
Linearizing Irregular Memory Accesses for Improved
Correlated Prefetching

Akanksha Jain Calvin Lin
Department of Computer Science
The University of Texas at Austin

Austin, Texas 78712, USA
{akanksha, lin}@cs.utexas.edu

ABSTRACT
This paper introduces the Irregular Stream Buffer (ISB),
a prefetcher that targets irregular sequences of temporally
correlated memory references. The key idea is to use an
extra level of indirection to translate arbitrary pairs of cor-
related physical addresses into consecutive addresses in a
new structural address space, which is visible only to the
ISB. This structural address space allows the ISB to or-
ganize prefetching meta-data so that it is simultaneously
temporally and spatially ordered, which produces technical
benefits in terms of coverage, accuracy, and memory traffic
overhead.

We evaluate the ISB using the Marss full system simulator
and the irregular memory-intensive programs of SPEC CPU
2006 for both single-core and multi-core systems. For exam-
ple, on a single core, the ISB exhibits an average speedup
of 23.1% with 93.7% accuracy, compared to 9.9% speedup
and 64.2% accuracy for an idealized prefetcher that over-
approximates the STMS prefetcher, the previous best tem-
poral stream prefetcher; this ISB prefetcher uses 32 KB of
on-chip storage and sees 8.4% memory traffic overhead due
to meta-data accesses. We also show that a hybrid prefetcher
that combines a stride-prefetcher and an ISB with just 8 KB
of on-chip storage exhibits 40.8% speedup and 66.2% accu-
racy.

Categories and Subject Descriptors
B.3 [Memory Structures]: Miscellaneous

General Terms
Design, Performance, Experimentation

Keywords
Prefetching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO ’46, December 7-11, 2013, Davis, CA, USA
Copyright 2013 ACM 978-1-4503-2561-5/13/12 ...$15.00.

1. INTRODUCTION
Prefetching is an important technique for hiding the long

memory latencies of modern microprocessors. For regu-
lar memory access patterns, prefetching has been commer-
cially successful because stream and stride prefetchers are
effective, small, and simple. For irregular access patterns,
prefetching has proven to be more problematic. Numerous
solutions have been proposed [3-4, 8-15, 17, 19, 22-23, 25-
28, 32-34, 37-44], but there appears to be a basic design
tradeoff between storage and effectiveness, with large stor-
age required to achieve good coverage and accuracy [40].

For example, prefetchers based on address correlation, the
subject of this paper, identify sequences of correlated mem-
ory addresses—also known as temporal streams—by learning
the most likely successor for a given memory reference. Be-
cause this correlation information grows in proportion to
the application’s memory footprint, the fundamental chal-
lenge for these prefetchers is the management of megabytes
of off-chip correlation information [8, 41, 43]. Access to this
off-chip meta-data increases prediction latency and memory
traffic, which reduces the effectiveness of prefetching.

Recent solutions use the Global History Buffer (GHB) [28],
which organizes correlation information by storing recent
memory accesses in a time-ordered circular history buffer;
a spatially organized index table is used to find addresses
within the history buffer (see Figure 1). With the tempo-
rally ordered history buffer, temporal streams can be ef-
ficiently prefetched because each stream is stored contigu-
ously. For address correlation, GHB-based prefetchers can
amortize the cost of off-chip meta-data access by fetching
long temporal streams [43, 9]. Unfortunately, temporal or-
ganizations cannot effectively hide the latency of fetching
meta-data for short streams, and even the most optimized
implementations incur an average memory traffic overhead
of 35% on commercial and scientific workloads [42].

One way to reduce the cost of these off-chip accesses would
be to cache only the meta-data that correspond to the TLB-
resident pages of memory. The movement of this cached
meta-data to and from DRAM could then be synchronized
with expensive TLB evictions, largely hiding the latency of
these off-chip accesses.

Unfortunately, this proposed caching scheme is ill-suited
to temporally organized structures such as the GHB. For
example, assume in Figure 1 that physical addresses B, X,
and D reside on the same page; we see that these addresses
are scattered throughout the history buffer and are likely to
appear multiple times in the history buffer, so there is no
efficient way to evict these entries from the history buffer

A

Index Table

B

X

D

A

C

Y

Physical
Address

Pointer into
History
Buffer

B

C

D

E

G

F

X

A

B

C

D

E

F

G

.

.
 Y
Z

Temporal Stream 1 : A B C D E F G
Temporal Stream 2 : X Y Z

.

.

Figure 1: Address correlation using the GHB.

when their TLB entry is evicted, nor is it easy to reuse the
scattered evicted entries of the history buffer.

This paper introduces the Irregular Stream Buffer (ISB),
a new correlation-based prefetcher that employs just such a
caching scheme and that provides other significant benefits
with respect to coverage and accuracy. The main idea is to
introduce an extra level of indirection to create a new struc-
tural address space in which correlated physical addresses are
assigned consecutive structural addresses. The key point
is that in this structural address space, streams of corre-
lated memory addresses are both temporally ordered and
spatially ordered. For example, we see in Figure 2 that a se-
quential traversal of the structural address space visits the
elements of the irregular temporal stream—A, B, C, D and
E—in temporal order. Thus, the problem of prefetching ir-
regular streams is reduced to sequential prefetching in the
structural address space. The mapping to and from struc-
tural addresses is performed at a cache line granularity by
two spatially indexed on-chip address caches whose contents
can be easily synchronized with that of the TLB.

Global Stream : A X B C Y D E Z F G

Stream localized by PC 1 : A B C D E F G

Stream localized by PC 2 : X Y Z

G

A

E

F

C

Z

D

X

B

Y

A

B

C

D

E

F

G

X

Y

Z

Physical
Address Space

Structural Address
Space

Figure 2: Structural address space.

In addition to the reduced memory traffic provided by
our caching scheme, the ISB enjoys several other significant

benefits:

• Improved Prediction Capability: Unlike GHB-based so-
lutions (see Section 3), the ISB can use PC localiza-
tion, a technique that segregates the prefetcher input
into multiple streams based on the PC of the loading
instruction, which is known to improve coverage and
accuracy [28, 39, 38, 25]. In particular, the ISB can
combine PC localization and address correlation be-
cause any PC-localized temporal stream is stored con-
secutively in the on-chip address cache (see Figure 2),
i.e., the localization is performed before physical ad-
dresses are translated to structural addresses.

• Training on the Reference Stream: Because the vast
majority of its meta-data accesses are on-chip, the ISB
can train on the LLC (last level cache) access stream
instead of its miss stream, which significantly improves
the predictability of the reference stream. By contrast,
most previous prefetchers that use address correlation
train on the LLC miss stream to avoid the significant
off-chip traffic that would be generated by accessing
off-chip meta-data on every LLC access.1

• Support for Short Streams: The ISB’s caching scheme
greatly reduces memory traffic overhead for all streams,
not just for long streams.

This paper makes the following contributions:

1. We introduce the ISB, the first prefetcher to combine
the use of PC localization and address correlation.

2. We show—using the irregular, memory-intensive sub-
set of the SPEC 2006 benchmarks—that the ISB
significantly advances the state-of-the-art in tempo-
ral stream prefetching. The ISB obtains 23.1%
speedup and 93.7% accuracy, while an idealized STMS
prefetcher, which over-approximates the previous
state-of-the-art (STMS) [42], obtains 9.9% speedup
and 64.2% accuracy. We also show that the ISB is su-
perior to two other recent prefetchers, SMS [39], which
exploits spatial locality, and PC/DC [28, 13], which
uses delta correlation instead of address correlation.

3. We introduce a method of organizing data that syn-
chronizes the movement of prefetcher meta-data with
TLB misses to reduce memory traffic overhead. For
a single core with DDR2 memory, the ISB incurs an
average of 8.4% memory traffic overhead due to meta-
data access. As a point of comparison, Wenisch, et al.
report that the STMS prefetcher produces an average
memory traffic overhead of roughly 35% for a mix of
commercial and scientific workloads [42].

4. We show that the ISB performs well when combined
with a state-of-the-art stride prefetcher (AMPM) [20].
A hybrid that uses an 8 KB ISB achieves a 40.8%
speedup over a baseline with no prefetching.

This paper is organized as follows. Section 2 places our
work in the context of prior work. Section 3 motivates our

1The STeMS prefetcher can train on the access stream be-
cause it searches for coarse-grained temporal streams, rely-
ing on a complex spatial prefetcher to fill in the gaps [38].

solution by describing the technical issues with pure spatial
and purely temporal organizations of correlation informa-
tion. Section 4 then describes our solution, and Section 5
evaluates our solution, before we conclude.

2. RELATED WORK
We now place our work in the context of prior work, first

discussing techniques for improving spatial locality, and then
discussing the considerable prior work in prefetching.

Improving Spatial Locality.
Spatial locality can be improved by re-ordering the lay-

out of pointer-based data structures during memory allo-
cation [7] or garbage collection [18], but both techniques
involve expensive memory copying, and the former relies on
programmer hints. Carter, et al., re-order memory accesses
in a shadow address space [4] to improve locality and initiate
prefetching, but their technique is limited to statically allo-
cated data structures and requires both OS and programmer
intervention.

Stride Prefetching.
Stride prefetchers generally target regular memory access

patterns, building on Jouppi’s next-line prefetcher [36, 24]
by adding non-unit strides [29] and by predicting strides [1,
15]. Ishii, et al., introduce a clever data structure that com-
pactly captures information about multiple stride lengths [20].
Sair, et al., support irregular streams by introducing a stride
length predictor [34].

Hur and Lin enhance stream prefetchers by adding a small
histogram of the stream lengths of recently seen memory ac-
cesses [19]. These histograms allow stream buffers to accu-
rately prefetch tiny “streams” that might be as short as two
cache lines, thereby providing some coverage for irregular
memory accesses that stream buffers alone cannot prefetch.

Pointer-based Prefetching.
Pointer-based data structures are an important source

of irregular memory accesses, so many techniques focus on
prefetching pointers.

Compilers can insert prefetch instructions—known as jump
pointers—for all children of a visited node of a linked data
structure [26, 32]. The key issue with compiler-based solu-
tions is poor timeliness; to hide long memory latencies, the
software prefetches need to be inserted far from their use.

Hardware solutions, such as pointer caches [10] and hard-
ware jump pointer tables [33], can issue timely prefetches
but incur storage overheads of up to 1 MB; some also require
compiler support and modifications to the ISA. Content Di-
rected Prefetching (CDP) [11] is a stateless mechanism that
searches through cache lines for pointer addresses that are
then greedily prefetched. CDP is attractive in terms of stor-
age requirements, but it wastes memory bandwidth because
of its low accuracy.

Cooperative hardware-software approaches can combine
the accuracy of software prefetching and the timeliness of
hardware prefetching [33]. Guided Region Prefetching [40]
uses static analysis to annotate load instructions with hints
to the hardware prefetcher. Ebrahimi, et al. use compiler-
guided filtering mechanisms to inform a CDP prefetcher
about the pointers that are most likely to be fetched [14].

There are two key differences between the ISB and pointer-

based approaches: (1) The ISB does not give special treat-
ment to pointers, so it can exploit other sources of irregular
memory accesses; (2) pointer-based approaches can prefetch
compulsory misses, while the ISB cannot.

Prefetching Based on Spatial Locality.
Irregular memory accesses can also be prefetched by de-

tecting spatial locality [22, 25, 3, 5]. Variations of the Spatial
Locality Detection Table [22] track accesses to different re-
gions of memory so that spatially correlated data can be
prefetched together. These approaches typically need large
tables to detect locality, but Somogyi, et al. [39] show how
smaller tables can be used by correlating spatial locality with
the program counter in addition to parts of the data address.
As a result, Spatial Memory Streaming (SMS) can use ta-
bles as small as 64 KB, while achieving good performance
improvements for commercial workloads.

Prefetching Based on Temporal Locality.
Joseph and Grunwald introduce the notion of correlation-

based prefetching with their Markov Prefetcher [23], which
uses a table to record possible successors of a given mem-
ory address. The presence of address correlation in applica-
tions has been studied both quantitatively [6] and qualita-
tively [41] for scientific and commercial workloads. Studies
find that the length of correlated streams can vary from
two to several hundred [6, 44], which implies that large
amounts of storage are needed to prefetch these workloads
effectively. While some designs reduce this on-chip table
requirement [17], the table size still grows in proportion to
the application’s active memory footprint. Thus, a variety of
solutions store the Markov table off-chip and optimize the
memory bandwidth requirements and prefetch look-ahead
distance for off-chip table access [8, 37].

Nesbit and Smith introduce the GHB as a general struc-
ture for prefetching streams of temporally correlated mem-
ory requests [28]. However, when used to record address
correlation [42], the GHB is quite large, requiring about 4
MB of off chip storage for scientific workloads and about
48 MB for commercial server workloads. Thus, Wenisch, et
al.’s STMS prefetcher introduces latency and memory traffic
optimizations for reading and updating the off-chip history
buffer and index table [43]. These techniques reduce the
memory traffic from 3× [8, 37, 44] to 1.05-1.75× [43] for long
streams. Rather than use address correlation, other GHB-
based prefetchers use delta correlation [28, 27], whose space
requirements are dramatically smaller, but we show that for
irregular accesses, delta correlation leads to low coverage
and accuracy.

PC localization has been used to improve the accuracy
and coverage of correlation-based prefetchers [29, 25, 28, 39,
38], but until now, the combination of PC localization and
address correlation has been too expensive to be practically
considered.

Finally, Diaz et al. propose a method of chaining PC-
localized streams for better prefetch timeliness [12]. The
ISB is orthogonal to these ideas, so it is possible to use
stream chaining to link various PC-localized streams in an
ISB design, but we do not explore this option in this paper.

Spatial-Temporal Prefetching.
The best known irregular prefetcher, Somogyi, et al.’s

STeMS prefetcher [38], exploits temporal correlation at a

coarse granularity and spatial correlation at a finer granu-
larity, essentially learning temporal sequences of spatial re-
gions. The ISB could be employed in a similar fashion to
identify the coarse-grain temporal stream, but we do not
explore this idea in this paper.

3. THE PROBLEM
To motivate the benefits of the ISB’s structural address

space, this section explains the problems caused by purely
spatial and purely temporal organizations of correlation in-
formation.

Early solutions organize correlated address pairs spatially
in a Markov table, which is indexed by memory address [23].
Unfortunately, Markov tables require multiple table lookups
to prefetch temporal streams. To reduce the number of
table lookups, each table entry could store a fixed-length
stream [8], but because temporal stream lengths vary widely
from two to several hundred [6, 44], it is difficult to optimize
for any single stream length. Thus, fixed-length stream en-
tries lead to inefficient use of on-chip storage, with short
streams wasting space (see the entries for Tag X and Y in
Figure 3), and long streams storing data redundantly (see
the entries for Tags A, B, C in Figure 3).

Tag
 Temporal Stream

B
 C
 D
 E
 F
 G
 --

X
 Y
 Z
 --
 --
 --
 --

D
 E
 F
 G
 --
 --
 --

A
 B
 C
 D
 E
 F
 G

C
 D
 E
 F
 G
 --
 --

Y
 Z
 --
 --
 --
 --
 --

 Physical

 Address

Fixed length Temporal Stream

Temporal Stream 1 : A B C D E F G

Temporal Stream 2 : X Y Z

Figure 3: Markov Table with fixed length temporal
streams.

The GHB instead stores correlation information tempo-
rally, which supports efficient temporal stream prefetch-
ing. Unfortunately, this temporal organization makes it
prohibitively expensive for GHB-based solutions to combine
PC localization with address correlation, because linked list
traversals are needed to find past occurrences of the trigger-
ing memory request (see Figure 4). Alternatively, we could
imagine allocating a separate fixed-size GHB for each PC,
but this solution has issues similar to those of Markov ta-
bles: Short streams would waste space, while long streams
would require us to chain together multiple GHBs and to
follow multiple pointer dereferences to traverse the entire
chain. As a result, GHB-based designs forsake either PC lo-
calization [43] or address correlation [27, 28, 12], sacrificing
significant coverage for design simplicity.

The ISB’s structural address space allows the correlation
information to be organized both spatially and temporally
to provide the advantages of both approaches: (1) Tempo-
ral streams can be efficiently prefetched; (2) the ISB can
combine PC localization and address correlation; and (3)
the ISB can cache correlation information for just the TLB-
resident pages and synch the management of this correlation
information with TLB misses.

A

Index Table

PC 1

PC 2
PC

Pointer into
History Buffer

X

B

C

Y

E
D

Z

F

.

A

B

C

X

Y

D

G
.

F

G

Z

E

Global Stream : A X B C Y D E Z F G

Stream localized by PC 1 : A B C D E F G
Stream localized by PC 2 : X Y Z

Figure 4: PC-localized address correlation using the
GHB.

Core

L1

L2

Trigger Structural
Address

Trigger Physical
Address
 Physical to

Structural Address
Mapping Cache

TLB
Interface

Unit

Structural to

Physical Address
Mapping Cache

Prefetch Candidate

Training
Unit
TLB

Store mapping for
evicted pages

Stream
Predictor

Predicted
Structural Address

PC, Physical
Address

Inserted
Page Tag

Figure 5: Block diagram of the Irregular Stream
Buffer.

4. OUR SOLUTION
This section describes our solution by first summarizing

the overall ISB design and then providing technical details.
The ISB prediction mechanism mimics the simplicity of

stream buffers. Just as stream buffers predict regular mem-
ory access patterns, the ISB predicts sequences of mem-
ory addresses that are consecutive in the structural address
space. Thus, the ISB’s prediction step is much simpler than
that of other correlation-based prefetchers, which can in-
volve traversals through the GHB.

To enable these predictions, the ISB training mechanism
translates correlated physical memory addresses to consec-
utive structural addresses. The mapping from the physical
address space to the structural address space is cached on-
chip only for pages that are resident in the TLB, and the
prefetcher updates these caches during long latency TLB
misses to effectively hide the latency of accessing off-chip
meta-data.

4.1 ISB Components
The key components of the ISB are shown in Figure 5 and

are described below.

Tag
 V
 Structural

Address
 Counter

0xba1f00
 1
 0x1100
 01

0

0xca4b00
 1
 0x1101
 01

0

Tag
 V
 Physical Address

0x1100 –

0x110f
 1
 0xba1f00, 0xca4b00, …

0

0

0xca4b00

PC1

Training Unit

PS-Address Mapping Cache

SP-Address Mapping Cache

Step 1:

Find the last
address in the
Training Unit with
the same PC

Step 2:

Update structural
address in PS-AMC

Step 3:

Update physical
address in SP-AMC

0x1101 =>
0xca4b00

0xca4b00 =>
0x1101

Context
 Last Addr

PC1
 0xba1f00

Figure 6: ISB training mechanism.

Training Unit.
The training unit takes as input the load PC and the

load address, and it maintains the last observed address
in each PC-localized stream. It learns pairs of correlated
physical addresses and maps these to consecutive structural
addresses.

Address Mapping Caches (AMCs).
The ISB uses two on-chip caches to maintain the mapping

between physical and structural addresses. The Physical-
to-Structural AMC (PS-AMC) stores the mapping from the
physical address space to the structural address space; it is
indexed by physical addresses. The Structural-to-Physical
AMC (SP-AMC) stores the inverse mapping as the PS-AMC
and is indexed by structural addresses. While the SP-AMC
is not strictly necessary, it enables efficient temporal stream
prediction because each cache line in the SP-AMC can yield
in a single lookup 16 prefetch candidates from the current
temporal stream.

Stream Predictor.
The stream predictor manages streams in the structural

address space. It is analogous to stream buffers that are
used for prefetching regular memory accesses [24]. Each en-
try in the stream predictor stores the starting structural
address of the temporal stream, a counter to indicate the
length of the observed stream, and a counter to indicate the
current prefetch look-ahead distance. Like a stream buffer,
the stream predictor can be configured for various prefetch
degrees and look-ahead distances.

4.2 Prefetcher Operation
We now discuss in more detail each of the ISB’s three key

functions—training, prediction, and TLB eviction.

Training.
The training process assigns consecutive structural ad-

dresses to the correlated physical addresses that are ob-
served by the training unit. When a correlated pair (A,B)
is observed, the PS-AMC is queried to see if A and B have
previously been assigned structural addresses. If A and B
already have consecutive structural addresses, the ISB in-
crements the confidence counter for B’s entry in the PS-

Tag
 V
 Structural
Address
 Counter

0xba1f00
 1
 0x1100
 01

0

0xca4b00
 1
 0x1101
 01

Tag
 V
 Physical Address

0x1100 –

0x110f
 1
 0xba1f00, 0xca4b00, …

0

0

PS-Address Mapping Cache

SP-Address Mapping Cache

Step 3:

Convert the predicted
structural address to a
physical address

Step 1:

Find the structural
address for the
trigger in PS-AMC

Step 2:

Predict the
sequential
structural address

Trigger 0xba1f00

Stream Predictor

Trigger Structural
Address - 0x1100

Predicted Structural

Address - 0x1101

Prefetch 0xca4b00

Figure 7: ISB prediction mechanism.

AMC. If instead A and B have previously been assigned
non-consecutive structural addresses, then the confidence in
B’s mapping is decremented. When the confidence counter
hits 0, B is assigned the structural address following A’s
structural address. If there is no existing mapping for A in
the PS-AMC, the ISB generates a new structural address
for A and assigns B the subsequent structural address.

Structural addresses are allocated in fixed size chunks
of size c to facilitate temporal streams. To keep track of
unassigned structural addresses, the ISB maintains a 64-bit
counter and increments it by c after every new allocation.
Structural addresses are not de-allocated for future reuse,
because the 32-bit structural address space is large enough
to map 256 GB of physical address space. Fixed size allo-
cation allows every temporal stream to grow up to length c
in the structural address space. Temporal streams of length
greater than c must request a new allocation in the struc-
tural address space for every (c + 1)th element. Shorter
temporal streams, on the other hand, can lead to internal
fragmentation of the structural address space. Our exper-
iments show that c = 256 is a good choice that supports
efficient temporal stream prediction without suffering from
excessive internal fragmentation.

As an example of the training process, consider a local-
ized stream as shown in Figure 6, where the Training Unit’s
last observed address is 0xba1f00, whose structural address
is 0x1100. When the Training Unit receives the physical
address 0xca4b00 in the same localized stream, it performs
three steps. (1) It assigns 0xca4b00 the structural address
following 0xba1f00’s structural address, namely 0x1101. (2)
It updates the PS-AMC entry indexed by physical address
0xca4b00, and it updates the SP-AMC entry indexed by
structural address 0x1101. (3) It changes the last observed
address in the Training Unit to 0xca4b00.

Prediction.
One goal of the ISB design is to keep the prediction pro-

cess (Figure 7) as simple as possible. There are three steps.
(1) Each L2 cache access becomes a trigger address for the
prefetcher, causing the PS-AMC to retrieve the trigger ad-
dress’ structural address. In our above example, an access to
physical address 0xba1f00 is translated to structural address

0x1100 by the PS-AMC. (2) The Stream Predictor predicts
the next consecutive structural addresses to prefetch, which
for degree 1 prefetching is 0x1101. For degree k prefetching,
the prediction would include the next k structural addresses,
which in this example would be 0x1102, 0x1103, 0x1104 and
so forth. (3) The SP-AMC retrieves the physical addresses
for each of the predicted structural addresses to prefetch.
So, 0x1101 is mapped back to 0xca4b00, and a prefetch re-
quest is initiated for this physical address. This mechanism,
which consists of two cache lookups, can be used to predict
temporal streams efficiently since a single cache line in the
SP-AMC contains the translation for 16 consecutive struc-
tural addresses.

TLB evictions.
During a TLB eviction, the ISB writes to DRAM any

modified mappings for the evicted page, and it fetches from
DRAM the structural mapping for the incoming page. The
writeback mechanism invalidates the PS-AMC cache lines
corresponding to the evicted page, and it initiates a write
to memory if the dirty bit is set. Since the PS-AMC and
SP-AMC store redundant information, the contents of the
SP-AMC need not be written to memory on an eviction.
The fetch mechanism initiates a read request for the struc-
tural mapping of the newly inserted page and updates both
caches appropriately. Since a TLB miss is a long latency op-
eration involving multiple cache and DRAM accesses, these
main memory reads and writes are off the critical path and
small enough to not interfere with the core-initiated memory
requests. In particular, the ISB is able to overlap its off-chip
access with the latency of a TLB miss.

4.3 Details of the Address Mapping Caches
To optimize the use of on-chip storage, the ISB uses a com-

pressed representation of the physical/structural addresses
in its AMCs. Because the AMCs hold only TLB-resident
cache lines, the ISB can use the 7-bit index in the TLB to
replace the high order 42 bits of the physical address. The
SP-AMC can then store the 13-bit physical address formed
by concatenating the 7-bit physical page index and the 6-
bit offset in the physical page. Similarly, the PS-AMC can
store the 13-bit structural address formed by concatenating
the 7-bit structural page index and the 6-bit offset in the
structural page. The structural page indices are maintained
in a CAM which is updated on a TLB miss or on a new
allocation in the structural address space. This compressed
representation is used for all internal ISB operations, such
as training and prediction. The 13-bit physical address is
expanded to the original 64-bit address only when the ISB
schedules a prefetch request, and the 13-bit structural page
index needs to be expanded only when the off-chip structural
mapping is updated on a TLB eviction.

The PS-AMC and SP-AMC are organized as set-
associative caches with 32-byte cache lines. Each cache
line in the PS-AMC contains the structural mapping for 16
consecutive physical addresses, with each mapping using 2
bytes to store a 13-bit structural address, a 2-bit confidence
counter, and a valid bit. Similarly, each 32-byte cache line in
the SP-AMC contains the physical address maps for 16 con-
secutive structural addresses. If we were to fully provision
each cache to map all pages in a 128 entry data TLB, the
SP-AMC and PS-AMC would store 8K mapping entries, re-
quiring a total of 32 KB of storage. However, our evaluation

Core Out-of-order, 4 Int/2 Mem/4 FP Func Units,
128-entry ROB, 4-wide dispatch/commit,
80-entry LSQ, 256 physical registers

Front-End 4-wide Fetch, 32-entry Fetch Queue,
4K entry BTB, 1K entry RAS,
Hybrid Two-Level Branch Predictor,
128 KB 8-way L1 I-Cache

L1 64 KB 8-way, 2-cycle latency
L2 2 MB 8-way, 18-cycle latency, 64 MSHRs
DTLB 128 entries per core
DRAM 50 ns latency

Two-core Private L1 cache, 4 MB shared L2 cache
Four-core Private L1 cache, 8 MB shared L2 cache

Table 1: Baseline configuration.

shows that in a hybrid setting, provisioning for more than
2K entries has diminishing performance gains and that an
8 KB ISB provides an attractive trade-off between on-chip
storage and performance.

4.4 Off-chip Storage
To organize the ISB’s off-chip meta-data, we use the

Predictor Virtualization framework proposed by Burcea at
al [2]. In particular, we use a dedicated region of physical
memory to maintain the mapping from the physical to the
structural address space, which precludes the need for vir-
tual address translation or OS intervention for meta-data
accesses.

For our workloads, it suffices to reserve for the ISB 8 MB
of off-chip storage. By contrast, the GHB-based prefetchers
that we simulate require up to 128 MB of off-chip storage
for the same workloads. This discrepancy in off-chip storage
arises because the ISB’s meta-data grows with the applica-
tion’s memory footprint, whereas the GHB’s meta-data is
proportional to the number of memory requests made by
the application.

5. EVALUATION

5.1 Methodology
We evaluate the ISB using Marss, a cycle accurate full-

system x86 simulator [30], to model single-core, 2-core, and
4-core systems (see Table 1 for details). Our simulation in-
frastructure faithfully models cache queue contention, port
conflicts and memory traffic due to prefetch requests. Our
TLB simulation allows page entries to be cached in the last-
level cache and accurately accounts for the latency of TLB
misses. For single-core simulations, we disable timer inter-
rupts. For multi-core simulations, we account for the occa-
sional variation in IPC due to kernel interrupts by taking
the median of five runs.

Benchmarks.
Because we are interested in irregular memory accesses,

our evaluation uses the memory-intensive benchmarks from
SPECint2006, which generally use irregular pointer-based
data structures. We consider a benchmark to be memory-
intensive if it has a CPI > 2 and an L2 miss rate > 50%, ac-
cording to Jaleel’s careful characterization of SPEC2006 [21].
We also use two benchmarks from SPECfp2006, soplex and

sphinx3, which contain a mix of both regular and irregular
memory accesses. The benchmarks are compiled using gcc-
4.2 with the -O2 option. We compile the benchmarks dis-
abling SSE3/4 instructions because our simulator lacks SSE
support. All benchmarks are run using the reference input
set. We use the SimPoint sampling methodology, generat-
ing for each benchmark multiple SimPoints of 250 million in-
structions to accurately capture all phases of the benchmark.
The SimPoints are generated using the SimPoint Tool [31,
16]. We choose a SimPoint length of 250 million instruction
because it is large enough to capture long-range behavior,
including multiple L2 cache misses on a given address.

Multi-programmed Workloads.
We simulate multi-programmed workloads by choosing

different combinations of our existing benchmarks, simulat-
ing two benchmarks at a time on our 2-core configuration
and four benchmarks at a time on our 4-core configuration.
For each benchmark, we fast-forward to a single SimPoint
of 250 million instructions. We then simulate the simulta-
neous execution of the SimPoint regions for the particular
benchmark combinations.

Evaluated Prefetchers.
In addition to the ISB, we simulate four other prefetchers

that target irregular memory accesses.
First, we simulate Idealized STMS, an idealized version

of Wenisch, et al’s Sampled Temporal Memory Streaming
(STMS) prefetcher [42]). Rather than implement all of the
STMS optimizations, we simply simulate an idealized G/AC
prefetcher,2 which represents an upper bound on STMS’ per-
formance. In particular, the performance of STMS has been
shown to approach that of an idealized G/AC prefetcher for
long streams [42]. Idealized STMS uses a 64 MB GHB with
8M index table entries and optimistically assumes that its
accesses to the DRAM-resident GHB are free in terms of
access latency, DRAM traffic, and memory controller con-
tention. In terms of accuracy and coverage, Idealized STMS
primarily differs from STMS in two ways. First, Idealized
STMS performs well for short streams, while STMS does
not. Second, Idealized STMS trains on the L2 access stream
instead of the L2 miss stream.

Second, we simulate an idealized PC/AC prefetcher
that represents an upper bound for what any GHB-based
prefetcher could achieve, because it uses the combination
of PC localization and address correlation. This idealized
PC/AC prefetcher is completely unrealistic. In addition
to the optimistic assumptions that we make for Idealized
STMS, we give PC/AC—when possible—an infinite number
of linked list traversals per prediction, which is essential to
its speedup. For example, when limited to 10,000 linked list
traversals per prediction, coverage falls by 50%. However,
for mcf and libquantum, we limit the linked list traversals
per prediction to 10,000 to allow our simulations to finish
within 3 days.

Third, we simulate Nesbit and Smith’s PC/DC prefetcher,
which which learns the deltas, or differences, between con-
secutive memory addresses [28]. Delta correlation allows

2Using Nesbit and Smith’s terminology [28], in which the
name before the slash describes the reference scheme and
the name after the slash describes the type of correlation
that is used, a G/AC prefetcher trains on a Global reference
stream and uses Address Correlation.

PC/DC to store all meta-data on chip, so this prefetcher
can realistically train on the L2 access stream. We tune
PC/DC using all of the optimizations described by Dim-
itrov and Zhou [13], who submitted the best GHB-based
prefetcher in the 2009 Data Prefetching Competition. As
with Dimitrov and Zhou’s design, our PC/DC prefetcher
uses the GHB to exploit delta correlation in both the local
and global streams.

Fourth, we simulate the Spatial Memory Streaming (SMS)
prefetcher [39], the best known prefetcher that purely ex-
ploits spatial locality. The SMS prefetcher realistically
trains on the L2 access stream.

We also study the benefit of using irregular prefetchers in
conjunction with regular stride prefetchers. For this study,
we use Ishii et al.’s AMPM prefetcher [20], the winner of the
2009 Data Prefetching Competition. AMPM identifies hot
zones in memory and stores a bitmap to infer strided pat-
terns in the access stream. AMPM is extremely effective and
aggressive because it can detect regular memory accesses in-
dependent of the order in which they are observed. We give
the AMPM 4 KB of storage and tune it by adjusting its
threshold and associativity parameters to produce the best
coverage.

For the hybrid experiments, we use an 8 KB ISB, be-
cause a 32 KB ISB provides only a small speedup improve-
ment. For the non-hybrid experiments, we use a 32 KB
ISB, which contains a 16 KB direct-mapped PS-AMC with
32-byte cache lines, and which uses an 8-way set-associative
SP-AMC with 32-byte cache lines.

5.2 Single-Core Results
Figure 8 compares the speedup, accuracy, and coverage

of our five prefetchers on a single core. We see that the
two PC/AC-based prefetchers—ISB and idealized PC/AC—
achieve significantly better speedup and accuracy than the
others. In particular, the speedups over a baseline with no
prefetching are 26.9% for idealized PC/AC, 23.1% for ISB,
14.1% for PC/DC, 9.97% for Idealized STMS, and 6.9% for
SMS. Idealized PC/AC and ISB also see impressive accura-
cies of 88.0% and 93.7%, respectively, while the other irreg-
ular prefetchers observe less than 65% accuracy on average.
These results indicate that PC-localized address correlation
is superior to the other techniques—global address correla-
tion (STMS), delta correlation (PC/DC), and spatial foot-
prints (SMS)—for prefetching irregular accesses.

These graphs also show that a practically provisioned
ISB approaches the performance of an idealized PC/AC.
By contrast, STMS, the previous state-of-the-art in corre-
lation prefetching [42], approaches the performance of ide-
alized G/AC. Figure 8 shows two anomalies, namely, that
the ISB performs better than the idealized PC/AC on mcf
and libquantum. Idealized PC/AC performs poorly on these
two benchmarks because it is prohibitively expensive to com-
pletely idealize the PC/AC prefetcher for these two bench-
marks due to their large memory footprint, so for these two
benchmarks, we limited the number of linked list iterations
to 10,000 and used the largest possible GHB that allowed
the simulations to complete in 3 days.

If we make Idealized PC/AC a bit more realistic by let-
ting it train on the L2 miss stream instead of the L2 access
stream, its speedup falls to 10.4% and its accuracy falls to
86.3%. Similarly, if Idealized STMS trains on the L2 miss
stream, its speedup falls to 8.3% and its accuracy to 58.6%.

mcf soplex omnetpp astar libquantum xalan gcc sphinx3 GeoMean
0

20

40

60

80

100

S
p

ee
d

u
p

(%
)

0

20

40

60

80

100

S
p

ee
d

u
p

(%
)

SMS (32 KB)

STMS (idealized)

PC/DC (32 KB)

ISB (32 KB)

PC/AC (idealized)

mcf soplex omnetpp astar libquantum xalan gcc sphinx3 Mean
0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

mcf soplex omnetpp astar libquantum xalan gcc sphinx3 Mean
0

20

40

60

80

100

C
o
v
er

a
g
e(

%
)

0

20

40

60

80

100

C
o
v
er

a
g
e(

%
)

SMS (32 KB)

STMS (idealized)

PC/DC (32 KB)

ISB (32 KB)

PC/AC (idealized)

Figure 8: Comparison of irregular prefetchers on single core (degree 1)

Finally, we note that the ISB sees speedup of just 2.3%
on the remaining SPEC FP benchmarks, because the ISB
cannot predict compulsory misses, whereas many stride
prefetchers can. The ISB does not slow down any of the
benchmarks.

5.3 Memory Traffic Overhead
The ISB’s memory traffic overhead approaches that of

prefetchers, such as SMS and PC/DC. that store all of their
meta-data on chip. In particular, the ISB incurs an aver-
age of 14.7% memory traffic overhead, while Dimitrov and
Zhou’s PC/DC prefetcher [13] incurs 12.6% overhead and
SMS just 10.5% overhead. The highly accurate ISB incurs
just 6.3% overhead due to useless prefetches. The ISB ac-
cesses off-chip meta-data only during a TLB miss, reading at
most 256 bytes of mapping information per page. Assuming
a bus width of 64-bytes with DDR2, this information can
be fetched from DRAM in four requests. Since not all cache
lines in a page are necessarily mapped, the actual traffic per
page can vary from one to four requests. As seen in Table 2,

the ISB’s access to off-chip correlation data increases mem-
ory traffic by an average of 8.4%. With DDR3’s 128-byte
bus width, the traffic would be reduced to 4.2% because the
information for the entire page could be fetched in a single
DRAM request. By contrast, the STMS prefetcher incurs
about 35% overhead due to meta-data access [42].

5.4 Degree Evaluation
Figures 9 and 10 show how the speedup and accuracy of

four prefetchers—ISB, PC/DC SMS, and Idealized STMS—
vary as the prefetch degree is increased from 1 to 8, revealing
several trends:

• The ISB performs well as the degree increases: With
degree 8, its speedup rises from 23.1% to 38.6%, and
its accuracy decreases by just 3.8%.

• PC/DC has the most severe tradeoff between speedup
and accuracy: With degree 8, its speedup almost dou-
bles to 28.8%, but its accuracy falls down to 46.8%,
which is the worst among all prefetchers.

mcf soplex omnetpp astar libquantum xalan gcc sphinx3 Mean

Useless prefetches 2.8% 5.3% 9.5% 5% 0.05% 5.2% 16% 4.1% 6.3%
Meta-data traffic 5.7% 3.8% 5.7% 12% 1.6% 12.6% 11.3% 3.9% 8.4%

Table 2: Memory traffic overhead of the ISB with DDR2.

1 2 4 8
0

5

10

15

20

25

30

35

40

Sp
ee

du
p(

%
)

0

5

10

15

20

25

30

35

40

Sp
ee

du
p(

%
)

ISB

PC/DC

SMS

STMS (idealized)

Figure 9: Impact of prefetch degree on speedup.

1 2 4 8
0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

ISB

SMS

STMS (idealized)

PC/DC

Figure 10: Impact of prefetch degree on accuracy.

• By contrast, the SMS prefetcher has the best trade-
off between speedup and accuracy, as it improves in
both speedup and accuracy as the degree is increased,
indicating that prefetches from higher density spatial
regions are more accurate, but even for degree 8, the
ISB exhibits significantly better speedup and accuracy
than SMS.

• Finally, except at degree 1, Idealized STMS has the
worst performance of all of the prefetchers, and its
accuracy curve closely matches that of PC/DC.

5.5 Hybrid Design with AMPM
Vendors that implement an irregular prefetcher will un-

doubtedly also implement a regular prefetcher, so we now
consider hybrid designs that combine an irregular prefetcher
with an AMPM stride prefetcher. Here, we only consider the
three practical prefetchers, namely, ISB, PC/DC, and SMS.

When combined with a regular prefetcher, the ISB is much
less sensitive to the size of the AMC. As a result, in a hy-
brid setting with AMPM, an ISB with 8 KB of storage sees

mcf soplex omnetpp astar libquantum xalan gcc sphinx3 GeoMean

0

20

40

60

80

100

S
p

e
e
d

u
p

(%
)

0

20

40

60

80

100

S
p

e
e
d

u
p

(%
)

AMPM

Hybrid AMPM + SMS (8 KB)

Hybrid AMPM + PC/DC (8 KB)

Hybrid AMPM + ISB (8 KB)

103.8%

213.8%

200.1%

mcf soplex omnetpp astar libquantum xalan gcc sphinx3 Mean
0

20

40

60

80

100

A
c
c
u

r
a
c
y
(%

)

0

20

40

60

80

100

A
c
c
u

r
a
c
y
(%

)

AMPM

Hybrid AMPM + SMS (8 KB)

Hybrid AMPM + PC/DC (8 KB)

Hybrid AMPM + ISB (8 KB)

mcf soplex omnetpp astar libquantum xalan gcc sphinx3 Mean
0

20

40

60

80

100

C
o
v
e
r
a
g
e
(%

)

0

20

40

60

80

100

C
o
v
e
r
a
g
e
(%

)

AMPM

Hybrid AMPM + SMS (8 KB)

Hybrid AMPM + PC/DC (8 KB)

Hybrid AMPM + ISB (8 KB)

Figure 11: Comparison of hybrid prefetchers

speedup of 40.8%, whereas an ISB with 32 KB of storage
sees an additional speedup of only 6.3%. This behavior can
be understood by observing that in our workloads, phases of
regular and irregular accesses see little overlap and that the
ISB requires large on-chip memory to prefetch long regular
streams. In a hybrid setting, 8 KB is sufficient for the ISB
to prefetch the irregular phases, while AMPM can prefetch
the regular phases.

Figure 11 compares AMPM against hybrid prefetchers
that combine AMPM with an 8 KB ISB, an 8K SMS, and
an 8K PC/DC, respectively. The AMPM + SMS hybrid
achieves a 24.3% speedup over a baseline with no prefetch-
ing, the AMPM + PC/DC achieves a 33.5% speedup, while
AMPM alone achieves 15.4% speedup. The AMPM + ISB
hybrid achieves a speedup of 40.8% over a baseline with no
prefetching, which is an improvement of 25.4% over AMPM.
The coverage graph shows that SMS achieves just 4.5%
coverage and PC/DC only 9.4% additional coverage over
AMPM, while ISB achieves an extra 21.6% coverage over
AMPM. A closer inspection of Figure 11 indicates several
other key points.

1. For libquantum, the AMPM + PC/DC hybrid outper-
forms the AMPM + ISB hybrid because the ISB is not
capable of prefetching cold misses, while PC/DC is.

2. The three benchmarks that contain both regular and
irregular accesses—soplex, sphinx, and gcc—see good
speedups over AMPM with all hybrids.

3. For four of the benchmarks—mcf, omnetpp, astar, and
xalan—only the AMPM + ISB hybrid achieves a sig-
nificant improvement over AMPM. These benchmarks
are dominated by pointer-based accesses to a graph,
a graph, a tree, and a tree, respectively. This indi-
cates that delta correlation and spatial footprints are
not very effective for irregular accesses. Moreover,
poor coverage combined with poor accuracy causes the
AMPM + SMS hybrid and the AMPM + PC/DC hy-
brid to slow down omnetpp and astar.

4. The AMPM + ISB hybrid has the highest accuracy
among the hybrids at 66.2%. This accuracy is sig-
nificantly lower than the ISB’s accuracy of 93.7% be-
cause of AMPM’s poor accuracy of 56.6%. For chips
with a larger number of cores, a less aggressive stride
prefetcher than AMPM would probably be wise.

5.6 Multi-Core Results
Figure 12 compares the ISB with SMS, PC/DC, and Ideal-

ized STMS on a multi-core system using multi-programmed
workloads as described in Section 5.1. We see that the ISB
outperforms the three prefetchers on both the 2-core and
4-core machines. On the 2-core machine, the ISB sees a
speedup of 23.69%, whereas SMS, PC/DC and Idealized
STMS see average speedups of 11.9%, 13.9% and 15.7%,
respectively. The average speedup for all prefetchers is
lower on the 4-core machine, with the ISB observing a
10.3% speedup, and with SMS, PC/DC, and Idealized STMS
achieving 3.7%, 5.8% and 6.5% speedup, respectively. The
ISB’s accuracy is consistently above 95% for both configu-
rations, which makes it attractive in a multi-core setting,
since useless prefetches increase both memory traffic and

cache pollution. As the number of cores increase, prefetch-
ing accuracy can have a significant bearing on system per-
formance. For example, Ebrahimi, et al. show that in a
multi-core environment with 4 cores, any prefetcher whose
accuracy is below 40% needs to be throttled down to pre-
serve overall system performance [14].

Figure 13 evaluates hybrid prefetchers by combining
AMPM with the ISB, SMS and PC/DC. In a hybrid set-
ting, only the ISB is able to significantly outperform AMPM
on both machines, which supports our claim that the ISB
is more effective at irregular prefetching than PC/DC and
SMS. The AMPM + ISB hybrid observes speedups of 28.6%
and 13% on 2-core and 4-core machines, respectively, which
is much less than the 40.8% speedup that it achieved on
the single-core machine. This decline can be attributed to
AMPM, which generates considerable useless traffic due to
its poor accuracy.

5.7 Power Evaluation
While training on the L2 reference stream provides sig-

nificant coverage and accuracy benefits, its increased activ-
ity increases the prefetcher’s power consumption. We thus
evaluate the power and energy consumption of the ISB by
comparing them against that of the GHB-based PC/DC
prefetcher that trains on the L2 miss stream. This discussion
will not consider the power impact of useless prefetches on
cache and memory subsystem behavior. We use CACTI [35]
to estimate the energy consumed by the prefetching hard-
ware per read/write operation, and we then multiply that
cost by the activity counters of the prefetching hardware.
We find that the ISB consumes 0.77 times the energy of
PC/DC but 1.07 times the power. The increase in average
power consumption can be attributed to the faster execu-
tion time with the ISB. The ISB generates more activity by
training on the L2 access stream, but uses a simple train-
ing and prediction logic. By contrast, PC/DC consumes
far more energy per input due to its linked list traversals
through the GHB, so for the same energy budget, the ISB is
able to use localization and exploit the information available
in the entire L2 access stream with minimal power overhead.

6. CONCLUSIONS
In this paper, we have introduced the Irregular Stream

Buffer, which represents a significant milestone in the long
quest to build prefetchers for irregular memory accesses:
The ISB is the first practical prefetcher that combines ad-
dress correlation with PC localization. While the previous
state-of-the-art in temporal stream prefetching, STMS, ap-
proaches the behavior of an idealized G/AC prefetcher for
long streams, the ISB approaches the superior coverage and
accuracy of an idealized PC/AC prefetcher for all streams.

The key idea behind the ISB is an extra level of indirection
that translates correlated physical addresses to consecutive
addresses in a new structural address space. Thus, in the
structural address space, the elements of a temporal stream
appear in sequential order, which greatly simplifies predic-
tion.

The structural address space provides three important
benefits.

1. It allows the ISB to manage meta-data efficiently by
caching TLB-resident meta-data on chip and synchro-
nizing the contents of this cache with TLB misses.

mcf

sphinx3

gcc

soplex

astar

sphinx3

astar

soplex

sphinx

gromacs

mcf

xalan

omnetpp

xalan

mcf

omnetpp

omnetpp

gcc

mcf

omnetpp

gcc

soplex

astar

mcf

gcc

gromacs

xalan

mcf

omnetpp

gcc

xalan

soplex

sphinx

omnetpp

2-Core

GeoMean

4-Core

GeoMean
-20

0

20

40

60

80

100

S
p

ee
d

u
p

(%
)

-20

0

20

40

60

80

100

S
p

ee
d

u
p

(%
)

SMS (32 KB)

STMS (idealized)

PC/DC (32 KB)

ISB (32 KB)

2-Core 4-Core GeoMeans

mcf

sphinx3

gcc

soplex

astar

sphinx3

astar

soplex

sphinx

gromacs

mcf

xalan

omnetpp

xalan

mcf

omnetpp

omnetpp

gcc

mcf

omnetpp

gcc

soplex

astar

mcf

gcc

gromacs

xalan

mcf

omnetpp

gcc

xalan

soplex

sphinx

omnetpp

2-Core

GeoMean

4-Core

GeoMean
-20

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

-20

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

2-Core 4-Core Means

Figure 12: Comparison of irregular prefetchers on 2-core (left) and 4-core (right) systems.

The result is just 8.4% memory traffic overhead for
accessing off-chip meta-data, significantly lower than
the overheads reported for other address correlation-
based prefetchers, such as STMS [42], which itself rep-
resented an order of magnitude improvement over its
predecessors [8].

2. It improves coverage and accuracy by supporting the
combination of PC localization and address correla-
tion. For example, on a single core, an idealized
PC/AC prefetcher obtains 26.9% average speedup and
88% accuracy, compared with 14.1% speedup and 65%
accuracy for PC/DC; an idealized G/AC prefetcher
(ie, Idealized STMS) sees 9.97% speedup and 65% ac-
curacy.

3. Our caching scheme improves coverage and accuracy
by allowing the ISB to train on the LLC reference
stream instead of the LLC miss stream, which in our
experiments more than doubles the observed speedup.
For example, the idealized PC/AC prefetcher sees
26.9% speedup when trained the L2 access stream, as
opposed to just 10.4% when trained on the L2 miss
stream.

Looking to the future, we plan to evaluate the ISB on
commercial workloads. We expect that the ISB will per-
form well on these workloads, because unlike the GHB, the

ISB’s on-chip storage and memory traffic overhead depend
only on the size of the TLB, not the application’s memory
footprint. To extend the ISB’s benefits to TLBs with large
pages, including superpages, we plan to explore a two-level
ISB design that can synchronize with pages of any size with-
out undermining the ISB’s small on-chip budget. We also
plan to evaluate the use of ISB as the temporal component
of spatial-temporal prefetchers similar to Somogyi, et al.’s
STeMS prefetcher [38]. More broadly, we believe that the
use of a linearized structural address space can be used to
drive other micro-architectural optimizations for irregular
programs.

Acknowledgments.
We thank Curtis Dunham, Ibrahim Hur, Don Fussell, and

Daniel Jimenez for their valuable comments on early drafts
of this paper. This work was funded in part by NSF grant
CNS-1138506.

7. REFERENCES
[1] J.-L. Baer and T.-F. Chen. Effective hardware-based

data prefetching for high-performance processors.
IEEE Transactions on Computers, 44(5):609–623,
May 1995.

[2] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi.
Predictor virtualization. In Proceedings of the 13th

mcf

sphinx3

gcc

soplex

astar

sphinx3

astar

soplex

sphinx

gromacs

mcf

xalan

omnetpp

xalan

mcf

omnetpp

omnetpp

gcc

mcf

omnetpp

gcc

soplex

astar

mcf

gcc

gromacs

xalan

mcf

omnetpp

gcc

xalan

soplex

sphinx

omnetpp

2-Core

GeoMean

4-Core

GeoMean
-20

0

20

40

60

80

100

S
p

ee
d

u
p

(%
)

-20

0

20

40

60

80

100

S
p

ee
d

u
p

(%
)

AMPM

Hybrid AMPM + SMS (8 KB)

AMPM + PC/DC (8 KB)

AMPM + ISB (8KB)

2-Core 4-Core GeoMeans

mcf

sphinx3

gcc

soplex

astar

sphinx3

astar

soplex

sphinx

gromacs

mcf

xalan

omnetpp

xalan

mcf

omnetpp

omnetpp

gcc

mcf

omnetpp

gcc

soplex

astar

mcf

gcc

gromacs

xalan

mcf

omnetpp

gcc

xalan

soplex

sphinx

omnetpp

2-Core

Mean

4-Core

Mean
-20

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

-20

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

2-Core 4-Core Means

Figure 13: Comparison of hybrid prefetchers on 2-core (left) and 4-core (right) systems.

international conference on Architectural support for
programming languages and operating systems,
ASPLOS XIII, pages 157–167. ACM, 2008.

[3] D. Burger, T. R. Puzak, W.-F. Lin, and S. K.
Reinhardt. Filtering superfluous prefetches using
density vectors. In ICCD ’01: Proceedings of the
International Conference on Computer Design: VLSI
in Computers & Processors, pages 124–133, 2001.

[4] J. B. Carter, W. C. Hsieh, L. Stoller, M. R. Swanson,
L. Zhang, E. Brunvand, A. Davis, C.-C. Kuo,
R. Kuramkote, M. A. Parker, L. Schaelicke, and
T. Tateyama. Impulse: Building a smarter memory
controller. In HPCA, pages 70–79, 1999.

[5] C. F. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos.
Accurate and complexity-effective spatial pattern
prediction. In Proceedings of the 10th International
Symposium on High Performance Computer
Architecture, HPCA ’04, pages 276–288, 2004.

[6] T. M. Chilimbi. Efficient representations and
abstractions for quantifying and exploiting data
reference locality. In PLDI, pages 191–202, 2001.

[7] T. M. Chilimbi, M. D. Hill, and J. R. Larus.
Cache-conscious structure layout. In Proceedings of the
ACM SIGPLAN 1999 conference on Programming
Language Design and Implementation, PLDI ’99,
pages 1–12, 1999.

[8] Y. Chou. Low-cost epoch-based correlation prefetching
for commercial applications. In MICRO, pages
301–313, 2007.

[9] I.-H. Chung, C. Kim, H.-F. Wen, and G. Cong.
Application data prefetching on the ibm blue gene/q
supercomputer. In Proceedings of the International
Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, 2012.

[10] J. Collins, S. Sair, B. Calder, and D. M. Tullsen.
Pointer cache assisted prefetching. In Proceedings of
the 35th Annual ACM/IEEE International Symposium
on Microarchitecture, MICRO 35, pages 62–73, 2002.

[11] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless,
content-directed data prefetching mechanism.
SIGARCH Computer Architecture News,
30(5):279–290, October 2002.

[12] P. Diaz and M. Cintra. Stream chaining: exploiting
multiple levels of correlation in data prefetching. In
ISCA, pages 81–92, 2009.

[13] M. Dimitrov and H. Zhou. Combining local and global
history for high performance data prefetching. In
Journal of Instruction-Level Parallelism Data
Prefetching Championship, volume 13, 2011.

[14] E. Ebrahimi, O. Mutlu, and Y. N. Patt. Techniques
for bandwidth-efficient prefetching of linked data
structures in hybrid prefetching systems. In HPCA,
pages 7–17, 2009.

[15] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic.
Memory-system design considerations for
dynamically-scheduled processors. In ISCA ’97:
Proceedings of the 24th Annual International
Symposium on Computer Architecture, pages 133–143,

1997.

[16] G. Hamerly, E. Perelman, J. Lau, and B. Calder.
Simpoint 3.0: Faster and more flexible program phase
analysis. Journal of Instruction Level Parallelism,
7(4):1–28, 2005.

[17] Z. Hu, M. Martonosi, and S. Kaxiras. TCP: tag
correlating prefetchers. In HPCA, pages 317–326,
2003.

[18] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B.
Moss, Z. Wang, and P. Cheng. The garbage collection
advantage: improving program locality. In Proceedings
of the 19th annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA ’04, pages 69–80, 2004.

[19] I. Hur and C. Lin. Memory prefetching using adaptive
stream detection. In Proceedings of the 39th
International Symposium on Microarchitecture, pages
397–408, 2006.

[20] Y. Ishii, M. Inaba, and K. Hiraki. Access map pattern
matching for high performance data cache prefetch. In
Journal of Instruction-Level Parallelism, volume 13,
pages 1–24, 2011.

[21] A. Jaleel. Memory characterization of workloads using
instrumentation-driven simulation – a pin-based
memory characterization of the SPEC CPU2000 and
SPEC CPU2006 benchmark suites. Technical report,
VSSAD Technical Report 2007, 2007.

[22] T. L. Johnson, M. C. Merten, and W.-M. W. Hwu.
Run-time spatial locality detection and optimization.
In Proceedings of the 30th Annual ACM/IEEE
International Symposium on Microarchitecture, pages
57–64, 1997.

[23] D. Joseph and D. Grunwald. Prefetching using markov
predictors. In Proceedings of the 24th Annual
International Symposium on Computer Architecture,
pages 252–263, 1997.

[24] N. P. Jouppi. Improving direct-mapped cache
performance by the addition of a small
fully-associative cache and prefetch buffers. SIGARCH
Computer Architecture News, 18(3a):364–373, May
1990.

[25] S. Kumar and C. Wilkerson. Exploiting spatial
locality in data caches using spatial footprints.
SIGARCH Computer Architecture News,
26(3):357–368, April 1998.

[26] C.-K. Luk and T. C. Mowry. Compiler-based
prefetching for recursive data structures. SIGOPS
Operating Systems Review, 30(5):222–233, September
1996.

[27] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith.
Ac/dc: An adaptive data cache prefetcher. In IEEE
PACT, pages 135–145, 2004.

[28] K. J. Nesbit and J. E. Smith. Data cache prefetching
using a global history buffer. IEEE Micro,
25(1):90–97, 2005.

[29] S. Palacharla and R. E. Kessler. Evaluating stream
buffers as a secondary cache replacement. In
Proceedings of the International Symposium on
Computer Architecture, pages 24–33, April 1994.

[30] A. Patel, F. Afram, S. Chen, and K. Ghose.
MARSSx86: A Full System Simulator for x86 CPUs.
In Design Automation Conference 2011 (DAC’11),

2011.

[31] E. Perelman, G. Hamerly, M. Van Biesbrouck,
T. Sherwood, and B. Calder. Using simpoint for
accurate and efficient simulation. In Proceedings of the
ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems,
pages 318–319, 2003.

[32] A. Roth, A. Moshovos, and G. S. Sohi. Dependence
based prefetching for linked data structures. In
Proceedings of the eighth international conference on
Architectural support for programming languages and
operating systems, ASPLOS-VIII, pages 115–126,
1998.

[33] A. Roth and G. S. Sohi. Effective jump-pointer
prefetching for linked data structures. In Proceedings
of the 26th Annual International Symposium on
Computer Architecture, ISCA ’99, pages 111–121,
1999.

[34] S. Sair, T. Sherwood, and B. Calder. A decoupled
predictor-directed stream prefetching architecture.
IEEE Transactions on Computers, 52(3):260–276,
March 2003.

[35] P. Shivakumar and N. Jouppi. Cacti 3.0: An
integrated cache timing, power, and area model.
Technical report, Technical Report 2001/2, Compaq
Computer Corporation, 2001.

[36] A. Smith. Sequential program prefetching in memory
hierarchies. IEEE Transactions on Computers,
11(12):7–12, December 1978.

[37] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level
memory thread for correlation prefetching. In
Proceedings of the 29th Annual International
Symposium on Computer Architecture, pages 171–182,
2002.

[38] S. Somogyi, T. F. Wenisch, A. Ailamaki, and
B. Falsafi. Spatio-temporal memory streaming. In
ISCA, pages 69–80, 2009.

[39] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi,
and A. Moshovos. Spatial memory streaming. In ISCA
’06: Proceedings of the 33rd Annual International
Symposium on Computer Architecture, pages 252–263,
2006.

[40] Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt,
and C. C. Weems. Guided region prefetching: a
cooperative hardware/software approach. SIGARCH
Computer Architecture News, 31(2):388–398, May
2003.

[41] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi,
and A. Moshovos. Temporal streams in commercial
server applications. In IISWC, pages 99–108, 2008.

[42] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi,
and A. Moshovos. Practical off-chip meta-data for
temporal memory streaming. In HPCA, pages 79–90,
2009.

[43] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi,
and A. Moshovos. Making address-correlated
prefetching practical. IEEE Micro, 30(1):50–59, 2010.

[44] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim,
A. Ailamaki, and B. Falsafi. Temporal streaming of
shared memory. SIGARCH Computer Architecture
News, 33(2):222–233, May 2005.

