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A memory consistency model for a language defines the order of mem-

ory operations performed by each thread in a parallel execution. Such a con-

straint is necessary to prevent the compiler and hardware optimizations from

reordering certain memory operations, since such reordering might lead to un-

intuitive results. In this thesis, we propose a memory consistency model for

Chapel, a parallel programming language from Cray Inc.

Our memory model for Chapel is based on the idea of multiresolution

and aims to provide a migration path from a program that is easy to reason

about to a program that has better performance efficiency. Our model allows a

programmer to write a parallel program with sequential consistency semantics,

and then migrate to a performance-oriented version by increasingly changing

different parts of the program to follow relaxed semantics. Sequential seman-

tics helps in reasoning about the correctness of the parallel program and is

provided by the strict sequential consistency model in our proposed memory

model. The performance-oriented versions can be obtained either by using the
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compiler sequential consistency model, which maintains the sequential seman-

tics, or by the relaxed consistency model, which maintains consistency only at

global synchronization points. Our proposed memory model for Chapel thus

combines strict sequential consistency model, compiler sequential consistency

model and relaxed consistency model.

We analyze the performance of the three consistency models by imple-

menting three applications: Barnes-Hut, FFT and Random-Access in Chapel,

and the hybrid model of MPI and Pthread. We conclude the following:

• The strict sequential consistency model is the best model to determine

algorithmic errors in the applications, though it leads to the worst per-

formance.

• The relaxed consistency model gives the best performance among the

three models, but relies on the programmer to enforce synchronization

correctly.

• The performance of the compiler sequential model depends on accuracy

of the dependence analysis performed by the compiler.

• The relative performance of the consistency models across Chapel and

the hybrid programming model of MPI and Pthread are the same. This

shows that our model is not tightly bound to Chapel and can be applied

on other programming models/languages.
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Chapter 1

Introduction

The advent of multicore processors has led to the rise of new parallel

programming languages and models. Hardware and compiler optimizations,

which help sequential languages obtain good performance efficiency, can help

parallel languages to achieve the same. However, in a parallel scenario, with

multiple accesses to memory occurring concurrently and complex causal rela-

tions among actions of distinct parallel threads, these optimizations can lead

to inconsistent executions1 producing unintuitive results. As parallel language

developers, we believe that the answer is a good memory consistency model

which defines how a program interacts with memory.

To illustrate the need for a consistency model, consider the simplified

form of Dekker’s algorithm for mutual exclusion shown in Listing 1.1. In this

simplified version, T1 and T2 are threads executing the critical section ‘criti-

cal sec’ based on the state of shared variables flag1 and flag2. In a sequentially

consistent execution, T1 enters critical sec only after raising flag1 and only

if the condition (flag2==0 ) holds true. Similarly, T2 enters critical sec only

1inconsistent executions of a program are executions whose output does not match the
output of any sequentially consistent execution of the program. A sequential consistent
execution is an execution which follows Lamport’s definition [8] of sequential consistency.
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after raising flag2 and only if the condition (flag1==0 ) holds true. Thus, a

sequentially consistent version guarantees mutual exclusion of critical sec.

1 I n i t i a l l y f l a g 1=f l a g 2 =0.
2 T1 T2
3 f l a g 1 =1; f l a g 2 =1;
4 i f ( f l a g 2==0){ i f ( f l a g 1==0){
5 c r i t i c a l s e c c r i t i c a l s e c
6 } }

Listing 1.1: Dekker’s algorithm for mutual exclusion.

However, an optimizing compiler could prefetch the values of flag2 and

flag1 in thread 1 and 2 respectively, violating sequential consistency. This

leads to both T1 and T2 entering the critical sec, violating mutual exclusion.

The compiler is free to do this, as there is no data dependency between lines

3 and 4 of the code.

We can avoid such violations of mutual exclusion by enforcing a sequen-

tial memory consistency model, which orders execution according to Lamport’s

definition [8] of sequential consistency:

the result of any execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations of each individual

processor appear in this sequence in the order specified by its program.

On the other hand, the sequential consistency model might lead to

poor performing parallel code, because it does not allow any optimizations

that reorder code. An alternative is to use a relaxed consistency model, which

2



provides consistency at global synchronization points. When a relaxed model

is enforced on the code in Listing 1.1, it will still allow the compiler optimiza-

tion to reorder instructions, unless there is a global synchronization point such

as a barrier introduced by the programmer between lines 3 and 4 of the code.

The relaxed model places the responsibility of introducing the synchronization

primitives needed for correctness on the programmer.

A memory consistency model thus helps a developer to reason about

and control the output of a parallel execution.

There have been several memory models proposed in the last two

decades. However, no memory model has been universally accepted. We feel

that the main reasons are as follows:

• No memory model proposed to date has a solution for each of the three

players in a parallel system, namely: the programmer, the compiler and

the hardware.

• Most of the memory models express their consistency models in terms

of low-level loads and stores, which is very difficult for programmers to

reason about. We believe that these models should be defined in terms

of programming language statements.

In this thesis, we propose a memory consistency model for Chapel.

Chapel is a parallel programming language from Cray Inc. and is one of
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the languages competing in the DARPA HPCS program. While our memory

model can be be applied to any parallel programming model, we have chosen

Chapel to showcase our model for the following reasons:

• One of the aims of Chapel is to provide high productivity (performance,

programmability, portability and robustness). We believe that Chapel

has delivered on the programmability front and is striving to deliver

on the performance front. Since the Chapel team is in the process of

implementing compiler optimizations, we feel that it is the ideal time to

apply our proposed memory consistency model.

• As a multiresolution language, Chapel supports a good “separation of

concerns” [6]. Our memory model is built on this idea and provides a

migration path from a program that is easy to reason about to a program

that has good performance efficiency. Our model allows a programmer

to write a parallel program with sequential consistency semantics, which

can then be migrated to a more performance-oriented version without

excessive rewriting of code.

• Any memory model needs the support of good synchronization con-

structs. The Chapel language provides synchronization variables which

provide full/empty semantics and are expressive enough to capture the

needs of any memory model.
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1.1 Our solution

Built on the idea of multiresolution, our memory model allows a pro-

grammer to write a parallel program with sequential consistency semantics,

and then migrate to an advanced more performance-oriented version by in-

creasingly relaxing the consistency of different parts of the program. More-

over, the performance-oriented version can also be obtained with the help of

the compiler. Our memory model is therefore a combination of the following

three types of consistency models:

• Strict Sequential Consistency for the cautious programmer.

A cautious programmer favors the usage of sequential semantics in rea-

soning about the correctness of parallel code. For such a programmer,

we provide the Strict Sequential Consistency model. A block of Chapel

code executing under strict sequential semantics follows Lamport’s def-

inition [8] of sequential consistency, while the rest of the code follows

either compiler sequential consistency or relaxed consistency.

• Compiler Sequential Consistency for the trusting programmer

A trusting programmer delegates the responsibility of avoiding inconsis-

tent executions (from code snippets as in Listing 1.1) to the compiler.

We introduce the Compiler Sequential consistency model for such pro-

grammers. In this model, the compiler provides sequential consistency

in the parallel program by introducing fence operations at appropriate

places in the program to break race conditions. Fences prevent compil-
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er/hardware re-ordering of instructions across the point in the parallel

program where they are inserted. Fences ensure that all outstanding

memory operations are complete. Shasha and Snir’s Delay Set Analysis

[13] is used to identify the points where fences should be inserted.

• Relaxed consistency for the advanced programmer.

An advanced programmer wants to exploit compiler optimizations to

get maximum performance efficiency. The programmer retains the re-

sponsibility of avoiding inconsistent executions by enforcing constraints

via the synchronization constructs provided by the language. For such a

programmer, we introduce the relaxed consistency model which provides

consistency at global synchronization points.

1.2 Performance Analysis

To evaluate the performance implications of the three consistency mod-

els, we implement three applications: Barnes-Hut, FFT, Random-Access in

Chapel and a hybrid MPI and Pthreads model. We conclude the following:

• Strict Sequential is the best model to determine algorithmic errors in the

applications, though it leads to the worst performance. Programmers

should use the strict sequential consistent version as a reference version

to compare against other versions.

• Relaxed consistency gives the best performance among the three models,

but it relies on the programmer to enforce synchronization correctly.
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• The performance of the compiler sequential model depends on accuracy

of the compiler’s dependence analysis (which consists of reference anal-

ysis, synchronization analysis, may-happen-in-parallel (MHP) analysis).

A conservative analysis leads to the introduction of more fence opera-

tions, in the extreme case bringing down the performance of this model

to a strict sequentially consistent version. An accurate analysis leads

to a smaller number of fence operations, which in the best case yields

performance equivalent to that of the relaxed consistency version. In

both cases the compiler sequential version does not compromise on the

sequential consistency guarantee.

• The relative performance of the consistency models across Chapel and

across the hybrid programming model of MPI and Pthread are the same.

This shows that irrespective of the programming model, the developer

pays the same performance overhead when moving among the different

consistency models. This also shows that our model is not tightly bound

to Chapel and can be applied on other programming models/languages.

1.3 Overview of Chapters

Chapter 2 provides an overview of the memory models of popular pro-

gramming languages. Chapter 3 describes the proposed memory model in

detail in the context of Chapel language. Chapter 4 analyses the performance

of the proposed memory model. Chapter 5 concludes the thesis with our find-

ings. Chapter 6 suggests future work.
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Chapter 2

Related Work

Over the past two decades, a number of memory models have been

proposed. The basic idea that unites all of these models is the aim to pro-

vide coherence among parallel threads of execution and to enforce ordering

constraints in the same thread. Providing coherence means ensuring all the

threads observe the writes to a memory location in the same order and at

the same time. Enforcing ordering constraint means respecting the data and

flow dependencies in the thread of execution. These memory models, however,

differ based on the following factors:

• Points in the program where coherence is provided. If the model

maintains coherence at each point in the program then the model pro-

vides sequential consistency If the model provides coherence only at syn-

chronization points then this form of weakened sequential consistency is

called relaxed consistency.

The relaxed consistency performs better when compared to the sequen-

tial consistency because it allows all possible compiler and hardware

optimizations but, it rests the responsibility of enforcing the necessary

synchronization to prevent inconsistent executions (as discussed in the
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case of Dekkars algorithm in Chapter 1) on the programmer. This fac-

tor captures one of the most important trade-offs in memory models i.e.

between performance and correctness.

• Who enforces the order of memory operations. There are three

players in this category: the hardware, the compiler, and the programmer

via the use of synchronization constructs such as locks. We believe a

memory model which supports the idea of multiresolution must have a

solution to each of these categories but, no memory model till date has

provided such a solution.

• Granularity of the memory operations. The granularity at which

the semantics of a memory consistency model is defined varies from low-

level load and store operations to programming language statements. We

believe the right level of abstraction to be programming language state-

ments, because it is difficult to reason about the consistency semantics

of a program in terms of low-level load and store operations.

• Data dependency between memory operations. Some memory

models enforce ordering constraints on independent memory operations,

while other memory models enforce the constraint on data dependent

memory operations. We believe it is useful to enforce constraints on all

memory operations to improve the comprehensibility of the program.

• Memory operations are differentiated as strict/relaxed. Some

languages allow the programmer to differentiate shared variables as strict

9



or relaxed. The memory model enforces sequential consistency among

operations involving strict variables and relaxed consistency among op-

erations involving relaxed variables. Such models cannot be applied to

all programming models and also lead to complicated semantics when

blocks of code contain both strict and relaxed variables.

In this chapter we discuss the following memory models:

• The IA64 hardware Memory Consistency Model

• The UPC Memory Consistency Model

• The Java Memory Consistency Model

2.1 Hardware Consistency Model: IA64

In this section, we discuss the IA64 memory consistency model.

2.1.1 Description

The IA64 memory model is a weak (relaxed) consistency model [3]. The

model allows hardware optimizations such as write buffering with bypassing to

reorder memory operations. These optimizations are applied to hide memory

latency because accessing main memory is a costly operation. While these op-

timizations result in faster executions, they can cause inconsistent executions

unless the programmer has used the synchronization constructs correctly.
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To illustrate the effect of write buffering with bypassing optimization,

consider the assembly code in Table 2.1 (which has been taken from the In-

tel IA64 manual [3]). This optimization allows execution to continue in the

presence of outstanding write operations. Reads to a location whose write is

outstanding gives the latest value to the processor which issued the outstand-

ing write, whereas another processor might obtain a stale value.

Processor 0 Processor 1

mov [ x], 1 mov [ y], 1
mov r1, [ y] mov r2, [ x]

Table 2.1: Outstanding write operations (example taken from the Intel man-
ual)

[ x ] , [ y ] are memory l o c a t i o n s o f x and y .
r1 and r2 are r e g i s t e r s .
I n t u i t i v e Output : r1==1 and r2==1 or

r1==1 and r2==0 or
r1==0 and r2==1.

Un intu i t i ve Output : r1==0 and r2==0.

The result (r1==0 and r2==0) is not consistent with the output of any sequen-

tial execution of the code in Table 2.1. Such code snippets lead to violations

of mutual exclusion of code, when code written in a higher level language is

translated to code snippet in Table 2.1. However, IA64 also exposes mem-

ory fence operations to help the programmer control such reorderings. The

memory fence operations prevent the movement of operations across the point

where they are inserted in the program thus helping in enforcing sequential

consistency.

11



2.1.2 Comparison with the Chapel model

The table 2.2 gives a comparison between the proposed Chapel memory

model and the IA64 memory model.

IA64 Memory Model Proposed Chapel Memory Model
Model is described in terms of Model is described in terms of
low level loads and stores. high level language

statements.
Memory Model is weak. It Both strict and weak models
allows for reordering of are provided. The relaxed model
memory operations. is similar to the weak model.
Programmer uses memory fence In the strict sequential model,
operations to control reordering the programmer does not need
of operations and establish sequential memory fences to enforce
consistency. sequential consistency.

In the compiler sequential model,
the compiler (not the programmer)
uses memory fences to enforce
sequential consistency.
In the relaxed model, programmer
uses Chapel’s sync constructs
to enforce sequential consistency.

Table 2.2: Chapel memory model Vs Hardware memory model

2.2 Unified Parallel C

In this section, we describe the memory model of the UPC language.

12



2.2.1 Description

UPC language is an extension of the C language for parallel computing,

which provides an SPMD (single program multiple data) programming model.

UPC is a PGAS (partitioned global address space) language, which means

that a shared variable in the UPC program can be read and written by any

processor but is present in the physical memory of one processor.

UPC provides the programmer with two types of shared variables: shared and

shared strict [2]. The shared variables are also called the relaxed variables.

UPC’s memory model ([2]) can be summarized as:

• Model enforces a < strict [2] ordering across all threads. The < strict is

a partial order which enforces an ordering constraint between every pair

of shared strict variable operations of all the threads.

• Model enforces a < t [2] ordering in each thread. This < t ordering is a

total order which enforces an ordering constraint in each thread between

every pair of operations where each operation consists of:

– All the write operations(shared, shared strict, non-shared) in the

program.

– All the shared strict read operations in the program.

– All the write/read operations(shared, shared strict, non-shared) in

the thread.

13



• The ordering constraint mentioned in the previous two points is obtained

by respecting the data and flow dependencies in the input program. In

UPC, the ordering constraint is described via a precedes ([2]) relation-

ship. A formal definition as stated in “Formal UPC Memory Consistency

Semantics” section of UPC manual [2] is as follows:

a formal definition for the Precedes(m1,m2) partial order, a predicate

which inspects two memory operations in the execution trace that were

issued by the same thread and returns true if and only if m1 is required

to precede m2, according to the sequential abstract machine semantics of

[ISO/IEC00 Sec. 5.1.2.3], applied to the given thread.

• the Model also provides for synchronization operations such as

– upc fence which prevents the movement of any memory operations

across it.

– upc lock acts as an acquire barrier (prevents the movement of op-

erations from after to before upc lock).

– upc unlock acts as an release barrier (prevents the movement of

operations from before to after upc unlock).

2.2.2 Comparison with the Chapel model

The table 2.3 gives a comparison between the proposed Chapel memory

model and the UPC memory model.
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UPC Memory Model Proposed Chapel Memory Model
Memory Model provides both Model provides both strict(
strict and relaxed models. strict sequential) and relaxed
The programmer can obtain (relaxed consistency)
sequential consistency by models.
using only shared strict
variables.
The programmer can obtain
relaxed memory consistency
by using only shared
variables.
Model is described in Model is described in terms
terms of low level loads of high level programming
and stores. language statements.
It is difficult for the Changing strict and relaxed models
programmer to identify involves a removal of
whether variables need to be the (strict seq) construct
shared strict or shared. or a command line parameter.
Absence of a compiler option A convenient compiler option
translates to more effort by for programmers who want
the programmer in enforcing performance and sequential
memory barrier operations. consistency but without

getting their hands dirty.

Table 2.3: Chapel memory model Vs UPC memory model

2.2.3 Comparison with Chapel model via Examples

The UPC model is very similar to the proposed Chapel model. The

different consistency requirements of any program can be achieved by both the

proposed Chapel and UPC memory model.

We show some example pieces of code where the Chapel code can achieve the

same consistency as the UPC model by using the proposed memory model.

Note: Examples are from the UPC Specification 1.2.
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• Example 1. All the variables are initialized to 0.

T0 T1
RR(y,1) RR(x,2)
RW(x,2) RW(y,1)

Table 2.4: Example 1 in UPC

Note:RR(x,1) - relaxed read of shared variable x yielded the value 1,

RW(x,1) - relaxed write of value 1 to shared variable x.

In this example, Thread T0 reads the value of y as 1, which indicates

that both the operations of T1 were completed. But, T1 reads the value

of x as 2, which means that T0 should have completed both of its oper-

ations. Such a behavior is possible only when T0 and T1 execute their

second operations first. This reordering was allowed because these were

operations containing only relaxed variables.

Such a behavior can be obtained in Chapel by writing code as follows.

T0 T1
temp1 = y temp2 = x
x = 2 y = 1
writeln(temp1) writeln(temp2)

Table 2.5: Example 1 in Chapel

Al l v a r i a b l e s are i n i t i a l i z e d to 0 .
Po s s i b l e Output : temp1=1 and temp2=2.

In the absence of a strict sequential or compiler sequential model, Chapel
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compiler allows reordering of statements providing the relaxed semantics

of UPC.

• Example 2. All variables are initialized to 0.

T0 T1
WR(y,1) WR(x,0)
WW(x,2) WW(y,1)

Table 2.6: Example 2 in UPC

Note:WR(x,1) - strict read of shared variable x yielded value 1,

WW(x,1) - strict write of value 1 to shared variable x.

In this example, Thread T0 reads the value of y as 1 which means that

both the operations of T1 were completed. T1 reads the value of x as 0

which means that T0 did not complete its write of x. Such a behavior is

consistent with a sequential execution of program. The execution order

is depicted in Listing 2.1.

T1 :WR(x , 0 )
2 |

T1 :WW(y , 1 )
4 |

T0 :WR(y , 1 )
6 |

T0 :WW(x , 2 )

Listing 2.1: Order of execution of statements in T0 and T1.

Such a behavior can be obtained in Chapel by writing code as follows.
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T0 T1
strict seq {temp1 = y strict seq {temp2 = x
x = 2 y = 1
writeln(temp1)} writeln(temp2)}

Table 2.7: Example 2 in Chapel

Al l v a r i a b l e s are i n i t i a l i z e d to 0 .\\
Pos s i b l e Output : temp1=1 and temp2=0.\\

This output of the Chapel code is consistent with a sequential execution

of the program code.

2.3 Java

In this section, we discuss the Java memory model.

2.3.1 Description

Java is an object oriented programming language. One of the popular

uses of the language is in writing multithreaded code. Java’s memory model

has the following characteristics:

• A correctly synchronized program exhibits sequential consistency [9].

This principle states that if the programmer has enforced synchronization

correctly then the execution of such a program will be consistent with

the output of any sequentially consistent execution of the program.
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• An incorrectly synchronized program does not violate security guaran-

tees [9].

This principle states that in the absence of proper synchronization, the

execution shall not violate the security guarantee of the program.

Note: All variables are 0 initially, r1 and r2 are register variables. The

below example is taken from [9].

T0 r1=x y = r1
T1 r2 =y x = r2

Table 2.8: Causal loops

To illustrate this principle, consider the example in Table 2.8.

In the example, if an aggressive compiler predicts (optimization:value

prediction) that the value of x is 42 in T0, then this causes r1 in T0 to

get 42, y in T0 then gets the value of 42, r2 in T1 then gets 42. Then

x in T1 gets 42, thus justifying the prediction of x as 42. This causal

cycle is presented in Listing 2.2. Such pieces of code can also generate

random object references leading to violation of security. Java avoids

such scenarios with the principle:

”Early execution of an action does not result in an undesirable causal

cycle if its occurance is not dependant on a read returning a value from

a data race.” [9] When this principle is applied in the above scenario, it

prevents the reading of 42 for x.
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T0 : p r ed i c t x as 42
2 |

T0 : r1=x , r1−>42
4 |

T0 : y=r1 , y−>42
6 |

T1 : r2=y , r2−>42
8 |

T1 : x=r2 , x−>42
10 |

T0 : x i s 42 !

Listing 2.2: Order of execution of statements in Table 2.8 in the absence
of memory model.

• Java provides strong synchronization constructs like volatile variables,

synchronize constructs which act as memory barriers and prevent the

movement of operations from moving across them.

2.3.2 Comparison with the proposed Chapel model

The table 2.9 gives a comparison between the proposed Chapel memory

model and the Java memory model.

2.4 Summary

In this chapter, we have shown that the Chapel memory model is ca-

pable of providing the same semantics as other memory models. We have also

described scenarios where the Chapel model provides a better comprehensibil-

ity (by comparing proposed model with the hardware consistency model). By
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providing a combination of three memory consistency models, we believe that

the proposed model has delivered a multiresolution design which is lacking in

the other memory models.
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Java Memory Model Chapel Memory Model
Model is described in terms Model is described in terms
of low level loads of high level language
and stores. statements.
Memory Model is weak. It Both strict and weak models
allows for reordering of are provided. The relaxed model
memory operations. is similar to the weak model.
Programmer uses volatile The strict sequential model
variables and synchronization provides sequential
constructs to establish consistency.
sequential consistency. In the compiler sequential model, the

compiler and not the programmer uses
memory fences to enforce sequential
consistency.
In the relaxed model, programmer
uses Chapel’s sync constructs
to enforce sequential consistency.

Causal cycles are prevented via In strict sequential consistency,
program analysis,which detect such causal loops do not occur.
data races and preventing early These causal loops occur when
execution of operations which program order is violated and in
lead to such causal loops. strict sequential consistency,

program order is not violated.
Compiler sequential consistency
inserts fences between operations
to prevent undesirable effects of
such causal loops. Relaxed sequential
consistency is prone to such
causal loops if the programmer
does not use synchronization
constructs appropriately.

Table 2.9: Chapel memory model Vs Java memory model
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Chapter 3

Proposed Memory Consistency Model in

Chapel

As a multiresolution language, the main aim of Chapel is to support a

good “separation of concerns” [6]. Our memory model for Chapel is based on

this idea and aims to provide a migration path from a program that is easy to

reason about to a program that has better performance efficiency. Our model

allows a programmer to write a parallel program with sequential consistency

semantics and then migrate the program to a more performance-oriented ver-

sion by increasingly changing different parts of the program to follow relaxed

semantics. Sequential semantics helps in reasoning about the correctness of

the parallel program and is provided by the strict sequential consistency model

in our proposed memory model. The advanced performance-oriented versions

can be obtained either by using the compiler sequential consistency model,

which maintains the sequential semantics, or by the relaxed consistency model,

which maintains consistency only at global synchronization points. Our pro-

posed memory model for Chapel thus combines strict sequential consistency

model, compiler sequential consistency model and relaxed consistency model.
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Our model also solves the issue raised by Padua et al [10], who state

that “It is not known what consistency models best suit the needs of the pro-

grammer, the compiler, and the hardware simultaneously”. We solve this issue

by providing a memory model with a solution for each of the three categories:

the programmer, the compiler and the hardware. The strict sequential model

suits the programmer who wants to reason about the parallel implementation

like sequential code. The compiler sequential model relies on the compiler to

provide sequential consistency along with performance efficiency. The relaxed

consistency model gives the hardware and the compiler complete freedom to

perform optimizations (which may violate sequential consistency). The re-

laxed consistency model is used to obtain maximum performance efficiency

and is preferred by advanced programmers.

In this chapter, we first present background material needed to under-

stand our memory models, followed by a discussion of each of the proposed

consistency models in the context of the Chapel language.

3.1 Background

In this section we present background material needed to understand

our memory models and their implementations.

3.1.1 Sync variables

The Chapel language provides synchronization constructs called sync

variables. These variables provide full/empty semantics. A full state indicates

24



that the sync variable contains a value to be read. When the variable is in

a full state, an attempt to write a value blocks the thread of execution until

the value has been read, which atomically changes the state of the variable

to the empty state. An empty state indicates that the sync variable does not

contain a value to be read. When the variable is in an empty state, an attempt

to read blocks the thread of execution until a value has been written, which

atomically changes the state of the variable to the full state. There are several

versions of the write and the read functions available on these sync variables.

The functions important to us are as follows:

• writeEF() (write when Empty, leave Full)

The writeEF() operation blocks until the variable is empty, writes a

value, and leaves the variable in a full state. The writing of the value and

the changing of the state are performed in one atomic step. If multiple

threads are executing the function simultaneously, only one thread will

successfully complete the function, while the other threads block until

the variable is empty.

• readFE() (read when Full, leave Empty)

The readFE() operation blocks until the variable is full, returns the value

present in the variable and leaves the variable in the empty state. The

reading of the value and the changing of the state are performed in one

atomic step. If multiple threads are executing the function simultane-

ously, only one thread will successfully complete the function, while the

other threads block until the variable is full.
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3.1.2 Fences

Fences are memory barrier operations available via the C language func-

tion sync synchronize(). They serve two purposes. One, they ensure the

completion of all outstanding memory operations. Two, they restrict com-

piler/hardware optimizations from moving code across them. Thus they help

in enforcing sequential consistency. Usage of fences degrades performance

because they are costly operations to implement, and because they restrict

compiler/hardware optimizations. Hence, they must be used minimally.

3.2 Strict Sequential Consistency Model

We introduce the strict sequential consistency model to satisfy three

purposes. One, application developers find it convenient to have a version

of the application enforced with sequential semantics against which they can

evaluate their advanced more performance-oriented versions. Two, developers

use sequential semantics to prevent hardware consistency models (refer to Sec-

tion 2.1) from allowing inconsistent executions. Three, sequential semantics

can be used to debug algorithmic errors in parallel sections of code.

3.2.1 Description

The strict sequential consistency model provides Lamport’s definition

[8] of sequential consistency:

the result of any execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations of each individual
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processor appear in this sequence in the order specified by its program.

Currently, Chapel does not have constructs that can specify that a

block of code be executed with strict sequential consistency. We propose that

a new construct “strict seq” be introduced into Chapel for this purpose. The

syntax for the strict seq block should be:

strict seq {

//code

}

Because the strict seq construct is a block-level construct, it provides

flexibility in the use of sequential semantics, on different parallel sections of

code and at different times, to debug algorithmic errors.

The rest of the code (i.e. the code not in the strict seq block) will

be enforced with compiler sequential consistency, or the relaxed consistency

model, as chosen via a compiler flag (refer to 3.3.1).

3.2.2 Analysis of the Strict Memory Model

The rules of the strict sequential model are as follows:

1. Every Chapel statement present in the strict seq block is guaranteed to

be executed atomically and in program order. For a detailed description

of this rule, please refer to Appendix 1.

2. Nesting of strict seq blocks has the same effect as if the whole block were

inside one strict seq.
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3. The effects of the strict seq construct are static i.e. the effects are not

inherited across function boundaries, providing the programmer with

greater control in ensuring that the strictness is not propagated to un-

intended blocks of code.

While other memory models (refer to Chapter 2) describe their consistency

models in terms of low level reads and writes, we have raised the level of

abstraction to programming language statements. We believe that this is the

right approach, because it is difficult for the programmer to reason about

the consistency semantics of a program via low level reads and writes. Our

approach provides a more strict form of sequential consistency (hence the

name ‘strict sequential’) that may yield worse performance efficiency than

other sequential consistency models. In particular, the strict sequential model

does not allow for interleaving of reads and writes of any statements. In Listing

3.2 we see that the execution of a=b in thread 1, and c=d in thread 2 can be

interleaved in the case of non-strict sequential consistency models, while the

Strict Sequential consistency does not allow such interleaving. Other memory

models allow interleaving of reads and writes when there is no violation of

sequential consistency.

T1 T2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a=b c=d
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 3.1: Sequential consistency in other models vs Strict sequential (code).
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Only two S t r i c t Sequent i a l execut i ons are p o s s i b l e :
Execution 1 Execution 2

a=b c=d
| |

c=d a=b

4 non−s t r i c t but s e qu en t i a l l y c o n s i s t e n t execut i ons
are p o s s i b l e . Two o f them are g iven below :

Execution 1 Execution 2
read b read d

| |
wr i t e a read b

| |
read d wr i t e a

| |
wr i t e c wr i t e c

Listing 3.2: Sequential consistency in other models vs Strict sequential (anal-
ysis).

3.2.3 Implementation of strict seq construct

Since the Chapel compiler does not have a strict seq construct, this

section refers to a possible implementation that the Chapel compiler can follow

to implement the construct. We have followed the implementation below for

providing strict semantics while evaluating the strict sequential model.

We ensure atomicity of statements (as specified in the previous section)

via the use of sync (refer to Section 3.1.1) variables. We create a unique sync

variable named lck$ for each strict seq block. Each parallel thread executes a

statement present in the strict seq block in the following order:
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lck$.writeEF(1)

statement

fence (refer to Section 3.1.2)

lck$.readFE()

As specified in Section 3.1.1, the lck$.writeEF(1) operation is an atomic

operation and only one parallel thread will be successful in completing the op-

eration, while the other threads are blocked waiting for the successful thread to

perform lck$.readFE() operation. Thus, the sync operations provide a locking

and unlocking mechanism, allowing for an atomic execution of the statement.

By virtue of the semantics of the sync variables and each thread doing a

lck$.writeEF(1) before and a lck$.readFE() after the execution of a statement,

there is no possibility of a deadlock.

3.3 Compiler Sequential Consistency Model

The compiler sequential consistency model leverages the compiler to

enforce sequential consistency.

3.3.1 Description

In this model, fences 3.1.2 are used to enforce sequential consistency.

Identifying fence points in the parallel code is difficult because of possible inter-

thread and intra-thread data dependencies. If we delegate the responsibility

of introducing these fences to a beginner/intermediate developer, it might

lead to an aggressive or insufficient set of fences. An aggressive set of fences
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degrades performance because fences are costly operations and because they

restrict compiler/hardware optimizations. On the other hand, an insufficient

set might not provide sequential consistency.

A solution to the problem of identifying fence points has been proposed

by Shasha et al [13], who propose an analysis called delay set analysis, that

finds the minimal set of fence operations (also called as delays) to enforce

sequential consistency. Padua et al [10] utilize the work of Shasha et al to

build a compiler phase that performs delay set analysis (refer to Section 3.3.3).

The Compiler Sequential Model follows the work of Padua et al and Shasha

et al.

The delay set analysis is very effective when it is performed at the pro-

gram level and not at the granularity of blocks of code. This is because the

amount of information obtained by dependence analysis at lower abstraction

would be highly conservative. This would lead to a conflict edge (refer to

Section 3.3.3) being established between independent statements, leading to

unnecessary fences. Therefore, we expose this model via the command line

option ‘-compiler sequential’ in Chapel.

3.3.2 Analysis of the Compiler Sequential Consistency Model

In this section, we illustrate how the compiler sequential consistency

model enforces sequential consistency in different scenarios.
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• Example 1

I n i t i a l l y A=B=0, r e g i s t e r 1 = −1.
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

T1 T2
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A=1 i f (B==1)
6 . . . . . r e g i s t e r 1 = A

i f (A==1) . . . .
8 B=1 . . . .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 I n t u i t i v e output : r e g i s t e r 1 = −1 or 1 .
Un intu i t i ve output : r e g i s t e r 1 = 0 .

Listing 3.3: Example 1

Consider the code in Listing 3.3: A, B are shared variables between

threads T1 and T2. An optimizing compiler might look at T1 and via

constant propagation decide that the if condition is unnecessary. This

might result in B=1 in line 8 to move above the assignment to A in

T1 (this move is possible as there is no data dependency between the

assignments). This results in register1 in T2 obtaining the value 0 as

shown in Listing 3.4.

T1 :B=1
2 |

T2 : i f (B==1)
4 |

T2 : r e g i s t e r 1 = A // r e g i s t e r 1 ge t s 0 .
6 |

T1 :A=1

Listing 3.4: Order of execution of statements in T1 and T2 after constant
propagation.
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Figure 3.1: Example 1 after Delay Set Analysis

In the compiler sequential consistency model, the compiler performs de-

lay set analysis (which is explained in Section 3.3.3) and determines that

delays have to be introduced between A=1 and B=1 in T1 and between

if(B==1) and register1=A in T2. The delay in T1 ensures that B=1 is

executed only after A=1. This delay in T1 ensures that if T2 enters the

if body, the value of variable A will be 1 preventing the unintuitive out-

put of register1 obtaining the value 0. The delays are shown in Figure

3.1.
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• Example 2: Dekker’s Algorithm

In Chapter 1, we learn that the execution of Dekker’s algorithm with-

Figure 3.2: Dekker’s Algorithm after Delay Set Analysis

out sequential consistency leads to a violation of mutual exclusion of the

critical section. Here, we show how the compiler sequential consistency

model prevents such a violation. In the compiler sequential consistency

model, the compiler performs delay set analysis and determines that de-

lays have to be introduced between flag1=1 and if(flag2==0) in thread 1

and between flag2=1 and if(flag1==0) in thread 2. The fence in thread
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1 prevents the assignment of flag1 from moving below the if condition

present in thread 1. Similarly in thread 2, the assignment of flag2 is

prevented from moving below the if condition (such executions occur

when compiler optimizations such as speculation and branch prediction

execute the if condition and the body of the if construct even before the

assignment of the flag variables has been completed). Thus, the fences

ensure mutual exclusion of critical section.

3.3.3 Implementation of Delay Set Analysis

In this section, we outline the implementation of the delay set analysis

and the introduction of delays. For complete details, we refer the readers to

Shasha et al [13] and Padua et al [10].

1. The compiler initially creates a graph where the nodes are the state-

ments present in the parallel code. The edges in the graph are of two

types, program edges and conflict edges. Program edges are directed

and represent the program order in which the two statements linked by

the program edge have to be executed. Conflict edges are between state-

ments in different threads, where at least one of the statements writes

to a location accessed by the other statement and where the statements

can happen in parallel. For example, in Figure 3.1 we see a program

edge between A=1 and if(A==1) in T1. This program edge signifies

that the programmer wants the assignment to A to precede the check of

A.
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2. To identify the conflict edges, the compiler performs alias analysis, es-

cape analysis [12] and MHP (May Happen in Parallel) analysis [11].

Alias analysis is used to determine which variables in the parallel code

refer to the same location. This helps in establishing a conflict edge be-

tween statements where one statement is modifying a location that the

other statement is accessing via an alias. Escape analysis is used to iden-

tify if a location or its alias is accessed by more than one thread. MHP

analysis helps in determining the sets of statements that can execute in

parallel.

For example, in Figure 3.1 we see a conflict edge between B=1 in T1

and if(B==1) in T2. This is because both the statements are accessing

the same memory location B.

3. Once the graph is created, the compiler identifies the minimal mixed

cycles present in it. Mixed cycles are cycles formed by the combination

of program edges and conflict edges. Minimality of these mixed cycles

means that any other mixed cycle in graph is formed from one or more

of these minimal mixed cycles.

The mixed cycle in Figure 3.1 is shown in Figure 3.3.

4. The set of program edges present in these mixed cycles form the delay

set. The compiler then introduces a delay between each of the statements

linked by these program edges. We can see this in Figure 3.1 and Figure

3.2.
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Figure 3.3: Example 1 with a mixed cycle

3.4 Relaxed Consistency Model

3.4.1 Description

In the relaxed consistency model, the responsibility of enforcing se-

quential consistency semantics is left to the programmer. The programmer

can enforce sequential semantics via the usage of synchronization constructs

such as sync variables present in the Chapel language. These sync variables

provide full empty/semantics and can be used in various scenarios such as
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to implement mutual exclusion of critical sections (as we have used in Sec-

tion 3.2.3). The Chapel compiler guarantees that there will be no movement

of memory operations across the use of the sync variables and that all the

functions exposed on these variables will be executed atomically.

3.4.2 Analysis of the Relaxed Memory Model

Without the enforcement of sequential analysis, the compiler and the

hardware are free to apply optimizations leading to performance efficiency

than other consistency models. If the programmer does not do a good job

in enforcing the required synchronization constraints, then the cost paid is

unintuitive outputs due to inconsistent executions (refer to the example of

Dekker’s algorithm in Section 3.3.2).

3.4.3 Implementation of Relaxed Memory Model

The Chapel compiler currently provides the relaxed consistency seman-

tics by default.

3.5 Interaction of memory models

Currently code snippets as in Listing 3.5 are not allowed. In Listing

3.5, we see that one of the processes is following sequential semantics, while

the other processes are following relaxed semantics. Such interactions among

the memory models are not allowed. We plan to define the semantics of such

interactions in the future.
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c o f o r a l l l o c in Loca les {
2 i f ( here . id == 0) {

s t r i c t s e q {
4 . . . // s t r i c t semant ics

}
6 } e l s e {

. . . / / r e l axed semant ics
8 }
}

Listing 3.5: Interaction of different memory models are currently disallowed.

3.6 Summary

In this chapter, we have discussed the details of our memory model for

Chapel, which combines strict sequential consistency model, compiler sequen-

tial consistency model and relaxed consistency model. In the table 3.1, we

present an overview of the proposed memory models.
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Strict Sequential Compiler Sequential Relaxed Consistency
Theme Code is enforced with Compiler enforces Consistency only at

Lamport’s definition of sequential consistency global synchronization
sequential consistency. semantics by introducing points (as defined

memory barriers in the by the programmer).
program.

Purpose Comprehensibility Performance-oriented Performance oriented
of parallel program. version of the parallel versions of the parallel

program with sequential program (may sacrifice
semantics. consistency for

performance).
Specification strict seq{} command line flag default.

construct. ”-compiler sequential”.
Implementation usage of sync memory barriers are programmer identifies

variables (not exposed introduced via ’delay and defines global
to the programmer). set analysis’ [13], [10]. synchronization points

via ’sync’ variables.
Changes to expose a new construct changes in the compiler required synchronization
Chapel ’strict seq’ in the to do delay set analysis. constructs are present

language. in the language.

Table 3.1: Proposed memory models at a glance.
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Chapter 4

Performance Analysis of Memory Model

In this chapter, we analyze the memory models from the perspective of

performance by implementing the following applications:

• Barnes-Hut algorithm for solving n-body problem

• Radix-4 FFT (Fast Fourier Transform)

• Random Access (one of the High Performance Computing benchmarks)

We choose these programs because they represent a spectrum of applications,

the spectrum being based on the degree to which the data dependencies in the

program are statically determinate. Random Access represents one end of the

spectrum with the least degree of determinacy while, Barnes-Hut represents

the other end of the spectrum with a high degree of determinacy. We believe

that this degree is inversely proportional to the likelihood of memory incon-

sistencies. Hence, we believe that this spectrum is appropriate for evaluating

our memory models.

Our performance analysis compares the performance of three versions

of each application, where each version uses a different memory model (Strict
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Sequential/Compiler Sequential/Relaxed Consistency). We also examine the

performance effect of the proposed models on programs written in a hybrid

programming model that uses MPI and Pthreads, which shows that the per-

formance gap between relaxed consistency and strict sequential consistency is

not specific to the Chapel language.

In the following sections, we discuss the performance of the models in

the context of the above applications.

4.1 Barnes-Hut

The n-body problem models the interaction of a set of bodies on each

other. In this application, we model the effects of the gravitational force on

the n-body system. Each body has a weight and initial position. Every body

exerts a gravitational force on every other body in the system which causes

each body to move. A simple approach to solving this n-body problem is to

compute the force between every two bodies. This approach takes O(n ∗ n)

time. The Barnes-Hut algorithm reduces this complexity to O(n∗ log(n)) time

by approximating the force exerted by a group of sufficiently far bodies to be

the force exerted by a single virtual body acting at the center of mass of the

group of bodies [5], [14], [17].
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4.1.1 Implementation

We have followed the implementation provided by Warren et al [17].

The algorithm consists of two phases. In the first phase a quad tree is con-

structed, the quad tree represents the spatial distribution of the n-bodies. Each

internal node in the tree represents the virtual body at the center of mass of

the bodies in the subtree rooted at the internal node. The second phase is the

force calculation phase. The force experienced by each body is calculated by

using MAC (multipole acceptance criteria) [17]. The velocity and new position

of the body is then calculated using a Leapfrog-Verlet integrator.

4.1.2 Strict Sequential Consistency

We develop a strict sequentially consistent version of the Barnes-Hut

application by enclosing the code, in Listing 4.1, within the strict seq block.

(A section of the code which is heavily used and having intricate data inter-

actions is selected to be the strict seq block, because sequential execution of

such sections of code will help in reasoning about the behavior of the program.

As the strict seq construct has not yet been implemented in Chapel, enclos-

ing the code within the strict seq block translates to marking the block with

comments). The code in Listing 4.1 represents the core of the Barnes-Hut

algorithm. It involves constructing the quad tree and computing the displace-

ment of the bodies.
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//−−−−−−−−−−−−s t r i c t s e q block begins−−−−−−−−−−−−
2 c o f o r a l l l o c in Loca les do on l o c {

// con s t ru c t i on o f quad t r e e
4 const ructTree ( ) ;

// each proce s s i s r e s p on s i b l e f o r computing
6 // f o r c e and displacement exper i enced

// by a subset o f bod ies
8 beginIndex = ( here . id ∗ (n/numLocales ) ) + 1 ;

endIndex = ( ( here . id+1) ∗ (n/numLocales ) ) ;
10 f o r a l l i in beg inIndex . . endIndex do {

//compute the t o t a l f o r c e exper i enced by body i .
12 compute in t e ra c t i on ( root ( l o c . id ) , i ) ;

//move the body .
14 move body ( i ) ;

}
16 }

//−−−−−−−−−−−−−−− s t r i c t s e q block ends−−−−−−−−−−−

Listing 4.1: The strict seq block in Barnes-Hut.

4.1.3 Compiler Sequential Consistency

In this section, we develop a compiler sequential consistency version of

the Barnes-Hut application. As discussed in Section 3.3, we need to perform

delay set analysis and introduce fences at places as determined by the analysis

(we do manual delay set analysis as the Chapel compiler does not yet have a

phase which does the delay set analysis). To understand the results of delay

set analysis, we convert the code in Listing 4.1 to a simpler form as shown in

the below steps.
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1. Listing 4.1 to Listing 4.2

Each process reads the positions of all the bodies to construct the tree.

It then computes the force and displacement of a subset of bodies.

c o f o r a l l l o c in Loca les do on l o c {
2 const ructTree ( ) ;

// in cons t ruc t each proce s s reads the
4 // po s i t i o n s o f a l l the nbodies .

//Let us cons ide r two such bodies x and y .
6

f o r a l l i in beg inIndex . . endIndex do {
8 compute in t e ra c t i on ( root ( l o c . id ) , i ) ;

move body ( i ) ;
10 }

}

Listing 4.2: Delay set analysis of Barnes-Hut Algorithm, Step:1.

2. Listing 4.2 to Listing 4.3

In the Listing 4.3, we replace the coforall loop with two processes, T1

and T2. We also replace the force computation step and moving the

n-body step with writes to the body’s position.

T1 T2
2 const ructTree read y read x

read x read y
4 move body wr i t e x wr i t e y
∗ c o n f l i c t : read x in T2 and wr i t e x in T1

6 ∗ c o n f l i c t : read y in T1 and wr i t e y in T2

Listing 4.3: Delay set analysis of Barnes-Hut Algorithm, Step:2.

45



3. Barnes-Hut Implementation with fences.

Applying delay set analysis (refer to Section 3.3.3), fences are introduced

as shown in Listing 4.4.

T1 T2
2 const ructTree read y read x

read x read y
4 −−−−−−−FENCE−−−−−−−−−

move body wr i t e x wr i t e y
6 −−−−−−−FENCE−−−−−−−−

Listing 4.4: Delay set analysis of Barnes-Hut Algorithm, Step:3.

4.1.4 Analysis of Performance

Graph in Figure 4.1 illustrates the following points.

• The compiler sequential model is as efficient as relaxed consistency, be-

cause the forall loop in Listing 4.3 is unaffected by the delay set analysis.

The delay set analysis introduced fences before and after this forall loop.

Each iteration of the forall is independent, and the parallelism present

here is exploited to the same amount by both the compiler sequential and

the relaxed consistency models. We consider this a win for the compiler

sequential model because along with giving comparable performance to

the relaxed model, the compiler sequential model gives the guarantee

that none of the processes reads a stale position value of the bodies in a

new timestep.
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Figure 4.1: Application: Barnes-Hut. Performance of the Chapel Implemen-
tations.

• As expected, the strict sequential version shows poor performance be-

cause of the presence of locks and memory barriers after each statement

in the strict seq block. However, it does give the guarantee that none of

the processes reads a stale position value of the bodies in a new timestep.

• The hybrid programming model also follows the same trend (refer to

Figure 4.2).
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Figure 4.2: Application: Barnes-Hut. Performance of the MPI Implementa-
tions.

4.2 FFT

The DFT (discrete fourier transform) of a set of n complex values(xn)

is a set of values Xn such that (source: [1]):

Xk =
∑N−1

n=0
x(n)W kn

N , 0 ≤ k ≤ N − 1

WN = e−j∗2∗π/N

One of the algorithms to solve the DFT problem is FFT. FFT is fast because it
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exploits symmetry and periodicity in the computation of the X values. A radix-

4 fft problem translates the computation of each Xn value into the following

formula (source: [1]):

Xk =
∑N/4−1

n=0
x(n)W kn

N + W
Nk/4

N

∑N/4−1

n=0
x(n + (N/4))W kn

N

W
Nk/2

N

∑N/4−1

n=0
x(n + (N/2))W kn

N + W
3Nk/4

N

∑N/4−1

n=0
x(n + (3N/4))W kn

N

4.2.1 Implementation

def bu t t e r f l y (wk1 , wk2 , wk3 , X : [ 0 . . 3 ] ) {
2 //X[ 0 . . 3 ] i s a s l i c e o f the complex

//whose DFT va lue s have to be
4 //computed .

//wk1 , wk2 , wk3 are mu l t i p l i e r s o f
6 //complex type .

var x0 = X(0) + X(1 ) ,
8 x1 = X(0) − X(1 ) ,

x2 = X(2) + X(3 ) ,
10 x3rot = (X(2 ) − X(3 ) ) ∗ 1 . 0 i ;

12 X(0) = x0 + x2 ;
// compute the bu t t e r f l y in−p la ce on X

14 x0 −= x2 ;
X(2 ) = wk2 ∗ x0 ;

16 x0 = x1 + x3rot ;
X(1 ) = wk1 ∗ x0 ;

18 x0 = x1 − x3rot ;
X(3 ) = wk3 ∗ x0 ;

20 }

Listing 4.5: Butterfly function in Chapel implementation of FFT.

We have used the FFT implementation provided with the Chapel installation.

The principle that an 8-point DFT can be computed by solving two 4-point
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DFTs and a 4-point DFT can be solved by computing two 2-point DFTs has

been used in the FFT implementation. Computing the 2-point DFT’s involves

the application of the radix-4 butterfly operation. In the Listing 4.5, we show

the radix-4 butterfly function in Chapel. The implementation of FFT consists

of two phases. In the first phase, the xn values are block distributed among the

processors and then the butterfly operation is applied on the input complex

values. In the second phase, the xn values are block distributed among the

processors and then, the butterfly operation is applied on the complex values

output from the first phase. For details regarding the implementation, we

direct the user to the FFT example present in the Chapel installation.

4.2.2 Strict Sequential Consistency

We develop the strict sequential consistent version of the FFT imple-

mentation by marking the piece of code in Listing 4.7 as a strict seq block.

The code in Listing 4.7 depicts the application of the butterfly operation on

the input complex values.

// i t e r a t e over each o f the banks o f b u t t e r f l i e s
2 //−−−−−−−−−−−−s t r i c t s e q −−−−−−−−−−−−−−−−−−

f o r a l l ( bankStart , twidIndex ) in (ADom by 2∗ span , 0 . . ) {
4 var wk2 = W( twidIndex ) ,

wk1 = W(2∗ twidIndex ) ,
6 wk3 = (wk1 . re − 2 ∗ wk2 . im ∗ wk1 . im ,

2 ∗ wk2 . im ∗ wk1 . re − wk1 . im ) : complexType ;

Listing 4.6: Part of the DFFT function in Chapel implementation of FFT.
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// i t e r a t i n g over the lower bank o f b u t t e r f l i e s .
2 f o r a l l l o in bankStart . .# s t r do

on ADom. d i s t . i nd2 lo c ( l o ) do
4 l o c a l bu t t e r f l y (wk1 , wk2 , wk3 ,

A. l o c a l S l i c e ( l o . . by s t r #rad ix ) ) ;
6

wk1 = W(2∗ twidIndex +1);
8 wk3 = (wk1 . re − 2 ∗ wk2 . re ∗ wk1 . im ,

2 ∗ wk2 . re ∗ wk1 . re − wk1 . im ) : complexType ;
10 wk2 ∗= 1.0 i ;

12 // i t e r a t i n g over the high bank o f b u t t e r f l i e s .
f o r a l l l o in bankStart+span ..# s t r do

14 on ADom. d i s t . i nd2 lo c ( l o ) do
l o c a l bu t t e r f l y (wk1 , wk2 , wk3 ,

16 A. l o c a l S l i c e ( l o . . by s t r #rad ix ) ) ;
}

18 //−−−−−−−−−−−−s t r i c t s e q −−−−−−−−−−−−−−−−−−

Listing 4.7: Part of the DFFT function in Chapel implementation of FFT.

4.2.3 Compiler Sequential Consistency

We have developed two versions of the FFT application providing com-

piler sequential consistency, but differing in the amount of semantic informa-

tion used while performing the delay set analysis. The semantics of the forall

loop states that each iteration is independent of other iterations, which makes

the iterations of the forall loop in line 10 (and similarly line 21) in Listing

4.7 independent of one another. If this information is used in the delay set

analysis, then no fence is introduced into the forall loops; otherwise delay set

analysis introduces a fence. Both versions are presented below:
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2 f o r a l l ( bankStart , twidIndex ) in (ADom by 2∗ span , 0 . . ) {
var wk2 = W( twidIndex ) ,

4 wk1 = W(2∗ twidIndex ) ,
wk3 = (wk1 . re − 2 ∗ wk2 . im ∗ wk1 . im ,

6 2 ∗ wk2 . im ∗ wk1 . re − wk1 . im ) : complexType ;

8 // i t e r a t i n g over the lower bank o f b u t t e r f l i e s .
f o r a l l l o in bankStart . .# s t r do

10 on ADom. d i s t . i nd2 lo c ( l o ) do
l o c a l bu t t e r f l y (wk1 , wk2 , wk3 ,

12 A. l o c a l S l i c e ( l o . . by s t r #rad ix ) ) ;

14 wk1 = W(2∗ twidIndex +1);
wk3 = (wk1 . re − 2 ∗ wk2 . re ∗ wk1 . im ,

16 2 ∗ wk2 . re ∗ wk1 . re − wk1 . im ) : complexType ;
wk2 ∗= 1.0 i ;

18

// i t e r a t i n g over the high bank o f b u t t e r f l i e s .
20 f o r a l l l o in bankStart+span ..# s t r do

on ADom. d i s t . i nd2 lo c ( l o ) do
22 l o c a l bu t t e r f l y (wk1 , wk2 , wk3 ,

A. l o c a l S l i c e ( l o . . by s t r #rad ix ) ) ;
24

−−−−−−−−−−−−FENCE−−−−−−−−−−−−−−−−−−
26 }

Listing 4.8: Compiler Sequential version of FFT considering the semantics of
forall.

f o r a l l ( bankStart , twidIndex ) in (ADom by 2∗ span , 0 . . ) {
2 var wk2 = W( twidIndex ) ,

wk1 = W(2∗ twidIndex ) ,

Listing 4.9: Compiler Sequential version of FFT NOT considering the seman-
tics of forall.
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wk3 = (wk1 . re − 2 ∗ wk2 . im ∗ wk1 . im ,
2 2 ∗ wk2 . im ∗ wk1 . re − wk1 . im ) : complexType ;

// i t e r a t i n g over the lower bank o f b u t t e r f l i e s .
4 f o r a l l l o in bankStart . .# s t r do

on ADom. d i s t . i nd2 lo c ( l o ) do {
6 bu t t e r f l y (wk1 , wk2 , wk3 ,

A. l o c a l S l i c e ( l o . . by s t r #rad ix ) ) ;
8 −−−−−−−−FENCE−−−−−−−−−−−−−−−−−−−−−−

}
10

wk1 = W(2∗ twidIndex +1);
12 wk3 = (wk1 . re − 2 ∗ wk2 . re ∗ wk1 . im ,

2 ∗ wk2 . re ∗ wk1 . re − wk1 . im ) : complexType ;
14 wk2 ∗= 1.0 i ;

16 // i t e r a t i n g over the high bank o f b u t t e r f l i e s .
f o r a l l l o in bankStart+span ..# s t r do

18 on ADom. d i s t . i nd2 lo c ( l o ) do {
bu t t e r f l y (wk1 , wk2 , wk3 ,

20 A. l o c a l S l i c e ( l o . . by s t r #rad ix ) ) ;
−−−−−−−FENCE−−−−−−−−−−−−−−−−−−−−−−

22 }
}

Listing 4.10: Compiler Sequential version of FFT NOT considering the seman-
tics of forall.

4.2.4 Analysis of Performance

Graph in Figure 4.3 illustrates the following points:

• The compiler sequential version that uses more semantic information

performs on par with the relaxed version, illustrating that a rigorous
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Figure 4.3: Application: FFT. Performance of the Chapel Implementations.

compiler analysis (using available semantic information) can give good

performance.

• The compiler sequential version that uses less semantic information per-

forms on par with the sequential version, showing the disadvantage of a

conservative compiler analysis.

• We do not have two versions of the hybrid program because there are no
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Figure 4.4: Application: FFT. Performance of the MPI Implementations.

special constructs which provide useful semantic information. However,

we see the same performance trend in the hybrid model (refer to Figure

4.4) for the different memory models.
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4.3 Random Access

Random Access is one of the applications present in the high perfor-

mance computing benchmark. It involves updating data values in a table

distributed among the processing nodes present in the parallel system.

4.3.1 Implementation

Note: We utilize the RA implementation present in the Chapel Exam-

ples directory. The implementation of RA is straightforward. A request for an

update is sent to the process which owns the data value. The process then up-

dates the data value. An interesting scenario is when multiple updates to the

same memory location are being done. As the Chapel example does not use

locks (via sync variables), we face possible data corruptions when such updates

occur. Below we present how our memory models handle such situations.

4.3.2 Strict Sequential

//−−−−−−−−−−− s t r i c t s e q −−−−−−−−−−−−−−
2 //RAStream genera t e s the stream o f updates .

f o r a l l ( , r ) in ( Updates , RAStream ( ) ) do
4 // i d e n t i f y the l o c a t i o n where data va lue s i s p r e sent .

on TableDist . i nd2 lo c ( r & indexMask ) do {
6 const myR = r ;

l o c a l {//update value in Table T
8 T(myR & indexMask ) ˆ= myR;

}
10 }

//−−−−−−−−−−− s t r i c t s e q −−−−−−−−−−−−−−

Listing 4.11: strict seq block in RA.
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We develop the strict sequential consistent version of the RA implementation

by marking the piece of code in Listing 4.11 as strict seq. The code in Listing

4.11 handles the updates to the distributed table.

4.3.3 Compiler Sequential

We apply the delay set analysis to create a compiler sequential version.

The delay set analysis is not able to detect which updates are independent

and hence enforces atomicity of every update.

//RAStream genera t e s the stream o f updates
2 // to be performed .

f o r a l l ( , r ) in ( Updates , RAStream ( ) ) do
4 // i d e n t i f y the l o c a t i o n where data va lue s i s p r e sent .

on TableDist . i nd2 lo c ( r & indexMask ) do {
6 const myR = r ;

l o c a l {
8 //update value in Table T

T(myR & indexMask ) ˆ= myR;
10 −−−−−−FENCE−−−−−−−−−−

}
12 }

Listing 4.12: Fences in RA.

4.3.4 Performance Analysis

We note the following points:

• Compiler and Strict sequential models lose out on performance, because

they effectively serialize the updates.
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Figure 4.5: Application: RA. Performance of the Chapel Implementations.

• Relaxed sequential gets best performance but cannot provide the guaran-

tee that the table is not corrupted. The data corruption occurs because

the model allows multiple updates to the same location to happen with-

out atomicity. This is illustrated in Figure 4.6 (errors here refer to data

corruptions).

• As noted from Figure 4.7, the hybrid model follows the same performance
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trend as the Chapel implementations of RA.

4.4 Summary

Figure 4.8 summarizes the results from our experiments. Relaxed con-

sistency provides the best performance efficiency while strict sequential con-

sistency provides the least. The performance of the compiler sequential model

depends on the degree to which the data dependences are statically determi-

nate. In the Barnes-Hut application, the calculation of force and subsequent

movement of n-bodies are data parallel, which can be determined statically

leading to compiler sequential version performing on par with the relaxed con-

sistency version. For applications such as FFT, the performance obtained from

the compiler sequential version is dependent on the degree of semantic infor-

mation used in the delay set analysis. In applications such as RA, it is not

possible to determine statically whether the updates are independent or not.

Hence the compiler sequential version is unable to obtain performance on par

with the relaxed consistency version.
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Figure 4.6: Application: RA. Number of errors noted under relaxed consis-
tency.
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Figure 4.7: Application: RA. Performance of the MPI Implementations.
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Figure 4.8: Spectrum of Applications based on degree to which data depen-
dences are statically determinate.
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Chapter 5

Conclusion

Chapel is a multiresolution language, the main aim of Chapel is to

support a good “separation of concerns” [6]. We have proposed a memory

model for Chapel which is based on this idea. Our memory model provides a

migration path from a program that is easy to reason about to a program that

has better performance efficiency. Our memory consistency model combines

the following three types of models:

• Strict sequential consistency model for the cautious Programmer.

• Compiler sequential Consistency model for the trusting Programmer.

• Relaxed consistency model for the advanced Programmer.

To evaluate the memory models, we have implemented three applications:

Barnes-Hut, FFT, Random-Access in Chapel, and the hybrid model of MPI

and Pthread. Our experiments have shown that:

• Strict Sequential is the best model to determine algorithmic errors in

the applications, though its performance is the worst among the three

models.
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• Relaxed consistency gives the best performance among the three models.

However, it does not provide a guarantee that inconsistent executions will

be avoided.

• The performance of the compiler sequential model depends on accuracy

of the data analysis (consisting of reference analysis, synchronization

analysis, MHP analysis) performed by the compiler. A conservative anal-

ysis leads to the introduction of more number of fence operations, bring-

ing down the performance of the model to a strict sequential consistent

version. An accurate analysis leads to lesser number of fence operations.

This leads to performance equivalent to a relaxed consistency model. In

both cases, the compiler sequential version does not compromise on the

sequential consistency guarantee.

• The relative performance of the consistency models in Chapel, and in

MPI and Pthread are the same, showing that irrespective of the pro-

gramming model, the developer pays the same performance overhead

when moving among the different consistency models.

From our results, we believe that we have developed a generic memory model

based on the idea of multiresolution that can be applied to any parallel pro-

gramming model.
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Chapter 6

Future Work

We plan to extend our work in several directions.

• We want to build a compiler phase into the Chapel Compiler which

performs delay set analysis (currently we are manually doing delay set

analysis). As part of this work, we want to explore, how the compiler

can utilize the semantic information in a program to provide good per-

formance irrespective of the application.

• We want to provide feedback to the developer regarding the placement

of the fences, so that the developer can reduce the number of fences by

reducing the number of shared memory interactions.

• We want to allow interactions of different memory models i.e. the same

code block is executed with strict semantics by one thread of execution

while another thread executes it with relaxed semantics.
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Appendix 1

Chapel Statements in Strict Seq Block

In this appendix, we will be presenting the rules enforced on the state-

ments 1 present in a block of code declared with the strict seq construct.

1. A statement is guaranteed to be executed atomically and in program

order.

2. Item 1 applies to the following statements:

expression-statement

assignment-statement

swap-statement

return-statement

yield-statement

3. The statements below are parallel constructs which introduce parallelism

into the Chapel program.

forall-statement

cobegin-statement

1(statement refers to the statement as defined in Chapel grammar. Please refer to Chapel
Specification 0.795 for more details)
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coforall-statement

begin-statement

These parallel constructs create multiple parallel threads of execution.

Each statement present in the body will be executed in program order.

They will be executed atomically with respect to statements in all the

parallel threads of execution.

4. The statements below are sequential constructs which do not introduce

parallelism. Each statement present in the body of the below constructs

will be executed atomically and in program order.

conditional-statement

select-statement

while-do-statement

do-while-statement

for-statement

param-for-statement

5. The below statements do not contain any executable memory operations.

Hence, strictness does not apply for them.

empty-statement

all-declaration-statement

label-statement

break-statement

continue-statement
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