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Abstract
This paper presents a new communication cost model

that incorporates cache effects by including a term that is
a function of the number of uniquememory lines touched
(MLT ). This term improves accuracy because it is sensi-
tive to data layout and the order in which data is touched.

We use experiments on three parallel computers—the
Cray T3E, the IBM SP-2, and the Sun Enterprise 5000—
to show that our model is significantly more accurate than
previous models. We also show that our approach can be
used to guide program development, as our model can pre-
dict the relative performance of two parallel programs, ac-
curately identifying their crossover point.

1 Introduction
Parallel performance modeling and prediction have

many uses in algorithm development, compiler optimiza-
tion, and performance tuning. Unfortunately, such predic-
tions are complicated by the existence of caches, which
are notoriously difficult to model because they have com-
plex behavior that depend on many variables. In addition
to hardware properties such as line size, cache size, set
associativity, and cache miss times, program characteris-
tics such as the relative alignment of data and the order
in which data is touched affect the number of cache misses
and, ultimately, the application’s performance. While many
researchers have attempted to model particular aspects of
cache behavior for specific purposes—for example, to an-
alyze conflict misses of blocked algorithms [1]—no one
has successfully incorporated cache effects into a general
model of communication performance.

This paper presents a simple method of modeling the
cache effects of interprocessor communication in parallel
programs. The key idea is to capture cache effects by un-
derstanding how data is laid out in memory and how it is
accessed. In particular, we estimate the number of unique
memory lines accessed when marshalling data. Therefore,
in contrast to previous models, which typically include a
term for message startup cost,�, and a term for per-byte
transmission cost,�, our model includes a third term that
is proportional to the number of memory lines accessed,
where amemory lineis defined to be a cache-line-sized
block of memory. Other models attempt to include mar-
shalling costs [2, 3], but our model is unique in its ability
to capture the significant cache effects of marshalling costs.�This work was supported in part by an NSF Research Infrastructure
Award CDA-9624082 and ONR grant N00014-99-1-0402.

The first step towards building our model is to derive
a closed form formula forMLT , the number of memory
lines accessed when marshalling a message. We assume
that this message corresponds to a rectangular portion of
an array. OnceMLT is known, our model can be stated
as� + �n + MLT . We can imagine that the third term,
which captures cache effects, is a more involved function ofMLT . We explore this possibility and show that a linear
term is sufficient. To complete our model, we use a train-
ing set to measure actual costs for various message sizes
and layouts. From these measured values we use curve fit-
ting techniques to determine coefficients for�, �, and.
Thus calibrated, our model can be used to predict commu-
nication costs by providing specific values ofn andMLT .

This paper makes the following contributions: (1) We
introduce a new communication model that includes cache
effects; (2) we present equations to computeMLT for rect-
angular blocks of data; and (3) we demonstrate that the ad-
dition of theMLT feature leads to a significantly more
accurate model.

We demonstrate the superiority of our model by first ap-
plying it to point-to-point communication operations, since
these are the basis upon which all other communication
models can be built. To show that our approach works
for different machines, we apply it to three very different
parallel computers: the Cray T3E, the IBM SP-2 and the
Sun Enterprise 5000. To show that our approach works for
different languages, we apply it to benchmarks written in
MPI and in the ZPL parallel programming language [4, 5].
Finally, to show that our model can be used to guide pro-
gram design, we show that it can accurately predict the rel-
ative performance of two ZPL programs that solve the same
problem. In particular, we show that our model accurately
predicts the crossover point between these two programs.

2 Related Work
Most models of communication performance do not con-

sider cache effects. For example, Ivory [3] creates a model
that considers the effects of data copying, but ignores the
cache, so the prediction results are inaccurate for non-
contiguous data accesses. Fahringer has done extensive
work [6, 7], which includes a static model of communi-
cation costs for HPF [7], but his method does not consider
cache miss effects, either.

Others have modeled cache behavior, but they have not
related their models to runtime performance. For example,
Temam et al. [8] develop an analytical model that focuses



primarily on conflict misses of direct mapped caches, and
Ferrante et al. [9] derive an upper bound for the number of
unique memory lines accessed in a loop.

Ghosh et al. [10, 11] estimate cache misses in loop-
oriented scientific codes for uniprocessors by extending the
notion of reuse analysis to summarize the memory behav-
ior of loops. This work is developed for virtually addressed
one level caches, which is no longer a realistic configura-
tion. In addition, speed is a drawback of this approach, as
it is reported to be “potentially faster” than simulation.

Amato et al [12] use a training set approach that is sim-
ilar to ours, but their method of modeling cache behavior
is significantly different. They assume different costs for
read and write operations, which they use to generate up-
per and lower bounds, respectively, for their cost function.
This method produces very large performance bounds, and
it is insensitive to differences in data layout.

3 Our Solution
Analytic modeling of communication performance is al-

most impossible because such performance is often non-
linear due to the effects of caches and other prefetching
devices. For example, the Cray T3E’s stream buffers can
make it faster to send larger amounts of data than smaller
amounts of data. We thus use a “benchmarking model” [6]
that first identifies a number of significant features and then
runs a training set on the target machine. By fitting curves
to the measured data, we can determine machine-specific
coefficients to our model. An advantage of this approach is
that it captures the actual behavior of the system, including
all the complexities of the hardware.

The key issue is the determination of the model features.
We use three features: the number of messages sent, the
message size, andMLT . In particular, we model execution
time,t, as follows:t = �+ �n+ f(MLT ) (1)

We conjecture thatf(MLT ) represents cache miss behav-
ior as a simple function of the number of lines touched [9],
most likely of the formMLT , but we explore other pos-
sibilities as well (see Section 4).

To understand why theMLT term is important, consider
the transmission of twon-byte messages, one contiguous in
memory (such as a row of a matrix) and the other not (such
as a column of a matrix). The conventional model (�+�n)
does not distinguish between these two messages, yet the
row-transfer only brings useful data into the cache while
the column-transfer only uses one word of useful data per
cache line, assuming that the width of the matrix is larger
than one cache line. For example, our measurements on the
IBM SP-2 show that for a 4000� 4000 matrix of integers,
column tranfers incur 16 times more cache misses than row
transfers, leading to a factor of 8 slower performance [13].
Our solution is to computeMLT , the number of distinct
cache lines to which the message would be mapped, as this
approximates the number of cache misses.

Our approach should capture the effects of both com-
pulsory misses and capacity misses, since both are pro-
portional to the number of unique memory lines touched.
However, our model ignores other features, such as con-
flict misses, that might improve the accuracy of our model
at the expense of increased model complexity. We choose
to focus on compulsory and capacity misses to see if a sim-
ple model will suffice, and because it can be difficult to
estimate the number of conflict misses.

3.1 Calculating the Model Parameters
Our model makes the following assumptions.

The processor mesh is assumed to bePr � Pc, wherePr � 1 andPc � 1.p: total number of processors (p = Pr � Pc)br: size of the subblocks in bytes in the row dimensionbc: size of the subblocks in bytes in the column dimen-
sionl: cache line size

We assume that each communication operation is per-
formed for a matrix of sizeLR � LC bytes, whereLR is
the number of rows andLC the number of columns.

3.1.1 Number of Bytes Sent

The number of bytes (n) to be transmitted from one pro-
cessor to another is given by two formulae, depending on
whether rows are transferred or columns are transferred.
We give formulas for the transfer ofd rows. A similar for-
mula for column transfers can be obtained by replacingLC
with LR, Pc with Pr, andbc with br.

Each processor transmitsd rows, and the maximum row
length isdLC=Pce, so the maximum number of bytes sent
by one processor is n = �LCPc �d (2)

3.1.2 Number of Unique Memory Lines Touched

This section provides formulae to computeMLT for ac-
cessingd rows ord columns of an array. We assume that all
data blocks have the same size, and that for column trans-
fers,bc > 2l.

For row transfersMLT is trivial to calculate for one
block. We simply divide the number of bytes transferred
by the cache line size,l. However, since there is no way to
know if the data to transfer starts on a cache line boundary,
we give lower and upper bounds,LBR andUBR.LBR = �bcdl �

(3)UBR = �bcdl �+ 1 (4)

We can then useTR = (LBR + UBR)=2 to approximateMLT for row transfers.



CalculatingMLT for column transfers is more compli-
cated. The upper and lower bounds,LBC andUBC , forMLT are given by the following theorem, which we prove
elsewhere [13].

Theorem 1 For a rectangular array withbr rows andbc
columns, which is stored in row-major order in memory,
the lower and upper bounds,LBC andUBC , for the num-
ber of distinct lines accessed,MLT , when transferringd
columns of the array areLBC = �br gcd(bc; l)l �� lgcd(bc; l) + � dgcd(bc; l)�� 1�

(5)UBC = � br gcd(bc; l)l �� lgcd(bc; l) + � dgcd(bc; l)��
(6)

where l is the number of bytes in a cache line, andgcd(bc; l) is the greatest common divisor ofbc andl.
4 Background and Methodology

This section describes the architectures used in our ex-
periments, and then explains how we develop linear regres-
sion models for specific computers. Although the discus-
sion here focuses on the modeling of point-to-point com-
munication costs, the same principles apply to other com-
munication operations.

4.1 Architectures
Our experiments use three parallel machines, the IBM

SP-2, the Cray T3E, and the SUN E5000. The IBM SP-
2 consists of 16 RS-6000 nodes each running at 67MHz.
Each node has two levels of caches, and the communication
channel has a peak rate of 40 MB/second. The Cray T3E
employs 68 nodes which are embedded in a 3D toroidal in-
terconnect. Each node has 8KB data and 8KB instruction
caches, and a 96KB on chip L2 cache. The communica-
tion channel has a peak bandwidth of 300 MB/second. The
Sun E5000 is an 8 processor bus-based machine with su-
perscalar processors, 16KB data caches, 16KB instruction
caches, and a L2 cache.

4.2 Regression Models
Linear regression can be used to develop performance

models by setting up a system of equations where the
known values are measured communication times and cal-
culated values of the model features, and the unknowns are
the model coefficients. Solving this system gives us the
values of the model coefficients that we are looking for.

The data used to determine unknown coefficients in re-
gression analysis will be referred to as thetraining set,
and the data used for testing the performance of models
is known as thetest set.

Linear regression models for the communication cost
can be defined as y = �� (7)

The elements of the� matrix are known. Each column
of this matrix represents one feature of the model. For ex-
ample, for our model (eq. 1) the first column represents
the number of messages sent, the second column the num-
ber of bytes transferred, and the third column the number
of memory lines touched. The values ofy are the mea-
sured communication times from our training set. To find
the value of the� vector, the coefficients of our model, we
use a least squares method, which is defined as� = �+y (8)

where�+ is the pseudo-inverse of� [15].
Our model features have different scales, so we normal-

ize the columns of the� matrix to improve the numerical
properties of the system. The models we have discussed
thus far are called first-order regression models. Alterna-
tively we can define second-order models which include
quadratic,�2j , and cross-product,�j�k, terms.

Model Name Regression Function
M1 (Standard Model) �+ �n
M2 (Our Model) �+ �n+ MLT
M3 �+ �n+ �1n2
M4 �+ �n+ �1n2 + �2n3
M5 �+ �n+ MLT + 1nMLT
M6 �+ �n+ MLT + 1nMLT+ �1n2 + 2MLT 2

Table 1: Regression models for point-to-point comm. cost.

4.3 Statistical Analysis
We use two statistical measures to assess the adequacy

of our fitted models,estimated error standard deviation,se = MSE, and thecoefficient of determination, R2.
Small values ofMSE andR2 indicate a good fit between
predicted and measured results, with acceptable values ofR2 typically being less than 0.01.

5 Modeling Point-to-Point Communication
Given our three model features described in the previ-

ous section, we define six different regression models (See
Table 1). M1 corresponds to models discussed in the litera-
ture, which only use the number of messages and message
length as model features [16, 17, 6]. We refer this as the
standard model.M2 is our proposed model, the simplest
model that includesMLT as a feature. The other models
are higher order models that we test for completeness.

5.1 Experimental Results
Figures 1 and 2 illustrate the difference between model

predictions for M1, M2, and M6 on the SP-2 using the
ZPL and C+MPI benchmarks. In these figures bold lines
(dots) represent measured values and thin lines represent
predicted values. We see that M1 predicts badly, particu-
larly for column transfers, while M2 is quite accurate, and
M6 is slightly better yet. (The other models that do not
includeMLT (M3, and M4) produce results that are com-
parable to M1, and those that includeMLT (M5) produce
results that are comparable to M2.)
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Figure 1: Measured vs. predicted results for ZPL on the
IBM SP-2. Our models, M2 and M6, give much better pre-
dictions than the standard model, M1.

These graphs show results for transferring one column or
one row of a matrix, where cache effects are most promi-
nent, so we are showing the worst case for model M1.
However, an informal survey of ZPL programs shows thatd = 1 represents the most common type of communication.
Results for the other machines are similar. Figure 3 shows
how model M2 predicts performance on the SP-2 and T3E.
While our model cannot predict all of the non-linearities
of the observed behavior, the model does capture overall
performance quite well.

5.2 Statistical Assessment
We have gathered six sets of measured data, namely

C+MPI and ZPL data on three different architectures to
compare the regression models defined in Table 1. For
these results we set the training set size to 100, which we
determined to be sufficient [13], and use the rest of the mea-
surements as the test set. Table 2 shows the accuracy of our
models. Each entry in the table statistically summarizes an
entire set of measured data points. All of the models that
includeMLT are superior to the standard model. For ex-
ample, theR2 or MSE values of M1 model are 3-8 times
larger than corresponding M2 values. For M2, theR2 is al-
ways smaller than the desired 0.01 value, and M6, a second
order model which includesMLT , gives the best results in
all cases.

6 Modeling Whole Programs
To test the practical benefits of our approach, we see if

our model can predict the performance of two different pro-
grams for computing the uniform convolution [18]. This
task is challenging because the two programs exhibit com-
plex tradeoffs that depend upon both machine-specific and
problem-specific parameters.
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Figure 2: Measured vs. predicted results for C+MPI on
the IBM SP-2. Our models, M2 and M6, give much better
predictions than the standard model, M1.

The uniform convolution accepts as inputs anL�L im-
age and a block size,b. The output is anL � L image
where each pixel is the weighted sum of theb� b block of
image values for which that pixel is the lower right corner.
The Conv-Shift algorithm computes these sums by repeat-
edly shifting the image to the right (requiring point-to-point
communication) to accumulate the sums along each row,
and then repeatedly shifting the values down each column
to compute the sum of the entire block. The Conv-Scan
algorithm computes the same result using two parallel pre-
fix operations and three shift operations. In general, it’s
unclear which of the two programs will run faster. (Addi-
tional details, including the actual ZPL codes that we used,
are given by Snyder [5].) To conduct this experiment, we
extend both the standard model and our model to include
computation costs, such as the addition of two arrays and
the copying of one array to another, and to model the cost
of scans (parallel prefix operations). These are natural ex-
tensions of the point-to-point models that add a feature for
the number of arithmetic operations.

Figure 4 compares our model against the standard model
on the Cray T3E. The y-axis is the execution time of the
Conv-Shift algorithm divided by that of the Conv-Scan al-
gorithm, so a value smaller than 1.0 means that Conv-Shift
runs faster. The x-axis represents different block sizes and
matrix sizes. We performed experiments for block sizes
ranging from 1 to 10 and matrix sizes from100 � 100 to1000 � 1000. These results use a2 � 2 processor mesh.
Results for other processor configurations are similar. Fora
block size of 4, the standard model incorrectly predicts that
Conv-Shift is faster. Our model does not make this mistake
and chooses the correct algorithm for all block sizes.

Figure 5 shows the details forb = 4. The top graphs
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Figure 3: Predicted cost (using M2) on the IBM SP-2 (left) andthe Cray T3E (right) for sendingd rows of a 2000� L Matrix,
as L varies from 1 to 2000.

IBM SP-2 CRAY T3E SUN E5000

ZPL C+MPI ZPL C+MPI ZPL C+MPI
Model
Name R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE

(�103) (=103) (�103) (=103) (�103) (=103) (�103) (=103) (�103) (=103) (�103) (=103)

M1 3.54 1.84 2.81 0.48 9.05 2.23 10.12 0.59 25.87 3.21 12.02 0.52
M2 0.60 0.31 0.29 0.05 3.29 0.81 2.34 0.14 13.41 1.66 9.60 0.42
M3 3.45 1.79 2.75 0.47 8.89 2.19 9.71 0.57 25.74 3.19 7.45 0.32
M4 3.39 1.76 2.72 0.46 8.85 2.18 9.56 0.56 25.54 3.17 6.02 0.26
M5 0.59 0.30 0.29 0.05 2.87 0.71 2.21 0.13 12.83 1.59 4.24 0.18
M6 0.44 0.23 0.26 0.04 2.87 0.71 2.01 0.12 8.12 1.01 3.76 0.16

Table 2: Our model, M2, and its derivatives, M5 and M6, give better prediction accuracies than the standard model, M1, andits
derivatives, M3 and M4. Smaller values indicate better accuracy.

show that the standard model overpredicts the running
times of both programs. The bottom graphs show that our
model is more accurate. Here the crossover occurs atb = 4,
but for the Sun E5000 the crossover occurs atb = 8; with
the standard model again choosing the wrong algorithm.

7 Conclusions
This paper has described how cache effects can be incor-

porated into a communication comst model by including
a term that is a function ofMLT , the number of unique
memory lines touched. This term is significant because it
is sensitive to data layout, effectively modeling the num-
ber of compulsory and capacity cache misses. The bench-
marking approach that we use is also crucial, because as it
customizes the model to individual machines, it implicitly
captures details such as cache access times.

We have presented formulae for computingMLT for
rectangular subarrays and have shown that our model is
significantly more accurate than the standard model for
point-to-point communication operations. We have also
conducted an experiment to predict the performance of two
ZPL programs that compute the uniform convolution us-
ing different algorithms. Our model correctly predicts the
crossover point between these two programs, whereas the
standard model fails in this regard.

We are currently studying ways to model cache conflict
misses, in an attempt to understand the importance of this
as a model feature. Ultimately, our goal is to use our model
to guide compiler optimizations, for example, to trade off
load balance for extra communication and to choose opti-
mal block sizes for block-cyclic data distributions.
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