-chip requests are issued at the

granularity of 64 bytes (or 8 mappings). Unless specified otherwise,

our metadata caches are 8-way set-associative.

Unlike ISB, both the PS caches and SP caches are managed using

an LRU policy, which allows the PS and SP caches to retain the

mappings that see the most utility in the respective caches. For

example, in Figure 3, for the stream A, B, C, the PS Cache has the

physical to structural mapping for A, and the SP cache has structural

to physical mappings for B and C, but not A. Both our PS and SP

caches are writeback caches, so dirty evictions in these caches result

in an off-chip store request.

Finally, our off-chip storage includes two tables: The PS Table

and the SP Table. PS loads are served by the PS Table, while SP1

loads and SP2 prefetches are served by the SP Table. By contrast,

since ISB does not need the SP Table for prefetching, ISB maintains

ISCA ’19, June 22ś26, 2019, Phoenix, Arizona, USA Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and Calvin Lin

just the off-chip PS Table and uses the PS entries to construct the

on-chip SP table.

Bloom Filter. As shown in Figure 3- 4 , on an off-chip store

request from the PS cache, the corresponding store address is added

to the Bloom filter to indicate that an off-chip mapping exists for

this physical address. The Bloom filter is then probed on future PS

loads, and the load is issued only if the Bloom filter confirms that a

mapping will exist in off-chip memory.

An ideal Bloom filter with infinite resources can eliminate all

false positives, but with limited resources, the Bloom filter produces

false positives. To reduce false positives, we provision 17KB for

the Bloom filter and use the h3 hash [24], which provides a good

tradeoff between space efficiency and traffic. For more bandwidth-

constrained environments, the Bloom filter budget can be increased

to further reduce traffic.

5 EVALUATION

5.1 Methodology

For single-core configurations, we evaluate MISB using a propri-

etary cycle-level simulator that is correlated against the RTL of

commercially-available CPU designs. This highly accurate and flexi-

ble simulator is developed and maintained by a team of engineers.

Our generic CPU model implements the ARMv8 AArch64 ISA and

uses the configuration shown in Table 1. The simulator employs a

simple fixed-latency memory model, but it models bandwidth con-

straints accurately and stalls the execution accordingly. Our small

page configuration uses pages sizes of 4KB, and our large page

configuration uses a page size of 2MB.

Core Out-of-order, 2GHz,

4-wide fetch, decode, and dispatch

128 ROB entries

TLB 48-entry fully-associative L1 I/D-TLB

1024-entry 4-way L2 TLB

L1I 64KB private, 4-way, 3-cycle latency

L1D 64KB private, 4-way, 3-cycle latency

Stride prefetcher

L2 512KB private, 8-way, 7-cycle latency

L3 2MB per core, shared, 16-way

12-cycle latency

DRAM Single-Core:

85ns latency, 32GB/s bandwidth

Multi-Core:

8B channel width, 800MHz,

tCAS=20, tRP=20, tRCD=20

2 channels, 8 ranks, 8 banks, 32K rows

32GB/s bandwidth total

Table 1: Machine Configuration

For multi-core configurations, we use ChampSim [25, 26], a

trace-based simulator that includes an out-of-order core model with

a detailed memory system. ChampSim’s cache subsystem includes

FIFO read and prefetch queues, with demand requests having higher

priority than prefetch and metadata requests. The main memory

model simulates data bus contention, bank contention, and bus turn-

around delays; bus contention increases memory latency. The main

memory read queue is processed out of order and uses a modified

Open Row FR-FCFS policy. Our ChampSim simulations use the

configuration in Table 1 and replicate single-core performance trends

from our proprietary simulator3.

Benchmarks. We present single-core results for all memory-

bound workloads from SPEC2006 [27]. For detailed analyses, we

choose a subset of benchmarks that are known to have irregular ac-

cess patterns [3]. For SPEC benchmarks we use the reference input

set. For all single-core benchmarks, we use SimPoints [28] to find

representative regions. Each SimPoint has 30 million instructions,

and we generate at most 30 SimPoints for each SPEC benchmark..

We present multi-core results for CloudSuite [29] and multi-

programmed SPEC benchmarks. For CloudSuite, we use the traces

provided with the 2nd Cache Replacement Championship. The traces

were generated by running CloudSuite in a full-system simulator

to intercept both application and OS instructions. Each CloudSuite

benchmark includes 6 samples, where each sample has 100 mil-

lion instructions. We warm up for 50 million instructions and mea-

sure performance for the next 50 million instructions. For multi-

programmed SPEC simulations, we simulate 4 benchmarks chosen

uniformly randomly from all memory-bound benchmarks, and for

8-core results, we choose 8 benchmarks chosen uniformly randomly.

Overall, we simulate 80 4-core mixes and 35 8-core mixes. For each

mix, we simulate the simultaneous execution of SimPoints of the

constituent benchmarks until each benchmark has executed at least

500 million instructions. To ensure that slow-running applications

always observe contention, we restart benchmarks that finish early

so that all benchmarks in the mix run simultaneously throughout

the execution. We warm the cache for 30 million instructions and

measure the behavior of the next 100 million instructions.

Prefetchers. We compare MISB against four irregular prefetchers,

namely, Spatial Memory Streaming (SMS) [13], Sampled Temporal

Memory Streaming (STMS) [2], Irregular Stream Buffer (ISB) [3],

and Domino [5]. SMS captures irregular patterns by applying ir-

regular spatial footprints across memory regions. STMS, ISB, and

Domino represent the state-of-the-art in temporal prefetching. For

simplicity, we model idealized versions of STMS and Domino, such

that their off-chip metadata transactions complete instantly with no

latency or traffic penalty. Thus, our performance results for STMS

and Domino represent the upper bound of performance for these

prefetchers. To estimate their traffic overhead, we count the num-

ber of metadata requests, but the requests are never issued to the

memory system. Throughout our evaluation, references to STMS

and Domino refer to these idealized implementations. We also

try variants of STMS and Domino that cache the index table in a 32

KB on-chip cache and probabilistically update the off-chip index

table [2]. These implementations also do not incur any latency and

traffic penalty and are meant to evaluate the impact of probabilistic

metadata update on traffic and performance.

For ISB and MISB, we faithfully model the latency and traffic of

all metadata requests. For MISB, we use 49KB of on-chip storage,

3Absolute quantities such as IPC, MPKI, and traffic in GB/s do not match exactly
between the two simulators, but the relative differences in these quantities are similar.

Efficient Metadata Management for Irregular Data Prefetching ISCA ’19, June 22ś26, 2019, Phoenix, Arizona, USA

41
0.b

wav
es

43
3.m

ilc

43
4.z

eu
sm

p

43
6.c

act
usA

DM

43
7.l

esl
ie3

d

45
0.s

op
lex

45
9.G

em
sFD

TD

47
0.l

bm

48
2.s

ph
inx

3

AVG (fp
06

)
1.0

1.1

1.2

1.3

Sp
ee

du
p

Speedup over no L2PF

SMS
BO
STMS
Domino
ISB
MISB
ISB_Ideal

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

44
5.g

ob
mk

45
6.h

mmer

46
2.l

ibq
ua

ntu
m

47
1.o

mne
tpp

47
3.a

sta
r

48
3.x

ala
ncb

mk

AVG (in
t06

)
1.0

1.1

1.2

1.3

Sp
ee

du
p

Speedup over no L2PF

SMS
BO
STMS
Domino
ISB
MISB
ISB_Ideal

Figure 4: Comparison of Prefetchers on SPECfp 2006 (left) and SPECint 2006 (right).

which contains 32KB for the on-chip metadata cache and 17KB for

the Bloom filter. We also compare against an idealized version of

ISB which has access to all the metadata instantaneously, thereby

representing an upper bound of performance for ISB and MISB.

Unless otherwise specified, all prefetchers train on the L2 access

stream, and prefetches are inserted into the L2 cache. Unless oth-

erwise specified, all prefetchers use a prefetch degree of 1, which

means that they issue at most one prefetch on every trigger access.

We also evaluate MISB as the irregular component of a hybrid

prefetcher that uses the Best Offset Prefetcher (BO) [6] as the reg-

ular prefetcher. We choose BO because it won the Second Data

Prefetching Championship [30].

5.2 Single-Core Results

Figure 4 compares all the prefetchers on memory-intensive bench-

marks from SPECfp (left) and SPECint (right). On SPECint, which

mostly consists of challenging irregular benchmarks, MISB outper-

forms all prefetchers with a speedup of 9.3% vs. 4.5% for STMS, the

second best prefetcher. On SPECfp, which mostly consists of regu-

lar benchmarks, BO outperforms all temporal prefetchers with an

overall speedup of 21.5%. Temporal prefetchers do not perform well

on regular benchmarks because they cannot prefetch compulsory

misses, but we show later in this section that temporal prefetchers

combine well with regular prefetchers. Because the benefit of tem-

poral prefetching is most pronounced for irregular benchmarks, the

rest of this section focuses on a subset of 7 irregular benchmarks (5

from SPECint and 2 from SPECfp).

Irregular SPEC2006. The top graph of Figure 5 shows that for

the irregular SPEC2006 benchmarks, MISB outperforms all other

prefetchers. Its 22.7% speedup comes close to the 26.9% speedup

of an idealized ISB that incurs no metadata overhead. By contrast,

realistic ISB achieves a 4.5% speedup, which illustrates the severe

limitations of ISB’s metadata management scheme on a modern sys-

tem with a 2-level TLB. MISB also outperforms idealized versions

of STMS (10.6% speedup) and Domino (9.5% speedup), which il-

lustrates its benefits over unrealistically optimistic versions of GHB-

based temporal prefetchers. Regular prefetchers, such as BO and

SMS, do not perform well on irregular benchmarks, achieving only

6.3% and 2.3% speedup, respectively.

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

1.0

1.1

1.2

1.3

1.4

1.5

Sp
ee

du
p

Speedup over no L2PF for Irregular Benchmarks

SMS
BO
STMS
Domino
ISB
MISB
ISB_Ideal

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

0

5

10

O
ffc

hi
p

Tr
af

fic
 O

ve
rh

ea
d

(x
) Offchip Traffic Overhead over no L2PF

STMS
Domino
ISB
MISB

Figure 5: Irregular SPEC2006 Results

The bottom graph of Figure 5 shows that MISB’s traffic overhead

is significantly lower than that of the other prefetchers. In particu-

lar, MISB’s traffic overhead over a baseline with no prefetching is

70%, while STMS, Domino, and ISB incur five to six times more

traffic (342% for STMS, 348% for Domino, and 411% for ISB).

The overhead includes traffic due to metadata requests and useless

prefetches, but as we will see, ISB and MISB issue very few use-

less prefetches, so the vast majority of their traffic overhead can be

attributed to metadata requests. We expect these traffic savings to

translate directly to both energy and power savings.

MISB’s traffic overhead can be reduced from 70% to 45% by

using it at the L3 cache (train on L3 accesses and prefetch into the

L3), but this reduction in traffic comes at the cost of performance, as

speedup is reduced from 22.7% to 19.0%.

Figure 6 shows that probabilistic update [2] reduces STMS’ traffic

at the cost of performance. In particular, STMS with probabilistic

ISCA ’19, June 22ś26, 2019, Phoenix, Arizona, USA Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and Calvin Lin

update reduces STMS’ speedup from 10.6% to 5.4%, and it reduces

traffic overhead from 342% to 209%, which is still much higher than

MISB’s traffic overhead of 70%.

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

Speedup over no L2PF for Spec2K6 Irregular Benchmarks

STMS
STMS (Probabilistic Update)

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

0

1

2

3

4

O
ffc

hi
p

Tr
af

fic
 O

ve
rh

ea
d

(x
) Offchip Traffic Overhead over no L2PF

STMS
STMS (Probabilistic Update)

Figure 6: Impact of Probabilistic Update on STMS

Speedup

Accuracy

Coverage Timeliness

 Traffic overhead (x)

1.05

1.1

1.15

1.2

1.25

misb
isb
stms
domino

0.2
0.4

0.6
0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

4
3

2
1

0

Figure 7: MISB Improves Along Multiple Dimensions.

To summarize MISB’s benefits, Figure 7 shows that MISB outper-

forms other temporal prefetchers in nearly all dimensions, including

accuracy and timeliness. Like ISB, MISB has high accuracy (87.3%

for MISB vs. 64.1% for STMS and 60.9% for Domino) and good

timeliness (83.1% for MISB vs. 59.6% for STMS and 60.4% for

Domino). MISB’s 18.8% coverage is slightly lower than that of

Domino (20.3%) and STMS (21.5%) because our idealized imple-

mentations of Domino and STMS do not incur any latency for ac-

cessing off-chip metadata, whereas for MISB, the metadata latency

causes a 5.0% loss in coverage. Nevertheless, MISB achieves higher

speedup than idealized STMS and Domino because benefits in other

dimensions easily compensate for the small loss in coverage.

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

45
0.s

op
lex

.ra
il

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r_2

mb_p
ag

e)
1.0

1.2

1.4

1.6

Sp
ee

du
p

Speedup over no L2PF for Irregular Benchmarks SMS
BO
STMS
Domino
ISB
MISB
ISB_Ideal

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

45
0.s

op
lex

.ra
il

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r_2

mb)
0

2

4

O
ffc

hi
p

Tr
af

fic
 O

ve
rh

ea
d

(x
)

Offchip Traffic Overhead over no L2PF

STMS
Domino
ISB
MISB

Figure 8: Large Page Results

Large Page Workloads. Figure 8 shows that MISB retains its

benefits in the presence of 2MB pages. In particular, MISB achieves

25.5% speedup over no L2 prefetching (vs. 9.1% for BO, 2.7% for

SMS, 12.8% for STMS, and 12.0% for Domino). As we would

expect, with huge pages, ISB sees only a 0.2% speedup because at

8MB, the metadata for TLB-resident pages is too large for ISB to

maintain in its on-chip caches. MISB retains its traffic benefits with

large pages: Its traffic overhead is 64%, which is much lower than

ISB’s 132%, Domino’s 340%, and STMS’ 337%.

Hybrid Prefetchers. It would be difficult to imagine a chip ven-

dor providing an irregular prefetcher without also providing a reg-

ular prefetcher, so we combine each of our temporal prefetchers

with BO and SMS. Figure 9 shows that for the irregular subset of

SPEC2006, the BO-MISB hybrid outperforms other hybrids with

a 25.6% speedup (vs. 14.1% for BO-STMS). Since BO alone sees

only a 6.3% speedup, we conclude that the remaining performance

benefit comes from MISB’s ability to prefetch irregular memory

access patterns. If we further add SMS to the hybrid prefetcher, the

BO-SMS-MISB hybrid achieves a 26.2% speedup. For SPECfp

benchmarks, the BO-MISB hybrid improves performance by 23.9%,

a slight improvement over BO alone (21.5% speedup).

5.3 Multi-Core Results

We now evaluate MISB on multi-core configurations.

CloudSuite Benchmarks. Figure 10 shows that a realistic MISB

outperforms idealized STMS and idealized Domino on CloudSuite

benchmarks, even though the idealized prefetchers incur no latency

Efficient Metadata Management for Irregular Data Prefetching ISCA ’19, June 22ś26, 2019, Phoenix, Arizona, USA

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

1.0

1.2

1.4

1.6

Sp
ee

du
p

Speedup over no L2PF for Irregular Benchmarks
BO_SMS
BO_STMS
BO_Domino
BO_ISB
BO_MISB
BO_SMS_MISB
BO_ISB_Ideal
BO_SMS_ISB_Ideal

Figure 9: Hybrid Results

or traffic penalty for metadata accesses4. In particular, MISB im-

proves performance by 7.2%, while idealized STMS and Domino

improve performance by 4.0% and 3.9%, respectively. These perfor-

mance improvements can be explained by MISB’s superior coverage

(31.0% for MISB vs. 13.6% for STMS and 13.4% for Domino) and

accuracy (89.8% for MISB vs. 79.0% for STMS and 77.7% for

Domino).

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

Cassandra Classfication Cloud9 Nutch Streaming Average

S
p
ee

d
u
p

STMS Domino MISB

Figure 10: Speedup Comparison on CloudSuite

0

5

10

15

20

25

30

Cassandra Classfication Cloud9 Nutch Streaming Average

O
ff

-C
h

ip
 T

ra
ff

ic
 O

v
er

h
ea

d
 (
×

)

STMS
STMS(Probabilistic Update)
Domino
Domino(Probabilistic Update)

Figure 11: Traffic Comparison on CloudSuite

Figure 11 shows that MISB’s metadata traffic overhead is sig-

nificantly lower than that of STMS and Domino: MISB’s traf-

fic overhead is 96.2%, while idealized STMS’ and Domino’s are

1082.7% and 1081.5%, respectively. The traffic overhead of STMS

and Domino can be reduced to 621.6% and 596.9%, respectively, by

employing probabilistic updates to the off-chip structures [2], but

4For CloudSuite workloads, we train all prefetchers on L2 misses instead of L2 accesses,
which results in better IPC and lower traffic for all prefetchers.

this optimization degrades performance. For STMS, the performance

drops from 4.0% to 2.0%, whereas for Domino, performance drops

from 3.9% to 1.8%.

1
1.5

2
2.5

3
3.5

4
4.5

5

C
as

sa
nd

ra

C
la

ss
ifi

ca
tio

n

C
lo

ud
9

N
ut

ch

Stre
am

in
g

A
ve

ra
ge

P
re

d
ic

ta
b

il
it

y

(h
ig

h
er

 i
s

b
et

te
r)

Global Stream PC-localized Stream

Figure 12: Benefits of PC-Localization For CloudSuite

Our results show that contrary to prior claims [5], PC-localization

is quite beneficial for server benchmarks. Figure 12 compares the

compressibility of PC-localized cache access streams to global ac-

cess streams, showing that PC-localized streams are more compress-

ible and therefore more predictable than the global stream.5 These

results also explain MISB’s higher coverage and accuracy on server

workloads. A second concern [5] is that PC-localized predictions

are untimely for server workloads because instructions repeat much

less frequently than in scientific workloads. Our results show that

timeliness is not an issue when prefetching into the L2 or L3 (prior

work prefetches into a prefetch buffer that is probed in parallel to the

L1 [5]). In fact, at the LLC, MISB is more timely than even idealized

STMS and Domino.

Multi-Programmed SPEC Benchmarks. To avoid aggravating

memory pressure, low metadata overhead is critical for scaling the

benefits of temporal prefetchers to multi-core systems. MISB works

well for 4-core and 8-core systems. On 4-core multi-programmed

workloads, a realistic MISB improves performance by 19.9%, com-

pared to 8.8% for STMS and 9.6% for Domino. On 8-cores, MISB’s

benefit reduces to 12.1% because the metadata traffic overhead

starts to stress available bandwidth, but the top graph in Figure 13

shows that MISB still outperforms idealized versions of STMS (7.5%

speedup) and Domino (7.6% speedup) that do not incur performance

penalty for metadata traffic. The bottom graph in Figure 13 shows

that the key to MISB’s scalability is its low traffic overhead, which

is 72.5%, while idealized STMS and Domino incur 304.7% and

306.8% traffic overhead respectively.

5.4 Understanding MISB’s Benefits

The left graph in Figure 14 shows that MISB’s benefits depend on its

metadata cache and prefetcher working in concert. We make two ob-

servations. First, without metadata prefetching, MISB’s speedup

5We use the Sequitur algorithm [31] to compute compressibility of global and per-PC
streams. Given a sequence of symbols, Sequitur constructs a compressed representation
of the sequence by substituting repeating phrases with concise rules.

ISCA ’19, June 22ś26, 2019, Phoenix, Arizona, USA Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and Calvin Lin

1

1.05

1.1

1.15

1.2

1.25

1.3
M

ix
 4

8

M
ix

 4

M
ix

 3
5

M
ix

 3
2

M
ix

 3
3

M
ix

 2
7

M
ix

 6

M
ix

 3
4

M
ix

 2
5

M
ix

 2
2

M
ix

 4
9

M
ix

 2
6

M
ix

 3
7

M
ix

 3
6

M
ix

 1
6

M
ix

 1
9

M
ix

 3
0

M
ix

 4
0

M
ix

 8

M
ix

 2
0

M
ix

 1
2

M
ix

 4
1

M
ix

 2
3

S
p
ee

d
u
p

MISB

Domino

STMS

0

2

4

6

8

10

12

M
ix

 4
8

M
ix

 4

M
ix

 3
5

M
ix

 3
2

M
ix

 3
3

M
ix

 2
7

M
ix

 6

M
ix

 3
4

M
ix

 2
5

M
ix

 2
2

M
ix

 4
9

M
ix

 2
6

M
ix

 3
7

M
ix

 3
6

M
ix

 1
6

M
ix

 1
9

M
ix

 3
0

M
ix

 4
0

M
ix

 8

M
ix

 2
0

M
ix

 1
2

M
ix

 4
1

M
ix

 2
3

O
ff

-C
h

ip
 T

ra
ff

ic
 O

v
er

h
ea

d
 (
×

)

STMS

Domino

MISB

Figure 13: MISB Scales to 8-Core Systems.

is reduced from 22.7% to 6.5%; without an adequate metadata

cache budget 6, its speedup is reduced from 22.7% to 8.9%. Second,

MISB’s caching and prefetching scheme can be applied even in the

absence of PC-localization, but the loss of PC-localization severely

hurts performance, reducing speedup from 22.7% to 7.3%.

1

1.05

1.1

1.15

1.2

1.25

1

S
p
ee

d
u
p
 o

v
er

 n
o
 p

re
fe

tc
h
in

g

MISB (1KB cache)

MISB w/o PC-localization

MISB w/o Prefetching

MISB (32KB cache)

0

0.2

0.4

0.6

0.8

1

1.2

1

O
ff

 C
h
ip

 T
ra

ff
ic

 O
v
er

h
ea

d
 (
×

)

Figure 14: MISB Benefits from Both Metadata Caching and

Prefetching.

The right graph in Figure 14 shows that metadata caching sig-

nificantly reduces MISB’s traffic overhead. If we were to reduce

the metadata cache budget from 32KB to 1KB, traffic overhead

increases from 70% to 113%.

6We reduce the metadata cache size from 32KB to 1KB to evaluate the benefit of
metadata caching. The specifics of the MISB design require a little bit of on-chip
metadata cache to properly train off-chip metadata.

Metadata Cache Hit Rates. Figure 15 shows that for both the PS

and SP caches, MISB’s metadata management yields significantly

better hit rates than ISB’s (43.0% vs. 27.1% for the PS cache, and

66.5% vs. 32.5% for the SP cache). MISB’s improved hit rates are

primarily caused by its accurate metadata prefetching. We find that

more than 90% of metadata retrieved by ISB’s TLB-sync scheme is

never used, which both hurts metadata cache efficiency and incurs

high traffic overhead.

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

0.0

0.2

0.4

0.6

0.8

1.0

H
it

Ra
te

PS Cache Hit Rate

ISB
MISB

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

0.0

0.2

0.4

0.6

0.8

1.0

H
it

Ra
te

SP Cache Hit Rate

ISB
MISB

Figure 15: On-Chip Metadata Cache Hit Rate.

Metadata Traffic. Finally, Figure 16 shows a breakdown of

MISB’s off-chip prefetcher traffic. We see that our Bloom filter

reduces spurious PS loads by not issuing traffic requests marked

in striped blue, resulting in traffic savings of 8.5% (78.5% traffic

overhead without the bloom filter vs. 70.0% traffic overhead with the

bloom filter). We also see that by reducing the Bloom filter’s false

positive rate (unfiltered PS loads), we can further reduce traffic.

5.5 Sensitivity studies

Prefetch Degree. Figure 17 shows that all prefetchers benefit from

higher degree, but MISB consistently outperforms both STMS and

Domino at all prefetch degrees. At the same time, MISB is highly

accurate, and it retains its accuracy advantage even at higher degrees.

At degree 8, MISB’s accuracy is 77%, while STMS and Domino

have an accuracy of 47%.

Metadata Cache Size. Figure 18 shows the traffic and speedup of

MISB at different storage budgets. Each point in the graph represents

a pareto-optimal configuration at the corresponding storage budget,

and the labels show the distribution of the metadata cache size and

the bloom filter for each point (the metadata cache size is preceded

Efficient Metadata Management for Irregular Data Prefetching ISCA ’19, June 22ś26, 2019, Phoenix, Arizona, USA

0%

20%

40%

60%

80%

100%

40
3.

gc
c

42
9.

m
cf

45
0.

so
pl

ex

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k

gm
ea

n

D
is

tr
ib

u
ti

o
n
 o

f
M

IS
B

's
 o

ff
-c

h
ip

 a
cc

es
se

s

Inaccurate

Prefetches

Metadata Stores

SP accesses

Useless PS loads

(not filtered)

Useless PS loads

(filtered)

Useful PS loads

Figure 16: Traffic Breakdown for MISB.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 4 8

S
p

ee
d

u
p

Degree

Domino STMS MISB

0%

20%

40%

60%

80%

100%

1 2 4 8

A
cc

u
ra

cy

Degree

Domino STMS MISB

Figure 17: Comparison at Higher Degree.

by the letter c, and the bloom filter size is preceded by the letter

b). The top graph shows that MISB needs a least 8KB of metadata

cache to realize its full performance benefit. Without a metadata

cache, MISB cannot hide the latency of all metadata accesses, which

severely hurts its performance. The bottom graphs shows that as

we increase the storage budget, metadata traffic keeps decreasing,

which suggests that MISB uses the metadata cache effectively.

Latency Tolerance. To evaluate MISB’s ability to tolerate latency,

Figure 19 shows that as we vary the latency of off-chip metadata

transfer, MISB can tolerate metadata latencies of up to 1000 cycles.

We believe that PC-localization is critical here, since it provides

a sufficiently large time gap between consecutive accesses in a

temporal stream that metadata can be retrieved without delaying

future prefetch requests.

c32k_b17k (MISB)

c64k_b17k

c16k_b0

c32k_b0

c32k_b9k

c64k_b9k

c64k_b30k

c8k_b0

c4k_b0

c2k_b0

c1k_b0

c128k_b117k

c256k_b117k

c512k_b117k

c1M_b117k

c2M_117k

1

1.05

1.1

1.15

1.2

1.25

1.3

1 4 16 64 256 1024 4096

S
p

e
e

d
u

p
 o

v
e

r
n

o
L
2

P
F

MISB Storage(KB)

c32k_b17k (MISB)

c64k_b17k

c16k_b0

c32k_b9k

c64k_b9k

c64k_b30k

c128k_b117k

c256k_b117k

c512k_b117k

c1M_b117k

c8k_b0
c4k_b0

c2k_b0

c1k_b0

c2M_117k

c32k_b0

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

1 4 16 64 256 1024 4096

O
ff

c
h

ip
 T

ra
ff

ic
 O

v
e

rh
e

a
d

 (
x
)

MISB Storage (KB)

Figure 18: Sensitivity to Metadata Storage Budget.

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

1.0

1.1

1.2

1.3

1.4

1.5

Sp
ee

du
p

Speedup over no L2PF for Irregular Benchmarks
lat_1
lat_170
lat_210
lat_340
lat_550
lat_1k
lat_10k
lat_100k
lat_1M

Figure 19: Memory Latency Sweep (in terms of CPU cycles).

Bloom Filter Reset Interval. Since Bloom Filters saturate over

time, we reset MISB’s Bloom Filter every 30 million instructions. A

shorter reset interval reduces both prefetcher coverage and metadata

traffic. For example, Figure 20 shows that a reset interval of 5 million

instructions reduces speedup by 1% and reduces traffic by 2%.

As an alternative solution, we consider Stable Bloom Filters [32],

which continuously evict stale information to make room for more

recent elements. However, Stable Bloom Filters increase the area

overhead and also add false negatives, so we choose to reset the

Bloom Filter instead.

TLB Shootdowns and Context Switches. Events such as TLB

shootdowns and page remappings force MISB to relearn the meta-

data for corresponding pages, while events such as context switches

erase MISB’s on-chip metadata. To evaluate the impact of such

events, we consider the worst-case scenario, where all of MISB’s

metadata (on-chip and off-chip) is reset periodically. Figure 21 shows

that even in this extreme case, MISB performs well: For a reset in-

terval of 15 million instructions (long enough for a typical context

switch), speedup and traffic reduce marginally. Speedup decreases

ISCA ’19, June 22ś26, 2019, Phoenix, Arizona, USA Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and Calvin Lin

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

1.0

1.1

1.2

1.3

1.4

Sp
ee

du
p

Speedup over no L2PF for Spec2K6 Irregular Benchmarks

MISB
MISB 15M BF Reset
MISB 10M BF Reset
MISB 5M BF Reset

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffc

hi
p

Tr
af

fic
 O

ve
rh

ea
d

(x
) Offchip Traffic Overhead over no L2PF

MISB
MISB 15M BF Reset
MISB 10M BF Reset
MISB 5M BF Reset

Figure 20: Bloom Filter Reset Interval

gradually as we further reduce reset intervals, and when the reset

interval is as short as 5 million instructions, MISB still improves

performance by 18% over a baseline with no prefetching.

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

1.0

1.1

1.2

1.3

1.4

Sp
ee

du
p

Speedup over no L2PF for Spec2K6 Irregular Benchmarks

MISB
MISB - Reset 15M
MISB - Reset 10M
MISB - Reset 5M

40
3.g

cc.
16

6

42
9.m

cf

45
0.s

op
lex

.ke
nn

47
1.o

mne
tpp

47
3.a

sta
r.la

kes

48
2.s

ph
inx

3

48
3.x

ala
ncb

mk

AVG (ir
reg

ula
r)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffc

hi
p

Tr
af

fic
 O

ve
rh

ea
d

(x
) Offchip Traffic Overhead over no L2PF

MISB
MISB - Reset 15M
MISB - Reset 10M
MISB - Reset 5M

Figure 21: Impact of resetting MISB’s metadata

6 CONCLUSIONS

Temporal prefetchers can provide good coverage for irregular mem-

ory access patterns, but a key impediment to their commercial adop-

tion has been the high cost of accessing off-chip metadata. The

ISB addressed this problem by introducing the structural address

space, which provided two benefits: (1) It supported PC-localization

and (2) it enabled metadata to be cached. Unfortunately, we have

shown in this paper that the ISB metadata caching scheme is not as

effective as originally suggested, partly because it caches metadata

at a coarse granularity. However, we have also shown that ISB’s

structural address space has benefits that were not recognized in

the original paper. In particular, as embodied by our new MISB

prefetcher, the structural address space lends itself to fine-grained

caching and accurate metadata prefetching, which together can hide

latency and significantly reduce traffic.

Our results show that MISB reduces traffic to the point of com-

mercial viability. Our results from a highly accurate proprietary

simulator show that MISB comes close to the performance of an

idealized ISB for a variety of workloads on a variety of machine

configurations. On single core systems running SPEC 2006 bench-

marks, MISB improves performance by 22.7% (vs. 4.5% for ISB

and 10.6% for idealized STMS), while reducing off-chip traffic to

70% (vs. 411% for ISB and 342% for STMS). On 4-core systems

running CloudSuite workloads, MISB improves performance by

7.2% (vs. 3.9% for idealized Domino and 3.9% for idealized STMS),

while reducing traffic overhead to 96.2% (vs. 1082.7% for STMS

and 1081.5% for Domino).

ACKNOWLEDGMENTS

We thank Jaekyu Lee for his help in setting up the proprietary simu-

lation infrastructure, and we thank Molly O’Neil and Curtis Dunham

for excellent feedback on an early draft of this paper. This work

was funded in part by NSF Grant CCF-1823546 and a gift from

Intel Corporation through the NSF/Intel Partnership on Foundational

Microarchitecture Research.

REFERENCES
[1] T. F. Wenisch, Temporal Memory Streaming. PhD thesis, Carnegie Mellon Univer-

sity, Department of Computer Science, 2007.
[2] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos, “Prac-

tical off-chip meta-data for temporal memory streaming,” in 15th International

Symposium on High Performance Computer Architecture (HPCA), pp. 79–90,
2009.

[3] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved cor-
related prefetching,” in 46rd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), December 2013.
[4] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global history buffer,”

in 10th International Symposium on High Performance Computer Architecture

(HPCA), pp. 90–97, 2005.
[5] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Domino temporal

data prefetcher,” in 24th IEEE International Symposium on High Performance

Computer Architecture (HPCA), pp. 131–142, 2018.
[6] P. Michaud, “Best-offset hardware prefetching,” in 22th IEEE International Sym-

posium on High Performance Computer Architecture (HPCA), 2016.
[7] C.-K. Luk and T. C. Mowry, “Compiler-based prefetching for recursive data

structures,” in Proceedings of the Seventh International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS),
pp. 222–233, September 1996.

[8] A. Roth, A. Moshovos, and G. S. Sohi, “Dependence based prefetching for linked
data structures,” in Proceedings of the Eighth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS),
pp. 115–126, 1998.

[9] J. Collins, S. Sair, B. Calder, and D. M. Tullsen, “Pointer cache assisted prefetch-
ing,” in Proceedings of the 35th Annual ACM/IEEE International Symposium on

Microarchitecture (MICRO), pp. 62–73, 2002.
[10] A. Roth and G. S. Sohi, “Effective jump-pointer prefetching for linked data struc-

tures,” in Proceedings of the 26th Annual International Symposium on Computer

Architecture (ISCA), pp. 111–121, 1999.
[11] R. Cooksey, S. Jourdan, and D. Grunwald, “A stateless, content-directed data

prefetching mechanism,” in Proceedings of the 10th International Conference

Efficient Metadata Management for Irregular Data Prefetching ISCA ’19, June 22ś26, 2019, Phoenix, Arizona, USA

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pp. 279–290, October 2002.
[12] E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Techniques for bandwidth-efficient

prefetching of linked data structures in hybrid prefetching systems,” in 15th

International Symposium on High Performance Computer Architecture (HPCA),
pp. 7–17, 2009.

[13] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Spatial
memory streaming,” in Proceedings of the 33th Annual International Symposium

on Computer Architecture (ISCA), pp. 252–263, 2006.
[14] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP: indirect memory prefetcher,”

in Proceedings of the 48th International Symposium on Microarchitecture (MI-

CRO), pp. 178–190, ACM, 2015.
[15] D. Joseph and D. Grunwald, “Prefetching using Markov predictors,” in Pro-

ceedings of the 24th Annual International Symposium on Computer Architecture

(ISCA), pp. 252–263, 1997.
[16] T. M. Chilimbi, “Efficient representations and abstractions for quantifying and

exploiting data reference locality,” in SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), pp. 191–202, 2001.
[17] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and B. Falsafi,

“Temporal streaming of shared memory,” in Proceedings of the 32nd Annual

International Symposium on Computer Architecture (ISCA), pp. 222–233, May
2005.

[18] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-temporal mem-
ory streaming,” in Proceedings of the 36th Annual International Symposium on

Computer Architecture (ISCA), pp. 69–80, 2009.
[19] Y. Chou, “Low-cost epoch-based correlation prefetching for commercial applica-

tions,” in 40th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pp. 301–313, 2007.
[20] Y. Solihin, J. Lee, and J. Torrellas, “Using a user-level memory thread for correla-

tion prefetching,” in Proceedings of the 29th Annual International Symposium on

Computer Architecture (ISCA), pp. 171–182, 2002.
[21] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos, “Temporal

streams in commercial server applications,” in IEEE International Symposium on

Workload Characterization, pp. 99–108, 2008.

[22] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi, “Predictor virtualization,” in
Proceedings of the 13th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS XIII, pp. 157–167,
ACM, 2008.

[23] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-

munications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.
[24] M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware hashing

functions for high performance computers,” IEEE Transactions on Computers,
vol. 46, pp. 1378–1381, December 1997.

[25] J. Kim, E. Teran, P. V. Gratz, D. A. Jiménez, S. H. Pugsley, and C. Wilkerson,
“Kill the program counter: Reconstructing program behavior in the processor
cache hierarchy,” in Proceedings of the Twenty-Second International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pp. 737–749, 2017.
[26] 2nd Cache Replacement Championship, 2017.
[27] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH Computer

Architecture News, vol. 34, pp. 1–17, September 2006.
[28] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically charac-

terizing large scale program behavior,” in Proceedings of the 10th International

Conference on Architectural Support for Programming Languages and Operating

Systems, pp. 45–57, ACM, 2002.
[29] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kay-

nak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds: a study
of emerging scale-out workloads on modern hardware,” in Proceedings of the

Seventeenth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pp. 37–48, 2012.
[30] 2nd Data Prefetching Championship, 2015.
[31] C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical structure in

sequences: A linear-time algorithm,” Journal of Artificial Intelligence Research,
vol. 7, pp. 67–82, 1997.

[32] F. Deng and D. Rafiei, “Approximately detecting duplicates for streaming data us-
ing stable bloom filters,” in Proceedings of the 2006 ACM SIGMOD international

conference on Management of data, pp. 25–36, ACM Press, 2006.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Irregular Prefetchers
	2.2 Metadata Management

	3 Background
	4 Our Solution
	4.1 Overall Operation

	5 Evaluation
	5.1 Methodology
	5.2 Single-Core Results
	5.3 Multi-Core Results
	5.4 Understanding MISB's Benefits
	5.5 Sensitivity studies

	6 Conclusions
	References

