
Copyright

by

Kai Wang

2020

The Dissertation Committee for Kai Wang
certifies that this is the approved version of the following dissertation:

Improving Efficiency for GPUs with Decoupled Delegate

Committee:

Calvin Lin, Supervisor

Donald Fussell, Co-Supervisor

Chris Rossbach

Steve Keckler

Improving Efficiency for GPUs with Decoupled Delegate

by

Kai Wang

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2020

For my mother, Zhang Rong.

Acknowledgments

I’d like to thank the many people who helped me during my PhD studies.

First, I’d like to thank my advisors, Calvin Lin and Don Fussell. They provided ex-

cellent mentorship and helped me grow intellectually. I am fortunate to have them

as my advisors. Dr. Lin helped me to see the bigger picture behind specific research

questions and helped me to understand the importance of a strong research method-

ology. I’m especially grateful for his guidance on how to write clear documents. Dr.

Fussell helped me to look beyond the immediate research questions and helped me

to connect dots between my own research and that of broader fields. I’m especially

grateful for his guidance on how to present ideas clearly. The skills I acquired from

my advisors will be immensely beneficial to my future career.

Next, I’d like to thank my committee members, Chris Rossbach and Steve

Keckler. Dr. Rossbach pointed me to important related work for comparative study.

Dr. Keckler raised interesting questions on work. Their value feedback helped me

greatly during the process of improving my dissertation.

I’d like to thank my group members, Akanksha, Hao, Zhan, Chirag, Curtis,

and Molly for their valuable feedback, and I also broadened my knowledge by

learning from their research.

Finally, I’d like to thank my mother, Rong. I wouldn’t be able to finish my

degree without her support along the way.

v

Improving Efficiency for GPUs with Decoupled Delegate

Kai Wang, Ph.D.

The University of Texas at Austin, 2020

Supervisors: Calvin Lin
Co-Supervisor: Donald Fussell

GPUs are increasingly used for general-purpose computation. For many ap-

plications, GPUs achieve significant performance advantages over CPUs, largely

due to GPUs’ ability to exploit massive parallelism. However, massive parallelism

can cause inefficiency for many operations, such as concurrent data structures.

Symptoms include synchronization bottleneck and redundant overheads.

To make such operations efficient, our key strategy is to decouple them from

the rest of GPU program. Then, we use a few threads acting as a delegate to perform

the decoupled operations on behalf of all other threads. This reduces the synchro-

nization for decoupled operations because fewer threads are used. In addition, the

delegate amortizes overheads for other threads, similar to the way in which vector

execution amortizes instruction overheads. The cost of our approach is the need

for communication between the delegate and other threads. We develop innovative

ways to reduce the communication so that the benefit strongly outweighs the cost.

Based on the strategy, we propose three solutions for both regular and irregular

workloads.

vi

For regular GPU workloads, our solution reduces repetitive ALU OPs and

instruction execution, while reducing memory latency with non-speculative prefetch-

ing. This approach enabled our solution to achieve 40.7% speedup and 20.2%

energy reduction on average for 29 benchmarks. For lock-based workloads, our

solution avoids destructive lock contention in global memory and thus achieves an

average speedup of 3.6×, implemented entirely in software. Finally, we introduce

a new GPU single source shortest path (SSSP) algorithm with a complex worklist;

it offers many benefits compared to a simpler worklist but incurs significant over-

heads. However, our decoupled delegate approach reduces the overheads and makes

the complex worklist design efficient for GPUs. Hence, our solution, implemented

in software, achieved an average speedup of 2.8× over 226 graphs compared with

state-of-the-art approaches.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1
1.1 Goal of this Thesis . 3
1.2 Worklist-Based Algorithms—problem and strategy 3
1.3 Generalization of the Problem and Strategy 6
1.4 Cost of Decoupled Delegate . 9
1.5 Contributions . 9

Chapter 2. Related Work 11
2.1 Repetitive Computation Reduction 11
2.2 Memory Latency Reduction . 12
2.3 Fine-Grained Synchronization . 13
2.4 Single Source Shortest Path . 15
2.5 Delegation . 16

Chapter 3. Decoupled Affine Computation1 20
3.1 Background and Motivation . 24
3.2 Our Solution . 27

1Portions of this chapter are based on the following publication:
Affine Computation for SIMT GPUs, ISCA 2017[134]

viii

3.3 Implementation . 30
3.3.1 Expansion Units . 32
3.3.2 Prefetching . 33
3.3.3 Control Flow Handling . 35
3.3.4 Divergent Affine Tuples . 36

3.4 Methodology . 40
3.4.1 Baseline Techniques . 41
3.4.2 Benchmarks . 43

3.5 Evaluation . 43
3.5.1 Instruction Execution Reduction 44
3.5.2 Affine Instruction Coverage 45
3.5.3 Memory Latency Hiding . 46
3.5.4 Energy Efficiency . 47
3.5.5 Area Estimation . 48

3.6 Summary . 49

Chapter 4. Decoupled Fine-Grained Synchronization2 51
4.1 Motivation . 52
4.2 Our Solution . 53

4.2.1 Decoupled Program . 55
4.3 Our Software Message Passing System 59

4.3.1 Our Basic Algorithm . 59
4.3.2 Our Optimized Algorithm 61

4.4 Handling Nested Locks . 63
4.5 Methodology . 66
4.6 Evaluation . 69

4.6.1 Performance . 69
4.6.2 Bandwidth Benefits . 70
4.6.3 Latency Benefits . 71

2Portions of this chapter are based on the following publication:
Fast Fine-Grained Global Synchronization on GPUs, ASPLOS 2019[133]

ix

4.6.4 Comparison Against Hardware Solutions 72
4.7 Summary . 74

Chapter 5. A GPU SSSP Solution with Decoupled Worklist3 75
5.1 Background . 78

5.1.1 Work Scheduling . 80
5.1.2 ∆ -Stepping . 81

5.2 Motivation . 83
5.2.1 Design Consideration 1 . 84
5.2.2 Design Consideration 2 . 84
5.2.3 Design Consideration 3 . 87

5.3 The Overview of Our Solution . 88
5.4 A Single Bucket . 92
5.5 Multiple Buckets . 95
5.6 Dynamic Data Structure . 98
5.7 Setting ∆ dynamically . 102

5.7.1 Finding the Clip-Point . 106
5.7.2 Changing ∆ Based on Utilization 107

5.8 Methodology . 109
5.8.1 Graph Inputs . 110
5.8.2 Evaluated Prior Implementations 111

5.9 Evaluation . 113
5.9.1 Timing Results . 114
5.9.2 Work Efficiency . 117
5.9.3 Performance Analysis . 118

5.10 Summary . 125

3Portions of this chapter are based on the following publication:
A Fast Work-Efficient SSSP Algorithm for GPUs, to be appear in PPOPP 2021

x

Chapter 6. Conclusion 126
6.1 Why does the decoupled delegate approach work well on GPUs, and

what other platforms may benefit from this approach? 127
6.2 Should we make irregular algorithms architectural efficient or algo-

rithmic efficient? Or could we have both? 128

Bibliography 131

xi

List of Tables

3.1 Simulation Parameters . 40
3.2 List of Benchmarks – G: GPGPU-sim distribution [10], R: Ro-

dinia benchmark suite [22], C: CUDA SDK, P: Parboil benchmark
suite [128] . 41

4.1 GTX 1080 ti Specifications . 66
4.2 Latency and Total Execution Time 72
4.3 Speedup over respective baselines—For HQL, the results are from

Figure 12 of the paper [146]; the baseline is a simulated Radeon
HD 5870 GPU. For BOWS, the results are from Figure 15 of the
paper [40]; the baseline is a simulated GTX 1080ti. The HQL paper
only provides results for the HT microbenchmark, and the BOWS
paper only provides results for HT-1K and ATM-1K; unavailable
results are left blank in the table. 73

5.1 RTX 2080 ti GPU . 109
5.2 The Distribution of Graph Characteristics—count(% of 226 graphs) 111
5.3 Speedup of ADDS over prior implementations—the distribution of

226 graphs over speedup intervals 114
5.4 The execution time of ADDS, NearFar-OPT (NF), Gunrock-Bellman-

Ford (BF), and nvGRAPH (NV). The speedup column is ADDS
over NF. 115

5.5 Normalized vertex processing count of ADDS (lower the better) . . 117

xii

List of Figures

1.1 (a) data parallelism for graph processing. (b) adding a worklist to
the graph algorithm. (c) problems caused by using a worklist 2

1.2 Our Decoupled Delegate Strategy 4
1.3 Code sample: each thread increments an array element—instr0 and

instr1 calculate the memory access address, and instr2 and instr3
load the data and perform the computation. 7

3.1 Decoupling Repetitive Computations: the figure illustrates our so-
lution . 21

3.2 Operand Values–Baseline GPU and Affine Computation 24
3.3 Example Kernel . 26
3.4 Affine Values and Affine Tuples for 3 Threads 26
3.5 Percentage of Instructions Computing on Scalar Data and Thread IDs 27
3.6 Decoupled Kernels . 29
3.7 Interaction Between the Affine Warp and the Non-Affine Warps . . 30
3.8 DAC Hardware Organization . 31
3.9 Re-Convergence Stack for the Affine Warp 35
3.10 Divergent Base-Offset Pairs on SIMT Lanes 37
3.11 Using SIMT Entry as Divergent Condition 39
3.12 Speedup of CAE, MTA, and DAC over the Baseline GTX 480 GPU 42
3.13 Number of Warp Instructions Executed by DAC Normalized to the

Baseline GPU . 44
3.14 Affine Instruction Coverage of DAC and CAE 45
3.15 Percentage of Affine Global and Local Load Requests on DAC . . . 46
3.16 MTA Prefetcher Coverage . 47
3.17 Energy Consumption of DAC Normalized to the Baseline GPU . . 48

4.1 Fine-grained mutual exclusion with (a) global locks (baseline) and
(b) our solution . 54

xiii

4.2 The basic data structure of a single message buffer and the basic
algorithm for reading and writing 60

4.3 Sender Design—using local buffers for aggregated message write . 61
4.4 Receiver Design—using a single warp (the leader warp) for meta-

data accesses . 62
4.5 Synchronization Server for Two Nested Lock—operations for han-

dling an offloaded request from client that involves two server TBs . 65
4.6 Speedup of our solution over the state-of-the-art 69
4.7 L2 and DRAM traffic of our solution as a percentage (%) of the

baseline—The L2 traffic is the total cache-line accesses of global
loads and stores and atomics, including misses to DRAM. The DRAM
traffic includes both reads and writes.The traffic includes overhead
due to non-coalesced accesses (i.e. unused words in cache lines) . . 70

5.1 An Example Graph—edges are directed with weight 79
5.2 Illustrate SSSP step-by-step . 79
5.3 ∆ -Stepping’s Work Scheduling Data Structure 82
5.4 Implementing a List as Double Buffers 85
5.5 Execution Time against C for Two Graphs—the execution time is

normalize to the minimum in the series; labels of the x-axis are
power of 2 . 88

5.6 The Overview of Components’ Functionalities 91
5.7 How ∆ Affects Work Efficiency and Concurrency—pushing 4 ver-

tices (a) to 4 buckets under 3 scenarios: when ∆ =20 (c), it has
best work efficiency; when increased to 40 (d), it improves concur-
rency;but when decreased to 5 (b), all vertices are clipped to the last
bucket . 101

5.8 This Experiment Plots Execution Time and Work Performed Against
∆ — the choices of ∆ are predetermined and fixed during execution;
both time and work are normalized to the lowest point (lower the
better); finally, the experiments are done using 32 buckets 103

5.9 The distribution of ADDS’ speedup over NF-OPT correlating to
graph degree . 114

5.10 The distribution of ADDS’ speedup over NF-OPT correlating to
graph diameter . 116

5.11 The correlation between speedup and work-efficiency (inverse of
vertex count); both higher the better. 118

xiv

5.12 A.road-USA: s:3.09x, w:0.19x (s:speedup, w:work-efficiency), the
figure plots the amount of parallelism (edge count) during the progress
of execution (us) . 120

5.13 B.BenElechi1: s:4x, w:2.12x . 121
5.14 C.msdoor: s:5.57x, w:4x . 122
5.15 D.rmat22: s:2.29x, w:2.18x . 123
5.16 E.c-big: s:1.6x, w:3.35x . 124

xv

Chapter 1

Introduction

Historically, single thread performance (or ILP) has been the main focus of

microprocessor design Although ILP is still at a premium even today for desktop

and mobile CPUs, circa mid-2000s, the diminishing returns of complex superscalar

CPU designs and the demise of Dennard scaling incentivized the industry to explore

ways to the transistors on a chip. Evolved from dedicated 3D graphics accelerators,

GPUs have emerged as attractive alternatives to CPUs for general–purpose applica-

tions.

GPUs deliver throughput by executing many lightweight scalar threads. The

threads are organized hierarchically, first into thread blocks (TBs) and then into

warps. At hardware level, threads within each warp are executed in lock-steps us-

ing a vector data path to amortize the instruction handling overhead. Warps within

each TB are executed concurrently using fine-grained multi-threading to hide mem-

ory latency. This execution model is known as single instruction multiple thread

(SIMT).

The key to GPU hardware efficiency is to focus on throughput instead of

latency. This means the workloads running on GPUs must have massive paral-

lelism. In general, GPU workloads achieve parallelism by assigning different data

1

elements, such as array elements, to different threads for processing; this is known

as data parallelism. For regular data structures such as simple arrays and matrices,

GPUs are highly efficient due to convergent control flow and coalesced memory

access.

The principle of data parallelism also applies to irregular data structures

such as graphs. As Figure 1.1 (a) shows, vertices of a graph can be parallelized

in a similar way as array elements. These irregular workloads are less efficient

for GPUs due to divergent control flow and memory access. However, prior work

has shown that GPUs have performance advantages over CPUs for many irregular

workloads, and various hardware and software optimizations have been proposed

to reduce divergence [85, 114, 64, 68, 115, 23, 119, 86, 105]. Therefore, it is still

beneficial to use GPUs for irregular workloads.

A

B E D

C Fa graph

....
A B C D E F

parallelize vertices
to threads

work
scheduling

write
vertex

IDs

read
vertex

IDs

(a) data parallel graph algorithms (b) using a worklist

....
A B C D E F

The worklist
a worklistG

(c) problems with the worklist

....
A B C D E F

meta
data data storage

can be complex,
e.g. coarse priority queue

update
consistently

synchronized
operations

Figure 1.1: (a) data parallelism for graph processing. (b) adding a worklist to
the graph algorithm. (c) problems caused by using a worklist

.

2

1.1 Goal of this Thesis

For both regular and irregular workloads, there are two fundamental require-

ments for data parallelism to work efficiently. First, there exist many data elements

that can be assigned to many threads. Second, threads could process these data

elements independently from each other.

However, many GPU workloads contain routines that violate the two re-

quirements. Simply executing such routines with many data parallel threads would

introduce inefficiency or even bottlenecks. This problematic approach is still adopted

by existing GPU hardware and algorithm designs. The aim of this thesis is to find

better ways to handle those routines. In particular, our three projects address three

different manifestations of similar problems. All of our projects share the same

strategy, namely the decoupled delegate.

In the rest of this introduction, we first discuss one of our projects in detail

as an example to illustrate the common problem and our strategy. Then we extend

the discussion to our other two projects.

1.2 Worklist-Based Algorithms—problem and strategy

The Problem As Figure 1.1 (b) shows, suppose a worklist is used for work schedul-

ing and work distribution, where threads write vertex IDs to the worklist and read

them out later in a certain order. It is evident that, unlike many vertices of the graph,

only one worklist is globally accessed by all threads and threads’ operations on the

worklist are not independent from each other. Therefore, the worklist violates the

3

two requirements mentioned earlier and does not work well under massive data

parallelism.

To be specific, Figure 1.1 (c) shows that the worklist consists of data stor-

age (e.g. for vertex IDs) and metadata. To update the globally shared data storage

consistently, all threads must synchronize on metadata operations to avoid race con-

ditions. The massive number of threads in GPUs leads to massive synchronization

contention. Moreover, a worklist can be a complex data structure, such as a coarse

priority queue, which would mean the metadata operations are complicated. There-

fore, massive synchronization on complex metadata operations turns the worklist

into a bottleneck, which hinders the graph processing operations.

...

warps

metadata

(a) baseline (b) our decoupled approach

decouple

...

metadata

metadata
operations

graph
operations

centralized

act as a delegate

Figure 1.2: Our Decoupled Delegate Strategy
.

Our Strategy Figure 1.2 illustrates our strategy for solving the problem. In the

baseline (a), all warps must perform both graph operations and worklist metadata

operations, which leads to the problem identified earlier. In our solution (b), we

decouple or separate the two types of operations and execute them on two set of

warps. We use most of the warps to execute graph operations because they are

4

suitable for massive data parallelism. To simplify discussion, assume we use only

one warp to execute worklist metadata operations. The single warp would act as a

delegate to handle metadata operations on behalf of all other warps.

he main rationale of our approach is to centralize metadata operations to

fewer threads, namely the delegate warp. This approach has two benefits. First,

metadata operations are centralized, which avoids synchronization across many

threads. Second, in the baseline, each thread must pay metadata overheads for

individual worklist reads/writes. By contrast, in our solution, the single delegate

would amortize metadata overheads over many reads/writes, similar to the manner

in which vector execution amortizes the instruction overheads. The reduced syn-

chronization and overheads mean that most of the warps can focus on data parallel

graph operations, without being hindered by bottlenecks.

Based on this approach, we develop a new single source shortest path (SSSP)

algorithm for GPUs, implemented entirely in software. We chose the SSSP because

work scheduling has a strong impact on its performance; in addition, SSSP is an

extensively studied graph problem on GPUs. Without decoupling, existing algo-

rithms adopt simple worklist designs to mitigate the problems mentioned earlier,

but they suffer from poor work scheduling quality. This problem increases the total

amount of work performed or causes hardware under-utilization (see Section 5.2).

Our algorithm uses a more complex worklist design to achieve high-quality work

scheduling, while making the complex design efficient for GPUs with the decou-

pled delegate.

We evaluated our algorithm along with seven prior GPU SSSP algorithms

5

(e.g. nvGRAPH [101], Gunrock [135, 138]). Our algorithm achieved an average

speedup of 2.8× on a set of 226 graphs, compared with the state-of-art (from Lon-

estar4.0 [15, 105]). We discuss this project in more detail in Chapter 5.

1.3 Generalization of the Problem and Strategy

We discussed our first project in the section above. To generalize, the prob-

lem is that certain operations are problematic for massive data parallelism. Our

strategy is to decouple such operations, which are then centralized to a delegate so

that fewer threads can be used to execute them. We now discuss how the problem

and the strategy relate to our two other projects.

Fine-Grained Synchronization Our second project is a software solution that

makes fine-grained locks more efficient on GPUs. Fine-grained locks are used to

maintain mutual exclusion for updating globally shared data (items). Similar to the

worklist problem, synchronization bottlenecks arise when too many threads attempt

to update the same data item and thus contend on the same lock. Massive contention

causes polling of lock variables in global memory and serialized critical-section

execution.

Similar to our worklist delegate idea, our solution for this problem is to

confine the scope of synchronization to fewer threads. In particular, we decouple

the critical section and use delegates to execute it on behalf of others, where each

delegate is a thread block (TB). Because synchronization is confined within each

TB, we can use much faster local scratchpad memory to implement locks, which

6

significantly eases the lock-polling and serialization problems. Non-delegate TBs

now must offload their critical- section tasks to the appropriate delegate TB for

execution, which is a form of communication. We implement an efficient inter-TB

communication mechanism in software, to render such communication efficient.

As a result, our solution achieves an average speedup of 3.6× for five benchmarks.

We discuss this project in detail in Chapter 4.

The two projects we have discussed are for highly irregular workloads with

synchronization bottlenecks. Perhaps surprisingly, our decoupled delegate approach

also benefits typical regular workloads.

instructions:

0. MUL r0, 4, TID

2. LOAD r2, [r1]

1. ADD r1, r0, base

3. ADD r3, r2, 1

dst operand value
t0

0

100

389

390

t1

4

104

153

154

t2

8

108

207

208

t3

12

112

60

61

repetitive

threads:

addr.
calc.

Figure 1.3: Code sample: each thread increments an array element—instr0
and instr1 calculate the memory access address, and instr2 and instr3 load the
data and perform the computation.

.

Repetitive Computation Figure 1.3 illustrates a common GPU computation pat-

tern: processing consecutive elements of an array. Notice that instr0 and instr1 are

highly repetitive in terms of operand values, where adjacent threads are simply off-

set by 4. In practice, regular workloads have a substantial amount of such repetitive

computation used for address calculation and control-flow condition evaluation. In

7

a sense, the repetitive address calculations are overheads of actual computation on

array data (instr2 and instr3). On SIMT GPUs, each thread must pay the overheads

for computing individual data elements, similar to the worklist metadata overhead

problem. In this case, the overheads translate to ALU OPs at the scalar thread level

and to instruction execution at the warp level.

Also similar to the worklist problem, we use the decoupled delegate strategy

to amortize the overheads. Specifically, for each TB, we use a single warp as the

delegate to perform repetitive computation on behalf of other warps in the TB.

For example, the delegate executes the address calculation instructions once (see

Section 3.1) and then generates cache-line addresses. These are then passed to other

warps to be used for memory accesses. The benefit is that non-delegate warps do

not have to execute instructions or perform ALU OPs for the repetitive computation.

Therefore, our strategy improves performance and energy efficiency by reducing

instruction count and ALU OPs.

In addition, our decoupled approach allows non-speculative prefetch to re-

duce memory latency. The delegate already produces cache-line addresses and can

run ahead of other warps independently. Hence, it can retrieve data early from L2

or DRAM to the L1 cache. This principle is similar to decoupled access/execu-

tion [126]. As a result, our solution (implemented in hardware) achieved 40.7%

speedup and 20.2% energy reduction on average for 29 benchmarks.

8

1.4 Cost of Decoupled Delegate

In general, the decoupled operations are integral parts of the original work-

loads, so the decoupled delegate must interact with others to work together cooper-

atively. This situation incurs a communication cost.

We employ two general measures to reduce the cost. First, we decouple the

operations appropriately to reduce the required communication. For example, for

repetitive computation, the delegate passes only cache-line address to other warps,

instead of word addresses for individual threads, to reduce the interactions. Second,

we maximize the efficiency of the communication. For fine-grained synchroniza-

tion, we implement an optimized software solution for inter-TB communication.

For repetitive computation, we add specialized hardware in each GPU core to facil-

itate passing results from the delegate to other warps.

1.5 Contributions

This thesis makes the following high-level contribution:

• Many GPU workloads have abundant parallelism but also contain operations

that cause bottlenecks or inefficiency under massive parallelism. We develop

a strategy to address the problem by decoupling such operations. They are

then centralized to a delegate so that fewer threads can be used to execute

them.

At the tactical level, the contributions of this thesis are three solutions that

employ the decoupling strategy:

9

1. For regular workloads, we introduce a hardware solution that decouples scalar-

like computations so that they can be performed by a single warp for each TB.

This approach reduces redundancy and allows non-speculative prefetching.

Hence, our solution improves performance and energy efficiency. Specifi-

cally, our solution achieves 40.7% speedup and 20.2% energy reduction on

average for 29 benchmarks.

2. For workloads using global memory locks, we introduce a software solution

that decouples the critical section so that it can be executed by a single TB

instead of all threads. By doing this, our solution can use high-bandwidth

and low-latency scratchpad memory for handling lock operations, which im-

proves performance. Specifically, our solution achieves an average speedup

of 3.6× over global memory locks.

3. We introduce a new GPU SSSP algorithm that uses a complex worklist to

achieve high-quality work scheduling. To deal with the complexity, the prin-

ciple is to decouple worklist management so that it can be handled by a few

warps instead of all threads. For a set of 226 graphs, our algorithm achieves

an average speedup of 2.8× compared with the state-of-art.

10

Chapter 2

Related Work

This chapter summarizes related prior solutions. Section 2.1 discusses prior

solutions that reduce repetitive computations on GPUs. Alternative prior solutions

have exploited the repetitive behavior for prefetching; these are discussed in Sec-

tion 2.2. By contrast, our solution achieves both goals with a unified mechanism,

which yields wider benefits. Section 2.3 discusses prior solutions related to fine-

grained synchronization. Section 2.4 discusses prior graph algorithm designs that

solve the SSSP problem. Finally, Section 2.5 discusses how our solutions relate to

prior work on delegation

2.1 Repetitive Computation Reduction

Previous work [48, 139, 143] has proposed a dedicated data path for scalar

computation to eliminate redundancy and to improve performance and energy effi-

ciency on SIMT GPUs. Collange, et al [27] introduce the notion of affine compu-

tation as a generalization of scalar computation. Kim, et al [65] extend this idea by

adding a functional unit that can perform affine branch and memory operations.

Our solution extends the special support for affine computation by decou-

pling its execution onto a separate warp. This approach (1) further reduces compu-

11

tational redundancy, (2) reduces the dynamic warp instruction count, and (3) hides

memory latency through a form of non-speculative data prefetching.

Lee, et al [8] present a compiler-based technique to identify opportunities

for scalar code to execute under divergent constraints in GPU workloads. Collange,

et al [27] present a scalarizing compiler technique for mapping CUDA kernel to

SIMD architectures. We build on their insights and present a compiler technique

for identifying control-flow divergent conditions.

2.2 Memory Latency Reduction

For scalable speculative prefetching on GPUs, previous work [72, 120, 60,

59, 144] has built on the regularity of memory accesses across different GPU threads

to infer prefetches, based on the observed behavior of a few threads. However, GPU

prefetchers can sometimes be vexed by useless prefetches for inactive threads. This

situation can cause cache pollution and other contention [72]. By contrast, our

solution issues early memory requests non-speculatively as a part of the program

execution. It does not suffer from mispredictions or early evictions.

Decoupled Access Execution (DAE) [126, 74, 41, 28] is a lightweight mem-

ory latency hiding mechanism for in-order processors. The main idea is to decou-

ple memory instructions (the access stream) from other instructions (the execute

stream), so that the access stream can bypass memory stalls and issue memory

requests early. Arnau, et al. [7] decouple memory accesses from a fragment pro-

cessor’s tile queue, allowing a tile’s memory requests to be issued before dispatch.

Our solution employs decoupling to affine computations, both to reduce memory

12

latency and to improve computational efficiency.

2.3 Fine-Grained Synchronization

Previous work propose designating one or more threads as servers (or dele-

gates) to handle critical sections for multi-core CPUs with a cache-coherent shared

memory interface [20, 83, 111, 129, 54, 104, 43] and for many-core CPUs with

both cache coherence and hardware message-passing capability [109] (e.g. Tilera

TILE series [136]). While their designs differ, the principle of transforming syn-

chronization into communication remains the same. The aim is to let clients offload

the updates for the same data to the same server so that critical-section updates can

be serialized at the servers.

Our work is the first to apply similar principles for GPUs. Since GPU archi-

tecture differs significantly from that of CPUs, our solution differs from previous

work in several ways.

First, CPUs have fewer hardware threads than do GPUs. Hence, previous

work has used individual threads as servers. Since conflicts are serialized to a single

thread, no further synchronization is needed for processing requests. Because of the

large thread/warp count of GPUs, our solution uses TBs as servers. Hence, when

requests are processed, threads in the TB synchronize via their fast local scratchpad.

Second, CPUs have cache coherence and often also sophisticated on-chip

interconnect as implicit hardware inter-core communication mechanisms. Previous

work has employed software message-passing systems on top of these mechanisms

13

for a relatively small number of threads. By contrast, our solution must be scalable

for the much larger number of threads on GPUs, which lack such hardware support

for inter-SM (inter-TB) communication.

On the other hand, several issues such as a large number of threads, no

coherent L1 cache, and lower memory bandwidth per thread, render fine-grain locks

a more severe problem on GPUs than CPUs [146, 40]. Therefore, our solution has

greater performance improvement potential.

Yilmazer, et al. [146] propose a hardware-accelerated fine-grained lock scheme

for GPUs, which adds support for queuing locks in L1 and L2 caches and uses a

customized communication protocol to enable faster lock transfer and to reduce

lock retries for non-coherent caches. ElTantawy et al. [40] propose a hardware

warp scheduling policy that reduces lock retries by de-prioritizing warps whose

threads are spin waiting. Hardware-accelerated locks have also been proposed for

CPUs [131, 79, 147, 4].

By contrast, our solution does not require hardware modification. Moreover,

a rough comparison with published results (see Section 4.6.4) suggests that our

solution performs as well as, if not better than, previous hardware solutions. This

is likely the result of our solution addressing the problem at higher level by using

scratchpad memories for global synchronization.

14

2.4 Single Source Shortest Path

Dijkstra’s algorithm[38] uses a priority queue to process (i.e. relax) vertices

according their tentative distance. This feature makes it the most work-efficient

algorithm. By contrast, Bellman-Ford’s algorithm [11] processes vertices without

order. Originally, the advantage of Bellman-Ford is to allow negative edge weights.

There are parallel versions of both algorithms. Dijkstra’s algorithm can

be parallelized while persevering the exact ordering semantic. Crauser, et al. [29]

propose an algorithm that discovers suitable vertices in the priority queue that can

be processed in parallel; for example, if the first N vertices in the priority queue

have the same distance, they can be removed in parallel. GPU-based parallel algo-

rithms [84, 103] have also been proposed. Generally, these parallel algorithms are

practical only for graphs with highly structured edge weights and connectivity.

Bellman-Ford’s algorithm is much more straight-forward to parallelize, since

it does not require a priority queue. Many GPU implementations have been pro-

posed [51, 16, 130, 18, 117, 19, 124, 71, 101]. However, the disadvantage of

Bellman-Ford is redundant work caused by processing vertices in an arbitrary or-

der. Meyer, et al. [88] propose ∆ -Stepping as a midway between Bellman-Ford

and Dijkstra’. The algorithm processes vertices in approximate order, so it im-

proves work efficiency when compared to Bellman-Ford; however, it does not use

a priority queue, which makes parallelism possible.

Many GPU adoptions of ∆ -Stepping have been proposed [135, 132, 12, 31,

9]. In general, these previous solutions render the work-scheduling data structure

15

scalable for GPUs by simplifying the design. However, by doing so, they sacri-

fice the quality of work scheduling; in particular, they achieve sub-optimal work

efficiency and concurrency, which limits their performance.

Our algorithm is a GPU adoption of ∆ -Stepping. Compared with previous

solutions, ours uses a more sophisticated work-scheduling mechanism that achieves

better work efficiency and concurrency. At the same time, we implement a sophis-

ticated mechanism to be efficient for GPUs. As a result, our solution performs far

better than previous ones.

2.5 Delegation

Delegation is proposed by previous work [37, 42, 107, 121, 145, 54, 104,

109, 43, 108, 20, 83, 111, 116] as a way to avoid the inefficiency caused by locking

for multi-core or multi-socket CPU systems. In this regard, our fine-grain lock

project is closely related to prior work, and we have demonstrated that the notion

of delegates can be adapted so that they work on GPUs. Our other two project

uses delegation in a broader sense, and we have demonstrate that the idea can used

beyond locking problems.

The main idea of delegation is that one or several threads act as servers that

execute the critical section on behalf of other threads. Prior delegation proposals

can be categorized into two main approaches—combiner and dedicated delegate.

As to the combiner approach [37, 42, 107, 121, 145, 54, 104, 109, 43], one

thread is dynamically selected to act as the temporary delegate, i.e. combining;

16

the rationale is to avoid wasting a thread for handling critical section execution

exclusively, especially for multi-core CPUs with a small hardware thread count.

As to the dedicated delegate approach [108, 20, 83, 111, 116], as the name

suggests, delegates are dedicated server threads, which avoids the overhead of dy-

namical combining; this approach achieves better performance for systems with a

moderate thread count. Lozi, et al. propose RCL [83, 108] with a drop-in replace-

ment for locks but has additional complexities and overheads due to the need for

supporting legacy programs. Roghanchi, et al. propose ffwd [116], which offers

somewhat restricted functionalities, i.e. no support for certain legacy programming

patterns, but achieves better performance when compared to RCL.

We now discuss how our projects are related to prior work.

Our fine-grain lock project is the first to adopt a dedicated delegate approach

on GPUs. Due to the significant difference between GPU and CPU architectures,

our solution differs from prior solution in two ways. First, each delegate is a thread

block instead of a thread in our solution, and we take advantage of GPUs’ fast local

scratch-pad memories for locking within each delegate thread block. Second, most

of the complexities of a delegate design lies in handling the interaction between

the client and the delegate threads, where our solution uses an entirely different

approach for GPU architecture.

To be specific, in both RCL [83, 108] and ffwd [116], each client CPU core

owns a cache line for writing its request to the delegate (i.e. request buffer), and

delegate polls those cache lines in round-robin to find and to retrieve clients’ re-

17

quests. Clearly, we could modify this approach for GPUs, e.g. each warp instead of

a thread owns a request buffer (layout in memory as multiple cache lines), etc. but

fundamentally, the idea of letting a client write a fixed location is not suitable for

GPUs. First, GPUs have a large number of concurrent threads with sparsity in terms

of requests to the delegate; therefore, polling through the request fields of thread-

s/warps one by one is not efficient. Second, also due to sparsity, those requests

would not be in consecutive memory locations, which is detrimental to coalesced

memory accesses and L2 cache footprint. Therefore, in our solution, each dele-

gate owns a concurrent read-write-able FIFO queue so that clients only write valid

requests in consecutive locations. Furthermore, we apply various optimizations to

promote coalesced memory accesses and to amortize overheads when writing and

reading the FIFO queue. Therefore, our approach is more suitable for the highly

parallel nature of GPU-like architecture.

As to the worklist manager in our SSSP project, although the manager can

be considered as a delegate in a broader sense, the key difference is that the man-

ager interacts with the clients at a much coarser granularity. To be specific, in both

CPU and our own GPU lock-replacement delegate designs, the delegate handles

individual threads’ requests; clearly, this is unnecessary for the purpose of main-

taining a coarse-grain priority queue (i.e. the buckets), since the manager does not

care about the individual work items written by client threads. Instead, the man-

ager only needs to determine when and which work-items (in a range) can be read

out for maintaining consistency and ordering and to determine which client thread

blocks are available for accepting work; in addition, features, such as dynamic delta

18

adjustment, also only require coarse-grain information. Therefore, for our worklist

solution, the manager acts as a controller for the clients that accesses various meta-

data only instead of a true delegate in the traditional sense.

19

Chapter 3

Decoupled Affine Computation1

GPUs are optimized for regular data parallel workloads. Data parallelism is

commonly expressed with single instruction multiple threads (SIMT), where data

elements are parallelized to lightweight scalar threads, which are then grouped into

vector warps at the hardware level (e.g. Nvidia GPUs) or at the assembly or com-

piler level (e.g. AMD GPUs). However, regular workloads often exhibit a high

degree of repetitiveness in terms of address calculation and control flow. The repet-

itive computations must be duplicated to all threads or warps; in particular, it causes

unnecessary instruction executions and ALU OPs.

Our main idea is simply to de-duplicate such computations. This is done by

decoupling the original kernel into the affine kernel containing the repetitive portion

(e.g. instr0, instr1 in Figure 1.3) and the data parallel (DP) kernel containing the

true data parallel portion (e.g. instr2, instr3). As Figure 3.1 1© shows, for each

thread block (TB), we launch N warps for the DP kernel, which is the same as for the

original kernel, but only one warp for the affine kernel. The repetitive instructions

are thus executed by a single warp instead of decoupling to N warps. Therefore,

1Portions of this chapter are based on the following publication:
Affine Computation for SIMT GPUs, ISCA 2017[134]

20

instr0, instr1

instr2, instr3

instr2, instr3

warp 0:

warp 1:

warp N:

instr2, instr3warp 2:
instr2, instr3warp 3:
instr2, instr3warp 4:

.....

Data Parallel Kernel

Thread Block 0 (N warps)
Stream Multiple Processor (SM)

.....

added hardware components

address
generator

(base, offset)
e.g. (100, 4)

affine tuple

hardware
queues

cacheline address

DMA
engine

L1 cache

L2 & DRAM

prefetch

Affine Kernel

❶
❷

❸

Figure 3.1: Decoupling Repetitive Computations: the figure illustrates our
solution

.

21

our solution reduces the instruction execution count by a factor of N.

The two decoupled kernels work cooperatively as a single kernel, so the re-

sults produced by the affine warp must be passed efficiently to the DP warps. To

facilitate such communication, we use a compact encoding format and add special-

ized hardware to each GPU core (SM), as shown in Figure 1.3 2©. For example,

instr0 and instr1 calculate the memory addresses for array access. Because of the

repetitiveness, the addresses can be encoded as a base-offset pair, such as (100, 4),

known as the affine tuple. The affine warp produces the affine tuple and pass it to

the address generator, which generates cache-line addresses and then buffers them

in a set of hardware queues, one for each DP warp. In contrast to a baseline SIMT

GPU, which calculates addresses thread-by-thread and then coalesces them into

cache-line addresses, our solution generates cache-line addresses directly from the

affine tuple. This approach improves the efficiency. In addition to address calcula-

tion, a similar mechanism is used for repetitive control flow condition evaluations

(not shown). In this case, our solution generates predicate bit-masks directly.

In addition to de-duplication, our solution allows non-speculative prefetch

of memory data. As Figure 3.1 3© shows, the affine warp already produces cache-

line addresses and it can be run ahead of DP warps due to decoupling. Therefore,

we add a DMA engine that retrieves data early from L2 or DRAM to the L1 cache,

which be accessed by DP warps later. The principle is similar to decoupled ac-

cess/execution [126].

Some previous solutions have reduced repetition without decoupling. For

example, AMD GPUs [6] use explicit scalar and vector instructions and a dedicated

22

scalar data path so that repetitive instructions are handled with scalar ALU OPs in-

stead of vector OPs. Kim, et al[65] propose a solution that achieves a similar effect

for Nvida-like SIMT GPUs by detecting scalar executable instructions in run-time.

The main drawback of previous solutions is that they de-duplicate only repetitive

computation within each warp by transforming vector ALU OPs into scalar ones;

repetitive instructions are still duplicated to all warps because they are not decou-

pled, and are executed redundantly. By contrast, our solution de-duplicates them at

TB scope and thus reduces instruction executions.

In summary, our solution improves performance and energy efficiency by

reducing dynamic instruction count, ALU OPs, and memory latency. For evalu-

ation, we implement our solution on GPGPU-Sim simulating a GTX 480 GPU.

For comparison, we also implement CAE [65], a previous repetition-reduction so-

lution, and MTA [72], a previous speculative prefetching solution. We use a set

of 29 GPGPU benchmarks, of which 18 are memory-bound and 11 are compute-

bound. For all 29 benchmarks, our solution achieves 40.7% speedup and 20.2%

energy reduction on average. For the 18 memory-bound benchmarks, our solution

achieves a 44.7% mean speedup compared to the 16.7% achieved by MTA. For

the 11 compute-bound benchmarks, our solution achieves a 34.0% mean speedup,

compared to CAE’s 11.0%.

The rest of this chapter is organized as follows. Section 3.1 formalizes the

notion of repetitive computations with a previously proposed concept known as

affine computation. Section 3.2 discusses our idea of decoupling affine computa-

tion. Section 3.3 shows how our solution can be implemented at the hardware and

23

compiler levels. In Sections 3.4 and 3.5, we present the experimental evaluation of

our solution.

3.1 Background and Motivation

Collange, et al [27] introduces affine computation to represent repetitive

computations. The idea is based on the observation that GPU workloads often use

scalar data, such as kernel parameters, and the thread ID to map memory accesses

and control flow to threads. Therefore, the operand values of many ALU instruc-

tions often exhibit a high degree of regularity across threads. This characteristic can

be exploited to reduce ALU operation.

A
B

C=A+B

SIMT Lanes
0 1 2 ... 31

100 101 102 131...

300 302 304 362...

(base, offset)
Affine Tuple

(200, 1)
(100, 1)

(300, 2)

Affine
ComputationBaseline GPU

Operands

200 201 202 ... 231

D (2 , 0)2 2 2 ... 2
E=CxD 600 604 608 724... (600, 4)

Figure 3.2: Operand Values–Baseline GPU and Affine Computation

Figure 3.2 shows the per-thread operand values of an ADD OP and an MUL

OP as examples of the regularity. First, it is evident that the value of A starts at 100

in lane 0 and then increases by 1 with each successive thread. Hence, the entire

vector value of A can be represented as an affine tuple (100, 1), where 100 is a base

and 1 is the offset. Algebraically, an affine tuple represents values as a function of

24

thread ID:

operand value = base+ thread ID×offset (3.1)

Similarly, the scalar B can be represented as the tuple (200, 1). Next, the

value of C (as the result of ADD OP) can be represented as the tuple (300, 2).

Instead of performing one ALU per lane in vector computation, the C tuple can be

derived with A and B affine tuples using just two additions. The first adds A’s base

to B’s base; the second adds A’s offset to B’s offset, producing (300, 2). The C affine

tuple can then be used as a source operand for subsequent affine computations.

The value of D can be represented as (2, 0), where the offset is 0. Such

an operand is called a scalar operand. The MUL OP between C and D can also be

calculated using affine arithmetic with two multiplications, one to multiply C’s base

with D’s base and the other to multiply C’s offset with D’s base; the result is (600,

4). However, for affine MUL OP, one of the operands must be scalar; alternatively,

vector computations must be used, because the result cannot be represented as an

affine tuple.

Figure 3.3 shows a sample CUDA kernel in a relatively concrete example.

Figure 3.4 shows how address addrA is derived entirely from affine arithmetic. The

same applies to address addrB and predicate p0 (not shown).

A sequence of affine computations can continue as long as both source and

destination operands can be represented as affine tuples. Otherwise, affine tuples

must be expanded into concrete values. For memory instructions with affine ad-

dresses (e.g. addrA) and for predicate computation instructions with affine operands

25

void example_kernel(int A[],int B[],
int dim ,int num)

{
int tid=blockIdx.x*blockDim.x+

threadIdx.x;
for(int i=0;i<dim;i++)
{
int tmp=A[i*num+tid];
B[i*num+tid]=tmp+1;
}
}

(a) CUDA Code

1 mul r0, blockIdx.x, blockDim.x;

2 add tid , threadIdx.x, r0;

3 mul r1, tid , 4;

4 add addrA , A[], r1;

5 add addrB , B[], r1;

6 mov i, 0;

7 LOOP:

8 ld.global tmp , [addrA];

9 add r2, tmp , 1;

10 st.global [addrB], r2;

11 add i, i, 1;

12 mul r3, num , 4;

13 add addrA , r3 , addrA;

14 add addrB , r3 , addrB;

15 setp.ne p0 , dim , i;

16 @p0 bra LOOP;

(b) Pseudo Assembly Code

Figure 3.3: Example Kernel

Operand Value Affine Tuple
operand name Thread 0 Thread 1 Thread 2 (Base, Offset)
A[] 0x80000 0x80000 0x80000 (0x80000,0x0)
#3, r1 0x0 0x4 0x8 (0x0,0x4)
#4, addrA 0x80000 0x80004 0x80008 (0x80000,0x4)
#12, r3 0x1000 0x1000 0x1000 (0x1000,0x0)
#13, addrA 0x81000 0x81004 0x81008 (0x81000,0x4)

Figure 3.4: Affine Values and Affine Tuples for 3 Threads

(e.g. #15), expansion can be handled efficiently in most cases. For example, addrA,

has an offset of 4, and 32 consecutive threads of a warp can be serviced by a single

cache-line address. Hence, a warp can be expanded by a single ALU operation. If

an affine tuple cannot be expanded into predicate bit vectors or addresses, then it

must be expanded into concrete vector values by evaluating function3.1 explicitly

for each thread.

In addition to ADD and MUL, similar ALU operations (e.g. sub, shl, or

26

C
P

ST
O

A
E

S

M
Q B
S

L
IB SG T
P

FF
T

B
P

SR
1

H
S PF ST

IM
G H
I

L
B

M

SP
V B
T

L
U

D

SR
2

SC K
M

B
FS

C
FD M

C

M
T SP C
S

M
E

A
N

20%

40%

60%

80%
Po

te
nt

ia
lA

ffi
ne

(%
)

Arithmetic
Memory
Branch

Figure 3.5: Percentage of Instructions Computing on Scalar Data and Thread
IDs

mad) are supported. These simple operations constitute a large portion of compu-

tations on scalar data and thread IDs. They are often used for address and pred-

icate bit vector computations for regular workloads, where memory accesses and

control flows are generally not data-dependent. Figure 3.5 shows that for our 29

benchmarks, about half of the static instructions are potentially affine instructions.

They are deemed such because two factors, namely control flow divergence and

instruction type, can force them to execute in non-affine warps. Previous affine

computation techniques [27, 65] cannot execute affine computation after control

flow divergence. By contrast, our solution uses compile-time analysis and run-time

mechanisms to execute affine instructions after limited forms of divergence.

3.2 Our Solution

In the previous section, we show that an affine computation (i.e. arithmetic

for affine tuples) can replace vector computation for a warp instruction. Indeed, this

is how the previous solution [65] exploited affine computations. Affine (functional)

units are added to the GPU so that a warp instruction is issued to either a vector unit

27

or an affine unit.

We recognize that greater efficiency can be gained by exploiting across mul-

tiple warps. The affine property (i.e. constant offset of values) often exists for

adjacent warps, since they are assigned with consecutive thread IDs. Hence, it is

possible to execute a single warp instruction with affine computation to replace in-

struction execution of multiple adjacent warps. Not only does this further reduce

ALU operations but it also reduces the dynamic instruction count. Therefore, we

conclude that the previous solution executes affine instructions redundantly for each

warp.

Furthermore, since affine computations are often used for address calcula-

tions, it is possible to exploit them for non-speculatively prefetching memory data

for latency reduction. To achieve this, our solution decouples affine instructions (i.e.

instructions that are eligible for affine computation) and non-affine instructions into

separate instruction streams. The non-affine stream is still launched as multiple

warps (non-affine warps) for fine-grained multi-threading, while using vector com-

putation, just as in the baseline SIMT GPU. The decoupling allows our solution to

specialize in handling the affine instruction stream. Here, a single warp (the affine

warp) is launched per TB for affine computation, so that affine instructions are not

redundantly executed for each warp. Furthermore, the decoupling allows the affine

warp to run ahead independently of non-affine warps to prefetch. We named our

solution the decoupled affine computation (DAC).

Figure 3.6 shows that the original code from Figure 3.3 is compiled into

two instruction streams. It is evident that memory accesses are decoupled into two

28

1 LOOP:

2 mul r0, blockIdx.x, blockDim.x;

3 add tid , threadIdx.x, r0;

4 mul r1, tid , 4;

5 add addrA , A[], r1;

6 add addrB , B[], r1;

7 mov i, 0;

8 LOOP:

9 enq.data addrA;

10 enq.addr addrB;

11 add i, i, 1;

12 mul r3, num , 4;

13 add addrA , r3 , addrA;

14 add addrB , r3 , addrB;

15 setp.ne p0 , dim , i;

16 enq.pred p0

17 @pred bra LOOP;

(a) The Affine Instruction Stream

1 LOOP:

2 ld.global tmp , deq.data;

3 add r2, tmp , 1;

4 st.global [deq.addr], r2;

5 @ deq.pred bra LOOP;

(b) The Non-Affine Instruction Stream

Figure 3.6: Decoupled Kernels

parts. The affine warp uses affine tuples to compute the memory addresses and then

sends the affine tuples to the non-affine warps by enqueueing them to the address

queue. The non-affine warps then dequeue the concrete values. For example, the

store instruction in line 10 of the original code (st.global[addrB], r2;) is translated

into line 10 in the affine instruction stream (enq.addr addrB;) and line 4 in the

non-affine stream (st.global [deq.addr], r2;). Predicate computation instructions

are handled in a similar manner.

The affine warp can run ahead of the non-affine warps to hide memory la-

tency because the affine warp operates on read-only data, such as thread IDs and

kernel parameters; it does not modify memory. Therefore, the affine warp can ex-

ecute independently from the non-affine stream. More importantly, the affine warp

fetches memory – but does not use it – on behalf of the non-affine warps, so the

29

Figure 3.7: Interaction Between the Affine Warp and the Non-Affine Warps

affine warp can issue memory requests while bypassing stalls. For example, in Fig-

ure 3.6a, line 9 of the decoupled kernel loads the data pointed to by addrA in a

loop. The affine warp can request [addr] for the next iteration without waiting for

the requests of the previous iteration to finish, because only non-affine warps oper-

ate on data [addr] (tmp+1). In other words, the original program’s data dependence

on [addr] is broken by executing the use of the data on the non-affine warps.

3.3 Implementation

Specialized hardware is added to support the affine stream at run-time. Specif-

ically, the enqueue and dequeue instructions trigger hardware mechanisms that (1)

expand affine tuples into concrete values and (2) coordinate the two streams at run-

time. Figure 3.7 shows the interaction between the two instruction streams in hard-

ware. The single affine warp sends a tuple for expansion when executing an enqueue

instruction. An affine tuple is expanded into concrete values (cache-line addresses

or predicate bit vectors) and buffered for each non-affine warp. Non-affine warps

then retrieve the concrete values from buffer when executing dequeue instructions.

30

Figure 3.8: DAC Hardware Organization

31

The corresponding hardware is shown in Figure 3.8, with the baseline components

appearing in white and the added components in gray.

3.3.1 Expansion Units

When the affine warp executes an enq instruction, the associated affine tuple

is enqueued 3© to the tail of the affine tuple queue (ATQ). The predicate expansion

unit or the address expansion unit then fetches the affine tuple from the head of the

ATQ 4©. Using the affine tuple, the expansion units generate predicate bit-masks

or coarse-grain addresses for each non-affine warp. A predicate bit-mask is then,

for example, enqueued 5© to the tail of the per warp predicate queue (PWPQ).

As the name suggests, there is one PWPQ for each concurrent non-affine warp.

Finally, when a non-affine warp executes a deq.pred instruction, the bit-mask is

dequeued 6© from its PWPQ, and the bit-mask is used to set the predicate register.

The process is similar for address expansion (enq.addr). Essentially, the expansion

units are optimized the common cases for regular workloads.

The address expansion unit (AEU) generates cache-line addresses directly

from the affine tuples, without generating addresses for individual threads. For ex-

ample, with an offset of 4, adjacent warps access consecutive 128-byte cache lines;

therefore, the AEU will generate a sequence of consecutive cache-line addresses

for warps by accumulating 128 at a time from the starting address of the TB. The

accumulation is always done by 128 at a time regardless of the offset value. For ex-

ample, for an offset of 8, each warp receives two consecutive cache-line addresses.

To indicate which word of the 128-byte data a non-affine thread should access, the

32

AEU generates a bit-mask that accompanies the cache-line address. For instance,

an offset of 4 generates a bit-mask 111111... to indicate that all 32 words are ac-

cessed. Similarly, an offset of 8 generates 101010... to indicate the access of every

other word in the region. The address and bit-mask are then pushed to the PWAQ

as a compact record, which is then used by non-affine warps to access memory.

The predicate expansion unit (PEU) generates predicate bit vectors for the

non-affine warps. Predicate bit vectors are generated by comparisons (e.g. greater

than) between two operations. For a predicate computation to be decoupled, DAC

requires that one operand (the scalar operand) be a scalar, where all threads in the

same block have the same value. If the other operand is also a scalar, then only a

single comparison is needed for all threads in the block. For our 29 benchmarks,

this case constituted 64% of the decoupled predicate computations.

If the other operand is not a scalar, then as with the AEU an accumulation

is performed. The idea is that if the first and last thread values of a warp are larger

or smaller than the scalar operand, then due to the constant offset of the affine

operand [65], all threads in between must have the same result. Thus, a convergent

bit-mask is generated for a warp with only two comparisons. This case constitutes

93% of the decoupled predicate computations, including the scalar case. For the

remaining 7%, the SIMT lanes are used to compare all 32 threads of a warp.

3.3.2 Prefetching

For the enq.data instruction (global and local loads), the AEU also sends

requests to the L1 cache or the lower levels of the memory hierarchy on a miss.

33

To avoid the eviction of requests that arrive before their demand accesses, DAC

adds lock counters to the tag array, which temporarily disable replacement for a

cache-line. The AEU locks cache lines upon issuing memory requests, and the non-

affine warp unlocks cache lines upon access. Unlike speculative prefetching, the

early requests are guaranteed to be accessed by the non-affine warp and eventually

unlocked, so this locking is safe. Memory accesses that are not affine must be issued

by the non-affine warps, but deadlock is avoided because the AEU can lock at most

(N−1) sets of an N-way cache. It is possible to create contention between locked

cache lines and non-affine cache lines, but we do not observe this to be a problem

because usually only a small portion of the cache is locked at any time.

To avoid deadlock when all entries of a set are locked by prefetch and the

non-affine on-demand access from the SIMT warp cannot be issued. At least one

entry of a set must remain unlocked at any time, so that this line can be used by the

non-affine access.

Early memory accesses can cause conflicts with barrier operations. To avoid

conflicts, barrier instructions are replicated for both the affine and non-affine warps.

The AEU handles barrier operations on behalf of the affine warp. When the affine

warp executes a barrier instruction, the AEU disables expansion for the target non-

affine blocks; the AEU only issues memory requests for non-affine blocks that pass

the barrier. Affine warps themselves do not access memory; they only access read-

only data, such kernel parameters. Therefore, they are not affected by these barriers.

34

3.3.3 Control Flow Handling

The affine and non-affine instruction streams work as a single kernel, so

the control flow that affects affine instructions is replicated to both types of warps.

A pair of corresponding statements in the affine and non-affine streams, namely

“if(tid¡bound) enq” and “if(tid¡bound) deq,” is considered here as an example. The

if-statement means that the affine warp should only enqueue and expand the tuple

for non-affine threads that require the data (i.e. the non-affine warps with tid less

than bound). In addition, the affine warp also requires control flow information of

its own to run ahead of non-affine warps independently. Therefore, we equipped

the affine warp with its own SIMT stack (the affine SIMT stack). The stack is a

two-level design that exploits convergence at the warp level to reduce the need to

check and update control flow on a thread-by-thread basis.

Figure 3.9: Re-Convergence Stack for the Affine Warp

Figure 3.9 depicts the affine SIMT stack. The functionality is similar to that

of a baseline GPU and that of the non-affine SIMT stack. For the code example on

the left, threads re-converge at Basic Block D (BBd), and the affine warp is currently

at BBb 1©. The warp level stack (WLS) encodes each non-affine warp’s bit vector

35

with only 2 bits. The “11” term indicates that all threads in the warp are 1s; “00”

denotes all 0s; and “10” denotes other settings. The PC and re-convergence PC

(RPC) fields are shared by all warps. The “1” and “00” cases only require checking

the WLS, without inspecting each thread’s bits. The WLS reduces the number of

bits that are checked and updated. For the “10” case, per warp stacks (PWSs) are

used for threads within a warp. On a Fermi GPU, 48 PWSs are used for concurrent

warps on an SM. In the example, only warp 2 (w2) must update its PWS, and 4©

and 5© show the content. All other warps use only WLS, and their PWSs have no

data 3©. The PWSs do not have PC and RPC fields, which reduces storage.

3.3.4 Divergent Affine Tuples

Control flow divergence affects whether an instruction is eligible for affine

computation. In some cases, an eligible instruction may require more than one

affine tuple due to divergence.

The code on the left of Figure 3.10 represents a case where a single tuple

suffices even after control flow divergence. In this case, the affine warp will not

enqueue addr1 for inactive threads. All active threads’ addr1, however, are still

computed by the same base and offset 1©, so active threads still use the same affine

tuple. In this case, it is sufficient to mask off the inactive threads when expanding

the affine tuple; this is handled by the affine SIMT stack.

The code on the right represents a case where affine tuples become diver-

gent. The common case is that threads compute addresses or predicates differently

depending on whether boundary conditions are met. In the example, a thread’s

36

Figure 3.10: Divergent Base-Offset Pairs on SIMT Lanes

value for offset can be either 0 or tid*4, so addr1 has two affine tuples for all threads:

(base,4) and (base,0).

In general, at most two divergent conditions (or four tuples) can affect an

affine operand; otherwise, the related affine instructions are not decoupled. A

compile-time technique is used to detect divergent tuples. The main idea is to

perform control-flow graph (CFG) analysis to identify and annotate which control

flow conditions are responsible for creating divergent affine tuples. This informa-

tion allows the compiler to decide whether certain affine instructions are eligible

for decoupling. The annotate control flow instructions are used at run-time for the

AEU to select whether to expand textttTuple A© or Tuple B©.

The compiler technique operates as follows. Each operand is classified as

one of three possible types: scalar (e.g. kernel parameters), affine (e.g. threadIdx),

37

or non-affine (e.g. memory). These are listed in order from the most specific to

the most general. The compiler initially assigns types to non-register operands. By

creating a CFG and performing reaching definition analysis on the CFG, the initial

types are iteratively propagated through register operands and instructions.

At each instruction, if more than one definition reaches a source operand,

the most general type among the definitions is assigned to the source operand. The

destination operand of an instruction is assigned the most general type among the

source operands. Instructions with operations not supported by affine computation

produce non-affine destination operands directly.

After the classification process, memory access and predicate computation

instructions with scalar and affine type source operands are candidates for decou-

pling into the affine stream. We refer to instructions that define another instruc-

tion’s source operands as predecessors. From each candidate memory and predi-

cate instruction, the compiler recursively traverses the CFG backwards to checks its

predecessor instructions for identifying divergent tuples. At each predecessor, the

compiler recognizes divergent affine tuples when a source operand has two or more

reaching definitions. For example, in Figure 3.11 (a), “offset” is defined at BBb

and BBc before reaching BBd; hence, “addr”has two affine tuples to expand. At

run-time, for each thread, expansion units choose one of the affine tuples according

to the thread’s control flow. We call the conditions for making the choice divergent

affine conditions.

Because the affine warp uses the affine SIMT stack to handle control flow,

we used SIMT stack entries as divergent affine conditions. Figure 3.11(a) pro-

38

Figure 3.11: Using SIMT Entry as Divergent Condition

vides the following example. The compiler identifies the re-convergence point of

two reaching definitions’ basic blocks 1©. The last SIMT stack entry before re-

convergence 2© is the divergent affine condition, since it distinguishes threads that

use BBb’s definition from those that use BBb’s.

Divergent reaching definitions can occur at an arbitrary predecessor of an

affine instruction where expansions are required. Thus, DAC saves to a dedi-

cated divergent condition register file (DCRF) the required SIMT stack entries (bit-

vectors) at re-convergence points, so that they can be checked by expansion units

later. As with the affine SIMT stack, the DCRF has a two-level structure but this is

used as a register file rather than a stack. After detecting a divergent affine tuple, the

re-convergence points are marked by the compiler, and a DCRF entry is allocated

39

by the compiler.

3.4 Methodology

To evaluate performance, we used GPGPU-sim 3.2.2 [10], and to evaluate

energy, we used GPUWattch[76]. The baseline GPU is modeled after a Fermi GTX

480 with the simulation parameters shown in Table 3.1. We use CACTI 5.3 [91] to

model the energy overhead of DAC’s added SRAM components.

Baseline GPU
GPU Fermi (GTX480), 15 SMs, 48 warps/SM
SM 32 SIMT lanes, 128KB register file
Scheduler 2 Schedulers/SM, Two Level Active [92]
L1 48 KB/SM, 4 Ways, 32 MSHRs
L2 769 KB, 6 Partitions, 8 Ways

GPU Prefetcher (MTA)
Prefetch Buffer 16KB/SM (in addition to the 48KB L1)

Compact Affine Execution (CAE)
Affine Units 2 Affine Units per SM (one per 16 lanes)

Decoupled Affine Computation (DAC)
ATQ (per SM) 24 Entries, 392 bytes, 5.3 pJ/Access
PWAQ (per SM) 192 Entries, 1560 bytes, 3.4 pJ/Access
PWPQ (per SM) 192 Entries, 768 bytes, 1.5 pJ/Access
PWS (per SM) 8×48 Entries, 1536 bytes, 2.7 pJ/Access
PWS (per SM) 8×48 Entries, 1536 bytes, 2.7 pJ/Access

Table 3.1: Simulation Parameters

We simulate all benchmarks with SASS, which is the native instruction set

executed directly on GPU hardware. GPGPU-sim parses the SASS assembly code

produced by the CUDA tool-chain and generates PTXPLUS, which is the instruc-

tion set used by the simulator. PTXPLUS corresponds almost exactly to SASS; the

40

conversion is merely syntactic.

For DAC, the compiler’s decoupling of kernels is performed on the PTX-

PLUS instructions in the GPGPU-sim front-end before simulation starts.

Compute Intensive Memory Intensive (cont)
Name Abbr. Suite Name Abbr. Suite
CP CP G imghisto IMG G
STO STO G histogram HI R
AES AES G LBM LBM R
mri q MQ G SPMV SPV R
tpacf TP G b+tree BT C
FFT FFT G LUD LUD C
backprop BP C sradv2 SR2 C
sradv1 SR1 C stream cluster SC C
hotspot HS C KMEANS KM C
pathfinder PF C BFS BFS C
blackscholes BS P CFD CFD C

Memory Intensive monte carlo MC P
LIB LIB G mersenne twister MT P
sgemm SG R Scalar Product SP P
stencil ST R Convolution Sep. CS P

Table 3.2: List of Benchmarks – G: GPGPU-sim distribution [10], R: Rodinia
benchmark suite [22], C: CUDA SDK, P: Parboil benchmark suite [128]

3.4.1 Baseline Techniques

To evaluate both the computational and memory latency hiding aspects of

DAC, we implement two other state-of-the-art designs. These are based on previ-

ously proposed techniques, which we now describe. In each case, we provisioned

the techniques with extra hardware that we do not give to DAC.

41

BFS BT CFD CS HI IMG KM LBM LIB LUD MC MT SC SG SP SPV SR2 ST Mean
0

0.5

1

1.5

2
sp

ee
du

p(
x)

CAE (Compact Affine Execution)
MTA (GPU Prefetch)
DAC (Our Design)

(a) Memory Intensive Benchmarks

AES BP BS CP FFT HS MQ PF SR1 STO TP MeanGlobal Mean
0

0.5

1

1.5

2

sp
ee

du
p(

x)

(b) Compute Intensive Benchmarks

Figure 3.12: Speedup of CAE, MTA, and DAC over the Baseline GTX 480
GPU

Compact Affine Execution (CAE) To evaluate DAC’s efficiency in handling

affine computations, we compare against CAE. The CAE augments the baseline

GPU with an affine data path based on Kim et al’s design [65]. CAE tracks affine

operands at run-time to determine which warp instructions are eligible for affine

computation. After fetch-decode, eligible warp instructions are sent not to the

SIMT lanes but to the affine function units for execution. CAE improves effi-

ciency by replacing vector computations with affine computations for threads within

a warp.

GPU Prefetcher (MTA) To evaluate DAC’s ability to hide memory latency, we

compare it to a system that augments the baseline GPU with a data prefetcher based

on Many-Thread Aware prefetching (MTA) [72]. MTA detects both intra-warp

42

memory access offsets (e.g. load instructions in loops within a warp) and inter-

thread offsets (e.g. load instructions issued by adjacent warps) for a few SIMT

threads. The regularity is then speculatively generalized to all warps to achieve

scalable prefetching. In addition, a throttling mechanism is used to control the

aggressiveness of prefetching based on the number of evicted cache lines that are

prefetched but not used by the GPU [72].

3.4.2 Benchmarks

We evaluate 29 benchmarks from four suites, as shown in Table 3.2. We

divide them into two categories: memory-intensive and compute-intensive bench-

marks. We consider a benchmark to be memory intensive if the baseline GPU can

achieve a speedup of at least 1.5 when using a perfect memory system (i.e. no la-

tency and unlimited bandwidth). The remaining benchmarks are considered to be

compute-intensive.

3.5 Evaluation

Figure 3.12 shows the speedup of DAC, CAE, and MTA over the baseline

GTX 480 GPU for our 29 benchmarks. DAC’s geometric mean speedup of 1.40 is

significantly better than either CAE’s or MTA’s. As expected, CAE provides bene-

fits for just the compute-intensive benchmarks, whereas MTA provides benefits for

just the memory-intensive benchmarks. Not only does DAC improve the perfor-

mance of both classes of programs but it offers the best performance within each

class of programs. For the compute-intensive benchmarks, DAC has a speedup of

43

1.34, while CAE achieves a speedup of 1.15. For the memory-intensive bench-

marks, DAC produces a speedup of 1.44, whereas MTA achieves a speedup of 1.16.

3.5.1 Instruction Execution Reduction

Figure 3.13 shows that for the 29 benchmarks, DAC executes on average

0.74× as many warp instructions as the baseline GPU. Therefore, DAC reduces

the dynamic instruction count by 26%, which in turn reduces execution time and

improves energy efficiency. The effect is particularly evident for compute-intensive

benchmarks. Only 4.6% of the instructions executed on DAC are affine instructions

(see Figure 3.13), indicating that DAC does not require a dedicated affine functional

unit.

C
P

ST
O

A
E

S

M
Q T
P

FF
T

B
P

SR
1

H
S PF B
S

L
IB SG ST

IM
G H
I

L
B

M

SP
V B
T

L
U

D

SR
2

SC K
M

B
FS

C
FD M

C

M
T SP C
S

M
ea

n

0

0.2

0.4

0.6

0.8

1

in
st

ru
ct

io
n

co
un

t(
x)

Non Affine Stream Affine Stream

Figure 3.13: Number of Warp Instructions Executed by DAC Normalized to
the Baseline GPU

With two affine units per SM, and two warp schedulers, our implementation

of CAE doubles the affine instruction throughput compared to the baseline. By

contrast, DAC executes a single affine instruction to replace nine instructions on

the baseline GPU on average. Hence, it increases execution throughput for affine

instructions by 9× over the baseline GPU.

44

3.5.2 Affine Instruction Coverage

CP
STO

AES
M

Q TP
FFT BP

SR1 HS PF BS

M
EAN

0%

20%

40%

60%

80%

af
fin

e
co

ve
ra

ge
(%

) CAE
DAC

Figure 3.14: Affine Instruction Coverage of DAC and CAE

The coverage of affine instructions refers to the percentage of warp instruc-

tions executed by the baseline GPU that could be handled as affine instructions by

CAE or DAC. For the 11 compute-intensive benchmarks, DAC achieves a geomet-

ric mean coverage of 34%, compared to 25% for CAE. These results are illustrated

in Figure 3.14.

Because DAC identifies affine computations statically and uses SIMT lanes

to execute affine instructions, DAC supports affine computations after limited con-

trol flow divergence; it uses offloaded affine SIMT stack entries to reduce the over-

head. By contrast, CAE has no facilities for performing affine computations after

divergence. Although the CAE scheme for identifying affine instructions is more

flexible than that of DAC, CAE must use the SIMT lanes to expand any affine tu-

ples involved in divergence back to vector values [65]. Moreover, CAE’s affine

functional unit uses a single ALU for offset computations, which requires all 32

threads of a warp to have the same offset pattern. For benchmarks, such as HT

and BP, whose last-level dimension is smaller than 32, CAE can handle only scalar

computations (i.e. an offset of 0), since the threads in a warp do not follow a single

45

offset pattern.

3.5.3 Memory Latency Hiding
B

FS B
T

C
FD C

S H
I

IM
G

K
M

L
B

M

L
IB

L
U

D

M
C

M
T

SC SG SP

SP
V

SR
2

ST

M
E

A
N

0%

20%

40%

60%

80%

100%

af
fin

e
lo

ad
re

qu
es

t(
%

)

Figure 3.15: Percentage of Affine Global and Local Load Requests on DAC

DAC can hide memory latency because the affine warp can run ahead of

non-affine warps and issue load requests, without waiting for previous requests to

finish. An indicator for DAC’s latency-hiding ability is the percentage of global and

local load addresses that are produced by affine instructions, which can be issued by

the affine warp. Figure 3.15 shows that for our memory-intensive benchmarks, an

average of 79.8% of the global and local load requests are issued by the affine warp.

Many benchmarks have close to 100% coverage, because regular SIMT workloads

often use scalar data and thread IDs to map memory addresses for coalesced mem-

ory accesses.

For benchmarks such as BFS and BT, which make heavy use of indirect

memory addresses to access complex data structures, DAC offers little performance

improvement. In addition, benchmarks may be constrained by bandwidth, row

buffer locality, or bank conflicts; in such cases, the affine warp might not run ahead

sufficiently. Therefore, some benchmarks (e.g. LBM) show little performance im-

46

provement despite the high percentage of affine memory requests.

MTA and DAC use different mechanisms to hide memory latency. In DAC,

affine memory requests are non-speculative and are generated by instruction execu-

tions of the affine warp. By contrast, MTA hides latency by speculatively issuing

prefetch requests when triggered by on-demand memory accesses.

B
FS B

T

C
FD C

S H
I

IM
G

K
M

L
B

M

L
IB

L
U

D

M
C

M
T

SC SG SP

SP
V

SR
2

ST

M
E

A
N

0%

20%

40%

60%

80%

100%

M
TA

’s
pr

ef
et

ch
co

ve
ra

ge
(%

)

Figure 3.16: MTA Prefetcher Coverage

Many SIMT workloads have highly regular memory accesses, so the MTA

prefetcher has high prediction accuracy. MTA’s latency-hiding ability correlates

with prefetcher coverage (see Figure 3.16), which is defined as the number of L2

and DRAM accesses covered by the prefetcher. It is evident that MTA’s throttling

mechanism reduces harmful prefetches, but it also reduces coverage when addi-

tional bandwidth is available in some cases. In certain other cases (e.g. SC), the

throttling mechanism does not prevent cache pollution

3.5.4 Energy Efficiency

Figure 3.17 shows the total energy consumption (dynamic and static) of

DAC normalized to the baseline GPU. For our 29 benchmarks, the geometric mean

is 0.798. Thus, DAC reduces total energy by 20.2%, and it reduces dynamic energy

47

A
E

S

B
FS B

P

B
S

B
T

C
FD C

P

C
S

FF
T H
I

H
S

IM
G

K
M

L
B

M

L
IB

L
U

D

M
C

M
Q

M
T PF SC SG SP

SP
V

SR
1

SR
2

ST

ST
O T
P

M
E

A
N

0

0.2

0.4

0.6

0.8

1
DAC Overhead ALU Register Other Dynamic Static

Figure 3.17: Energy Consumption of DAC Normalized to the Baseline GPU

alone by 18.4%. The major sources of savings are reduced ALU operations and

reduced register accesses due to reduced dynamic instruction executions. DAC

reduces the number of ALU operations by 44% and the energy consumption of

ALUs by 34%. DAC also reduces the number of register accesses by 17% and the

energy consumption of the register file by 32%. By reducing execution time, DAC

reduces static energy consumption by 29%.

The overhead of DAC is only 0.96% of the dynamic energy consumption.

Most of the overhead comes from the expansion of affine tuples. The expansion

units are efficient since they typically use only one or two ALU operations to expand

an affine tuple for a given warp.

3.5.5 Area Estimation

Most of the DAC hardware budget is allocated to expansion units, which

add 2 ALUs per SM, and to the various SRAM components, which add 6 KB per

SM. The ATQ has 24 entries, with a total size of 393 bytes. The per warp address

queue (PWPQ) has 192 entries partitioned among warps, with a total size of 1560

48

bytes. Similarly, the PWPQ has 192 entries and a total size of 768 bytes.

The affine SIMT stack has a depth of 8. It has, first, a WLS with bit-masks,

PC, and RPC, which requires 224 bytes; and second, PWSs with bit-masks only,

which requires 1536 bytes. The DCRF has the same amount of storage as the affine

SIMT stack.

We model the SRAM components using CACTI [91], which yields 0.21

mm2 of estimated area per SM. We estimate the area of 2 ALUs with the model

used in GPUWattch [76], which yields 0.16 mm2 per SM. On a GTX 480, with a

die size of 520 mm2 [55], the area overhead is 1.06%.

3.6 Summary

In this chapter, we have demonstrated how two distinct ideas, namely affine

computations and DAE, can be synergistically combined. Doing so greatly im-

proves the performance and energy efficiency of SIMT GPUs.

First, specialized support for affine computations on SIMT GPUs has until

now preserved the model in which a single instruction stream executes on all warps,

which limits the redundancy reduction to within a single warp. By decoupling the

affine computations to a separate affine instruction stream, DAC overcomes this

limitation. A single affine warp can thus produce values for many non-affine warps

and it reduces the warp instruction count.

Second, a naive implementation of DAE on GPUs would imply a doubling

of the number of threads. However, because affine computations represent such a

49

large reduction in computation, DAC focuses on affine memory accesses and adds

one warp per SM to significantly hide memory latency.

The result is a system that improves performance and energy efficiency for

both memory-intensive and compute-intensive workloads. The total energy con-

sumption is reduced by 20.2%, and a speedup of 40.7% is achieved.

50

Chapter 4

Decoupled Fine-Grained Synchronization1

The GPU architecture is highly efficient for regular workloads, and displays

significant performance advantage over traditional CPUs in that regard. Because of

this success, people are interested in using GPUs for irregular workloads as well.

The obstacle here is that irregular workloads tend to have operations not suitable for

massive data parallelism. Among these, fine-grained lock-based synchronization is

one of the most difficult problems to deal with.

To overcome the obstacle, we present a software solution that decouples

lock-based operations so that specialized treatments can be used to bypass the lim-

itations of GPU architecture. In particular, our solution can transform a global

synchronization problem into a local synchronization problem, which can be then

performed in fast scratch memories.

This chapter is organized as follows. Section 4.1 motives our solution by

discussing the performance bottleneck caused by fine-grained locks. Sections 4.2,

4.2.1, 4.3 discuss various components of our solution. In Section 4.5 and 4.6, we

present a detailed experimental evaluation of our solution.

1Portions of this chapter are based on the following publication:
Fast Fine-Grained Global Synchronization on GPUs, ASPLOS 2019[133]

51

4.1 Motivation

Global fine-grained synchronization enforces mutual exclusion when threads

from multiple TBs update shared data in global memory. As Figure 4.1 (a) shows,

the baseline protects the shared data with fine-grained locks implemented in global

memory. When there are contentions on protected data, the critical-section exe-

cution of contending threads are serialized, and the threads that fail to acquire lock

must retry lock variables continuously until success is attained. This process wastes

memory bandwidth. While lock contentions can be a problem in general, they place

a particularly heavy performance penalty on GPUs.

The performance bottleneck can be understood from both the throughput

and latency perspectives. Regarding throughput, GPUs typically run tens of thou-

sands of concurrent threads, which can lead to a massive number of lock retries.

Unlike CPUs, GPUs do not have cache coherence that could allow lock retries to

be confined to local caches (e.g. L1 caches). Hence, on GPUs, lock retries must

directly access the global levels of memory hierarchy, which are L2 and DRAM. In

addition, since fine-grained synchronization is used for irregular algorithms, lock

retries are non-coalesced memory accesses. This situation further exacerbates the

bandwidth waste, which in turn slows down all global memory traffic. Regarding

latency, depending on the algorithm and the data-input used, it is possible for many

threads to serialize their critical-section execution on a few protected data. Due

to such serialization, the latency of lock operations can significantly affect perfor-

mance. Unfortunately, the global memory system is optimized for throughput and

has high latency; the latency of lock operations is further increased due to interfer-

52

ence from lock retries.

4.2 Our Solution

Our solution utilizes fast scratchpad memories to handle lock operations and

thus shields global memory from lock contentions. Scratchpad memories are local

memories private to each thread block (TB). They are used in conjunction with

message passing in global memory to achieve global synchronization that involves

multiple TBs.

Specifically, our solution specializes only the critical-section part of the ker-

nel with a message-passing model. The rest of the kernel (i.e. non-critical section)

is left unchanged. This is done by separating an original kernel into two kernels:

the client kernel, which handles the non-critical sections, and the server kernel,

which executes the critical section on behalf of the client kernel. The two kernels

run concurrently, as shown in Figure 4.1 (b).

Client threads can still update arbitrary protected data items. However, they

do so indirectly, by offloading critical-section executions to server TBs via our soft-

ware message-passing system. On the server side, the ownership of protected data

is partitioned among server TBs so that each data item is accessible exclusively

through a unique server TB. The partitioning is achieved by interleaving data items

to server TBs, in a fine-grained manner, to avoid load imbalance. Client threads

choose the appropriate server TBs as destinations of messages based on data IDs.

Because data IDs have a one-to-one mapping to server TBs, all update requests for

the same data are guaranteed to be sent to the same server TB, thus maintaining

53

T0 T1 T2 T3

D0critical section
data

L0locks

D1

L1

D2

L2

D3

L3

reference

Baseline

D0 D1 D2 D3

Our Solution
Client
Kernel

Global
Mem

T0 T1 T2 T3

Locks in scratch-padServer
Kernel

offload by data id

retries

Global
Mem

TB0 T0 T1 T2 T3TB1

T0 T1 T2 T3TB0 T0 T1 T2 T3TB1

TB0

lock
&retry
locally

Owner:
 TB0

T0 T1 T2 T3

Locks in scratch-pad

TB0

update
global data

Owner:
 TB1

Figure 4.1: Fine-grained mutual exclusion with (a) global locks (baseline)
and (b) our solution

.

54

mutual exclusion at the TB level. This allows threads within each server TB to use

scratchpad memory locks to maintain mutual exclusion when servicing clients’ re-

quests in parallel. Scratchpad memories are high-bandwidth, low-latency on-chip

SRAM that support word-granularity accesses, where accesses waste no bandwidth

due to unused cache-line data. Thus, scratchpad memories are ideal for lock ac-

cesses and retries with irregular memory accesses.

Our solution improves performance by making better use of the GPU mem-

ory system. Compared to the baseline, which repeatedly issues lock retries to global

memory when contentions occur, our solution does not waste global memory band-

width. Client threads send offload messages via global memory only once, re-

gardless of contentions. The localizing of lock operations in scratchpad memories

means that useful global memory operations are no longer interfered with by lock

retries; in addition, the latency of lock operations is reduced.

4.2.1 Decoupled Program

This section describes how the original program with global locks (List-

ing 4.1) would be transformed to a decoupled program (Listing 4.2) at the source-

code level.

Listing 4.1 shows how a critical section is encapsulated into a function (line

6) and is protected by a try-lock loop. Data id, which can be a single word or a data

structure, refers to the data item to be updated. The arg# are additional arguments

that are generated by computations in the non-critical sections and are then passed

to the critical section.

55

1 void kernel (...){

2 // begin critical section

3 bool success = false;

4 do{

5 if(try_lock(data_id)){

6 critical_sec(data_id ,arg0 ,arg1);

7 __threadfence ();

8 unlock(data_id);

9 success = true;

10 }

11 }while(! success);

12 // end critical section

13 }

Listing 4.1: Original Kernel with Global Locks

Listing 4.2 shows how our software architecture uses two new procedures,

send msg and recv msg (lines 2–3), to pass messages from a client TB to a server

TB. The dst term insend msg denotes the server TB. The message size, in words,

corresponds to the number of arguments of the critical-section function.

The client kernel (lines 5–16) corresponds to the original baseline kernel in

Listing 4.1, where the critical section in the try-lock loop has been replaced with

message sending to server TBs. The code at line 8 maps offloads work to server TBs

based on data IDs. The mapping interleaves the ownership of data items to server

TBs. This fine-grained partitioning provides better load balance among server TBs

than would a coarse-grained partitioning. However, data IDs are dynamically gen-

erated by client TBs, depending on data inputs. Hence, load imbalance can still

occur when many threads serialize on relatively few data items. Even in these sce-

narios, the original kernel with global locks suffers much more due to high latency

global memory and the interference caused by lock retries.

56

1 // procedure calls for message passing

2 void send_msg(int dst ,int data_id ,any arg0 ,...);

3 bool recv_msg(int& data_id ,any& arg0 ,...);

4
5 void client_kernel (...){

6 // execute non -critical section

7 ...

8
9 //map data to server

10 int server_id = data_id % num_server_TB;

11
12 // offload critical section execution

13 send_msg(server_id ,data_id ,arg0 ,arg1);

14 // execute non -critical section

15 ...

16 }

17
18 void server_kernel (...){

19 // scratchpad memory locks

20 __shared__ int locks [4096];

21
22 //loop to handle client requests

23 bool terminate = false;

24 while(! terminate){

25 int data_id ,arg0 ,arg1;

26 if(recv_msg(data_id ,arg0 ,arg1)){

27 // received msg , do critical section

28 bool success = false;

29 do{

30 if(try_lock_local(data_id)){

31 critical_sec(data_id ,arg0 ,arg1);

32 __ threadfence_block ();

33 unlock_local(data_id);

34 success = true;}

35 }while(! success);}

36 terminate=check_termination ();}}

Listing 4.2: Pseudocode Code For Our Solution

The server kernel (lines 18–40) executes the critical section on behalf of the

clients. Hence, any try-lock loop in the original kernel is now in the server kernel

(lines 29–36), which uses locks implemented in scratchpad memories rather than

global memory. Since scratchpad memories have limited size, there can be a limited

number of locks; multiple data IDs can be mapped (aliased) to the same lock. On

57

modern Nvidia GPUs, for example, the maximum TB is 1K threads. We used 4K

locks per server TB to reduce the chance of unnecessary serializations caused by

aliasing.

Server threads execute a loop (lines 19–34) that listens to clients’ messages

and terminates when all clients are finished. The termination condition is a flag,

set by clients, in global memory. It is only checked periodically by servers; the

overhead of checking for termination is negligible because only one thread per TB

checks the flag and then informs the other threads of the condition.

Our solution is mostly straightforward for programmers. For most cases,

our code in Listing 4.2 can be used as a template; the programmer must insert

code for both non-critical sections and critical sections at the indicated places. The

server architecture for nested locks (discussed in Section 4.4 is more complex, but

a template is also provided for that case.

The maximum occupancy of the GPU which refers to the number of TBs

that can be executed concurrently can be determined by API calls. Some of those

TBs are used by the server kernel, and the remaining TBs are used by the client

kernel. The ratio of server-to-client TBs is based on the relative amount of work

performed in the critical sections versus the non-critical sections. The programmer

is responsible for setting this parameter based on the characteristics of the specific

application. This aspect may require some tuning by the programmer.

58

4.3 Our Software Message Passing System

Message passing is achieved using a set of message buffers in global mem-

ory, shared between senders and receivers. For receivers (i.e. servers), there is a

single buffer for each TB, which is used by all threads of that TB for receiving

messages and is not accessed by threads in other receiver TBs. For senders (i.e.

clients), threads choose the appropriate message buffer to write, based on data IDs.

Each message buffer is a large array accessed as a circular buffer; we use 4K mes-

sage entries as a default.

To implement message passing efficiently on GPUs, the main design con-

sideration is scalability. Each message buffer can be concurrently read and written

by thousands or more threads. Our main idea for addressing scalability is to take

advantage of scratchpad memories and to manage buffers hierarchically.

4.3.1 Our Basic Algorithm

We first describe the basic algorithm for a single thread’s read and write

operations. Then, we describe our optimized implementation for scalability.

The message buffer has the metadata shown in Figure 4.2 and described

here. The write idx is atomically incremented by the sender to reserve a buffer

index for writes. To determine whether the reserved index is free to write, the

sender checks the read idx, which is atomically incremented by the receiver after

reads. Thebit-maskk has one bit corresponding to each buffer location; it is set by

the sender after the message data has been successfully written to L2 (i.e. after the

memory barrier). It is checked by the receiver to find available messages for reads.

59

r0n/an/an/a2 0
write_idx read_idx data_array bit-mask

❶ atomicInc
to reserve
idx 2

❷ check if
idx 2 is free

❸ write data,
(idx%buf_size),
then membar

❹ set bit 2
atomicOr

Initial
State:
Write
r2:

0001

r0n/ar2n/a3 0
write_idx read_idx data_array bit-maskAfter

State: 0101

(a) Send One Message

bit-mask

❶ find an available
msg (set bit), then
atomicAnd to clear

0101
❷ read data

r0n/ar2n/a
data_array

❸ Inc to
free up
idx 0

0
read_idx

bit-mask
0100 n/an/ar2n/a

data_array
1

read_idx

Initial
State:
Read
r0:

After
State:

(b) Receive One Message

Figure 4.2: The basic data structure of a single message buffer and the basic
algorithm for reading and writing

.

The bit-mask is needed because concurrent sender threads may finish writing out

of order, such as in the figure, where buffer location 1 is reserved before location

2, but location 2 is written before location 1. Hence, the receiver must be able to

determine whether a specific location is valid.

In our basic algorithm, each thread accesses message buffers individually,

so each message send or receive incurs the overhead of accessing metadata in global

memory (e.g. bit-mask) Moreover, the lanes of a sender warp may have different

destination buffers (receiver TBs), and the lanes of the receiver warp might not read

consecutive buffer locations. Therefore, memory accesses for message data may be

non-coalesced.

60

4.3.2 Our Optimized Algorithm

Our optimized solution improves efficiency by amortizing the cost of global

memory accesses over a number of messages and by promoting coalesced memory

accesses.

T0 T1 T2 T3
msg
dst:

Recv0

2 1 0

m00 m01 n/a n/a

local msg buffers:
(scratchpad mem)

m10 m11 n/a n/a

m20 m21 m22 m23

m30 m31 m32 m33

Recv1

Recv2

Recv3

3

warp 0
L0 L1 L2 L3

warp 0

m31 m32 m33m30

global msg buffer of recv 3
(global mem)

Msg
Data

Write
Idx

Read
Idx

T0 T1 T2 T3
warp 1

Bit-
mask

metadata
overhead

Step 1: Aggregate in Local Buffers Step 2: Write to Global Buffers

T0 T1 L2 L3
warp 1

Figure 4.3: Sender Design—using local buffers for aggregated message write
.

Senders aggregate messages by collecting them in local buffers residing in

scratchpad memory before they are written to global message buffers in bulk. Fig-

ure 4.3 illustrates the sender design. Each TB has a set of small message buffers in

the scratchpad memory, with each local buffer corresponding to one receiver TB.

Messages from multiple warps are aggregated in local message buffers before be-

ing written to global message buffers; hence, metadata overhead is amortized, and

global memory accesses are typically coalesced. In addition, the metadata over-

head for accessing read idx (Figure 4.2 a) can be further reduced by keeping a local

scratchpad copy and updating it lazily (not shown).

61

Leader
Warp:

1111
0

bit-
masks

Receiver TB0

① read in bulk
 (find ready msg)

② assign msg for
followers to read

③ retrieve msg
data (coalesced

read)

1111
4

1111
8

1101
12

....

T0 T1 T2 T3

0assignment
buffers:
(scratchpad)

....4
read
 size

read
 ptr

4 4
read
 size

read
 ptr

0000 0000 0000
msg
data 0 1 2 3 4

T0 T1 T2 T3

....

Follower
Warps: T0 T1 T2 T3

Msg Buffer (global mem)

follower 0 follower 1

Figure 4.4: Receiver Design—using a single warp (the leader warp) for
metadata accesses

.

Receivers aggregate message-passing metadata access by using a single

warp, the leader warp, for each TB. This warp handles the metadata on behalf of the

other warps of that TB, which we refer to as the follower warps. Figure 4.4 illus-

trates the receiver design. The leader warp discovers a number of ready messages

by reading multiple bit-mask words in global memory at once. These messages are

then assigned to follower warps using a set of assignment buffers in the scratch-

pad memory. The leader warp only reads the bit-mask, whereas the actual message

data is read by follower warps. The messages assigned to each follower warp are

stored in consecutive buffer locations in global memory, which means message data

retrievals are coalesced memory accesses.

The leader warp can aggregate bit-mask reads of up to 1024 messages with

single warp granularity global memory, because 32 lanes of the warp can read 32

62

bit-mask words, which each represent 32 messages. This feature greatly reduces

the metadata overhead. In additional, other metadata overheads, such as resetting

bit-masks, are performed in a similar aggregated manner (not shown).

In addition to the advantage of no lock tries granted by the overall software

architecture, our message-passing system has additional bandwidth benefits com-

pared to global memory lock operations. The main insight is that global memory

lock operations must directly access specific lock variables that are spread through-

out the address space. Therefore, memory accesses are inherently non-coalesced.

By contrast, our solution handles locking indirectly and locally in the server TBs’

scratchpad memories. Hence, a client’s send messages are not bound to specific

global memory addresses; therefore, these messages can be placed consecutively in

circular buffers. This feature allows our optimized solution to perform coalesced

reads and writes of global memory.

4.4 Handling Nested Locks

Listing 4.3 shows the original kernel code with two nested locks. The criti-

cal section manipulates two data items, so a thread must acquire the locks for both

data items before entering the critical section.

63

1 // begin critical section

2
3 // data_id1 < data_id2

4 bool success1 = false;

5 bool success2 = false;

6 do{

7 if(! success1){

8 if(try_lock(data_id1))

9 success1 = true; // acquired 1st lock

10 }

11
12 if(success1){ // acquire 2nd lock

13 if(try_lock(data_id2)){

14 critical_sec(data_id1 ,data_id2 ,...);

15 __threadfence ();

16 unlock(data_id1);

17 unlock(data_id2);

18 success2=true;

19 }

20 }

21 }while (!(success1 && success2));

22 // end critical section

Listing 4.3: Original Kernel With Two Nested Lock

Just as with non-nested locks, our solution partitions data items among

server TBs so that lock operations can be handled in scratchpad memories. As

shown in Figure 4.5, server TB0 has ownership of data D0 and D1; hence, TB0

has exclusive access to the associated locks (L0 and L1) in the scratchpad memory.

TB1 similarly has exclusive access to L2 and L3. The client’s offload request now

contains two data items, D0 and D2, belonging to two different server TBs.

Our solution lets a client send an offload message to the server TB that

owns the first lock (TB0). TB0then acquires the remote lock (L2) from the other

server TB (TB1). It does so by sending to TB1 a request message for L2, which

tries to lock L2 locally. Once successful, TB1 sends a reply message back to TB0,

temporarily granting ownership of L2 to TB0 and preventing other requests from

64

T0

D0

Protected
Data
(global) D1

3.
4.

6.
8.

1.

2.

5.

Server TB0

L0 L1
locks
(local)

0/1
reply_bit
for T0
(local)

a client sends a RPC for
modifying D0, D2

polling for
reply

request_msg
for Lock2

try and
acquire
Lock2
on TB0's
behalf

reply_msg
to T0

acquire
Lock0

7. modifying D0 and D2

unlock_msg
for Lock2

L2 L3
locks
(local)

Server TB1

T1

D2

Protected
Data
(global) D3

reply
handler unlock

handler

Figure 4.5: Synchronization Server for Two Nested Lock—operations for
handling an offloaded request from client that involves two server TBs

modifying D2. Upon receiving the reply message, TB0 acquires L0 locally and

executes the critical section. Once finished, TB0 sends an unlock message back to

TB1 to unlock L2. As with non-nested locks, our solution handles lock retries in

scratchpad memories so that server TBs send messages only once across the global

memory.

To avoid deadlocks, we use a lock hierarchy to prevent circular depen-

dencies. The lock hierarchy is defined by the global ID of the locks to which

they are mapped. Global ID uniquely identifies a local lock, where global ID

= server ID × locks per server + local ID. Furthermore, we avoided deadlock

caused by insufficient buffer space availability by using different message channels

for different message types. This approach is similar to the idea of using virtual

channels to prevent protocol-level deadlocks.

65

The reply and unlock messages occur on the critical path of lock acquisition

and release. Therefore, to reduce their latency, we replaced the receiver’s leader

warp (see Section 4.3.2) with a reply handler warp and an unlock handler warp.

These two warps handle metadata in the same manner as the leader warp; however,

instead of assigning messages to follower warps, they read message data directly

and then perform their associated action directly. Their actions set reply bits or

reset local locks. This feature reduces latency. The modification is possible because

reply and unlock are simple tasks that are guaranteed to succeed without retry, so

follower warps are not needed.

At the sender side, we did not aggregate reply and unlock messages in local

buffers (see Section 4.3.2), because local buffering increases latency. Instead, the

two types of messages are sent directly to global buffers

4.5 Methodology

Compute Capability sm 61 Scratch-Pad Per SM 96KB
Shader Clock Rate 1.68 GHz Max Scratchpad Per TB 48KB
SM Count 28 L2 Size 2.75MB
Max Threads Per SM 2048 L2 Cache Line Size 128 Byte

Table 4.1: GTX 1080 ti Specifications

We evaluated our solution on an Nvidia GTX 1080 ti GPU (Pascal, GP102) [97,

102] using CUDA toolkit version 9.2 with driver 396.37. The hardware speci-

fication is shown in Table 4.1. To gather kernel execution statistics, such as L2

and DRAM traffic, we used the Nvidia Profiler (nvprof) [99] that is provided with

CUDA 9.2. The profiler replays kernel executions and periodically accesses hard-

66

ware performance counters on the GPU to record statistics.

To evaluate our solution, we used five benchmarks: two microbenchmarks

and three state-of-art implementations of relatively complex algorithms. Similar

microbenchmarks are used by previous researchers who studied fine-grain locking[146,

40, 39] and transactional memories [45, 24, 44, 113, 142] on GPUs. We now de-

scribe each of our five baseline benchmark programs.

Hash Table (HT) HT is a microbenchmark. Threads insert elements into a hash

table, with each hash-table entry being a linked list. Locks are used to provide

mutual exclusion on entry updates. We used a large hash table and collision factors

of 256, 1K, 32K, and 128K. The collision factor represents a pool of distinct entry

references for threads to choose from randomly. Thus, small collision factors lead

to many lock conflicts.

Bank Account (ATM) ATM is a microbenchmark with two nested locks. Each

thread performs a transaction that withdraws funds from one account and deposits

them into a second account. A lock is associated with each account, so each thread

acquires two locks to perform a transaction. Similar to HT, threads randomly choose

the source and destination accounts with collision factors 256, 1K, 32K, and 128K.

Minimum Spanning Tree (MST) MST finds a spanning tree that connects all

vertices of a graph with minimum weight. Our baseline is a GPU implementa-

tion of Boruvka’s algorithm from the newly released LonestarGPU 3.0 benchmark

67

suite [69, 106]. Each thread works on a vertex of the graph and updates a data

structure, called a “component.” Because multiple vertices may be mapped to the

same component, fine-grain locks are used to provide mutual exclusion for compo-

nent updates. We used as inputs the three largest graphs from the benchmark suites,

namely rmat22 (power law), USA-road-d.USA (high-diameter), and r4-2e23 (ran-

dom).

Stochastic Gradient Descent (SGD) SGD works on bipartite graphs, such as

a movie rating graph with some vertices representing movies and other vertices

representing users. Weighted edges between a user and a movie represent a rating.

SGD predicts missing edges (ratings) based on existing edges. We use Kaleem

et al’s [62] edge-lock implementation, where edges are assigned to threads and

two nested locks are used to guard movies and users. We used three real-world

inputs, namely Netflix (NF) [2, 13], Reuters (RT) [3, 77], and movie-lens 10M

(ML) [1, 49].

Maxflow (MF) MF is a push-relabel algorithm that finds the maximum flow of a

weighted graph, where edge weights represent network capacity. Nodes are paral-

lelized to threads, and fine-grained locks are used to prevent the same node being

worked by two or more threads. Our inputs are mesh graphs (2k×2k, 4k×4k, and

8k×4k) generated by a Washington generator[61].

68

4.6 Evaluation

This section describes our evaluation of the proposed solution. First, we

present speedups over the current state-of-the-art; thereafter, we examine in detail

the causes of the performance gap.

4.6.1 Performance

Figure 4.6 shows the speedup of our solution over state-of-the-art baseline

implementations of each of our benchmarks. Our solution achieves a mean speedup

of 3.6×. The reasons for the speedups we obtain are (1) reduction in global memory

bandwidth consumption and (2) reduced lock operation latency.

at
m

-2
56

at
m

-1
k

at
m

-3
2k

at
m

-1
28

k

ht
-2

56

ht
-1

k

ht
-3

2k

ht
-1

28
k

m
st

-r
m

at
22

m
st

-r
oa

d

m
st

-2
e3

2
sg

d-
m

l

sg
d-

rt

sg
d-

nf

m
f-

2K
x2

K

m
f-

4K
x4

K

m
f-

8K
x4

K
m

ea
n0

1
2
3
4
5
6
7
8

sp
ee

du
p(

x)

9.1

Figure 4.6: Speedup of our solution over the state-of-the-art

69

4.6.2 Bandwidth Benefits

Figure 4.7 shows the L2 and the DRAM traffic of our solution as a percent-

age of the baseline. The figure shows that our solution significantly reduces the

amount of global memory traffic and thus alleviates the bandwidth bottleneck.

at
m

-2
56

at
m

-1
k

at
m

-3
2k

at
m

-1
28

k

ht
-1

28

ht
-1

k

ht
-3

2k

ht
-1

28
k

m
st

-r
m

at
22

m
st

-r
oa

d

m
st

-2
e3

2

sg
d-

m
l

sg
d-

rt

sg
d-

nf

m
f-

2K
x2

K

m
f-

4K
x4

K

m
f-

8K
x4

K

0%
20%
40%
60%
80%

100%
120%

L2
DRAM

Figure 4.7: L2 and DRAM traffic of our solution as a percentage (%) of the
baseline—The L2 traffic is the total cache-line accesses of global loads and
stores and atomics, including misses to DRAM. The DRAM traffic includes
both reads and writes.The traffic includes overhead due to non-coalesced
accesses (i.e. unused words in cache lines)

Compared with the baseline, our solution improves efficiency by shielding

global memory from lock retries, which are instead performed in scratchpad mem-

ories. In addition, our message-passing system contains optimizations that promote

coalesced global memory accesses. By contrast, the baseline issued non-coalesced

lock accesses directly to global memory.

Our scheme generally reduces both DRAM and L2 traffic, in most cases.

However, our DRAM traffic reduction—compared with the baseline is greater than

the L2 traffic reduction, because our message-passing system enjoys locality in the

70

L2 cache. Each receiver buffer has just one write idx and read idx, so access to

those pointers causes L2 traffic but most likely results in a cache hit. Furthermore,

for message data writes, when multiple senders make non-coalesced writes to the

same buffer (same receiver) at similar times, they are likely to write to adjacent

locations of the buffer, since the (circular) buffers are reserved incrementally for

writing. Individually, each sender causes non-coalesced L2 accesses, but the cache

lines of the buffer are evicted to DRAM and are read by the receiver with coalesced

messages.

4.6.3 Latency Benefits

For benchmark-input combinations with high lock contention, Table 4.2

shows that execution time strongly correlates with latency. The table highlights

the average latency between unlock and reacquisition, including measurement over-

head. Latency is measured using the %globaltimer register, which is a nanosecond

hardware timer that has a consistent time for all SMs.

For HT and MST, our solution handles locks and unlocks entirely through

server TBs that access scratchpad memory. By contrast, the baseline model requires

higher latency global memory, which is affected by memory contention caused by

lock retries. Therefore, our solutions have significantly lower latencies. For our

ATM solution, global memory is used to send messages to acquire and release

locks. However, the critical path operations in global memory are not inhibited by

lock retries, and certain lock transfers are handled in scratchpad memories. These

characteristics mean our solution has lower latency than the baseline.

71

Latency (Cycle)
Baseline Our Solution

atm 256 24269 8292
atm 1k 18234 13831
ht 256 2192 248
ht 1k 2679 863

mst rmat 3601 490
mst r4 3537 533

Latency (Norm.) Run Time (Norm.)
Our Solution Our Solution

atm 256 0.34 0.31
atm 1k 0.75 0.68
ht 256 0.11 0.13
ht 1k 0.32 0.25

mst rmat 0.14 0.11
mst r4 0.15 0.13

Table 4.2: Latency and Total Execution Time

4.6.4 Comparison Against Hardware Solutions

We compare our solution with two previously proposed hardware solutions

for improving the performance of global memory lock operations.HQL [146]] em-

beds hardware locks in the L1 and L2 caches, where cache tag entries act as queue

locks. A cache-coherence-like protocol for lock operations between L1 and L2

is used.BOWS [40] is a warp scheduler that reduces retry traffic by de-prioritizing

warps that are spinning on locks.

Because HQL and BOWS are hardware solutions evaluated on simulators,

a direct comparison is impractical. Table 4.3 provides a rough comparison between

our solution and previous solutions, for common benchmarks; the speedup of our

solution is shown together with published results for HQL and BOWS. Because

72

of the numerous methodological and implementation differences, these numbers

should be interpreted cautiously.

Speedup over Baselines
HT-32 HT-128 HT-512 HT-1K ATM-1K

HQL 10x 1.6x 1.1x 0.9x
BOWS 1.3x 1.8x
Ours 18.3x 8.9x 4.0x 3.9x 1.5x

Table 4.3: Speedup over respective baselines—For HQL, the results are from
Figure 12 of the paper [146]; the baseline is a simulated Radeon HD 5870
GPU. For BOWS, the results are from Figure 15 of the paper [40]; the
baseline is a simulated GTX 1080ti. The HQL paper only provides results for
the HT microbenchmark, and the BOWS paper only provides results for
HT-1K and ATM-1K; unavailable results are left blank in the table.

At low lock count, HQL achieves speedup for HT because lock transfers are

partially handled in the L1, which decreases latency compared to the baseline. The

effect is similar to the use of scratchpad memories in our solution. However, hard-

ware locks are bound to limited cache resources, namely, the cache capacity and the

number of tags. Hence, the performance benefit of HQL decreases rapidly as the

number of locks increases; at 1K, HQL degrades performance. Since our solution

is implemented in software, it does not have these limitations. Our solution thus

achieves much higher speedups and does not experience performance degradation

at high lock counts.

BOWS improves performance by reducing lock retries. However, global

synchronization is still handled in L2 and DRAM, which limits the performance

gain, particularly for HT, compared to our solution. Our solution instead imple-

ments locks in scratchpad memories.

73

4.7 Summary

A common research trend is to add hardware support to render GPUs more

efficient and effective for irregular computations. In this chapter, we have shown

that in one respect, GPUs are already more efficient than is commonly recognized.

With the right programming model, existing GPU hardware can support efficient

fine-grained synchronization.

The main idea is to greatly reduce the use of slow global memory by dis-

tributing work to the faster local scratchpad memories. In particular, our solution

uses global memory to distribute work to server TBs, each associated with a sin-

gle scratchpad memory. Lock retries are then handled at the scratchpad memo-

ries, which are more efficient than global memory, particularly for non-coalesced

memory accesses. To support this solution, we implemented an efficient software

message-passing system built on top of global memory.

This new software architecture is straightforward for programmers. The

main task is to decompose the critical sections from the rest of the code. For ex-

ample, instead of writing a single kernel with a critical section, programmers im-

plement two kernels, one representing client threads that execute the non-critical

sections and make non-blocking procedure calls to the servers, and the other repre-

senting server threads that execute the critical sections on behalf of the clients.

We evaluated our solution on five irregular benchmarks, each with three

different inputs. On Nvidia GTX 1080 ti GPUs, our solutions are on average 3.6×

faster than the previous best state-of-the-art solutions for each problem.

74

Chapter 5

A GPU SSSP Solution with Decoupled Worklist1

Graph algorithms have abundant parallelism that can be exploited by the

GPU hardware. Furthermore, there are optimizations [87, 105] to make them more

regular in terms of control flow and memory accesses on GPUs.

Many graph algorithms benefit from using a worklist for work scheduling.

The worklist is a globally shared data structure, so existing GPU algorithms use

relatively simple worklist designs that suit the GPU architecture. However, such

simple worklist designs sacrifice the quality of work scheduling, which limits the

performance.

Our goal is to use a more complex worklist that performs high-quality work

scheduling while also making the complex worklist efficient for GPU architecture.

To achieve this, we decouple the original kernel into the worker kernel and the

worklist manager kernel. The worker kernel is responsible for graph processing,

whereas various tasks related to the worklist are delegated to the manager kernel.

We launch only one TB for the manager kernel (MTB); all other hardware resources

(TBs) are devoted to the worker kernel. The rationale is to centralize the worklist

1Portions of this chapter are based on the following publication:
A Fast Work-Efficient SSSP Algorithm for GPUs, to be appear in PPOPP 2021

75

management to a single MTB instead of letting all threads handle it directly. By

doing this, we are able to implement a complex worklist while avoiding extensive

synchronization between the many threads on the GPU.

Based on this approach, we develop a new single source shortest path (SSSP)

for GPUs. We choose SSSP because it has been extensive studied on GPUs and

work scheduling has a great impact on performance. To choose a baseline for com-

parison, we studied seven previous GPU SSSP algorithms (e.g. nvGRAPH [101],

Gunrock [135, 138], etc.) on a set of 226 graphs, and the best performing algo-

rithm is from LonestarGPU 4.0 [15, 105] (LG-SSSP), which is an adoption of ∆

-stepping [88], a CPU SSSP algorithm. We will now briefly discuss and compare ∆

-stepping, LG-SSSP , and our solution in turns.

The main idea of ∆ -stepping is to use a worklist that supports approximate

priority scheduling, which consists of many buckets (i.e. unordered lists, similar

to the buckets used in radix-sort). The characteristics of the bucket data structure

are as follows. First, each bucket can contain arbitrary number of vertex IDs, up

to a MAX SIZE, and buckets grow and shrink dynamically during execution. It is

evident that implementing buckets as arrays of MAX SIZE would waste too much

memory. Therefore, the CPU algorithm implements buckets as linked lists to handle

the sparsity. Second, the bucket data structure supports multi-writer-multi-reader

(MWMR), which means that threads can simultaneously read and write the same

buckets. This means that readers do not block writers or vice versa.

For GPUs, LG-SSSP simplifies the bucket-based worklist design. First, it

uses arrays instead of link-lists for buckets. However, it is limited to using only

76

two buckets instead of many to avoid wasting too much memory; the disadvantage

of this approach is reduced precision of priority scheduling and thus also work ef-

ficiency. Second, MWMR requires synchronization between writers and readers

for many threads on the GPU, which is unscalable. Therefore, LG-SSSP does not

support MWMR. Instead, it uses double buffering and global barrier, which allows

readers and writers to update in different arrays and thus avoids reader-writer syn-

chronization.

However, the disadvantage of not supporting MWMR is reduced concur-

rency. Work items (i.e. vertex IDs) written to the worklist cannot be read out and

scheduled immediately but must be delayed until the global barrier. This scenario

occurs because readers and writes do not access the same arrays.

Our solution is based on ∆ -stepping, but we designed a worklist efficient

for GPUs without simplification, where the decoupled and centralized worklist

manager plays a key role. First, to support many buckets, we use dynamic arrays

as buckets and implement a custom memory management scheme. All buckets

share a common pool of pre-allocated memory, such as cudaMalloc. This memory

is then managed by the worklist manager in run-time. To do this, each bucket (ar-

ray) is used as a circular FIFO, so the manager monitors the read and write pointer

of each FIFO bucket and then allocates (or de-allocates) memory to (or from) buck-

ets accordingly. Second, to support MWMR, the worklist manager acts as a single

delegate reader for graph-processing threads; this essentially transforms the prob-

lem into multi-writer-single-reader, which reduces synchronization requirements.

The manager finds available vertex IDs in the worklist in bulk and then assigns them

77

to graph-processing threads. To avoid the single manager becoming the bottleneck,

the manager only accesses and updates the worklist’s metadata rather than the ac-

tual content (i.e. vertex IDs). Third, our solution has a mechanism for setting the ∆

in run-time. The ∆ is the parameter that controls the granularity of buckets, which

greatly affects the performance. The optimal ∆ value differs for different graphs and

GPU configurations. For both the CPU ∆ -stepping algorithm and LG-SSSP, the ∆

is statically chosen before execution with a simple heuristic, which often yields a

non-optimal ∆ . Our solution uses run-time information to choose a more optimal

∆ dynamically. To do this, the worklist manager gathers statistics (e.g. hardware

utilization and work efficiency) and feed them to a state machine to adjust the ∆

value. To summarize, with many buckets, MWMR, and the run-time ∆ mechanism,

our solution significantly advances the state-of-art of GPU SSSP in terms of perfor-

mance. Comparing to LG-SSSP (the best known solution), we achieve an average

speedup of 2.8× on 226 graphs on a RTX 2080 ti GPU.

5.1 Background

This section discusses the basics of SSSP algorithm to provide necessary

background.

SSSP works on weighted and directed graphs, as Figure 5.1shows. Vertices

are connected together by edges, and the connection is unidirectional. In a trivial

example, each vertex has only one or two neighboring vertices. However, in general

graphs, each vertex can have any number of neighbors, and the distribution of the

vertices’ neighbor counts can be highly non-uniform.

78

A B E F

C D

1
3 2

1
100

5

vertex

edge

weight

....

Figure 5.1: An Example Graph—edges are directed with weight
.

Each edge has a weight, which represents distance. The goal of SSSP is

to find the shortest paths between a single source vertex (e.g. A) and every other

vertex. For this calculation, each vertex is associated with a variable, textitcur dist,

which represents the currently best-known distance of that vertex. Initially, cur dist

of the source vertex is set to 0, whereas that of all other vertices is set to ∞, mean-

ing an unknown distance. During execution, cur dist is gradually refined until the

shortest path is found.

Step 0:

A

A
cur_dist:

B C D E F
∞ ∞ ∞ ∞ ∞0

init

worklist:

Step 1:

B

A
cur_dist:

B C D E F
1 ∞ ∞ ∞ ∞0

process A, update B

worklist:

Step 2:

C

A
cur_dist:

B C D E F
1 101 ∞ 4 ∞0

process B, update C E

worklist: E

Step 3:

D

A
cur_dist:

B C D E F
1 101 106 4 ∞0

process C, update D

worklist: E

Step 4:

D

A
cur_dist:

B C D E F
1 5 106 4 60

process E, update C F

worklist: C F

pop

Step 5:

D

A
cur_dist:

B C D E F
1 5 10 4 60

process C, update D

worklist: D F

.................
Figure 5.2: Illustrate SSSP step-by-step

.

79

Figure5.2 shows how a generic SSSP algorithm works. Each step processes

one vertex by updating its neighbors’ cur dist. For example, in step 1, we select

A and updateB, and B’s new cur dist is calculated as A’s cur dist (0) plus the edge

weight (1). An updated vertex must be processed in subsequent steps so that the

shortest path calculation can be propagated to its neighbors, and so on. A worklist

is used to store the IDs of outstanding vertices to be processed. For example, in step

2, we push B’s neighbors C and D to the worklist, and they are then popped from

the worklist to processed i step 3 and 4.

5.1.1 Work Scheduling

In Figure 5.2, vertex C is processed twice, in step 3 and 5. The cur dist of

C in step 3 is derived from path ABC, which is not the shortest path, so it must

be corrected in step 5 with the shortest path, ABEC. Alternatively, if we select E

instead of C to process in step 3, and C in step 4, C will be processed only once,

since its cur dist is on the shortest path in the first try. This shows that the order in

which vertices are selected in each step affects the total work performed.

To generalize, if the worklist is a list (as in Figure5.2), vertices are popped in

arbitrary order; a vertex’s cur dist may not be on the shortest path when being pro-

cessed and thus may be processed multiple times during execution. Alternatively,

we can use a priority queue as the worklist, with cur dist as the key (not shown),

and the vertex with the smallest cur dist is popped first. Vertices are guaranteed to

be on the shortest path when being processed, so each vertex is processed only once

during execution.

80

The choice of a list or a priority queue as the worklist corresponds to two

well-known SSSP algorithms, namely those of Bellman-Ford’s [11] and Dijkstra’s [38].

Dijkstra’s is the most work-efficient SSSP algorithm in that it performs the least

amount of work. The difference in work efficiency between Bellman-Ford and Di-

jkstra can be up to the order of 10000×, especially for high-diameter graphs.

The disadvantage of Dijkstra’s algorithm is that a priority queue has more

overheads than a list in terms of data-structure complexity. More importantly, Di-

jkstra’s algorithm is difficult to parallelize due to its requirement of processing ver-

tices in strict order and the use of the priority queue. Generally, Dijkstra’s algorithm

is considered a serial algorithm. By contrast, for Bellman-Ford’s, vertices in the list

can be processed in an arbitrary order, so parallelism is simply achieved by assign-

ing those vertices to threads to process. The available concurrency correlates the

number of outstanding vertices in the worklist at a given time.

To summarize, the use of a worklist is a form of work scheduling. In gen-

eral, there are three criteria to assess a work-scheduling method: work efficiency,

concurrency (e.g. serial vs parallel), and data-structure complexity (e.g. list vs

priority queue). Bellman-Ford’s and Dijkstra’s algorithms occupy the two ends of

the spectrum for each criterion.

5.1.2 ∆ -Stepping

eyer et al. [88] propose ∆ -Stepping as a midway between Bellman-Ford’s

and Dijkstra’s algorithms. The main idea is to replace the priority queue in Di-

jkstra’s algorithm with an approximately ordering data structure that allows paral-

81

lelism and thus improves concurrency, whereas the ordered work scheduling im-

proves work efficiency compared to Bellman-Ford’s approach.

3

72

54

62

4

72

...
bucket

0

process
in parallel

vertex's
cur_dist

194

155

134

112

178

bucket
1

253

264

bucket
2

332

325

384

357

bucket
3

...

...

arbitrary
size

(0,99) (100,199) (200,299) (300,399)bucket
interval

priority

Δ	=	100

Figure 5.3: ∆ -Stepping’s Work Scheduling Data Structure
.

The approximately ordered data structure consists of many buckets (i.e.

lists), as Figure 5.3 shows. Each bucket accepts vertices with cur dist belonging to

a certain range; the parameter ∆ controls the interval. Essentially, the many-bucket

data structure sorts the outstanding vertices in coarse granularity. Regarding work

scheduling, vertices in the head bucket (e.g. bucket 0) are popped in arbitrary order

and processed in parallel. When there is no vertex leaf, the next bucket (e.g. 1)

becomes the head, and the process continues; this approach enforces approximate

orders for vertices between buckets.

82

5.2 Motivation

We have described three SSSP algorithms: Dijkstra, Bellman-Ford, and ∆

-stepping. The key difference between them is the work-scheduling method, which

has a profound impact on performance for any hardware platform. In this work, we

focus on developing a sound work-scheduling method for GPUs.

For GPU SSSP algorithms, work scheduling is a challenging problem. GPUs

are massive parallel processors with tens of thousands of hardware threads; hence,

the data structure used for work scheduling must be scalable to prevent a perfor-

mance bottleneck. Furthermore, it should ideally provide enough concurrency to

utilize the abundant hardware threads while also being work efficient.

To select a baseline for our study, we evaluated seven previous GPU SSSP

algorithms on a set of 226 graphs (see Section 5.8 for details). The best-performing

one is from LonestarGPU 4.0 [15, 105] (LG-SSSP), which is an adoption of a GPU

adaptation of ∆ -stepping. Recall the three criteria of work-scheduling, namely

work efficiency, concurrency, and data-structure complexity. The focus of LG-

SSSP is to use a relativity simple data structure to achieve scalability on GPUs,

but it sacrifices work efficiency and concurrency by doing so.

We now discuss the three design considerations when implementing ∆ -

stepping on GPUs. In addition, the limitations of LG-SSSP are described.

83

5.2.1 Design Consideration 1

In general, the total number of work items (i.e. outstanding vertex IDs) in

all buckets is bounded by —E—, which refers to the number of edges. However,

they are distributed to buckets non-uniformly, as shown in Figure 5.3. Furthermore,

buckets grow and shrink dynamically during execution. If each bucket is imple-

mented as a fix-sized array, all arrays must be large enough to expect the maximum

usage case (—E—). When using many buckets, this wastes too much memory and

thus becomes impractical for large graphs. Therefore, on CPUs, buckets are imple-

mented as doubly linked lists to handle the dynamic sparsity[88].

The linked list is a poor choice. LG-SSSP compromises by implementing

each bucket as a fix-sized array and by using just two buckets instead of many, to

avoid wasting memory. This makes the work-scheduling data structure suitable for

GPU architecture. The disadvantage is that work items are now grouped into only

two buckets, which decreases the precision of ordering and thus decreases the work

efficiency.

5.2.2 Design Consideration 2

Buckets are global data structures that are simultaneously accessed by all

threads. Synchronization is needed when threads read (pop) or write (push) the

buckets to avoid race conditions and to update the buckets consistently. There

are three types of synchronization. First, when multiple threads write to the same

bucket, writers must synchronize to ensure unique buffer locations are used. Sec-

ond, multiple reader threads must synchronize to ensure unique locations are ac-

84

cessed. Third, readers must synchronize with writers to ensure that only properly

written are read; for example, reading may happen before a location is properly

written to the last-level cache.

This type of concurrent data structure is called the multiple-writer–multiple-

reader (MWMR), which means that threads can read and write simultaneously.

However, GPU algorithms, including LG-SSSP, typically do not use an MWMR

concurrent data structure, since it requires too much synchronization and is thus

unscalable for the large thread count of the GPU. Instead, concurrent data structures

are implemented using a technique called double buffering to reduce synchroniza-

tion, as shown in Figure 5.4.

array
0

array
1

A
B
C

threads
D
E
F

r w

array
1

D
E
F

G
H
I

array
0

J
K

Iteration 0 Iteration 1

Time

...

Figure 5.4: Implementing a List as Double Buffers
.

To simplify the discussion, we describe the use of a single list as the work-

list. The key idea is to split a single list into two buffers: a reading buffer and a

writing buffer. Then the graph is processed in iterations, called “super-steps.” For

example, in iteration 0, threads read work items from buffer 0 to process, and newly

85

generated work items are written to buffer 1. After no work items are left in array

0 and all threads are complete, the two arrays swap, so that buffer 1 becomes the

new reading buffer and buffer 0 becomes the new writing buffer in iteration 1. The

procedure repeats in following iterations. Iterations and buffer swaps are separated

by a global barrier [140], which is a software-implemented barrier for all TBs in

the grid.

With double buffering, reading actions are separated from writing actions

because readers and writers access two different buffers. This removes the need for

writer-reader synchronization. Only synchronization between writers is needed, in-

stead of across all three types. Therefore, double buffering greatly reduces synchro-

nization and simplifies the design, compared to MWMR. However, the disadvan-

tage of double buffering is reduced concurrency, since newly generated work items

can only be read in the next iteration. For example, in iteration 0, the newly written

work items (D,E,F) are delayed for processing in iteration 1, even if idle threads

are available in iteration 0. This scenario results in hardware under-utilization. By

contrast, MWMR uses a single buffer, so that newly written work items can be read

immediately without waiting; this approach achieves far superior concurrency.

In practice, double buffering is especially harmful for high-diameter graphs,

where the execution is forced into many tiny iterations. For example, for the

road.USA graph, the average work count per iteration is only 800, whereas an

RTX 2080 GPU has 68K hardware threads.

86

5.2.3 Design Consideration 3

The third design consideration is how to set the parameter ∆ , which strongly

impacts performance. Recall that ∆ affects the granularity of buckets. Choosing

a smaller ∆ results in fewer vertices in each bucket and thus reduces the amount

of work that can performed in parallel. However, fine-grained buckets potentially

reduce the total work due to precise ordering. Therefore, the choice of ∆ controls the

trade-off between available concurrency and work efficiency. The optimal choice

– that is, the choice that yields the best performance – differs considerably across

graphs and hardware. It depends on the weights and connectivity of the graph and

the number of processing elements in the hardware.

LG-SSSP uses a simple heuristic [31] that often selects a far-from-optimal

∆ . The ∆ is chosen statically before execution, based on the average weight (W)

and the average degree (D) of the graph input with the equation ∆ =C*(W/D). C.

The C term is a constant that remains the same for all graph inputs.

The equation cannot find a near-optimal ∆ . We demonstrated this with the

experiment shown in Figure 5.5. The idea is to make C a variable and then reversely

find an optimal C for each graph. Figure 5.5 illustrates two points: first,the choice

of ∆ has a significant impact on performance; second, the optimal C for the two

graphs are far away from each other. Hence, it is impossible to select a constant C

suitable for all graphs.

In other words, static information (W and D) is not enough and we need

more information and more sophisticated method to make the decision. Ideally,

87

C (2^n)

N
or

m
al

iz
ed

 R
un

 T
im

e
(X

)

0

1

2

3

4

-2 0 2 4 6 8 10 12 14

rmat road

Figure 5.5: Execution Time against C for Two Graphs—the execution time is
normalize to the minimum in the series; labels of the x-axis are power of 2

.

run-time information (e.g. hardware utilization and work efficiency) can be used to

make a precise decision that yields a more optimal ∆ .

In summary, the simplifications to the data-structure design improve the

scalability, but at the expense of work efficiency and concurrency.

5.3 The Overview of Our Solution

Our solution is a GPU adoption of ∆ -stepping. Compared to prior GPU

adoptions, we use a new work-scheduling mechanism, which substantially im-

proves the work efficiency and concurrency and therefore achieves a far superior

performance. This is achieved by three key features.

First, we develop a dynamic data structure with customized memory man-

88

agement, which allows us to use many buckets instead of just two, to improve the

work efficiency. Second, we do not use double buffering; instead, our bucket data

structure is capable of MWMR, which improves concurrency. Third, we use a run-

time mechanism that gathers statistics to dynamically derive a far more optimal ∆ .

While our work-scheduling mechanism has more sophisticated functionalities, the

complexity of implementation is also substantially increased. Therefore, we need to

find a way to deal with the complexity to implement the work scheduling efficiently.

Our main idea is to centralize work scheduling to a single thread block

(manager TB, or MTB). All other thread blocks (worker TBs, or WTBs) are tasked

with vertex processing. The rationale is to avoid letting all threads on the GPU

handle the complex work-scheduling data structure directly; we isolate the syn-

chronization and complexity to a single TB. The MTB and WTBs run in parallel

while executing two different kernels of their respective tasks. Figure 5.6 shows the

interactions between MTB and WTBs.

Worker threads process vertices and write the vertices’ ID (work items) to

buckets according to priority, but they cannot read from buckets directly. Instead,

the MTB reads the bucket and assigns work to worker threads for processing. The

MTB also maintains the priority of buckets by keeping track of and switching the

head bucket. Essentially, the MTB is a delegate that performs read operations on be-

half of worker threads; this transforms the MWMR problem into a MWSR problem

(multi-writer–single-reader) because the MTB acts as a single reader.

To avoid the single reader becoming a bottleneck, the MTB only accesses

the bucket metadata instead of the actual content (i.e. work items). For example,

89

one such metadata indicates which bucket location is properly written to memory

and valid for reading. This is a key requirement for a concurrent reader-writer data

structure. The MTB probes the metadata to find valid work in the bucket, where

one cache-line granularity memory access of metadata can resolve up to 8K bucket

locations. Then MTB assigns the work to WTBs at a coarse granularity of up to 1K

vertex IDs per assignment. To enhance the concurrency between metadata probing

and work-assigning operations, we divide the two tasks between two separate warps

in the MTB: the probe-warp and the assign-warp. Compared to a solution where all

threads read and write buckets directly in MRMW fashion, our solution amortizes

the overhead of metadata access to many reads instead of paying for each thread’s

(or warp’s) read operation. Furthermore, our solution, being MRSW, does not need

to resolve conflicts between multiple readers, such as colliding on the same bucket

location. This characteristic simplifies the design.

The assign-warp also handles dynamic ∆ stetting (see Section 5.7). Our ∆

stetting mechanism relies on run-time statistics, the most important of which is how

busy are the worker threads (i.e. hardware utilization). The assign-warp assigns

work and thus can derive hardware utilization, which makes it the natural candidate

for setting ∆ .

Another task of MTB is memory management, which is handled by the

mm-warp. From the perspective of worker threads, each bucket is a circular FIFO

queue of size. However, there is no pre-allocated memory – such as cudaMalloc()

– to back up the buckets; instead, all buckets share one pool of pre-allocated mem-

ory. This pool is dynamically allocated to and de-allocated from each bucket, on

90

WTB 0 WTB 1 WTB n....
worker TBs

manager TB

probe
metadata to

find valid work
items (in bulk)

assign a range of buffer
location to read (in bulk)

write_ptr (head)
read_ptr (tail)

a pool of memory
(e.g. cudaMalloc)

probe
warp

assign
warp

MM
warp

B n

buckets (worklist)

B 0B 1B 2.... B 3

write work
items

circular
FIFO

alloc

de-alloc (free)

manage

monitor

Figure 5.6: The Overview of Components’ Functionalities
.

demand, by the mm-warp. The pool of memory is chopped into 256KB blocks,

and the mm-warp uses bit-masks, stored in the fast scratchpad memory, to keep

track of free blocks efficiently. Our memory-managing routine is customized for

FIFO-like buckets, where the head and tail always grow linearly, and each written

vertex ID is read out only once. There is no equivalent of malloc() and free() in our

memory-manage routine because worker threads do not explicitly issue commands

to the mm-warp. Instead, the mm-warp allocates and de-allocates blocks by moni-

toring the head and the tail of each FIFO bucket transparent to worker threads. By

doing this, it avoids the overhead of communicating between work threads and the

mm-warp over global memory. In addition, it allows the mm-warp to pre-allocate

blocks to buckets in advance, because of FIFO’s trivial access pattern, so that work

threads do not stall on memory allocation when writing the buckets.

91

This rest of this chapter is organized as follows. We first discuss how a

single bucket works and then expand the discussion to multiple buckets. To simplify

the discussion, we first assume that bucket data buffers are static-allocated memory

and without reuse. Then we discuss how the system would work with dynamic

memory management.

5.4 A Single Bucket

A single bucket is an array used as a circular FIFO buffer. Our algorithm

for preventing concurrent read/write race conditions is as follows.

Begin with worker threads (writers), multiple worker threads can write the

bucket simultaneously, so each thread must find an unique buffer location to write.

Each bucket has a reservation pointer (resv ptr) (a global memory word). Threads

atomically increment (atomicAdd) the resv ptr before writes, and the return value

(i.e. old value) is guaranteed to be unique for each calling threads. Next, we need to

prevent the race condition between the reader and writers, in particular, the reader

should only access buffer locations that have been fully written in memory.

For this purpose, each bucket has a number of write finished counters (WFCs)

(global memory words). We call each N consecutive buffer locations a segment

(N=256), each segment is associated with one WFC, initialized to 0. Here is how

it works. Suppose a worker thread writes a buffer location in segment A, after the

write, the thread execute a memory fence (threadfence() in CUDA), which ensures

that the data is properly written to the global level of memory hierarchy (e.g. the L2

cache on GPUs). After the fence, the worker thread atomically increment segment

92

A’s WFC. Now suppose the reader read from segment A, it first checks the WFC.

When WFC==N, it means all locations of the segment are fully written, so any lo-

cation is valid for reading. Otherwise, when WFC¡N, the reader must also check

the resv ptr; we call the reserved location count inside the segment resv count (i.e.

resv ptr minus the starting location the segment). There are following cases. Case

1, WFC¡resv count, the reader cannot read the segment because writers may reserve

and finish writing out of order; e.g. WFC==2 and resv count==3, it is possible that

locations 0, 1 and 2 are reserved, but only 0 and 2 are written, so we cannot know

which locations are valid. Case 2, WFC¿resv count, this cannot happen because

a location must be reserved first before writing, so it is impossible to have more

written locations than reserved locations. Finally, case 3, WFC==resv count, any

location up to resv count is valid to read; this works because resv ptr is loaded from

memory after WFC, and thus the value of resv ptr is at lease as recent as WFC;

and since writes reserve location consecutively; therefore, if WFC==resv count, the

reserved locations must have been written. Furthermore, to avoid memory consis-

tency issues, i.e. preventing the load requests for WFC and resv ptr being reordered

by the memory system, we place a memory fence between the two loads.

We have discussed our basic concurrent read/write algorithm. We now dis-

cuss our optimized implementation. In particular, we focus on reducing global

memory metadata traffic by aggregating read/write operations and by utilizing GPUs’

fast local scratch-pad memories. Recall that the probe-warp and the assign-warp in

the MTB act together as the delegate reader for worker threads.

The probe-warp keeps a read ptr for each bucket to remember the read

93

progress. The read ptr is private to the MTB, so it stored in the scratch-pad mem-

ory. The probe-warp finds valid buffer locations to read by checking WFCs of

segments starting from read ptr. WFCs are laid out consecutively in memory so

that 32 threads of the probe warp can read 32 WFCs as a coalesced memory ac-

cess. If any of the 32 segments is not full, then an additional access of resv ptr is

required. One design consideration is the segment size N, which trades off between

overhead and concurrency. If N is small, then the overhead of each WFC check can

only be amortized to small amount of reads; on the other hand, if N is too large,

e.g. N equals total buffer size, then no read can be made if any work thread is in

the process of writing (i.e. to be able to read, WFC must be equal to resv count).

Therefore, we choose N=256 as a balanced point, and the metadata checking over-

head is amortized to 8K (32x256) reads. The probe-warp updates the read ptr to

the latest valid buffer location after each check.

The assign-warp checks the read ptr and assigns valid buffer locations to

worker threads, which then read out the buffered vertex IDs for processing. As-

signments are to worker TBs rather than individual worker threads for efficiency.

Each WTB (up to 1K threads on Nvidia GPUs) is associated with an assignment

flag (AF)—a 64 bit global memory word. The AF is initialized to 0, meaning a

WTB is available for accepting work; the assign-warp writes the flag, and the WTB

reads the flag and resets it to 0. The bit fields of AF are shown below. Essentially,

a WTB’s assignment is a starting buffer index followed by a size.

The assign-warp polls AFs and the read ptr to find available WTBs and

available work. It is possible to have many available work but few available WTB

94

temporarily, where more WTBs may become available shortly after; or vice versa;

in such cases, it will create load imbalance if we just distribute all currently avail-

able work items to all currently available WTBs. Therefore, we set a lower bound

and an upper bound for assignment size. The upper bound is 32 vertices per warp

(or 1K per TB). The lower bound per warp is 32 divided by the average degree of

the graph, rounded up to the next power of 2, so that each thread has at least 1 edge

to process. Between the two bounds, the assign-warp choose a power of 2 value for

per warp work based on available work items and available WTBs; it is specified by

the grain shift field in AF (i.e. 1¡¡grain shift). WTBs are assigned in round robin

order.

Each WTB also caches a local version of AF in scratch-pad memory to

reduce accesses to global memory AF. Worker warps poll the local AF. If a warp

finds the local AF to be 0, it then copies the assignment (if any) from the global

AF to local AF; afterwards, each warp grabs a portion of assignment (specified

by grain shift) from the local AF until it is completed drained. Only one warp is

allowed to access the global AF at a time to prevent unnecessary accesses; this is

achieved by using a lock implemented in scratchpad memory.

5.5 Multiple Buckets

Our solution uses a fixed number of 32 buckets. Head and tail refer the

current highest and lowest priority buckets (initially, bucket 0 and 31 are the head

and tail). The head and tail bucket switch to next one in a circular way (e.g. 1 is now

the head and 0 is the tail). Bucket switching is monotonically increment without

95

backtracking; this is because the currently actively are always further away from

the source vertex (in terms of distance).

The MTB controls bucket switching. The key design consideration is when

to switch. One possible method is to switch after we have assigned all work items

in the head bucket. However, work items from a bucket can generate more work

to the same bucket upon being processed; so switching after assignment can re-

sult in premature bucket switch, where newly generated high priority work items

are clipped to low priority buckets. In our experiment, this method often causes

bucket switching to spiral out of control, where work items of multiple priorities

are lumped together in the same bucket, and thus renders bucketing pointless.

Therefore, to slow down bucket switching, the MTB waits for assigned work

items to finish processing in case more work items are enqueued to the head bucket.

For this purpose, each bucket is associated with a done work counter (DWC)—

a global memory word, initialized to 0. Suppose N work items from bucket A

are assigned to a WTB, after all N work items are processed, the last warp that

finishes its work atomically increase the DWC of A by N; so the DWC indicates

how many work items from the bucket have been completely processed, and the

overhead of updating DWC is amortized to each WTB’s assignment (up to 1K work-

items). On the MTB side, the probe-warp controls bucket switching; if the probe-

warp finds no available work in the head bucket, then it switches the bucket if

DWC==resv ptr, i.e. all work items written to the head bucket (determined by

resv ptr) have been processed and no work new work item is written to the bucket

(otherwise, DWC!=resv ptr).

96

As an optimization, the MTB is allowed to assign (dequeue) work items

from multiple high priority buckets (2 to 4) concurrently instead of just the head

bucket; we call those buckets—concurrent dequeue buckets or CDBs. There are

two reasons. First, the amount of work in a head bucket keeps decreasing, since

fewer work items are being enqueued back the head bucket; and the MTB waits

for the head bucket to completely finish before switching as mentioned earlier; so,

in many cases, the parallelism is low toward the end of head bucket processing

before switching happens. Therefore, the MTB is allowed to assign work items

from the adjacent high priority bucket to avoid the low parallelism period. Second,

our dynamic delta-picking mechanism can adjust the number of CDBs, in additional

to adjust the delta, as a mean to balance between hardware utilization and work

efficiency. Delta adjustment works a coarse-grain approach, while CDB adjustment

works a complementary fine-grain approach (will be described in Section X). We

choose 2 and 4 as min and max for CDBs. To support multiple CDBs, we use 4

probe-warps in the MTB for better probing concurrency (one probe-warp for each

CDB), and we still use 1 assign-warp; when assigning work items, higher priority

buckets are considered first, and lower priority buckets are considered only if there

are available WTBs but no work in higher ones.

Finally, the algorithm terminates (i.e. converges) if all work items in the

work storage are processed and no new work item is enqueued. The MTB is respon-

sible for termination detection—when N buckets are switched consecutively, where

N=2*NUM ALL BUCKETs (2x as a safety margin), and there is no work-item be-

ing probed nor assigned in any of the buckets. Upon termination, the assign-warp

97

writes a special termination command (0xffffffffffffffff) to all WTBs’ AF (assign-

ment flag). WTBs check AFs for assignments anyway, so termination checks do

not incur any new memory access overhead.

5.6 Dynamic Data Structure

We call the max number of active vertices of a graph at any time during

execution (in all buckets)—MAX ACTIVE. The distribution of vertices to buckets is

non-uniform and unpredictable, and it changes during execution; in the worst case,

all active vertices may cluster to the same bucket. Therefore, each bucket must be

size of MAX ACTIVE; if statically allocated, it uses too much memory and limits

our ability to process large graphs. Our goal is to design a dynamic data structure

while keeping the overhead minimal as if buckets are static arrays.

We statically allocate a pool of global memory and divided it into data

blocks (64K of 32-bit words each), which are dynamically allocated to or de-allocated

from each bucket based on actual usage.

The mechanisms discussed in previous sections work efficiently because

each bucket is simply an array (used as a circular FIFO buffer); e.g. it allows

probing, assigning and reserving consecutive locations, etc. We keep the array

FIFO buffer data structure intact, so there is no change to those mechanisms. The

only change is to the buffer data array (containing vertex IDs), which is now an

array of pointers to actual data blocks (bk ptr).

To access index X (e.g. 0xf0001) in the original buffer data array , the

98

upper 16 bits of X (e.g. 0xf) is the index to the bk ptr array; the retrieved bk ptr

is the starting location of the associated data block (e.g. 0x20000), which is then

combined with the lower 16 bits of X to form the final index (e.g. 0x20001) to the

pool of statically allocated global memory. So, essentially, the difference between

a static array and our dynamic array is an additional translation step by reading the

bk ptr array resided in global memory.

To reduce translation overheads, WTBs cache the translation results in local

scratch-pad memories. For each WTB, we implement a 4-entry directly mapped

translation cache for each bucket. Each cache entry has a tag, which is the bk ptr

array index (e.g. 0xf for X), and a corresponding result, which is the data block

ID (e.g. 0x2 for X). When performing a translation, the worker thread first check

whether the tag of the cache entry matches its own bk ptr array index; if they match,

the cached result is used; otherwise, the thread reads the bk ptr from global memory

and updates the cache entry. To update an entry, the tag and the result must be

modified together in an atomic step, since, otherwise, a cache access may happen

in between and read stale result. To simplify design, we pack tag and result into

a 32-bit word (16 bits for each); since reading or writing a word in memory is

guaranteed to be atomic, it avoids using locks. WTBs’ translation caches are only

used for writing data. As to reading data, when the MTB assigns work to WTBs,

the assign-warp performs translation and uses translated index in assignments; an

assignment does not cross data block boundary. The MTB also has translation

caches similar to WTBs.

The mm-warp in the MTB keeps track of free data blocks and modifies the

99

bk ptr array of each bucket to allocate/de-allocate data blocks. Since each bucket is

just a FIFO, the mm-warp monitors the enqueue/dequueue progress to allocate/de-

allocate in FIFO order; it is done automatically without worker threads’ explicit

involvement.

For allocations, the mm-warp records the current allocation progress of a

bucket in the alloc ptr (a scratch-pad memory variable) and checks a bucket’s

resv ptr for enqueue progress; 32 threads of the mm-warp checks 32 buckets in

parallel. We pre-allocate 2 data blocks ahead to hide allocation latency; so if the

difference between alloc ptr and resv ptr is less than 2 blocks for a bucket, the

mm-warp finds a free data block and then maps it to the bucket’s bk ptr array and

increments the alloc ptr. The status of data blocks is kept in a bitmask array in

the scratch-pad memory; a free data block can be found quickly with 32 threads of

warp checking in parallel. In addition, to further hide translation latency, the WTB

prefetch 1 data block ahead from the bk ptr array (which is pre-allocated) to the

translation cache.

For de-allocations, the mm-warp needs to know when a data block can be

safely freed in order not to destroy valid data items. In our solution, it can be easily

determined due to the FIFO property of buckets, where an allocated data block can

be freed if all its locations have been read once; so each data block is associated

with a read done counter (or RDC, a global memory word). The last worker warp

that finishes a WTB’s assignment atomically increments the appropriate RDC; if

a worker warp increments a data block’s RDC to 64K (block size), then the data

block can be safely de-allocated from its current bucket; the worker warp first resets

100

the related metadata (WDCs and RDC) of the data block and then set the last bit of

the bk ptr to 1 to indicate that it is free (note, the lower 16 bits of an allocated bk ptr

are 0s). Similar to alloc ptr, the mm-warp also keeps a dealloc ptr for each bucket

to keep track of the FIFO de-allocation progress. The bk ptr is checked by the mm-

warp according to dealloc ptr; if the last bit is set to 1, then the corresponding data

block will be added back to the pool of free blocks.

16(a) vertices with cur_dist: 37 55 74

(b) Δ = 5 (c) Δ = 20 (d) Δ = 40

0-4

5-9

10-14

15-19

16 37
55 74

0-19

16

20-39

37

40-59

55

60-79

74

0-39

16 37

40-79

55 74

80-119

120-159

b0

b1

b2

b3

buckets:

b0

b1

b2

b3

b0

b1

b2

b3

Figure 5.7: How ∆ Affects Work Efficiency and Concurrency—pushing 4
vertices (a) to 4 buckets under 3 scenarios: when ∆ =20 (c), it has best work
efficiency; when increased to 40 (d), it improves concurrency;but when
decreased to 5 (b), all vertices are clipped to the last bucket

101

5.7 Setting ∆ dynamically

The choice of ∆ has a significant impact on performance. This section first

discusses how ∆ affects performance in theory and in practices, and then based on

the observation, we introduce a mechanism for setting ∆ dynamically based on run

time information.

Figure 5.7 illustrate how ∆ affects performance in theory with a trivial ex-

ample, where we push 4 vertices to 4 buckets under 3 different ∆ choices. Let’s start

with the scenario in the middle, when ∆ =20 (c), it has the most precise ordering of

vertices (i.e. closer to a priority queue) and thus gives best work efficiency. How-

ever, this ∆ may not have enough concurrency to fully the hardware; in this case,

increasing ∆ (d) would increase the number of work items in each bucket (which

can be processed in parallel) and therefore, improve concurrency.

The interesting case is when we decrease ∆ to 5 (b). One would assume

decreasing ∆ always improves ordering, but this assumption is only valid if the

number of buckets is infinite. A finite number of buckets could only represent a

limited range of priorities, so vertices out of the range would be clipped to the last

bucket (e.g. b3 in the figure). Therefore, we should avoid choose a too small ∆ that

causes too much clipping.

How ∆ affects performance in practice We will now put theory into practice

with realistic experiments. Figure 5.8 shows how performance and work efficiency

correlate with ∆ for 3 drastically different graphs. For each graph, we mark 3 ∆

choices—the one that achieves best work efficiency (best-work-point), the one that

102

Best
Work Eff.

Best
Perf.

Best
Work Eff.

Best
Perf.

Best
Perf.

Best
Work Eff.

matches

9x more
work6x

slower

1.5x
slower

2x more
work

clip

clip

clip

Figure 5.8: This Experiment Plots Execution Time and Work Performed
Against ∆ — the choices of ∆ are predetermined and fixed during execution;
both time and work are normalized to the lowest point (lower the better);
finally, the experiments are done using 32 buckets

.
103

achieves best performance by balancing work efficient and concurrency (best-perf-

point), and the one that causes clipping (clip-point), which roughly correspond to

(c),(d), and (b) in Figure 5.7.

For the RMAT graph (a), the execution time correlates strongly with the

amount of work performed. It indicates that there is enough work to keep the

hardware fully utilized no matter the choice of delta, so ∆ (best-work-point) with

the least amount of work achieves the best performance (best-perf-point). The

ROAD graph (b) is the opposite; the best-work-point causes severe hardware under-

utilization, where the best-perf-point is 6× faster despite doing 9× more work; so

hardware utilization is an important factor when choosing ∆ for such graphs. The

MSDOOR graph (c) is a midway between RMAT and ROAD, which the trade-off is

much less extreme. Finally, for all 3 graphs, the clip-point always perform worse

than the best-work-point, since it causes drastically more work without improving

concurrency.

How to pick an optimal ∆ Based on the above observations, we develop a run

time mechanism that could automatically pick a near best-perf-point for a given

graph. Our basic idea is as follows.

Before execution starts, we pick an initial ∆ using a similar heuristic as pre-

vious solutions [31] (Section 5.2.3). ∆ is rounded to power of 2. During execution,

the MTB gathers run time information periodically and then makes the decision to

either increase or to decrease ∆ (i.e. shifting left or right). The process is a contin-

uous feedback loop so that the MTB guides ∆ closer to the optimal value at each

104

period.

When shifting ∆ , we should avoid the clip-point (or lower), which decreases

work efficiency without improving concurrency. The clip-point can be determined

by measuring the distribution of work items to buckets (Section 5.7.1 discusses the

details). Also notice that in Figure 5.8, the best-work-point is always immediately

to the right of the clip-point. So once we know the clip-point, we also know the

best-work-point, which serves as the lower bound of ∆ shifting.

Above the lower bound, we could safely assume that decreasing ∆ increases

work efficiency while decreasing concurrency, and vice versa. Our goal is to keep

∆ near a point where the hardware is just about fully utilized. This point represents

the optimal trade-off between work efficiency and concurrency. To understand the

rationale, suppose we decrease ∆ from the optimal point, it reduces concurrency so

the GPU will have unused resources to accept more work; this makes the benefit of

a smaller ∆ (i.e. work saving) pointless. On the other hand, it is also pointless to in-

crease ∆ for more concurrency, since the hardware is already full utilization, where

less work efficiency only hurts performance. Therefore, based on the rationale, we

could determine whether the current ∆ is optimal by measuring whether the current

level of hardware utilization is near just-about-utilized point.

To measure hardware utilization, recall that the assign-warp in the MTB

checks on the worker TBs and assigns work to them (Section 5.4), so the assign-

warp knows how many work items are currently being processed by the workers,

from which, we derive the current hardware utilization level (cur util). We also de-

fine an under-utilization point and an over-utilization point (util low and util high)

105

based on the total number of hardware threads of work TBs and the characteristics

of the graph. The basic idea is to increase or to decrease ∆ when cur util is below

util low or above util high so that cur util is trapped near the just-about-utilized

point.

To illustrate how the mechanism works, considering the graphs in Figure 5.8

again, for RMAT (a), ∆ is firstly shifted to the best-work-point (i.e. the lower

bound); at this point, cur util is measured higher than util high, and thus we attempt

to decrease ∆ , but ∆ is already at the lower bound; in other words, ∆ already gives

most work efficiency, so decreasing ∆ would not increase work efficient further.

This pins down ∆ at the point with both best work efficient and enough hardware

utilization so that the optimal performance is achieved.

For ROAD (b), at the lower bound, there is severe hardware under-utilization,

so cur util is measured much lower than util low, which causes ∆ to increase. When

∆ is near the best-perf-point, increasing ∆ further will cause cur util to exceed

util high, which decrease ∆ , and vice versa; this keeps ∆ near the optimal value.

The rest of this section discusses several important design considerations of

our ∆ setting mechanism in details.

5.7.1 Finding the Clip-Point

We define N as the number of work items pushed to a bucket during a period

of time. We consider a ∆ to be a clip-point if N of the tail bucket (or a bucket near

tail) is a high percentage of the sum of N of all buckets. In particular, if the tail

bucket’s percentage is above a threshold P, then the current ∆ should be increased

106

to avoid clipping.

An appropriate threshold P should be chosen so that ∆ immediate above

clip-point achieves best work-efficiency (i.e. the best-work-point, the lower bound).

Based on our experiments using 226 graphs, we determine that it is sufficient to use

a constant P for all graphs; in particular, P=65% works well for most graphs when

32 buckets are used.

The MTB measures N periodically to calculate the tail bucket’s percentage

for adjusting the delta. To measures N, the MTB monitors the resv ptr of each

bucket in epochs. Recall that threads increase the resv ptr when writing to a bucket,

so N is the increment of resv ptr between two consecutive epochs, i.e. the newly

written items. In addition, whenever ∆ changes, we skip the measurement of the

following epoch in order for new ∆ to take effect.

5.7.2 Changing ∆ Based on Utilization

Our solution periodically measures cur util (hardware utilization) and makes

decision to increase or decrease ∆ in order to guide ∆ to an optimal point, where the

GPU is just about fully utilized. For the idea to work properly, there are following

challenges to deal with.

First, changing ∆ too frequently has negative impacts on work efficiency

because this causes work items of different priorities to mix up together in the same

buckets. Ideally, once ∆ is near the optimal point, it should remain stable instead of

flip-flopping.

107

Second, cur util fluctuates even if ∆ is fixed. One scenario, for example,

is when we start to process a new bucket (i.e. switching the head bucket) that has

accumulated many work items that remain unprocessed previously; cur util will

temporally jumps and eventually falls down. In general, we should avoid changing

∆ reactively based on temporal cur util behaviors, especially when ∆ is already

optimal.

Third, after ∆ change, cur util changes gradually instead of immediately. In

fact, the time it takes for the change to take full effect varies depending on many

factors. So when guiding ∆ to the optimal, we should avoid eager changes in order

not to overshoot the target.

We employ the following measures to deal with the challenges.

First, recall that the assign-warp assigns work from multiple (N) high pri-

ority buckets instead of just the head bucket alone (Section 5.5). We could control

the parameter N to adjust the trade-off between concurrency and work-efficiency

(i.e. higher the N more concurrency, etc.). This is more fine-grained than changing

∆ , so we use it as a form of immediate adjustment. In particular, N has a lower

bound and a high bound (we choose them to be 2 and 4), we change N first based

on current hardware utilization; if N is already at the bounds, we change ∆ . By

doing this, we reduce the frequency of ∆ change.

Second, for changing N, we only use cur util of the current epoch, but for

changing ∆ , we use the average value of several previous epochs. In addition,

util low and util high (i.e. the bounds that trigger changes) are chosen conserva-

108

tively so that there is a relative big gap between them. Those measures make ∆

changes less sensitive to temporary cur util fluctuations.

Third, after changing ∆ , we must wait for cur util to settle before changing

∆ again to avoid overshooting the target. Of course, the key problem is to figure

out the wait time. The time depends on the graph input and the current ∆ value.

Generally speaking, for a given graph, it takes longer for the cur util to settle when

the current ∆ is larger, so the wait time must scale with ∆ instead of being constant.

Our solution is to count head bucket switches. The rationale is that a larger ∆ means

more work items in each bucket, and thus it takes more time to finish processing

the head bucket before switching; therefore, the time scales naturally with ∆ . In

particular, after a ∆ change, we wait for T head bucket switches before changing

delta again; T=3 works best in our experiments.

5.8 Methodology

For evaluating ADDS and prior solutions, we run GPU implementations on

an Nvidia RTX 2080 ti GPU (Turing, TU102) [100] with driver 440.44; our CUDA

toolkit version 10.0 [102]. The GPU’s specifications are listed in Table 5.1.

SM Count 68 Threads Per SM 1024
Max Clock Rate 1.75 GHz GDDR6 Bandwidth 616 GB/s
DRAM Size 11 GB L2 Size 5.5 MB
Scratchpad Per SM 48 KB Compute Capability 7.5

Table 5.1: RTX 2080 ti GPU

We run shared memory and serial CPU implementations on a Intel Core

i9-7900X CPU, which has 10 cores and 20 hardware threads running at 3.3 GHz.

109

5.8.1 Graph Inputs

We use a set of 226 graph inputs for our experiments. Those graphs are

from two sources. Road network (e.g. road-USA), power law (e.g. RMAT22), and

random (e.g. r4-2e23) graphs are from the Lonestar benchmark suite [69]. The re-

maining graphs are from the SuiteSparse Matrix Collection (formerly University of

Florida) [32]; our selection criteria is as follows. We first select all weighted graphs

with at least 100k vertices and 1M edges, and they must also fit in our GPU’s mem-

ory (11GB); a few large graphs (e.g. HV15R) can run with ADDS but not with

nvGRAPH and Lonestar’s Near Far, since they use more memory than ADDS, so

we exclude those graphs; as to Near Far, it allocates 3 arrays of —E— words for

double buffering the near far pile, where as ADDS’ dynamic data structure uses

—E— words of memory in total; as to nvGRAPH, it is a black box implementa-

tion, so we are not sure about the reason. We then select graphs suitable for SSSP

traversal, where at least 75% of vertices can be reached from a source vertex; for

each graph, we find an appropriate source (from vertex 0 to 1000) and filer it on fail-

ure by marking vertices with BFS traversal. Finally, we convert the graph’s negative

edge weights (if any) to positive weights.

Table 5.2 shows the distribution of those graphs in terms of average degree

and diameter.

As one can see, our input set contains graphs with a wide range of charac-

teristics, and the distribution of graphs is relatively uniform. It allows us to evaluate

ADDS and prior implementation in an unbiased manner.

110

Average Degree
<4 4 - 8 8 - 16 16 - 32 32 - 64 >=64
17 (8%) 59 (26%) 34 (15%) 23 (10%) 71 (31%) 22 (10%)

Diameter
<40 40 - 80 80 - 169 160 - 320 320 - 640 >=640
54 (24%) 33 (15%) 49 (22%) 29 (13%) 32 (14%) 29 (13%)

Table 5.2: The Distribution of Graph Characteristics—count(% of 226
graphs)

5.8.2 Evaluated Prior Implementations

Besides ADDS, we evaluated 6 other SSSP implementations—1 hardwired

implementation and 5 implementations from well known and well maintained graph

frameworks (3 on GPU and 2 on CPU). We now introduce each of them and describe

the relevant modifications we made to their source code.

NearFar-OPT (NF-OPT) is a well optimized hardwired implementation of Near

Far [31] from LonestarGPU 4.0 benchmark suite [15], which is the state-of-art GPU

SSSP implementation. Our experiments focus on comparing ADDS with NF-OPT.

We now briefly discuss some of key features of NF-OPT.

NF-OPT has an optimization [87, 105] that improves BSP for high diameter

graphs. BSP requires a global barrier between super-steps to function properly. A

basic GPU approach is to use kernel launch boundary as the global barrier, which

induces latency by communicating with the driver over the PCI-E bus. High di-

ameter graphs are especially sensitive to such latency as they tend to have little

work in each super-step. NF-OPT use a software implemented global barrier [140]

and launch just one kernel to handle all super-steps, which reduces the delay to

111

just global memory latency. For example, it reduces the run time of road-USA

graph from 760ms to 387ms with this approach. However, NF-OPT is fundamen-

tally limited by low parallelism caused by BSP; in comparison, ADDS ditches BSP

altogether, which further reduces road-USA run time to 125ms. In addition, NF-

OPT uses threads in a warp to process vertices’ edges cooperatively [87, 105] to

improve load balance and coalesced memory accesses, and it has a procedure that

removes duplicate (redundant) vertices IDs in the worklist; the two optimizations

are also mentioned in the Near-Far paper [31]. ADDS also uses cooperative edge

processing but no duplicate vertex ID removal, since it requires BSP.

We made changes to NF-OPT for our experiments. The original version re-

quires the user to manually input a ∆ value for a graph, otherwise, a default constant

value (10000) is used; we changed it to use the equation (∆ =c*w/d, c=32) from the

Near-Far paper instead. In addition, we added support for graphs with floating point

weights (using a software implemented atomicMin from Gunrock1.0 [135], as does

ADDS) and changed the warp level primitives (e.g. vote) to synced version (e.g.

vote.sync) so that the code can work correctly with our Turing GPU2.

Gunrock-BF is a GPU Bellman-Ford based implementation from Gunrock 1.0 [135] [138].

It uses a worklist to store vertex IDs and removes duplicate vertex IDs from the

queue (called filter). The original Gunrock paper [135] uses a Near-Far based im-

plementation instead of BF; we found it in an older of version of Gunrock.

2without the change, the SSSP kernel still finishes execution but produces wrong results

112

Gunrock-NF is a GPU Near-Far implementation from Gunrock 0.2. We evalu-

ated both versions of Gunrock. For Gunrock-NF, we use c=32 for the ∆ equation.

We added support for floating point (to Gunrock 0.2) same as NF-OPT and ADDS.

The filter for duplicate ID removal is commented out in Gunrock 0.2’s source code;

we uncommented it, which gives overall better performance.

nvGRAPH (NV) is a GPU linear-algebra based (semi-ring) SSSP implementa-

tion [101] from CUDA 10.0. It is a proprietary graph library from NVIDIA.

CPU-DS is a shared memory CPU delta-stepping [88] implementation from Ga-

lois 4.0 [70, 110]. It uses many very fine-grained buckets for priority. It expects a

manually tuned ∆ value from the user, so we changed it to use the same equation

from Near-Far (∆ =c*w/d), except using c=1 instead of c=32, since CPUs require

less parallelism.

Dijkstra is a serial implementation of Dijkstra’s algorithm [?] from Galois 4.0,

which implements the priority queue as binary heap.

5.9 Evaluation

In this section, we present the timing results of ADDS and prior implemen-

tations and analyze the performance differences with supporting experiments.

113

5.9.1 Timing Results

The timing results for all 226 graphs are shown in Table 5.4 (due to space

limitation, Gunrock-NF, CPU-DS and Dijkstra are not shown). We summarize the

speedup of ADDS over the 6 prior implementations in Table 5.3.

<0.9x 0.9x - 1.1x 1.1x - 1.5x 1.5x - 2x 2x - 3x 3x - 5x >=5x
NF-OPT 8 (4%) 13 (6%) 27 (12%) 44 (19%) 54 (24%) 59 (26%) 21 (9%)
Gun-NF 20 (9%) 2 (1%) 10 (4%) 14 (6%) 27 (12%) 40 (18%) 113 (50%)
Gun-BF 16 (7%) 3 (1%) 8 (4%) 8 (4%) 20 (9%) 49 (22%) 122 (54%)
NV 18 (8%) 4 (2%) 7 (3%) 12 (5%) 13 (6%) 24 (11%) 148 (65%)
CPU-DS 7 (3%) 2 (1%) 1 (%) 8 (4%) 28 (12%) 38 (17%) 142 (63%)
Dijkstra 2 (1%) 0 (%) 0 (%) 0 (%) 3 (1%) 14 (6%) 207 (92%)

Table 5.3: Speedup of ADDS over prior implementations—the distribution
of 226 graphs over speedup intervals

ave. degree

sp
ee

du
p

vs
 N

F-
op

t (
x)

0.5

1

5

10

4 6 8 10 20 40 60 80

Figure 5.9: The distribution of ADDS’ speedup over NF-OPT correlating to
graph degree

.

Comparing to NF-OPT, ADDS achieves an average speedup of 2.9x; ADDS

114

speedup ADDS NF BF NV speedup ADDS NF BF NV speedup ADDS NF BF NV
(x) (ms) (ms) (ms) (ms) (x) (ms) (ms) (ms) (ms) (x) (ms) (ms) (ms) (ms)

al2010 1.75 5.9E+0 1.0E+1 7.3E+1 5.3E+1 atmosmodl 2.34 4.8E+0 1.1E+1 4.1E+1 1.6E+2 ldoor 3.61 1.6E+1 5.8E+1 1.9E+2 5.0E+2
atmosmodm 1.56 4.1E+0 6.4E+0 3.7E+1 1.4E+2 audikw 1 2.64 5.1E+1 1.3E+2 3.0E+2 3.4E+2 Lin 2.61 1.9E+0 5.0E+0 1.1E+1 2.0E+1
az2010 2.01 4.8E+0 9.7E+0 7.8E+1 4.5E+1 barrier2-10 5.18 8.9E-1 4.6E+0 2.6E+0 7.0E+0 Long dt0 1.18 9.7E+1 1.1E+2 3.0E+2 4.7E+2
ca2010 1.97 1.1E+1 2.1E+1 2.4E+2 1.7E+2 barrier2-11 5.19 8.9E-1 4.6E+0 3.9E+0 9.3E+0 Long dt6 1.15 1.7E+2 2.0E+2 4.4E+2 7.0E+2
engine 3.99 6.1E-1 2.4E+0 2.8E+0 5.3E+0 barrier2-12 5.15 9.1E-1 4.7E+0 4.2E+0 9.2E+0 mac fwd500 2.23 1.8E+1 4.1E+1 1.0E+2 8.2E+1
fl2010 2.48 5.4E+0 1.3E+1 7.5E+1 6.6E+1 barrier2-1 4.67 8.8E-1 4.1E+0 3.7E+0 8.9E+0 majorbasis 2.33 3.5E+0 8.1E+0 2.0E+1 2.5E+1
ga2010 1.71 4.7E+0 8.1E+0 5.2E+1 5.4E+1 barrier2-2 4.61 8.9E-1 4.1E+0 1.7E+1 6.6E+0 marine1 3.34 1.5E+1 5.1E+1 1.2E+2 9.7E+1
GAP-road 3.13 1.2E+2 3.8E+2 3.9E+4 3.9E+4 barrier2-3 4.68 8.7E-1 4.1E+0 3.7E+0 6.7E+0 mario002 2.05 1.2E+1 2.4E+1 1.1E+2 1.6E+2
GL7d19 1.26 5.9E+0 7.4E+0 2.2E+1 1.9E+1 barrier2-4 3.6 1.1E+0 4.1E+0 3.7E+0 6.8E+0 matrix 9 4.14 1.2E+0 5.1E+0 1.7E+1 9.2E+0
GL7d20 1.13 5.3E+0 6.0E+0 1.4E+1 9.6E+0 barrier2-9 4.03 1.2E+0 4.7E+0 3.6E+0 1.3E+1 memchip 2.42 1.0E+1 2.5E+1 3.1E+2 3.0E+2
GL7d21 1.11 3.0E+0 3.3E+0 1.1E+1 6.0E+0 BenElechi1 4 1.4E+1 5.6E+1 1.0E+2 1.9E+2 ML Geer 4.49 6.7E+1 3.0E+2 2.2E+2 2.1E+3
GL7d22 1.2 1.2E+0 1.4E+0 4.3E+0 2.7E+0 bmw3 2 3.46 9.7E+0 3.4E+1 7.5E+1 6.9E+1 ML Laplace 6.46 1.2E+1 7.8E+1 6.6E+1 2.8E+2
GL7d23 0.91 6.0E-1 5.5E-1 1.3E+0 1.1E+0 bmw7st 1 3.2 7.3E+0 2.3E+1 5.3E+1 4.3E+1 msdoor 5.57 1.4E+1 7.5E+1 1.4E+2 3.9E+2
Hardesty1 2.73 7.6E+0 2.1E+1 7.7E+1 3.2E+2 bmwcra 1 3.61 3.9E+0 1.4E+1 2.2E+1 2.7E+1 nlpkkt120 1.28 1.5E+1 2.0E+1 2.5E+1 2.5E+2
ia2010 1.86 4.1E+0 7.7E+0 6.6E+1 4.2E+1 bone010 2.36 7.2E+0 1.7E+1 2.9E+1 2.2E+2 nlpkkt80 1.9 4.1E+0 7.7E+0 1.1E+1 5.3E+1
il2010 2.31 5.5E+0 1.3E+1 1.3E+2 8.4E+1 boneS01 3.27 1.1E+0 3.7E+0 8.8E+0 1.3E+1 nv2 0.98 1.1E+2 1.0E+2 1.5E+2 7.7E+1
in2010 1.81 5.5E+0 1.0E+1 7.3E+1 5.5E+1 boneS10 2.48 7.3E+0 1.8E+1 2.9E+1 2.2E+2 nxp1 2.44 1.1E+1 2.6E+1 1.1E+1 1.2E+1
kron 17 1.91 1.6E+0 3.1E+0 2.0E+0 1.5E+0 boyd2 3.88 8.8E+0 3.4E+1 1.0E+0 5.9E-1 offshore 1.39 1.2E+1 1.7E+1 3.2E+1 3.2E+1
kron 18 0.94 4.9E+0 4.6E+0 2.5E+0 2.9E+0 Bump 2911 2.69 4.5E+1 1.2E+2 3.1E+2 9.0E+2 ohne2 2.5 1.5E+0 3.8E+0 6.5E+0 8.4E+0
kron 19 0.92 7.2E+0 6.7E+0 7.7E+0 5.7E+0 bundle adj 12.87 9.9E+1 1.3E+3 2.8E+2 2.5E+2 para-10 4.4 8.9E-1 3.9E+0 3.7E+0 8.5E+0
kron 20 0.72 1.7E+1 1.2E+1 2.1E+1 1.3E+1 c-73b 19.42 2.3E+0 4.5E+1 1.4E+0 1.0E+0 para-4 3.15 1.2E+0 3.8E+0 3.8E+0 8.2E+0
ks2010 1.95 5.7E+0 1.1E+1 8.0E+1 6.0E+1 c-73 8.93 2.1E+0 1.9E+1 2.0E+0 8.7E-1 para-5 4.34 9.0E-1 3.9E+0 4.6E+0 8.5E+0
mc2depi 1.34 1.7E+1 2.3E+1 1.7E+2 2.9E+2 cage12 1.73 6.4E-1 1.1E+0 2.2E+0 4.2E+0 para-6 4.42 9.0E-1 4.0E+0 3.6E+0 8.5E+0
mi2010 1.62 5.9E+0 9.7E+0 9.7E+1 6.3E+1 cage13 1.15 1.9E+0 2.2E+0 4.1E+0 8.5E+0 para-7 3.92 1.0E+0 4.0E+0 7.2E+0 8.5E+0
mn2010 1.98 5.7E+0 1.1E+1 9.4E+1 6.3E+1 cage14 0.98 7.6E+0 7.4E+0 1.3E+1 3.2E+1 para-8 4.47 9.1E-1 4.1E+0 3.7E+0 8.5E+0
mo2010 1.76 6.1E+0 1.1E+1 1.2E+2 7.9E+1 cage15 0.93 3.2E+1 3.0E+1 4.6E+1 1.4E+2 para-9 3.61 1.1E+0 3.9E+0 3.7E+0 8.5E+0
n4c6-b10 1.14 3.8E-1 4.3E-1 8.9E-1 8.2E-1 c-big 1.6 3.5E+0 5.6E+0 5.4E+0 4.9E+0 parabolic fem 12.17 1.9E+1 2.3E+2 1.4E+2 2.4E+2
n4c6-b8 0.88 4.0E-1 3.5E-1 8.4E-1 9.2E-1 cfd2 4.1 3.9E+0 1.6E+1 3.6E+1 4.4E+1 PFlow 742 4.55 2.9E+1 1.3E+2 2.6E+2 2.9E+2
n4c6-b9 0.94 4.3E-1 4.0E-1 1.1E+0 7.8E-1 circuit5M dc 2.71 1.4E+1 3.8E+1 1.5E+2 2.0E+2 power9 2.39 5.2E+0 1.2E+1 2.3E+1 1.4E+1
nc2010 1.9 5.2E+0 9.8E+0 7.2E+1 5.8E+1 CO 1.25 2.0E+0 2.5E+0 4.4E+0 4.5E+0 PR02R 2.06 2.0E+1 4.1E+1 6.5E+1 6.2E+1
neos3 1 3.0E+3 3.0E+3 2.7E+4 5.8E+4 cop20k A 3.41 3.4E+0 1.2E+1 3.2E+1 2.5E+1 pre2 2.55 4.2E+0 1.1E+1 1.4E+1 2.2E+1
ny2010 1.91 6.4E+0 1.2E+1 1.0E+2 7.7E+1 CoupCons3D 3.34 7.8E+0 2.6E+1 4.0E+1 6.5E+1 pwtk 4.09 9.4E+0 3.9E+1 7.5E+1 1.1E+2
oh2010 1.77 5.7E+0 1.0E+1 8.7E+1 7.7E+1 crashbasis 2.5 7.7E+0 1.9E+1 7.2E+1 6.5E+1 radiation 1.92 3.9E+0 7.5E+0 1.9E+1 6.7E+0
ok2010 1.86 6.9E+0 1.3E+1 7.4E+1 6.7E+1 Cube dt0 1.28 8.1E+1 1.0E+2 2.6E+2 7.2E+2 Raj1 1.5 5.1E+0 7.7E+0 5.9E+0 6.8E+0
pa2010 2.22 5.5E+0 1.2E+1 1.0E+2 7.7E+1 Cube dt6 1.27 9.4E+1 1.2E+2 3.1E+2 8.0E+2 rajat21 1.75 8.5E+0 1.5E+1 1.2E+1 1.6E+1
pds-100 1.23 5.7E-1 7.0E-1 2.7E+0 2.2E+0 CurlCurl 1 2.62 2.3E+0 5.9E+0 1.3E+1 2.1E+1 rajat24 2.57 8.6E+0 2.2E+1 6.8E+0 6.7E+0
pds-90 1.17 4.9E-1 5.7E-1 2.3E+0 1.6E+0 CurlCurl 2 2.3 4.8E+0 1.1E+1 3.7E+1 6.9E+1 rajat29 1.2 5.7E+1 6.8E+1 1.5E+1 1.4E+1
r4-2e23 1.28 3.5E+1 4.5E+1 1.5E+2 3.2E+2 CurlCurl 3 3.22 7.4E+0 2.4E+1 7.0E+1 1.3E+2 rajat30 1.13 6.8E+1 7.7E+1 1.6E+1 2.3E+1
rmat20 1.64 6.1E+0 1.0E+1 1.5E+1 1.0E+1 CurlCurl 4 3.1 1.2E+1 3.6E+1 1.7E+2 3.0E+2 rajat31 2.23 1.2E+1 2.6E+1 1.0E+2 9.9E+2
rmat22 2.29 3.5E+1 8.0E+1 1.4E+2 2.4E+2 darcy003 2.11 1.2E+1 2.5E+1 1.5E+2 1.6E+2 Serena 7.42 2.2E+1 1.7E+2 4.0E+2 3.6E+2
sx-stack 0.98 1.6E+1 1.6E+1 2.8E+1 1.9E+1 degme 0.78 4.7E+1 3.6E+1 2.8E+0 2.5E+0 ship 003 5.07 1.1E+0 5.6E+0 6.3E+0 1.1E+1
t2em 1.74 1.3E+1 2.3E+1 1.7E+2 4.0E+2 dgreen 0.92 3.9E+1 3.5E+1 6.9E+1 8.4E+1 shipsec1 5.05 1.2E+0 5.9E+0 7.5E+0 1.6E+1
TF19 0.96 7.6E-1 7.3E-1 1.9E+0 2.2E+0 dielFilterV2 9.05 1.7E+1 1.5E+2 3.0E+2 3.6E+2 shipsec5 5.82 1.4E+0 8.3E+0 1.1E+1 2.4E+1
tn2010 1.88 6.5E+0 1.2E+1 7.9E+1 6.5E+1 dielFilterV3 1.37 3.7E+1 5.0E+1 9.3E+1 1.4E+2 shipsec8 5.54 9.6E-1 5.3E+0 6.5E+0 1.1E+1
tx2010 1.96 1.0E+1 2.0E+1 2.9E+2 2.3E+2 d pretok 2.05 8.6E+0 1.8E+1 5.0E+1 3.8E+1 Si41Ge41 1.43 3.6E+0 5.2E+0 7.1E+0 5.6E+0
road-CAL 2.81 3.6E+1 1.0E+2 6.8E+2 1.3E+3 Dubcova3 2.35 6.6E+0 1.6E+1 4.2E+1 1.6E+1 Si87H76 1.11 4.5E+0 5.0E+0 9.2E+0 7.0E+0
road-FLA 2.84 3.1E+1 8.7E+1 4.4E+2 6.3E+2 ecology1 2 1.9E+1 3.8E+1 1.5E+2 4.6E+2 SiO2 1.41 4.6E+0 6.5E+0 4.0E+0 3.8E+0
road-NY 1.66 9.9E+0 1.6E+1 8.4E+1 8.0E+1 ecology2 2.04 1.9E+1 3.9E+1 1.5E+2 4.6E+2 ss 2.67 1.1E+1 3.0E+1 4.1E+1 2.6E+2
road-USA 3.09 1.3E+2 3.9E+2 4.0E+4 4.0E+4 Emilia 923 2.18 1.7E+1 3.8E+1 1.1E+2 1.7E+2 StocF-1465 0.96 2.7E+2 2.6E+2 4.2E+2 3.0E+2
va2010 1.91 9.5E+0 1.8E+1 1.3E+2 8.9E+1 F1 6.25 9.0E+0 5.6E+1 1.2E+2 1.1E+2 stomach 2.5 8.1E+0 2.0E+1 4.7E+1 5.9E+1
wi2010 1.8 4.3E+0 7.8E+0 6.4E+1 4.5E+1 Fault 639 3.65 1.2E+1 4.4E+1 8.1E+1 1.6E+2 stormG2 1000 0.7 2.7E+0 1.9E+0 4.7E+0 1.2E+1
wiki-talk 0.73 9.8E+0 7.2E+0 1.8E+0 1.7E+0 FEM 3D 2 4.29 1.8E+0 7.8E+0 1.3E+1 1.9E+1 TEM152078 2.86 3.2E+0 9.1E+0 2.2E+1 1.3E+1
2cubes 1.62 4.7E+0 7.6E+0 2.2E+1 1.4E+1 filter3D 3.33 2.3E+0 7.7E+0 1.2E+1 1.3E+1 TEM181302 2.37 4.0E+0 9.4E+0 2.3E+1 1.7E+1
af 0 k101 5.38 8.3E+1 4.5E+2 7.7E+2 9.9E+2 Flan 1565 0.64 1.0E+2 6.6E+1 2.9E+2 4.0E+2 test1 3.15 5.4E+0 1.7E+1 3.9E+1 4.5E+1
af 1 k101 5 8.6E+1 4.3E+2 7.7E+2 9.8E+2 Freescale1 1.68 1.7E+1 2.8E+1 1.7E+2 1.9E+2 thermal2 2.39 1.6E+1 3.9E+1 1.8E+2 4.9E+2
af 2 k101 2.36 7.3E+1 1.7E+2 2.8E+2 4.5E+2 Freescale2 1.45 1.2E+1 1.7E+1 8.3E+0 2.2E+1 thermo dK 3.43 8.7E+0 3.0E+1 9.2E+1 9.8E+1
af 3 k101 2.28 7.6E+1 1.7E+2 2.3E+2 4.5E+2 FullChip 0.79 3.2E+2 2.6E+2 2.4E+1 3.5E+1 thermo dM 1.94 7.9E+0 1.5E+1 7.1E+1 7.5E+1
af 4 k101 4.58 4.0E+1 1.9E+2 2.9E+2 5.8E+2 G3 circuit 1.72 6.9E+0 1.2E+1 4.2E+1 1.7E+2 tmt sym 4.77 2.9E+1 1.4E+2 4.3E+2 5.9E+2
af 5 k101 4.55 4.1E+1 1.9E+2 2.9E+2 5.5E+2 Ga10As10 1.64 2.0E+0 3.3E+0 5.0E+0 3.6E+0 tmt unsym 2.7 1.1E+1 3.0E+1 7.1E+1 2.7E+2
af shell10 14.98 8.1E+1 1.2E+3 1.7E+3 2.0E+3 Ga19As19 1.73 2.9E+0 5.0E+0 1.3E+1 4.1E+0 torso1 6.44 1.1E+1 7.0E+1 3.8E+1 5.0E+1
af shell1 4.51 1.2E+1 5.4E+1 1.3E+2 2.8E+2 Ga41As41 1.65 7.8E+0 1.3E+1 2.4E+1 8.6E+0 torso2 3.69 8.3E+0 3.1E+1 1.0E+2 7.1E+1
af shell2 4.41 1.2E+1 5.2E+1 1.3E+2 2.7E+2 Ge87H76 1.61 2.0E+0 3.2E+0 1.0E+1 3.6E+0 torso3 2.13 6.0E+0 1.3E+1 2.8E+1 3.4E+1
af shell3 4.42 1.2E+1 5.4E+1 1.0E+2 2.7E+2 Ge99H100 1.66 2.1E+0 3.5E+0 5.6E+0 3.9E+0 tp-6 1.17 8.6E+1 1.0E+2 3.8E+0 3.7E+0
af shell4 4.49 1.2E+1 5.4E+1 9.4E+1 2.9E+2 Geo 1438 2.99 2.0E+1 6.1E+1 9.9E+1 2.5E+2 Transport 4.88 9.4E+0 4.6E+1 2.4E+2 3.6E+2
af shell5 4.31 1.2E+1 5.2E+1 1.2E+2 2.8E+2 Goodwin 095 3 8.2E+0 2.4E+1 4.3E+1 4.2E+1 TSOPF c30 3.29 9.0E+0 3.0E+1 2.1E+0 1.2E+0
af shell6 4.3 1.2E+1 5.2E+1 1.3E+2 2.7E+2 Goodwin 127 2.59 2.0E+1 5.2E+1 1.3E+2 9.8E+1 turon m 1.77 7.0E+0 1.2E+1 3.0E+1 3.0E+1
af shell7 4.29 1.2E+1 5.3E+1 1.1E+2 2.8E+2 gsm 106857 3.84 8.3E+0 3.2E+1 8.3E+1 7.2E+1 twotone 2.28 1.4E+0 3.2E+0 5.6E+0 5.9E+0
af shell8 4.33 1.2E+1 5.3E+1 1.0E+2 3.3E+2 Hamrle3 0.43 7.9E+0 3.4E+0 4.9E+0 1.0E+1 vas 1M 2.05 9.7E+0 2.0E+1 3.7E+1 1.4E+2
af shell9 4.3 1.2E+1 5.2E+1 9.9E+1 3.3E+2 helm2d03 3.12 4.9E+0 1.5E+1 4.4E+1 6.2E+1 vas 2M 1.72 2.2E+1 3.8E+1 7.8E+1 3.6E+2
apache2 1.8 1.2E+1 2.2E+1 5.8E+1 1.7E+2 hood 3.99 4.5E+0 1.8E+1 4.9E+1 4.4E+1 vas 4M 1.96 4.9E+1 9.7E+1 1.6E+2 1.2E+3
ASIC 320k 1.23 2.3E+1 2.8E+1 2.9E+0 6.8E-1 Hook 1498 3.67 3.3E+1 1.2E+2 2.4E+2 5.4E+2 watson 1 1.94 6.3E-1 1.2E+0 2.7E+0 2.9E+0
ASIC 320ks 2.06 1.2E+0 2.5E+0 4.4E+0 5.5E+0 imagesensor 2.45 2.8E+0 6.8E+0 1.6E+1 7.0E+0 watson 2 1.55 9.2E-1 1.4E+0 2.6E+0 3.3E+0
ASIC 680k 4.33 1.7E+1 7.4E+1 1.3E+0 1.3E+0 inline 1 4.18 3.4E+1 1.4E+2 3.3E+2 4.2E+2 x104 5.89 1.6E+0 9.4E+0 1.2E+1 1.9E+1
ASIC 680ks 1.74 1.4E+0 2.5E+0 5.2E+0 4.9E+0 kkt power 1.41 4.8E+1 6.7E+1 6.5E+1 4.8E+1 xenon2 2.69 1.6E+0 4.3E+0 1.1E+1 1.5E+1
atmosmodd 2.19 4.6E+0 1.0E+1 3.4E+1 1.1E+2 language 0.98 1.9E+0 1.8E+0 2.4E+0 2.3E+0
atmosmodj 2.45 4.1E+0 1.0E+1 3.2E+1 1.3E+2 largebasis 2.45 3.2E+2 7.9E+2 2.3E+3 6.8E+3

Table 5.4: The execution time of ADDS, NearFar-OPT (NF),
Gunrock-Bellman-Ford (BF), and nvGRAPH (NV). The speedup column is

ADDS over NF.

115

diameter

sp
ee

du
p

ov
er

 N
F-

op
t (

x)

0.5

1

5

10

10 50 100 500 1000

Figure 5.10: The distribution of ADDS’ speedup over NF-OPT correlating to
graph diameter

.

degrades performance (¡0.9x) for only 4% of graphs and achieves non-trivial speedup

(¿1.5x) for 78% of graphs (up to 19x). Comparing to other 3 GPU implementations,

ADDS achieves an average speedup of 5.8x, 9.6x and 13.4x over Gunrock-NF,

Gunrock-BF and nvGRAPH respectively. The results show that ADDS achieves

major performance gains on GPUs; the reason for speedup is improved work effi-

ciency and increased parallelism, which will be examined in details later. It also

shows that NF-OPT is the best performing one among prior implementations, so

we focus on comparing ADDS with NF-OPT.

Comparing to CPU implementations, ADDS achieves an average speedup

of 14.2x over Galois’ shared memory CPU-DS and 34.4x over the serial Dijkstra’s.

It demonstrate the benefits of performing SSSP on GPUs.

Figure 5.9 and 5.10 show the speedup of ADDS over NF-OPT correlated to

116

the average degree and the diameter of graphs respectively. As one can see, ADDS

achieves speedups for all types of graphs without bias, where the distribution is

relatively uniform. This is because ADDS optimizes on both parallelism and work-

efficiency, and because our dynamic mechanism is able to automatically pick a

suitable delta to balance between the two based on graphs’ run time behavior.

5.9.2 Work Efficiency

Table 5.5 summarizes ADDS’ total vertex process count normalized to oth-

ers. NvGRAPH is not shown because it is a black box implementation.

<0.25x 0.25x - 0.5x 0.5x - 0.75x 0.75x - 1x 1x - 1.5x 1.5-3x >3x
NF-OPT 10 (4%) 22 (10%) 13 (6%) 24 (11%) 75 (33%) 70 (31%) 12 (5%)
Gun-NF 50 (22%) 25 (11%) 38 (17%) 35 (15%) 34 (15%) 36 (16%) 8 (4%)
Gun-BF 61 (27%) 21 (9%) 20 (9%) 28 (12%) 64 (28%) 25 (11%) 7 (3%)
CPU-DS 18 (8%) 21 (9%) 29 (13%) 18 (8%) 39 (17%) 37 (16%) 64 (28%)
Dijkstra 0 (%) 0 (%) 0 (%) 0 (%) 30 (13%) 49 (22%) 147 (65%)

Table 5.5: Normalized vertex processing count of ADDS (lower the better)

Comparing to NF-OPT, ADDS achieves non-trivial work saving (¡0.75x)

for 26% of graphs. The saving is achieved by using 32 instead of just 2 buckets

for more precise priority. For 36% of graphs, ADDS does noticeable more work

(¿1.5x). The main reason is that ADDS’ dynamic mechanism will pick a larger ∆

if the GPU is under utilized; combined with asynchronous processing, it improves

parallelism but leads to more work. In addition, ADDS does not have the duplicate

vertex ID removal filter in NF-OPT, since it requires BSP to work. On the other

hand, ADDS’ multi bucket scheme can mitigate some of the work inefficiency; for

44 % of graphs, ADDS does similar amount of work (0.75x to 1.5x).

117

Our goal is to improve performance rather than work saving; if the improved

hardware utilization outweighs the work-efficiency loss, it is still overall beneficial

to performance. Therefore, on average, ADDS achieves 2.9x speedup over NF-

OPT despite processing 1.55x more vertices. We now analyze ADDS’ performance

gains in details.

5.9.3 Performance Analysis

Work Efficiency (capped to 5X)

Sp
ee

du
p

O
ve

r N
F-

O
PT

 (c
ap

pe
d

to
 5

X)

speedup due to
work saving

speedup due to
parallelism

A. road-usa
B. BenElechi1

C. msdoor
D. rmat22 E. 	c-big

A

B

D

C

E

Figure 5.11: The correlation between speedup and work-efficiency (inverse
of vertex count); both higher the better.

.

Figure 5.11 plots the correlation between speedup (ADDS over NF-OPT)

and work saving for all 226 graphs. The diagonal line represents perfect correla-

tion between work saving and speedup; so for graphs on or around this line (e.g.

D.rmat22 and C.msdoor), the speedup is mainly due to work saving. For graphs

118

in the upper left region (e.g. A.road-USA), ADDS does more work yet achieves

speedups; many graphs are clustered in this region, which means NF-OPT under

utilize hardware, while ADDS achieves speedup by increasing parallelism. For

graphs in between the two region (e.g. B.BenElechi1), the speedup is due to both

increased parallelism and work saving. Finally, the lower right region means that

ADDS achieves work saving but, by doing so, decreases parallelism, so the speedup

is lower than work saving; in fact, there is only 1 graph (E.c-bag) in this region far

off the diagonal line. Figure 5.12 to 5.16 examines those regions in details.

Those figures plot the amount of parallelism during the course of execution

in terms of edge count (vertex-count * average-degree). For ADDS, the vertex

count is measured as the number of work items currently assigned to workers; for

NF-OPT, it is measured as the number of work items to be processed in the worklist

(the near pile) at the beginning of each BSP super-step.

Road-USA (Figure 5.12) represents one of extreme cases, where ADDS

achieves 3x speedup yet does 5x more work. This is because NF-OPT’s 2 bucket

scheme works well in terms of work efficiency; however, it severely under-utilizes

the GPU; in most of super-steps, the edge count is just less than 1K (the maximum

is only 14K), where as the GPU has 68K threads. ADDS achieves much higher par-

allelism as the figure shows; this is because our concurrent reader writer bucket data

structure allows newly active vertices to be processed immediately (asynchronous

processing) so that vertices’ processing can be overlapped; another reason is that

ADDS’ dynamic mechanism is able to increase ∆ when hardware utilization is low.

Although ADDS trades off work efficiency for parallelism comparing to

119

execution progress (us)

cu
r-

ed
ge

-c
ou

nt

0

25000

50000

75000

100000

125000

0 100000 200000 300000

NearFar-OPT ADDS

Figure 5.12: A.road-USA: s:3.09x, w:0.19x (s:speedup, w:work-efficiency),
the figure plots the amount of parallelism (edge count) during the progress of
execution (us)

.

120

NF-OPT, ordering is still extremely important for road network graphs. For ex-

ample, Gunrock’s Bellman-Ford implementation does 78x more work than ADDS

while being 318x slower. Therefore, ADDS’ dynamic mechanism works well, since

it is able to pick a suitable ∆ for better parallelism while avoiding degenerating

ADDS into a Bellman-Ford solution.

execution progress (us)

cu
r-

ed
ge

-c
ou

nt

0

2000000

4000000

6000000

8000000

0 10000 20000 30000 40000 50000

NearFar-OPT ADDS

Figure 5.13: B.BenElechi1: s:4x, w:2.12x
.

BenElechi1 (Figure 5.13) represents cases where ADDS benefits both paral-

lelism and work efficiency comparing to NF-OPT. In this case, NF-OPT still under-

utilizes the hardware (though better than road-USA). On the hand, ADDS’ bucket

data structure allows both concurrent-read-write and multi-bucketing; with a suit-

able ∆ chosen by the dynamic mechanism, ADDS achieves 2x work saving while

increasing also increasing parallelism, so the combined effect is a speedup of 4x.

121

execution progress (us)

cu
r-

ed
ge

-c
ou

nt

0

2000000

4000000

6000000

8000000

0 25000 50000 75000

NearFar-OPT ADDS

Figure 5.14: C.msdoor: s:5.57x, w:4x
.

122

execution progress (us)

cu
r-

ed
ge

-c
ou

nt
 (l

og
 s

ca
le

)

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0 20000 40000 60000 80000

NearFar-OPT ADDS

Figure 5.15: D.rmat22: s:2.29x, w:2.18x
.

123

For msdoor and rmat22 (Figure 5.14 and 5.15), NF-OPT achieves good

hardware utilization, so ADDS achieves speedup mainly by being more work ef-

ficient, which is enabled by the multi-bucket capability. For msdoor, NF-OPT’s

parallelism is low during the last quarter of execution, so ADDS’ speedup is still

higher than work saving; while, for rmat22, both NF-OPT and ADDS are able to

fully saturate the hardware, so the speedup correlates perfectly with work saving3.

execution progress (us)

cu
r-

ed
ge

-c
ou

nt

0

250000

500000

750000

1000000

1250000

0 1000 2000 3000 4000 5000

NearFar-OPT ADDS

Figure 5.16: E.c-big: s:1.6x, w:3.35x
.

Finally, for c-big (Figure 5.16), ADDS achieves 3.35x work saving but a

smaller speedup of 1.6x is achieved. One reason is that the total execution is short (3

3in the figure, cur-edge-count for NF-OPT is the amount of available work at the beginning of
each BSP super-step, which is much larger than the GPU’s thread count for the rmat graph; while,
for ADDS, it is the currently assigned work; so the figure does not mean that NF-OPT processes
more work concurrently than ADDS

124

ms), so ADDS’ dynamic ∆ is unable to increase the delta in time, so the parallelism

is very low in the first half of execution.

5.10 Summary

In summary, ADDS’ concurrent read-write multi-bucket design has the ca-

pability of improving parallelism and improving work-efficiency. ADDS’ dynamic

mechanism is able to utilize the multi-bucket properly by choosing a appropriate ∆

according to the graph’s run time characteristics.

Meanwhile our decoupled delegate approach (i.e. the worklist manager)

amortizes metadata and reduces synchronization so that we can implement these

advanced features efficiently on GPUs.

Therefore, ADDS is able to achieve good performance for a variety of

graphs.

125

Chapter 6

Conclusion

In this thesis, we have shown that the idea of decoupled delegate is applica-

ble to various algorithm and hardware design problems for GPUs, namely, scalar-

like computation, fine-grained synchronization, and SSSP graph program. Based

on the decoupled delegate approach, we have presented solutions that advance the

state-of-the-art for these 3 problems.

Our key idea is to decouple and to centralize appropriate computation rou-

tines to one or a few warps, instead of letting all warps handle them directly, where

the decoupled warps collectively act as a delegate for other warps. In general, our

decoupled delegate approach has two major benefits.

The first benefit is to avoid synchronization across a large number of thread-

s/warps. For example, for fine-grained synchronization, the baseline solution lets

all threads synchronize directly via locks in global memory. When there are lock

contentions, a large number of threads create significant lock polling and serializa-

tion in the slow global memory. Our solution delegates the critical section execution

to a single thread block, which reduces the number of threads that access locks and

allows much faster local scratchpad memories to be used for locking.

The second benefit is to amortize overheads. For example, to handle a con-

126

current worklist, a non-decoupled approach lets all threads access and update the

worklist directly, so each thread must pay the various metadata overheads individ-

ually. Our solution performs worklist management with a delegate, which pays the

metadata overheads once for a large number of worklist accesses/updates. In fact,

the rationale is similar to amortizing instruction overheads with a vector unit, which

is well known in the architecture community.

We end this thesis with several observations and questions pertaining to

future researches for GPUs and beyond:

6.1 Why does the decoupled delegate approach work well on
GPUs, and what other platforms may benefit from this ap-
proach?

Our decoupled approach achieves saving by amortizing overheads and/or

reducing synchronization. In general, the amount of saving is proportional to the

number of threads that require the said overheads and synchronization. Massive

parallel processors, such as GPUs are good candidates in that regard.

On the other hand, the cost of our approach is the need of communication

between regular threads and the delegate. Using our fine-grained synchronization

solution as an example, the communication is done via the GPU’s L2 cache, which

is relatively efficient in a sense that it is still on-chip. Furthermore, we also amortize

various communication overheads to reduce the cost, which is only possible if there

are many requests in flight created by the many threads on the GPU.

Therefore, the massive parallel nature of GPUs makes the decoupled dele-

127

gate a viable approach for appropriate problems.

As to other platforms, heterogeneous processors, such SoCs are also good

candidates for the decoupled approach. For example, in our SSSP algorithm, the

decoupled worklist manager can run on CPU cores, while the worker threads can

run on GPU cores. For many SoC, the CPU and GPU cores share the last level

cache, which can be used for communication. Furthermore, many modern SoCs

also support features, such as fine-grained Shared Virtual Memory in OpenCL2.0,

which allows atomic operations between CPU and GPU threads so that they can

work cooperatively.

On the other hand, platforms, such as distributed systems have massive par-

allelism, but the interconnect is too slow. In this case, it is not viable to use a

decoupled delegate for amortizing overheads across distributed processors, since

the cost of communication would likely outweigh the saving. A more reasonable

approach is to deploy a delegate on each processor.

6.2 Should we make irregular algorithms architectural efficient
or algorithmic efficient? Or could we have both?

In general, when implementing irregular algorithms on GPUs, there is a

tendency to focus exclusively on architectural efficiency, which is to promote con-

vergent control flow and coalesced memory accesses. For example, prior GPU algo-

rithms [135, 138, 69, 31, 52, 51, 16, 130, 18, 19] achieve this by adopting simplified

concurrent data structures by avoiding the use of fine-grained locks. However, by

doing so, it often sacrifices algorithmic efficiency.

128

For the SSSP problem, the prior state-of-art GPU algorithm (Near-Far) [31,

69] uses a simplified approximated priority queue with just two buckets and double

buffering, which suffers from work efficiency and concurrency problems. As an-

other example, the prior state-of-art GPU algorithm for the MaxFlow problem [52]

is a lock-free implementation, which suffers from redundant work.

In this thesis, we have demonstrated that algorithmic efficient solutions can

be made architecture efficient as well. Our new SSSP algorithm with a more sophis-

ticated worklist achieves 2.8x speedup when compared to the prior state-of-art, and

our lock-based MaxFlow implementation achieves 3x performance improvements.

In fact, we achieve this without adding specialized hardware to GPUs, instead, the

key is to employ an innovative programming paradigm.

Prior solutions use the data parallelism paradigm exclusively, i.e. execut-

ing the algorithm on a large number of homogeneous threads. With this constraint,

programmers have little choice but to simplify the algorithm to make it suitable for

GPUs architecture. In contrast, we combine data parallelism with the decoupled

delegate approach, which gives us the flexibility to adopt more complex algorithm

designs. To be specific, the majority of threads work in data parallelism for archi-

tectural efficiency, while the complexity is shielded away by the delegate.

As to future research, our worklist design used for SSSP can be made gen-

eral for other algorithms that benefit from approximate ordering. Our fine-grained

locks can be adopted when designing lock-based GPU algorithms. More generally,

our decoupled delegated approach can be used for other algorithm design prob-

lems, in particular, for making complex algorithm designs architecturally efficient

129

on GPUs.

Furthermore, we believe our work opens a new playground for future GPU

algorithm designs. We have demonstrated that the existing GPU hardware is ca-

pable of handling many complexity algorithms, while the key is to transform a

complex algorithm in innovative ways to take advantage of the hardware instead of

just simplifying the algorithm.

130

Bibliography

[1] Movielens 10m network dataset – KONECT, April 2017.

[2] Netflix network dataset – KONECT, April 2017.

[3] Reuters network dataset – KONECT, April 2017.

[4] J. L. Abelln, J. Fernndez, and M. E. Acacio. Glocks: Efficient support for

highly-contended locks in many-core cmps. In 2011 IEEE International

Parallel Distributed Processing Symposium, pages 893–905, May 2011.

[5] Johnathan Alsop, Marc S. Orr, Bradford M. Beckmann, and David A. Wood.

Lazy release consistency for GPUs. In The 49th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO-49, pages 26:1–26:13,

Piscataway, NJ, USA, 2016. IEEE Press.

[6] AMD. Amd graphics cores next (gcn) architecture, 2012.

[7] José-Marı́a Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. Boost-

ing mobile gpu performance with a decoupled access/execute fragment pro-

cessor. In Proceedings of the 39th Annual International Symposium on Com-

puter Architecture, ISCA ’12, pages 84–93, Washington, DC, USA, 2012.

IEEE Computer Society.

131

[8] Krste Asanovic, Stephen W. Keckler, Yunsup Lee, Ronny Krashinsky, and

Vinod Grover. Convergence and scalarization for data-parallel architectures.

In Proceedings of the 2013 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO), CGO ’13, pages 1–11, Washington,

DC, USA, 2013. IEEE Computer Society.

[9] Saman Ashkiani, Andrew Davidson, Ulrich Meyer, and John D. Owens.

Gpu multisplit. SIGPLAN Not., 51(8), February 2016.

[10] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.

Aamodt. Analyzing cuda workloads using a detailed gpu simulator. In

2009 IEEE International Symposium on Performance Analysis of Systems

and Software, pages 163–174, April 2009.

[11] RICHARD BELLMAN. On a routing problem. Quarterly of Applied Math-

ematics, 16(1):87–90, 1958.

[12] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. Groute:

An asynchronous multi-gpu programming model for irregular computations.

In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’17, page 235–248, New York,

NY, USA, 2017. Association for Computing Machinery.

[13] James Bennett and Stan Lanning. The Netflix prize. In Proc. KDD Cup,

pages 3–6, 2007.

132

[14] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure

calls. ACM Trans. Comput. Syst., 2(1):39–59, February 1984.

[15] M. Burtscher, R. Nasre, and K. Pingali. A quantitative study of irregular

programs on gpus. In 2012 IEEE International Symposium on Workload

Characterization (IISWC), pages 141–151, Nov 2012.

[16] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A quantitative study

of irregular programs on gpus. pages 141–151, 11 2012.

[17] Martin Burtscher and Keshav Pingali. GPU Computing Gems Emerald

Edition, chapter 6, An Efficient CUDA Implementation of the Tree-Based

Barnes Hut n-Body Algorithm, pages 75–92. Morgan Kaufmann, 2011.

[18] F. Busato and N. Bombieri. An efficient implementation of the bellman-ford

algorithm for kepler gpu architectures. IEEE Transactions on Parallel and

Distributed Systems, 27(08):2222–2233, aug 2016.

[19] F. Busato and N. Bombieri. An efficient implementation of the bellman-ford

algorithm for kepler gpu architectures. IEEE Transactions on Parallel and

Distributed Systems, 27(8):2222–2233, Aug 2016.

[20] Irina Calciu, Dave Dice, Tim Harris, Maurice Herlihy, Alex Kogan, Virendra

Marathe, and Mark Moir. Message passing or shared memory: Evaluating

the delegation abstraction for multicores. In Proceedings of the 17th In-

ternational Conference on Principles of Distributed Systems - Volume 8304,

OPODIS 2013, pages 83–97, Berlin, Heidelberg, 2013. Springer-Verlag.

133

[21] V. T. Chakaravarthy, F. Checconi, P. Murali, F. Petrini, and Y. Sabharwal.

Scalable single source shortest path algorithms for massively parallel sys-

tems. IEEE Transactions on Parallel and Distributed Systems, 28(7):2031–

2045, July 2017.

[22] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaf-

fer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for

heterogeneous computing. In Proceedings of the 2009 IEEE International

Symposium on Workload Characterization (IISWC), IISWC ’09, pages 44–

54, Washington, DC, USA, 2009. IEEE Computer Society.

[23] G. Chen and X. Shen. Free launch: Optimizing gpu dynamic kernel launches

through thread reuse. In 2015 48th Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO), pages 407–419, 2015.

[24] S. Chen and L. Peng. Efficient gpu hardware transactional memory through

early conflict resolution. In 2016 IEEE International Symposium on High

Performance Computer Architecture (HPCA), pages 274–284, March 2016.

[25] S. Chen, L. Peng, and S. Irving. Accelerating gpu hardware transactional

memory with snapshot isolation. In 2017 ACM/IEEE 44th Annual Interna-

tional Symposium on Computer Architecture (ISCA), pages 282–294, June

2017.

[26] Sylvain Collange. Identifying scalar behavior in cuda kernels. Technical re-

port, UCBL), 2011. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.405.3537&rep=rep1&type=pdf.

134

[27] Sylvain Collange, David Defour, and Yao Zhang. Dynamic detection of

uniform and affine vectors in gpgpu computations. In Proceedings of the

2009 International Conference on Parallel Processing, Euro-Par’09, pages

46–55, Berlin, Heidelberg, 2010. Springer-Verlag.

[28] Neal Clayton Crago and Sanjay Jeram Patel. Outrider: Efficient memory

latency tolerance with decoupled strands. In Proceedings of the 38th Annual

International Symposium on Computer Architecture, ISCA ’11, pages 117–

128, New York, NY, USA, 2011. ACM.

[29] Andreas Crauser, Kurt Mehlhorn, Ulrich Meyer, and Peter Sanders. A paral-

lelization of dijkstra’s shortest path algorithm. In Proceedings of the 23rd In-

ternational Symposium on Mathematical Foundations of Computer Science,

MFCS ’98, page 722–731, Berlin, Heidelberg, 1998. Springer-Verlag.

[30] PTX ISA :: Cuda toolkit documentation.

[31] A. Davidson, S. Baxter, M. Garland, and J. D. Owens. Work-efficient par-

allel gpu methods for single-source shortest paths. In 2014 IEEE 28th In-

ternational Parallel and Distributed Processing Symposium, pages 349–359,

May 2014.

[32] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix

collection. ACM Trans. Math. Softw., 38(1), December 2011.

[33] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck. Phast:

135

Hardware-accelerated shortest path trees. In 2011 IEEE International Par-

allel Distributed Processing Symposium, pages 921–931, May 2011.

[34] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A framework

for parallel graph algorithms using work-efficient bucketing. In Proceedings

of the 29th ACM Symposium on Parallelism in Algorithms and Architectures,

SPAA ’17, page 293–304, New York, NY, USA, 2017. Association for Com-

puting Machinery.

[35] Jeffrey R. Diamond, Donald S. Fussell, and Stephen W. Keckler. Arbitrary

modulus indexing. In Proceedings of the 47th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 140–152, 2014.

[36] Gregory Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, Andrew

Kerr, Haicheng Wu, and Sudhakar Yalamanchili. Simd re-convergence at

thread frontiers. In Proceedings of the 44th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, MICRO-44, pages 477–488, New

York, NY, USA, 2011. ACM.

[37] Dave Dice, Virendra J. Marathe, and Nir Shavit. Flat-combining numa locks.

In Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism

in Algorithms and Architectures, SPAA ’11, page 65–74, New York, NY,

USA, 2011. Association for Computing Machinery.

[38] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer.

Math., 1(1):269–271, December 1959.

136

[39] A. ElTantawy and T. M. Aamodt. Mimd synchronization on simt architec-

tures. In 2016 49th Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO), pages 1–14, Oct 2016.

[40] A. ElTantawy and T. M. Aamodt. Warp scheduling for fine-grained syn-

chronization. In 2018 IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 375–388, Feb 2018.

[41] Roger Espasa and Mateo Valero. Decoupled vector architectures. In Pro-

ceedings. Second International Symposium on High-Performance Computer

Architecture, pages 281–290, Feb 1996.

[42] Panagiota Fatourou and Nikolaos D. Kallimanis. A highly-efficient wait-free

universal construction. In Proceedings of the Twenty-Third Annual ACM

Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, page

325–334, New York, NY, USA, 2011. Association for Computing Machin-

ery.

[43] Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the combin-

ing synchronization technique. In Proceedings of the 17th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’12,

pages 257–266, New York, NY, USA, 2012. ACM.

[44] W. W. L. Fung and T. M. Aamodt. Energy efficient gpu transactional mem-

ory via space-time optimizations. In 2013 46th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO), pages 408–420, Dec

2013.

137

[45] Wilson W. L. Fung, Inderpreet Singh, Andrew Brownsword, and Tor M.

Aamodt. Hardware transactional memory for gpu architectures. In Pro-

ceedings of the 44th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, MICRO-44, pages 296–307, New York, NY, USA, 2011.

ACM.

[46] Mark Gebhart, Stephen W Keckler, and William J Dally. A compile-time

managed multi-level register file hierarchy. In Proceedings of the 44th an-

nual IEEE/ACM international symposium on microarchitecture, pages 465–

476. ACM, 2011.

[47] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.

Contraction hierarchies: Faster and simpler hierarchical routing in road net-

works. In Proceedings of the 7th International Conference on Experimental

Algorithms, WEA’08, page 319–333, Berlin, Heidelberg, 2008. Springer-

Verlag.

[48] Syed Zohaib Gilani, Nam Sung Kim, and Michael J. Schulte. Power-

efficient computing for compute-intensive gpgpu applications. In Proceed-

ings of the 21st International Conference on Parallel Architectures and Com-

pilation Techniques, PACT ’12, pages 445–446, New York, NY, USA, 2012.

ACM.

[49] GroupLens Research. MovieLens data sets. http://www.grouplens.

org/node/73, October 2006.

138

[50] Gpgpu-sim web page.

[51] Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms on

the gpu using cuda. In Proceedings of the 14th International Conference on

High Performance Computing, HiPC’07, page 197–208, Berlin, Heidelberg,

2007. Springer-Verlag.

[52] Z. He and B. Hong. Dynamically tuned push-relabel algorithm for the max-

imum flow problem on cpu-gpu-hybrid platforms. In 2010 IEEE Interna-

tional Symposium on Parallel Distributed Processing (IPDPS), pages 1–10,

April 2010.

[53] Blake A. Hechtman and Daniel J. Sorin. Exploring memory consistency

for massively-threaded throughput-oriented processors. SIGARCH Comput.

Archit. News, 41(3):201–212, June 2013.

[54] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining

and the synchronization-parallelism tradeoff. In Proceedings of the Twenty-

second Annual ACM Symposium on Parallelism in Algorithms and Architec-

tures, SPAA ’10, pages 355–364, New York, NY, USA, 2010. ACM.

[55] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth

Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 5th edition, 2011.

[56] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenk-

ins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada,

139

S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege,

J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl,

S. Borkar, V. De, R. V. D. Wijngaart, and T. Mattson. A 48-core ia-32

message-passing processor with dvfs in 45nm cmos. In 2010 IEEE Interna-

tional Solid-State Circuits Conference - (ISSCC), pages 108–109, Feb 2010.

[57] Intel. Introducing intel many integrated core architecture, 2011.

[58] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez. A scalable

architecture for ordered parallelism. In 2015 48th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO), pages 228–241, Dec

2015.

[59] Hyeran Jeon, Gunjae Koo, and Murali Annavaram. CTA-aware prefetching

for GPGPU. Technical Report CENG-2014-08, Dept. of Electrical Engi-

neering, University of Southern California, October 2014.

[60] Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur

Mutlu, Ravishankar Iyer, and Chita R. Das. Orchestrated scheduling and

prefetching for gpgpus. In Proceedings of the 40th Annual International

Symposium on Computer Architecture, ISCA ’13, pages 332–343, New York,

NY, USA, 2013. ACM.

[61] David S. Johnson and Catherine C. McGeoch, editors. Network Flows and

Matching: First DIMACS Implementation Challenge. American Mathemat-

ical Society, Boston, MA, USA, 1993.

140

[62] Rashid Kaleem, Sreepathi Pai, and Keshav Pingali. Stochastic gradient de-

scent on gpus. In Proceedings of the 8th Workshop on General Purpose Pro-

cessing Using GPUs, GPGPU-8, pages 81–89, New York, NY, USA, 2015.

ACM.

[63] Roozbeh Karimi, David M. Koppelman, and Chris J. Michael. Gpu road

network graph contraction and sssp query. In Proceedings of the ACM Inter-

national Conference on Supercomputing, ICS ’19, page 250–260, New York,

NY, USA, 2019. Association for Computing Machinery.

[64] Ji Kim and Christopher Batten. Accelerating irregular algorithms on gpg-

pus using fine-grain hardware worklists. In Proceedings of the 47th An-

nual IEEE/ACM International Symposium on Microarchitecture, MICRO-

47, page 75–87, USA, 2014. IEEE Computer Society.

[65] Ji Kim, Christopher Torng, Shreesha Srinath, Derek Lockhart, and Christo-

pher Batten. Microarchitectural mechanisms to exploit value structure in

simt architectures. In Proceedings of the 40th Annual International Sympo-

sium on Computer Architecture, ISCA ’13, pages 130–141, New York, NY,

USA, 2013. ACM.

[66] K. Kim, S. Lee, M. K. Yoon, G. Koo, W. W. Ro, and M. Annavaram. Warped-

preexecution: A gpu pre-execution approach for improving latency hiding.

In 2016 IEEE International Symposium on High Performance Computer Ar-

chitecture (HPCA), pages 163–175, March 2016.

141

[67] Keunsoo Kim, Sangpil Lee, Myung Kuk Yoon, Gunjae Koo, Won Woo Ro,

and Murali Annavaram. Warped-preexecution: A GPU pre-execution ap-

proach for improving latency hiding. In 2016 IEEE International Sympo-

sium on High Performance Computer Architecture (HPCA), pages 163–175,

March 2016.

[68] J. Kloosterman, J. Beaumont, M. Wollman, A. Sethia, R. Dreslinski, T. Mudge,

and S. Mahlke. Warppool: Sharing requests with inter-warp coalescing for

throughput processors. In 2015 48th Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO), pages 433–444, 2015.

[69] Milind Kulkarni, Martin Burtscher, Calin Casçaval, and Keshav Pingali. Lon-

estar: A suite of parallel irregular programs. In ISPASS ’09: IEEE Interna-

tional Symposium on Performance Analysis of Systems and Software, 2009.

[70] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan,

Kavita Bala, and L. Paul Chew. Optimistic parallelism requires abstrac-

tions. In Proceedings of the 28th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI ’07, page 211–222, New

York, NY, USA, 2007. Association for Computing Machinery.

[71] Shailendra Kumar, Alok Misra, and Raghvendra Tomar. A modified parallel

approach to single source shortest path problem for massively dense graphs

using cuda. pages 635–639, 09 2011.

[72] Jaekyu Lee, Nagesh B. Lakshminarayana, Hyesoon Kim, and Richard Vuduc.

Many-thread aware prefetching mechanisms for gpgpu applications. In

142

Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO ’43, pages 213–224, Washington, DC, USA,

2010. IEEE Computer Society.

[73] Sangpil Lee, Keunsoo Kim, Gunjae Koo, Hyeran Jeon, Won Woo Ro, and

Murali Annavaram. Warped-compression: Enabling power efficient GPUs

through register compression. In Proceedings of the 42nd Annual Interna-

tional Symposium on Computer Architecture (ISCA), pages 502–514, 2015.

[74] Yunsup Lee. Decoupled vector-fetch architecture with a scalarizing com-

piler. Technical Report UCB/EECS-2016-117, EECS Department, Univer-

sity of California, Berkeley, May 2016.

[75] Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, Derek Lockhart,

Christopher Batten, and Krste Asanović. Exploring the tradeoffs between

programmability and efficiency in data-parallel accelerators. In Proceed-

ings of the 38th Annual International Symposium on Computer Architecture,

ISCA ’11, pages 129–140, New York, NY, USA, 2011. ACM.

[76] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung

Kim, Tor M. Aamodt, and Vijay Janapa Reddi. Gpuwattch: Enabling energy

optimizations in gpgpus. In Proceedings of the 40th Annual International

Symposium on Computer Architecture, ISCA ’13, pages 487–498, New York,

NY, USA, 2013. ACM.

[77] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new

143

benchmark collection for text categorization research. J. Machine Learning

Research, 5:361–397, 2004.

[78] Ang Li, Gert-Jan van den Braak, Henk Corporaal, and Akash Kumar. Fine-

grained synchronizations and dataflow programming on gpus. In Proceed-

ings of the 29th ACM on International Conference on Supercomputing, ICS

’15, pages 109–118, New York, NY, USA, 2015. ACM.

[79] C. K. Liang and M. Prvulovic. MiSAR: minimalistic synchronization ac-

celerator with resource overflow management. In 2015 ACM/IEEE 42nd

Annual International Symposium on Computer Architecture (ISCA), pages

414–426, June 2015.

[80] J. Liu, J. Yang, and R. Melhem. SAWS: synchronization aware GPGPU

warp scheduling for multiple independent warp schedulers. In 2015 48th An-

nual IEEE/ACM International Symposium on Microarchitecture (MICRO),

pages 383–394, Dec 2015.

[81] L. Liu, M. Liu, C. J. Wang, and J. Wang. Compile-time automatic synchro-

nization insertion and redundant synchronization elimination for gpu kernels.

In 2016 IEEE 22nd International Conference on Parallel and Distributed

Systems (ICPADS), pages 826–834, Dec 2016.

[82] Yuxi Liu, Zhibin Yu, Lieven Eeckhout, Vijay Janapa Reddi, Yingwei Luo,

Xiaolin Wang, Zhenlin Wang, and Chengzhong Xu. Barrier-aware warp

144

scheduling for throughput processors. In Proceedings of the 2016 Inter-

national Conference on Supercomputing, ICS ’16, pages 42:1–42:12, New

York, NY, USA, 2016. ACM.

[83] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and Gilles Muller.

Remote core locking: Migrating critical-section execution to improve the

performance of multithreaded applications. In Proceedings of the 2012

USENIX Conference on Annual Technical Conference, USENIX ATC’12,

pages 6–6, Berkeley, CA, USA, 2012. USENIX Association.

[84] Pedro J. Martı́n, Roberto Torres, and Antonio Gavilanes. Cuda solutions

for the sssp problem. In Proceedings of the 9th International Conference on

Computational Science: Part I, ICCS ’09, page 904–913, Berlin, Heidelberg,

2009. Springer-Verlag.

[85] Jiayuan Meng, David Tarjan, and Kevin Skadron. Dynamic warp subdi-

vision for integrated branch and memory divergence tolerance: Extended

results. u.va. Technical report, 2010.

[86] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable gpu

graph traversal. In Proceedings of the 17th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’12, 2012.

[87] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable gpu

graph traversal. In Proceedings of the 17th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’12, page 117–128,

New York, NY, USA, 2012. Association for Computing Machinery.

145

[88] U. Meyer and P. Sanders. Delta-stepping: A parallelizable shortest path

algorithm. J. Algorithms, 49(1):114–152, October 2003.

[89] Steven S. Muchnick. Advanced Compiler Design and Implementation. Mor-

gan Kauffman, San Francico, CA, 1997.

[90] Naveen Muralimanohar and Rajeev Balasubramonian. CACTI 6.0: A tool to

understand large caches. Technical Report HPL 2009-85, HP Laboratories,

2009.

[91] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi.

Cacti 6.0: A tool to understand large caches. University of Utah and Hewlett

Packard Laboratories, Tech. Rep, 2009.

[92] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhut-

dinov, Onur Mutlu, and Yale N. Patt. Improving gpu performance via

large warps and two-level warp scheduling. In Proceedings of the 44th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-

44, pages 308–317, New York, NY, USA, 2011. ACM.

[93] R. Nasre, M. Burtscher, and K. Pingali. Data-driven versus topology-driven

irregular computations on gpus. In 2013 IEEE 27th International Sympo-

sium on Parallel and Distributed Processing, pages 463–474, May 2013.

[94] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight in-

frastructure for graph analytics. In Proceedings of the Twenty-Fourth ACM

146

Symposium on Operating Systems Principles, SOSP ’13, page 456–471, New

York, NY, USA, 2013. Association for Computing Machinery.

[95] Konstantinos Nikas, Nikos Anastopoulos, Georgios Goumas, and Nectarios

Koziris. Employing transactional memory and helper threads to speedup

dijkstra’s algorithm. In Proceedings of the 2009 International Conference on

Parallel Processing, ICPP ’09, page 388–395, USA, 2009. IEEE Computer

Society.

[96] NVIDIA. Fermi architecture whitepaper, 2009.

[97] NVIDIA. Geforce gtx 1080 whitepaper, 2016.

[98] NVIDIA. Nvidia tesla v100 gpu architecture, 2017.

[99] NVIDIA. Nvidia profiler user guide, 2018.

[100] NVIDIA. Nvidia turing gpu architecture, 2018.

[101] NVIDIA. The api reference guide for nvgraph, 2019.

[102] NVIDIA. Tuning cuda applications for turing, 2019.

[103] H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano. A

new gpu-based approach to the shortest path problem. In 2013 International

Conference on High Performance Computing Simulation (HPCS), pages 505–

511, July 2013.

[104] Y. Oyama, K. Taura, and A. Yonezawa. Executing parallel programs with

synchronization bottlenecks efficiently.

147

[105] Sreepathi Pai and Keshav Pingali. A compiler for throughput optimization

of graph algorithms on gpus. In Proceedings of the 2016 ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA 2016, page 1–19, New York, NY, USA,

2016. Association for Computing Machinery.

[106] Sreepathi Pai and Keshav Pingali. A compiler for throughput optimization

of graph algorithms on gpus. In Proceedings of the 2016 ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA 2016, pages 1–19, New York, NY, USA,

2016. ACM.

[107] Darko Petrović, Thomas Ropars, and André Schiper. On the performance

of delegation over cache-coherent shared memory. In Proceedings of the

2015 International Conference on Distributed Computing and Networking,

ICDCN ’15, New York, NY, USA, 2015. Association for Computing Ma-

chinery.

[108] Darko Petrović, Thomas Ropars, and André Schiper. On the performance

of delegation over cache-coherent shared memory. In Proceedings of the

2015 International Conference on Distributed Computing and Networking,

ICDCN ’15, New York, NY, USA, 2015. Association for Computing Ma-

chinery.

[109] Darko Petrović, Thomas Ropars, and André Schiper. Leveraging hardware

message passing for efficient thread synchronization. ACM Trans. Parallel

148

Comput., 2(4):24:1–24:26, January 2016.

[110] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Am-

ber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman

Manevich, Mario Méndez-Lojo, and et al. The tao of parallelism in algo-

rithms. SIGPLAN Not., 46(6):12–25, June 2011.

[111] Kun Ren, Jose M. Faleiro, and Daniel J. Abadi. Design principles for scaling

multi-core oltp under high contention. In Proceedings of the 2016 Interna-

tional Conference on Management of Data, SIGMOD ’16, pages 1583–1598,

New York, NY, USA, 2016. ACM.

[112] X. Ren and M. Lis. Efficient sequential consistency in GPUs via relativistic

cache coherence. In 2017 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), pages 625–636, Feb 2017.

[113] X. Ren and M. Lis. High-performance gpu transactional memory via eager

conflict detection. In 2018 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), pages 235–246, Feb 2018.

[114] M. Rhu and M. Erez. Capri: Prediction of compaction-adequacy for han-

dling control-divergence in gpgpu architectures. In 2012 39th Annual Inter-

national Symposium on Computer Architecture (ISCA), pages 61–71, 2012.

[115] T. G. Rogers, D. R. Johnson, M. O’Connor, and S. W. Keckler. A vari-

able warp size architecture. In 2015 ACM/IEEE 42nd Annual International

Symposium on Computer Architecture (ISCA), pages 489–501, 2015.

149

[116] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. Ffwd: Delegation

is (much) faster than you think. In Proceedings of the 26th Symposium on

Operating Systems Principles, SOSP ’17, page 342–358, New York, NY,

USA, 2017. Association for Computing Machinery.

[117] Mohsen Safari and Ali Ebnenasir. Locality-based relaxation: An efficient

method for gpu-based computation of shortest paths. pages 43–58, 10 2017.

[118] Cuda sdk 4.2.

[119] A. Segura, J. Arnau, and A. González. Scu: A gpu stream compaction

unit for graph processing. In 2019 ACM/IEEE 46th Annual International

Symposium on Computer Architecture (ISCA), pages 424–435, 2019.

[120] Ankit Sethia, Ganesh Dasika, Mehrzad Samadi, and Scott Mahlke. Apogee:

Adaptive prefetching on gpus for energy efficiency. In Proceedings of the

22Nd International Conference on Parallel Architectures and Compilation

Techniques, PACT ’13, pages 73–82, Piscataway, NJ, USA, 2013. IEEE

Press.

[121] Ori Shalev and Nir Shavit. Predictive log-synchronization. SIGOPS Oper.

Syst. Rev., 40(4):305–315, April 2006.

[122] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. Efficient GPU

synchronization without scopes: Saying no to complex consistency models.

In Proceedings of the 48th International Symposium on Microarchitecture,

MICRO-48, pages 647–659, New York, NY, USA, 2015. ACM.

150

[123] Abhayendra Singh, Shaizeen Aga, and Satish Narayanasamy. Efficiently

enforcing strong memory ordering in GPUs. In Proceedings of the 48th

International Symposium on Microarchitecture, MICRO-48, pages 699–712,

New York, NY, USA, 2015. ACM.

[124] Dhirendra Pratap Singh, Nilay Khare, and Akhtar Rasool. Efficient parallel

implementation of single source shortest path algorithm on gpu using cuda.

2016.

[125] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt.

Cache coherence for GPU architectures. In 2013 IEEE 19th International

Symposium on High Performance Computer Architecture (HPCA), pages

578–590, Feb 2013.

[126] James E. Smith. Decoupled access/execute computer architectures. In

Proceedings of the 9th International Symposium on Computer Architecture

(ISCA), pages 112–119, 1982.

[127] James E. Smith. Decoupled access/execute computer architectures. In

Proceedings of the 9th Annual Symposium on Computer Architecture, ISCA

’82, pages 112–119, Los Alamitos, CA, USA, 1982. IEEE Computer Society

Press.

[128] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen

Chang, Nasser Anssari, Geng Daniel Liu, and W-m Hwu. Parboil: A re-

vised benchmark suite for scientific and commercial throughput computing.

151

Technical Report IMPACT 12-01, Center for Reliable and High-Performance

Computing, University of Illinois at Urbana-Champaigne, 2012.

[129] M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt.

Accelerating critical section execution with asymmetric multi-core architec-

tures. SIGPLAN Not., 44(3):253–264, March 2009.

[130] G. G. Surve and M. A. Shah. Parallel implementation of bellman-ford algo-

rithm using cuda architecture. In 2017 International conference of Electron-

ics, Communication and Aerospace Technology (ICECA), volume 2, pages

16–22, April 2017.

[131] E. Vallejo, R. Beivide, A. Cristal, T. Harris, F. Vallejo, O. Unsal, and M. Valero.

Architectural support for fair reader-writer locking. In 2010 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 275–286,

Dec 2010.

[132] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and Xi-

aodong Zhang. Sep-graph: Finding shortest execution paths for graph pro-

cessing under a hybrid framework on gpu. In Proceedings of the 24th Sym-

posium on Principles and Practice of Parallel Programming, PPoPP ’19,

page 38–52, New York, NY, USA, 2019. Association for Computing Ma-

chinery.

[133] Kai Wang, Don Fussell, and Calvin Lin. Fast fine-grained global synchro-

nization on gpus. In Proceedings of the Twenty-Fourth International Confer-

152

ence on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’19, pages 793–806, New York, NY, USA, 2019. ACM.

[134] Kai Wang and Calvin Lin. Decoupled affine computation for simt gpus.

In Proceedings of the 44th Annual International Symposium on Computer

Architecture, ISCA ’17, pages 295–306, New York, NY, USA, 2017. ACM.

[135] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel,

and John D. Owens. Gunrock: A high-performance graph processing library

on the gpu. SIGPLAN Not., 51(8), February 2016.

[136] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mat-

tina, C. Miao, J. F. Brown III, and A. Agarwal. On-chip interconnection

architecture of the tile processor. IEEE Micro, 27(5):15–31, Sept 2007.

[137] H. Wong, M. M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos.

Demystifying gpu microarchitecture through microbenchmarking. In Per-

formance Analysis of Systems Software (ISPASS), 2010 IEEE International

Symposium on, pages 235–246, March 2010.

[138] Y. Wu, Y. Wang, Y. Pan, C. Yang, and J. D. Owens. Performance character-

ization of high-level programming models for gpu graph analytics. In 2015

IEEE International Symposium on Workload Characterization, pages 66–75,

Oct 2015.

[139] Ping Xiang, Yi Yang, Mike Mantor, Norm Rubin, Lisa R. Hsu, and Huiyang

Zhou. Exploiting uniform vector instructions for gpgpu performance, energy

153

efficiency, and opportunistic reliability enhancement. In Proceedings of the

27th International ACM Conference on International Conference on Super-

computing, ICS ’13, pages 433–442, New York, NY, USA, 2013. ACM.

[140] Shucai Xiao and Wu Feng. Inter-block gpu communication via fast barrier

synchronization. pages 1 – 12, 05 2010.

[141] Yunlong Xu, Lan Gao, Rui Wang, Zhongzhi Luan, Weiguo Wu, and Depei

Qian. Lock-based synchronization for gpu architectures. In Proceedings of

the ACM International Conference on Computing Frontiers, CF ’16, pages

205–213, New York, NY, USA, 2016. ACM.

[142] Yunlong Xu, Rui Wang, Nilanjan Goswami, Tao Li, Lan Gao, and Depei

Qian. Software transactional memory for gpu architectures. In Proceed-

ings of Annual IEEE/ACM International Symposium on Code Generation

and Optimization, CGO ’14, pages 1:1–1:10, New York, NY, USA, 2014.

ACM.

[143] Yi Yang, Ping Xiang, Michael Mantor, Norman Rubin, Lisa Hsu, Qunfeng

Dong, and Huiyang Zhou. A case for a flexible scalar unit in simt archi-

tecture. In Proceedings of the 2014 IEEE 28th International Parallel and

Distributed Processing Symposium, IPDPS ’14, pages 93–102, Washington,

DC, USA, 2014. IEEE Computer Society.

[144] Yi Yang, Ping Xiang, Mike Mantor, and Huiyang Zhou. Cpu-assisted gpgpu

on fused cpu-gpu architectures. In Proceedings of the 2012 IEEE 18th Inter-

154

national Symposium on High-Performance Computer Architecture, HPCA

’12, pages 1–12, Washington, DC, USA, 2012. IEEE Computer Society.

[145] P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie. Distributing hot-spot addressing

in large-scale multiprocessors. IEEE Trans. Comput., 36(4):388–395, April

1987.

[146] A. Yilmazer and D. Kaeli. HQL: a scalable synchronization mechanism

for GPUs. In 2013 IEEE 27th International Symposium on Parallel and

Distributed Processing, pages 475–486, May 2013.

[147] Weirong Zhu, Vugranam C Sreedhar, Ziang Hu, and Guang R. Gao. Syn-

chronization state buffer: Supporting efficient fine-grain synchronization on

many-core architectures. In Proceedings of the 34th Annual International

Symposium on Computer Architecture, ISCA ’07, pages 35–45, New York,

NY, USA, 2007. ACM.

155

