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Abstract

Pointer information is a prerequisite for most program aysas,
and the quality of this information can greatly affect thgiecision
and performance. Inclusion-basede( Andersen-style) pointer
analysis is an important point in the space of pointer anadys
offering a potential sweet-spot in the trade-off betweegcigion
and performance. However, current techniques for inclugiased
pointer analysis can have difficulties delivering on thisguial.

We introduce and evaluate two novel techniques for inchusio
based pointer analysis—one lazy, one ebgehat significantly
improve upon the current state-of-the-art without impagtpre-
cision. These techniques focus on the problem of online desl
tection, a critical optimization for scaling such analyséksing a
suite of six open-source C programs, which range in size fr68K
to 2.17M LOC, we compare our techniques against the three bes
inclusion-based analyses—described by Heintze and Taftil,
by Pearceet al.[21], and by Berndl et al. [4]. The combination
of our two techniques results in an algorithm which is on ager
3.2x faster than Heintze and Tardieu’s algorithth4 x faster than
Pearce et al.’s algorithm, anf0.6 x faster than Berndet al’s al-
gorithm.

We also investigate the use of different data structuresoer
sent points-to sets, examining the impact on both perfocmand
memory consumption. We compare a sparse-bitmap implementa
tion used in the GCC compiler with a BDD-based implementatio
and we find that the BDD implementation is on averagesbwer
than using sparse bitmaps but uses>618ss memory.

Categories and Subject Descriptors  F.3.2 Logics and Meanings
of Program$. Semantics of Programming Languages—Program
analysis

General Terms  Algorithms, Performance
Keywords pointer analysis

1. Introduction

Pointer information is a prerequisite for most program gses, in-
cluding modern whole-program analyses such as prograriceeri
tion and program understanding. The precision and perfacmaf

1Hence the reference to Aesop’s fable “The Ant and the Gramgsd [1].
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these client analyses depend heavily on the precision gfdhmter
information that they're given [24]. Unfortunately, preeipointer
analysis is NP-hard [14]—any practical pointer analysistrap-
proximate the exact solution. There are a number of difteapa
proximations that can be made, each with its own trade-aff&en
precision and performance [12].

The most precise analyses are flow-sensitive—respectimgato
flow dependencies—and context-sensitive—respectingehms-
tics of function calls. Despite a great deal of work on bothvflo
sensitive and context-sensitive algorithms [6, 8, 13, 1527, 28,
29, 30], none has been shown to scale to programs with nslidn
lines of code, and most have difficulty scaling to 100,00@diof
code.

If flow- and context-sensitivity aren’t feasible for largeop
grams, we're left to consider flow- and context-insensitwvely-
ses. The most precise member of this class is inclusiondbase
Andersen-style) pointer analysis [2], which is closelyatetl to
computing the dynamic transitive closure of a graph. Iricluson-
straints are generated from the program code and used touwons
a constraint graph with nodes to represent each program vari-
able and edges to represent inclusion constraints betweerati-
ables. Indirect constraints—those involving pointer fEnences—
can't be represented, since points-to information isrtiayailable.
Points-to information is gathered by computing the trawesitlo-
sure of the graph; as more information is gained, new edges ar
added to the constraint graph to represent the indirecticonts.
The transitive closure of the final graph yields the pointsdlu-
tion. The exact algorithm is explained in Section 3.

Inclusion-based pointer analysis has a complexit@(#®); the
key to scaling it is to reduce the input sizée-maken smaller—
while maintaining soundness. The primary method for rauyici
n is online cycle detection: the analysis looks for cyclestia t
constraint graph and collapses their components intoesimgdies.
Because the algorithm computes the transitive closurencales
in the same cycle are guaranteed to have identical poinset®
and can safely be collapsed together. The method used torfithd a
collapse cycles during the analysis has a significant impathe
algorithm’s performance.

In this paper we introduce a new inclusion-based pointel-ana
ysis algorithm that employs a novel method of detecting eycl
calledLazy Cycle DetectiofL.CD). Rather than aggressively seek-
ing out cycles in the constraint graph, LCD piggybacks on top
of the transitive closure computation, identifying potehtycles
based on their effect—identical points-to sets. This laatyre sig-
nificantly reduces the overhead of online cycle detection.

We also introduce a second method for detecting cyclesccalle
Hybrid Cycle Detectior(HCD). Hybrid Cycle Detection offloads
work to a linear-time offline analysis—a static analysis el@nior
to the actual pointer analysis. The actual pointer analigsthen
able to detect cycles without performing any graph travefdas,



HCD eagerly pays a small up-front cost to avoid a large amotint
later work. While HCD can be used on its own, its true powes lie
in the fact that it can easily be combined with other inclasi@ased
pointer analyses to significantly improve their performanc

Heintze and Tardieu introduce a new algorithm for computing
the dynamic transitive closure [11]. As new inclusion edges
added to the constraint graph from the indirect constrathtsir
corresponding new transitive edges are not added to thé girap

We compare our new techniques against a diverse group of stead, the constraint graph retains its pre-transitivaf@uring the

inclusion-based pointer analyses representing the dustate-
of-the-art. This group includes algorithms due to Heintzel a
Tardieu [11] (HT), Pearcet al. [21] (PKH), and Berndkt al. [4]
(BLQ). All of these algorithms are explained in Section 2.

This paper makes the following contributions to inclusltased
pointer analysis:

¢ We introduce Lazy Cycle Detection, which recognizes that th
effects of cycles—identical points-to sets—can be useceto d
tect them with extremely low overhead. On average LCD is
faster than all three current state-of-the-art includiased
analyses: 1.05 faster than HT, 2.% faster than PKH, and
6.8x faster than BLQ.

We introduce Hybrid Cycle Detection, which dramatically re
duces the overhead of online cycle detection by carefulty pa
titioning the task into offline and online analyses. On agera
HCD improves the performance of HT by %2PKH by 5x,
BLQ by 1.1x, and LCD by 3.%. HCD is the first cycle de-
tection technique that has been shown to be practical forBDD
based program analyses like BLQ.

We provide the first empirical comparison of the three curren
state-of-the-art inclusion-based pointer analysis #lgors,
namely, HT, PKH, and BLQ. We find that HT is the fastest—
1.9x faster than PKH and 6:5faster than BLQ.

We demonstrate that an algorithm that combines Lazy Cy-
cle Detection and Hybrid Cycle Detection (LCD+HCD) is the
fastest of the algorithms that we studied and can easily $oal
programs consisting of over a million lines of code. Itis @n a
erage3.2x faster than HT6.4x faster than PKH, an@0.6 x
faster than BLQ.

We investigate the memory consumption of the various analy-
ses, experimenting with two different data structures éqre-
senting points-to sets: sparse bitmaps as currently us#tkin
GCC compiler, and a BDD-based representation. For the algo-
rithms that we study, we find that the BDD-based represemtati

is an average of 2 slower than sparse bitmaps but uses&.5
less memory.

The rest of this paper is organized as follows. In Section 2 we
place our techniques in the context of prior work. Sectiorr@ p
vides background about inclusion-based pointer analgsistion 4
describes our two new techniques for detecting cycles, @t S
tion 5 presents our experimental evaluation.

2. Related Work

Inclusion-based pointer analysis is described by Andenséris
Ph.D. thesis [2], in which he formulates the problem in tewhs
type theory. The algorithm presented in the thesis solvesrth
clusion constraints in a fairly naive manner by repeatetdisating
through a constraint vector. Cycle detection is not meiibThere
have been several significant updates since that time.

Faehndrictet al.[9] represent the constraints using a graph and
formulate the problem as computing the dynamic transitioewre
of that graph. This work introduces a method for partial wali
cycle detection and demonstrates that cycle detectionitisadr
for scalability. A depth-first search of the graph is perfedpon
every edge insertion, but the search is artificially retgddor the
sake of performance, making cycle detection incomplete.

analysis, indirect constraints are resolved via reactalgjleries
on the graph. Cycle detection is performed as a side-effabese
queries. The main drawback to this technique is unavoidablien-
dant work—it is impossible to know whether a reachabilitegu
will encounter a newly-added inclusion edge (insertedieradue

to some other indirect constraint) until after it completefich
means that potentially redundant queries must still bdedhout
on the off-chance that a new edge will be encountered. Heintz
and Tardieu report excellent results, analyzing a C prognsttm
1.3M LOC in less than a second, but these results are for & field
based implementation. A field-based analysis treats ealthdfe
a struct as its own variable—assignmentst@, y.f, and(xz). f
are all treated as assignments to a varighlevhich tends to de-
crease both the size of the input to the pointer analysis had t
number of dereferenced variables (an important indicétpedor-
mance). Field-based analysis is unsound for C programsyhihel
such an analysis is appropriate for the work described bytei
and Tardieu (the client is a dependency analysis that i fiekl-
based), it is inappropriate for many others. For the resnltbis
paper, we use a field-insensitive version of their algorjtiarhich

is dramatically slower than the field-based veréion

Pearceat al.have proposed two different approaches to inclusion-
based analysis, both of which differ from Heintze and Tardie
that they maintain the explicit transitive closure of thenswaint
graph. Pearcet al.first proposed an analysis [22] that uses a more
efficient algorithm for online cycle detection than thataduced
by Faehndrictet al.[9]. In order to avoid cycle detection at every
edge insertion, the algorithm dynamically maintains a togie
cal ordering of the constraint graph. Only a newly-inserede
that violates the current ordering could possibly creatgcec so
only in this case are cycle detection and topological reong
performed. This algorithm proves to still have too much bead,
so Pearcet al. later proposed a new and more efficient algorithm
[21]. Rather than detect cycles at every edge insertionettiige
constraint graph is periodically swept to detect and cskapny
cycles that have formed since the last sweep. It is this glgor
that we evaluate in this paper.

Berndl et al. [4] describe a field-sensitive inclusion-based
pointer analysis for Java that uses BDDs [5] to represerit that
constraint graph and the points-to solution. BDDs have legén-
sively used in model checking as a way to represent largehgriap
a very compact form that allows for fast manipulation. Béetdl.
were one of the first to use BDDs for pointer analysis. Theyaisl
they describe is specific to the Java language; it also doleandle
indirect calls because it depends on a prior analysis tataarighe
complete call-graph. The version of the algorithm that we ins
this paper is a field-insensitive analysis for C programs does
handle indirect function calls.

Because Andersen-style analysis was previously considere
be non-scalable, other algorithms, including Steensé{maehr-
linear time analysis [25] and Das’ One-Level Flow analyst} [
have been proposed to improve performance by sacrificing eve
more precision. While Steensgaard’s analysis has muctegtiea
precision than inclusion-based analysis, Das reportf¢h& pro-
grams One-Level Flow analysis has precision very closeabdh

270 ensure that the performance difference is in fact due thi-fie
insensitivity, we also benchmarked a field-based versioouwfHT im-
plementation. We observed comparable performance to épatrted by
Heintze and Tardieu [11].



Constraint Type | Program Code | Constraint | Meaning
Base| a = &b a D {b} loc(b) € pts(a)
Simple | a =0 alb pts(a) 2 pts(b)
Complex | a = b a D *b Vv € pts(b) : pts(a) 2 pts(v)
Complex | *a =b *a Db Vv € pts(a) : pts(v) D pts(b)
Table 1. Constraint Types
inclusion-based analysis. This precision is based on thenas- letG =<V,E >
tion that multi-level pointers are less frequent and lesgarant W<V
than single-level pointers, which Das’ experiments intida usu- while W # 0 do

ally (though not always) true for C, but which may not be trae f
other languages such as Java and C++. In addition, for treeafak
performance, Das conservatively unifies non-equivalerialubes,
much like Steensgaard’s analysis; this unification makefitult

to trace dependency chains among variables. Dependenayscha

are very useful for understanding the results of prograntyaea
such as program verification and program understandingaksad
for use in automatic tools such as Broadway [10]. Inclusiesed
pointer analysis is a better choice than either Steensgaamelly-
sis or One-Level Flowif it can be made to run in reasonable time
even on large programs with millions of lines of code; thishis
challenge that we address in this paper.

In the other direction of increasing precision, there hagerb
several attempts to scale a context-sensitive versionabfision-
based pointer analysis. One of the fastest of these attémtite
the algorithm by Whaleet al. [28], which uses BDDs to scale
a context-sensitive, flow-insensitive pointer analysis Java to
almost 700K LOC (measuring bytecode rather than sourcs)line
However, Whaleyet al’s algorithm is only context-sensitive for
top-level variables, meaning that all variables in the reagreated
context-insensitively; also, its efficiency depends higaui certain
characteristics of the Java language—attempts to use the sa
technique for analyzing programs in C have shown greatlyced
performance [3].

Nystromet al. [20] present a context-sensitive algorithm based

on the insight that inlining all function calls makes a coutte
insensitive analysis equivalent to a context-sensitivalysis of
the original program. Of course, inlining all function ltan
increase the program size exponentially, but intelligexurtstics
can make exponential growth extremely unlikely. An impotta
building block of this approach is context-insensitive lirsbon-
based analysis—it is used while inlining the functions also for
analyzing the resulting program. Nystrosh al. manage to scale
the context-sensitive analysis to a C program with 200K LDi@
new techniques described in this paper could be used to thete
algorithm even further.

3. Background
Inclusion-based pointer analysis is a set-constraint Iprob A

linear pass through the program code generates three tyfpes o

constraints—base simple andcomplex{11]. We eliminate nested
pointer dereferences by introducing auxiliary variables @on-
straints, leaving only one pointer dereference per coinstfeable 1
demonstrates the three types of constraints, how they aireede
from the program code, and what the constraints mean. Faii-a va
ablev, pts(v) represents’s points-to set andbc(v) represents the
memory location denoted hy.

Following the example of prior work in this area [9, 11, 21, 4]
we solve the set-constraint problem by computing the dyoami
transitive closure of a constraint graph. The constraiapgiG
has one node for each program variable. For each simpleraortst
a 2 b, G has a directed edge— a. Each node also has a points-to

n < SELECFFROM(W)
for eachv € pts(n) do
for each constrainta O *n do
if v — a ¢ E then
E+ EU{v—a}
W« W U{v}
for each constraint«n O b do
if b - v ¢ E then
E+ EU{b— v}
W« W U {b}
foreachn — z € E do
pts(z) < pts(z) U pts(n)
if pts(z) changedhen
W« W U{z}

Figure 1. Dynamic Transitive Closure

set associated with it, initialized using the base conssafor each
base constraint D {b}, nodea’s points-to set contain®c(b). The
complex constraints are not explicitly represented in tla@lky; they
are maintained in a separate list.

To solve the constraints we compute the transitive closfire o
G by propagating points-to information along its edges. As we
update the points-to sets, we must also add new edges teeepre
the complex constraints. For each constrain® b and each
loc(v) € pts(b), we add a new edge — a. Similarly, for each
constraintxa 2 b and eacHoc(v) € pts(a), we add a new edge
b— .

Figure 1 shows a basic worklist algorithm that maintains the
explicit transitive closure of7. The worklist is initialized with all
nodes inG that have a non-empty points-to set. For each nede
taken off the worklist, we proceed in two steps:

1. For eachoc(v) € pts(n): for each constraing O *n add an
edgev — a, and for each constrairz O badd an edgé — v.
Any node that has had a new outgoing edge added is inserted
into the worklist.

2. For each outgoing edge — v, propagatepts(n) to nodewv,
i.e.pts(v) := pts(v) U pts(n). Any node whose points-to set
has been maodified is inserted into the worklist.

The algorithm is presented as it is for clarity of expositiearious
optimizations are possible to improve its performance.

4. Our Solutions

The algorithm shown in Figure 1 computes the dynamic traesit
closure of the constraint graph but makes no attempt to teyec
cles. The particular method used for detecting cycles wilarge
part determine the efficiency of the analysis—in fact, withcycle
detection our larger benchmarks run out of memory before-com
pleting, even on a machine with 2GB of memory. When perform-
ing online cycle detection, there is a tension between baagdor



cycles too early—which leads to the overhead of repeatediep-
ing the constraint graph—and searching for cycles too latéiieh
reduces the benefits of cycle elimination because poinisfoo-
mation can be redundantly propagated around cycles beiese t
are detected. We now present two new approaches for onlaie cy
detection that balance this tension in different ways.

4.1 Lazy Cycle Detection

Cycles in the constraint graph can be collapsed becauss imotie
same cycle are guaranteed to have identical points-to\&etsise
this fact to create a heuristic for cycle detection: befomppgating
points-to information across an edge of the constraint lgrag
check to see if the source and destination already have pqums-
to sets; if so then we use a depth-first search to check forsilppes
cycle.

This technique is lazy because rather than trying to deyetés
when they are createde. when the final edge is inserted that
completes the cycle, it waits until the effect of the cyclelesitical
points-to sets—becomes evident. The advantage of thigitpo
is that we only attempt to detect cycles when we are likely to
find them. A potential disadvantage is that cycles may bectksde
well after they are formed, since we must wait for the potots-
information to propagate all the way around the cycle befoee
can detect it.

The accuracy of this technique depends upon the assumption
that two nodes usually have identical points-to sets onbabse
they are in the same cycle; otherwise it would waste timengryi
to detect non-existent cycles. One additional refinemeneces-
sary to bolster this assumption and make the techniquewvediat
precise: we never trigger cycle detection on the same edige.tw
We thus avoid making repeated cycle detection attemptsviimegp
nodes with identical points-to sets that are not in a cydhés aAddi-
tional restriction implies that Lazy Cycle Detection is@meplete—
it is not guaranteed to find all cycles in the constraint graph

The Lazy Cycle Detection algorithm is shown in Figure 2. Be-
fore we propagate a points-to set from one node to another, we
check to see if two conditions are met: (1) the points-to aets
identical; and (2) we haven't triggered a search on this gulgei-
ously. If these conditions are met, then we trigger cyclecatn
rooted at the destination node. If there exists a cycle, iamse
together all the nodes involved; otherwise we remembereithige
so that we won't repeat the attempt later.

4.2 Hybrid Cycle Detection

Cycle detection can be done offline, in a static analysisrgdo
the actual pointer analysis, such as with Offline VariablbsSitu-
tion described by Rountest al. [23]. However, many cycles don't
exist in the initial constraint graph and only appear as ndges
are added during the pointer analysis itself, thus the needr-
line cycle detection techniques such as Lazy Cycle Deteclibe
drawback to online cycle detection is that it requires traivey the
constraint graph multiple times searching for cycles;¢hepeated
traversals can become extremely expensive. Hybrid Cyctede
tion (HCD) is so-called because it combines both offline amithe
analyses to detect cycles, thereby getting the best of botlulsv—
detecting cycles created online during the pointer anglygthout
requiring any traversal of the constraint graph.

We now describe the HCD offline analysis, which is a linear-
time static analysis done prior to the actual pointer anslys/e
build an offline version of the constraint graph, with one exdor
each program variable plus an additioreflnode for each variable
dereferenced in the constraints (exg). There is a directed edge
for each simple and complex constraiatD b yields edgeh — a,

a D *byields edgexb — a, andxa D b yields edgeh — xa. Base
constraints are ignored. Figure 3 illustrates this pracess

letG =< V,E >
R« 10
WV
while W # 0 do
n < SELECFFROM(W)
for eachv € pts(n) do
for each constrainta D *n do
if v — a ¢ E then
E+— EU{v—a}
W« W U {v}
for each constraint«n O b do
if b — v ¢ Ethen
E+— EU{b— v}
W «— W U {b}
foreachn — 2z € E do
if pts(z) = pts(n) An — z ¢ Rthen
DETECTAND-COLLAPSE-CYCLES(2)
R+ RU{n— z}
pts(z) < pts(z) U pts(n)
if pts(z) changedhen
W« W U{z}

Figure 2. Lazy Cycle Detection

a = &c;

d=c;

b= sa; @/\@
xq = b;

(a) Program

20 ()

dDc

b2 *a (c) Offline Constraint Graph
xq Db

(b) Constraints

Figure 3. HCD Offline Analysis Example: (a) Program code; (b)
constraints generated from the program code; (c) the offlore
straint graph corresponding to the constraints. Note thaandb
are in a cycle together; from this we can infer that in the ramli
constraint graphb will be in a cycle with all the variables in's
points-to set.

Once the graph is built we detect strongly-connected compo-
nents (SCCs) using Tarjan’s linear-time algorithm [26]y/CCs
containing only non-ref nodes can be collapsed immedia&&\Cs
containing ref nodes are more problematic: a ref node infffia®
constraint graph is a stand-in for a variable’s unknown {ssta
set, e.g. the ref noden stands for whatevem’s points-to set will
be when the pointer analysis is complete. An SCC containirgj a
node such asn actually means that’s points-to set is part of the
SCC; but since we don't yet know what that points-to set wal] b
we can't collapse that SCC. The offline analysis knows whantirv
ables’ points-to sets will be part of an SCC, while the onknel-
ysis (.e.the pointer analysis) knows the variables’ actual poiats-t
sets. The purpose of Hybrid Cycle Detection is to bridge dgiais.
Figure 4 shows how the online analysis is affected when an SCC
contains a ref node in the offline constraint graph.



a — {c}
(a) Points-to Info

OEOBO S
O G

(b) Before edges added  (c) After edges added

Figure 4. HCD Online Analysis Example: (a) The initial points-to
information from the constraints in Figure 3; (b) the onlicen-
straint graph before any edges are added; (c) the onlindraorts
graph after the edges are added due to the complex constiaint
Figure 3. Note that andb are now in a cycle together.

letG=<V,E >
WV
while W # 0 do
n < SELECFFROM(W)
if (n,a) € L then
for eachwv € pts(n) do
COLLAPSE(v,a)
W W U{a}
for eachv € pts(n) do
for each constrainta D *n do
if v — a ¢ E then
E+— EU{v—a}
W +— W U {v}
for each constraint«n D b do
if b - v ¢ Ethen
E+— EU{b— v}
W «— W U {b}
foreachn — 2z € E do
pts(z) < pts(z) U pts(n)
if pts(z) changedhen
W «— W U{z}

Figure 5. Hybrid Cycle Detection

We finish the offline analysis by looking for SCCs in the offline
constraint graph that consist of more than one node and i@t a
contain at least one ref node. Because there are no cotstadin
the formxp D xq, no ref node can have a reflexive edge and any
non-trivial SCC containing a ref node must also contain aireén
node. For each SCC of interest we select one non-ref hpdrd
for each ref nodea in the same SCC, we store the tuglgd) in
a list L. This tuple signifies to the online analysis tlét points-
to set belongs in an SCC with and therefore everything ia's
points-to set can safely be collapsed with

The online analysis is shown in Figure 5. The algorithm is
similar to the basic algorithm shown in Figure 1, except when
processing node we first checkL for a tuple of the forn{n, a). If
one is found then we preemptively collapse together roaied all
members oh's points-to set, knowing that they belong to the same
cycle. For simplicity’s sake the pseudo-code ignores soovéoas
optimizations.

Hybrid Cycle Detection is not guaranteed to find all cycles in
the online constraint graph, only those that can be infefireah

the offline version of the graph. Those cycles that it does, find
however, are discovered at the earliest possible oppaytamd
without requiring any traversal of the constraint graphadidition,
while HCD can be used on its own as shown in Figure 5, it can also
be easily combined with other algorithms such as HT, PKH, BLQ
and LCD to enhance their performance.

5. Evaluation
5.1 Methodology

To compare the various inclusion-based pointer analysesnple-
ment field-insensitive versions of five main algorithms:tieé and
Tardieu (HT), Berndét al. (BLQ), Pearceet al. (PKH), Lazy Cycle
Detection (LCD), and Hybrid Cycle Detection (HCD). We alg® i
plement four additional algorithms by integrating HCD wiftur

of the main algorithms: HT+HCD, PKH+HCD, BLQ+HCD, and
LCD+HCD. The algorithms are written in C++ and handle all as-
pects of the C language except for varargs. They use as mamy co
mon components as possible to provide a fair comparisontheyd
have all been highly optimized. The source code is availibla
the authors upon request. Some highlights of the implertienta
include:

e Indirect function calls are handled as described by Pedrce e
al [21]. Function parameters are humbered contiguoushy-sta
ing immediately after their corresponding function vakeland
when resolving indirect calls they are accessed as offa¢ist
function variable.

e Cycles are detected using Nuutid al's [19] variant of Tar-
jan’s algorithm, and they are collapsed using a union-firtd da
structure with both union-by-rank and path compressiomiseu
tics.

e BLQ uses the incrementalization optimization described by
Berndl et al. [4]. We use the BuDDy BDD library [16] to im-
plement BDDs.

e LCD and HCD are both worklist algorithms—we use the work-
list strategy LRF suggested by Peare al. [22], to priori-
tize the worklist. We also divide the worklist into two se&xts,
currentandnext as described by Nielsogt al. [18]; items are
selected fromcurrent and pushed ontoext and the two are
swapped whercurrent becomes empty. For our benchmarks,
the divided worklist yields significantly better perforntathan
a single worklist.

¢ Aside from BLQ, all the algorithms use sparse bhitmaps to im-
plement both the constraint graph and the points-to sets. Th
sparse bitmap implementation is taken from the GCC 4.1.1
compiler.

e We also experiment with the use of BDDs to represent the
points-to sets. Unlike BLQ, which stores the entire potots-
solution in a single BDD, we give each variable its own BDD
to store its individual points-to set. For exampleg it~ {b, c}
andd — {c,e}, BLQ would have a single BDD representing
the set of tupleq(a, b), (a,c), (d,c), (d,e)}. Instead, we give
a a BDD representing the sdb,c} and we gived a BDD
representing the sét, e}. The use of BDDs instead of sparse
bitmaps is a simple modification that requires minimal cleng
to the code.

The benchmarks for our experiments are described in Table 2.
Emacs is a text editor; Ghostscript is a postscript viewem
is an image manipulation program; Insight is a GUI overlaid o

3Least Recently Fired—the node processed furthest back in time is given
priority.



Name LOC | Original Constraints | Reduced Constraints Base | Simple | Complex
Emacs-21.48 169K 83,213 21,460 4,088 | 11,095 6,277
Ghostscript-8.15 242K 169,312 67,310 || 12,154 | 25,880 29,276
Gimp-2.2.8 554K 411,783 96,483 || 17,083 | 43,878 35,5622
Insight-6.5| 603K 243,404 85,375 || 13,198 | 35,382 36,795
Wine-0.9.21| 1,338K 713,065 171,237 39,166 | 62,499 69,572
Linux-2.4.26 | 2,172K 574,788 203,733 || 25,678 | 77,936| 100,119

Table 2. Benchmarks: For each benchmark we show the number of linesdef (computed as the number of non-blank, non-commerst line
in the source files), the original number of constraints gateel using CIL, the reduced number of constraints aftergopie-processed, and

a break-down of the forms of the reduced constraints.

top of the gdb debugger; Wine is a Windows emulator; and Linux
is the Linux operating system kernel. The constraint gdoera
is separate from the constraint solvers: we generate comistr
from the benchmarks using the CIL C front-end [17], ignoramy
assignments involving types too small to hold a pointerekndl
library calls are summarized using hand-crafted functiombs
We pre-process the resulting constraint files using a vaén
Offline Variable Substitution [23], which reduces the numbé
constraints by 60—77%. This pre-processing step takegHassa
second for Emacs and Ghostscript, and between 1 and 3 séoonds
Gimp, Insight, Wine, and Linux. The results reported aretlfiese
reduced constraint files; they include everything from negdn
the constraint file from disk, creating the initial constitagraph,
and solving that graph.

We run the experiments on a dual-core 1.83 GHz processor with

2 GB of memory, using the Ubuntu 6.10 Linux distribution. Tigh
the processor is dual-core, the executables themselvesngyle-
threaded. All executables are compiled using gcc-4.1.1tlad-
O3’ optimization flag. We repeat each experiment three tiames
report the smallest time; all the experiments have very lakiance
in performance.

5.2 Time and Memory Consumption

Table 3 shows the performance of the various algorithms. The
times for HCD’s offline analysis are shown separately andimot
cluded in the times for the various algorithms using HCD—ythe
are small enough to be essentially negligible. Table 4 shiws
memory consumption of the algorithms. Figure 6 graphicedisn-
pares (using a log-scale) the performance of our combingat al
rithm LCD+HCD—the fastest of all the algorithms—againse th
current state-of-the-art algorithms. All these numbersengath-
ered using the sparse-bitmap implementations of the alhgosi
(except for BLQ).

BLQ’'s memory allocation is fairly constant across all thedie
marks. We allocate an initial pool of memory for the BDDs, @hhi
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)
o
£
=
10
14
. L L
S L L <& SF
¢ & & & &
°

Figure 6. Performance (in seconds) of our new combined algo-
rithm (LCD+HCD) versus three state-of-the art inclusiaaséd al-
gorithms. Note that the Y-axis is log-scale.

play this same behavior, because of its radically diffeeealysis
mechanism that uses BDDs and because it lacks cycle detectio

Comparing HT, PKH, BLQ, LCD, and HCD. Figure 7 compares
the performance of the main algorithms by normalizing thees
for HT, PKH, BLQ, and HCD by that of LCD. Focusing on the
current state-of-the-art algorithms, HT is clearly thetdas being
1.9x faster than PKH and 66 faster than BLQ. LCD is on
average 1.0% faster than HT and uses X2ess memory. HCD
runs out of memory for Wine, but excluding that benchmarlsit i
on average 1.8 slower than HT and 1.9 faster than PKH, using
1.4x more memory than HT.

Effectsof HCD. Figure 8 normalizes the performance of the main

dominates the memory usage and is independent of benchmarkalgorithms by that of their HCD-enhanced counterparts. @n a

size. While we can decrease the initial pool size for the Emal
benchmarks without decreasing performance, there is noveag
to calculate the minimum pool size for a specific benchmarkos
all the benchmarks we use the smallest pool size that daegpéir
the performance of our largest benchmark.

It is interesting to note the vast difference in analysisetibe-
tween Wine and Linux for all algorithms other than BLQ. While
Wine has 32.5K fewer constraints than Linux, it takes 1.3x7.
longer to be analyzed, depending on the algorithm used. ditis
crepancy points out the danger in using the size of the Initgaut
to predict performance when other factors can have at lsastiah
impact. Wine is a case in point: while its initial constragmaph is
smaller than that of Linux, its final constraint graph at the ef
the analysis is an order-of-magnitude larger than that ofikj due
mostly to Wine’s larger average points-to set size. BLQ dbefs-

erage, the use of HCD increases HT performance by 32KH
performance by &, BLQ performance by 1, and LCD per-
formance by 3.2. HCD also leads to a small decrease in mem-
ory consumption for all the algorithms except BLQ—it deces
memory consumption by 1:2 for HT, by 1.1x for PKH, and by
1.02x for LCD. Most of the memory used by these algorithms
comes from the representation of points-to sets. HCD ingsov
performance by finding and collapsing cycles much earlianth
normal, but it doesn’t actually find many more cycles thanaver
already detected without using HCD, so it doesn't signifilyare-
duce the number of points-to sets that need to be maintai@D.
doesn’'timprove BLQ's performance by much because evergtiou
no extra effort is required to find cycles, there is still samerhead
involved in collapsing those cycles. Also, the performaotBLQ
depends on the sizes of the BDD representations of the emistr



Emacs Ghostscript Gimp Insight Wine Linux
HCD-Offline 0.05 0.17 0.26 0.23 0.51 0.6
HT 1.66 12.03 59.00 42.49 1,388.51 393.80
PKH 2.05 20.05 9230 117.88 1,946.16 1,181)59
BLQ 4.74 121.60 167.56 265.94 5,117.64 5,144|29
LCD 3.07 1523  39.50 39.02 1,157.10 327.65
HCD 0.46 49.55 59.70 73.92 OOM 659.74
HT+HCD 0.46 7.29 11.94 14.82 643.89 102.77
PKH+HCD 0.46 10.52 17.12 21.91 838.08 114.45
BLQ+HCD 5.81 115.00 173.46 257.05 4,211.71 4,581{91
LCD+HCD 0.56 7.99 1250 15.97 492.40 86.74

Table 3. Performance (in seconds), using bitmaps for points-to $&ts HCD-Offline analysis is reported separately and nduded in the
times for those algorithms using HCD. The HCD algorithm ransof memory on the Wine benchmark.

Emacs Ghostscript Gimp Insight Wine  Linux
HT 17.7 849 279.0 2315 1,867.2 90113
PKH 17.6 839 269.5 194.7 1,448.3 840.7
BLQ 215.6 216.1 216.2 216.1 216.2 2162
LCD 14.3 746  269.0 1844 1,465.1 8301

HCD 18.1 138.7 416.1 290.5 OOM 1,301.5
HT+HCD 12.4 80.8 253.9 186.5 11,3914 8425
PKH+HCD 13.9 79.1 264.6 186.0 1,430.2 8075
BLQ+HCD 215.8 216.2 216.2 216.2 216.2 216/.2
LCD+HCD 13.9 735 263.9 183.6 1,406.4 8079

Table 4. Memory consumption (in megabytes), using bitmaps for geiatsets..

10

oHT

Normalized Time

Figure 7. Performance comparison of individual benchmarks,
where performance is normalized against LCD. HCD runs out of
memory for Wine, so there is no HCD bar for that benchmark.

and points-to graphs, and because of the properties of BBBs,
moving edges from the constraint graph can potentiallycase
the size of the constraint graph BDD.

The combination of our two new algorithms, LCD+HCD, yields
the fastest algorithm among all those studied: &.&x faster than
HT, 6.4x faster than PKH, and0.6 x faster than BLQ.

5.3 Understanding the Results

There are a number of factors that determine the relativioper
mance of these algorithms, but three of the most importaett ar
(1) the number of nodes collapsed due to strongly-connexiet

o PKH
@ BLQ
g mLCD

Normalized Time

Figure 8. Performance comparison of the individual benchmarks,
where the performance of each main algorithm is normalized
against its respective HCD-enhanced counterpart.

ponents; (2) the number of nodes searched during the depth-fi
traversals of the constraint graph; and (3) the number oparo
gations of points-to information across the edges of thestraimt
graph.

The number of nodes collapsed is important because it reduce
both the number of nodes and the number of edges in the ciorstra
graph; the more nodes that are collapsed, the smaller tig amol
the more efficient the algorithm.

The depth-first searches are pure overhead due to cycle-detec
tion. As long as roughly as many cycles are being detectesh th
the fewer nodes that are searched the better.



Emacs Ghostscript Gimp Insight Wine  Linux
HT 3.44 18.55 46.98 65.00 1,551.89 419.38
PKH 4.23 19.55 81.53 96.50 1,172.15 801.13
LCD 4.96 19.34  47.29 64.57 1,213.43 380.26
HCD 3.96 2465 49.11 65.01 731.20 267.69
HT+HCD 2.58 15.65 33.69 42.33 737.37 209.90
PKH+HCD 3.06 1470 33.71 43.20 74435 172.43
LCD+HCD 3.09 13.69 33.04 43.17 625.82 183.97

Table 5. Performance (in seconds), using BDDs for points-to sets.

Emacs Ghostscript Gimp Insight Wine Linux
HT 33.1 49.3 100.7 100.0 8112 274{3
PKH 33.2 33.6 50.4 66.8 2264 1821
LCD 33.2 33.2 40.1 339 2511 735
HCD 33.1 37.1 36.8 37.0 239.6 65,8
HT+HCD 33.1 37.8 51.2 539 410.6 100{7
PKH+HCD 33.1 33.2 36.0 33.2 1039 452
LCD+HCD 33.1 33.2 33.2 33.2 173.6 426

Table 6. Memory consumption (in megabytes), using BDDs for poiotséts.

The number of points-to information propagations is an impo
tant metric because propagation is one of the most expenisera-
tions in the analysis. Itis strongly influenced by both thenber of
cycles collapsed and by how quickly they are collapsed. kchec
is not detected quickly, then points-to information couédrbdun-
dantly circulated around the cycle a number of times.

We now examine these three quantities to help explain the per
formance results seen in the previous section. Due to iisathyl
different analysis mechanism, we don't include BLQ in thiam-
ination?

Nodes Collapsed. PKH is the only algorithm guaranteed to detect
all strongly-connected components in the constraint grapla-
ever, HT and LCD both do a very good job of finding and col-
lapsing cycles—for each benchmark they detect and collapse
99% of the nodes collapsed by PKH. HCD by itself doesn’t do as
well, collapsing only 46—74% of the nodes collapsed by PKKsT
deficiency is primarily responsible for HCD's greater meynoon-
sumption.

Nodes Searched. HCD is, of course, the most efficient algorithm
in terms of searching the constraint graph, since it doesggrch
at all. HT is the next most efficient algorithm, because ityonl
searches the subset of the graph necessary for resolviirgdhd
constraints. PKH searches 2.@&s many nodes as HT, as it period-
ically searches the entire graph for cycles. LCD is the leffisient,
searching & as many nodes as HT.

Propagations. LCD has the fewest propagations, showing that
its greater effort at searching for cycles pays off by findihgse
cycles earlier than HT or PKH. HT has k&s many propagations,
and PKH has 2.2 as many. Since they both find as many cycles as
LCD (as shown by the number of nodes collapsed), this diffeze

is due to the relative amount of time it takes for each of the

41t is difficult to find statistics to directly explain BLQ’s prmance rela-
tive to HT, PKH, LCD, and HCD. It doesn’t use cycle detectisn,it adds

orders of magnitude more edges to the constraint graph—+opapgation

of points-to information is done simultaneously acrosgtal edges using
BDD operations, and the performance of the algorithm is doeerto how

well the BDDs compress the constraint and points-to grapds anything

else.

algorithms to find cycles. HCD has the most propagationsx 5.2
as many as LCD. HCD finds cycles as soon as they are formed, so
it finds them much faster than LCD does, but as shown above, it
finds substantially fewer cycles than the other algorithms.

Effects of HCD. The main benefit of combining HCD with the
other algorithms is that it helps these algorithms find cycieich
sooner than they would on their own. While it does little torgase

the number of nodes collapsed or decrease the number of nodes
searched, it greatly decreases the number of propagaktiecause
cycles are collapsed before the points-to information helsaace

to propagate around the cycles. The addition of HCD decsahse
number of propagations by ¥Ofor HT and by 7.4 for both PKH

and LCD.

Discussion. Despite its lazy nature, LCD searches more nodes
than either HT or PKH, and it propagates less points-to infdfon
than either as well. It appears that being more aggressiye @f§
which naturally leads to the question: could we do betterdindp
even more aggressive? However, past experience has shawn th
we must carefully balance the work we do—too much aggression
can lead to overhead that overwhelms any benefits it may ¢geovi
This point is shown in both Faehndright al’s algorithm [9] and
Pearceet al.s original algorithm [22]. Both of these algorithms
are very aggressive in seeking out cycles, and both are ar ord
of magnitude slower than any of the algorithms evaluatediis t

paper.

5.4 Representing Points-to Sets

Table 4 shows that the memory consumption of all the algmsth
that use sparse bitmaps is extremely high. Profiling reviels
the majority of this memory usage comes from the bit-map rep-
resentation of points-to sets. BLQ, on the other hand, usles r
tively little memory even for the largest benchmarks, duetgo
use of BDDs. It is thus natural to wonder how the other algo-
rithms would compare—in terms of both analysis time and mem-
ory consumption—if they were to instead use BDDs to repriesen
points-to sets.

Tables 5 and 6 show the performance and memory consump-
tion of the modified algorithms. Figure 9 graphically shows t
performance cost of the modified algorithms by normalizimgnt
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Figure 9. Performances of the BDD-based implementations nor-
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Figure 10. Memory consumption of the bitmap-based implemen-
tations normalized by their BDD-based counterparts, ajedtaver
all the benchmarks.

by their bitmap-based counterparts, and Figure 10 showsé&me-

ory savings by normalizing the bitmap-based algorithmsHumyrt
BDD-based counterparts. As with BLQ, we allocate an injtiad|

of memory for the BDDs that is independent of the benchmark
size, which is why memory consumption actually increasesife
smallest benchmark, Emacs, and never goes lower than 33aMB
any benchmark.

On average, the use of BDDs increases running time oy 2
while it decreases memory usage by>6.9ost of the extra time
comes from a single functiomdd.allsat, which is used to extract
all the elements of a set contained in a given BDD. This fuamcis
used when iterating through a variable’s points-to setevadding
new edges according to the complex constraints. Howeveh, bo
PKH and HCD are actually faster with BDDs on all benchmarks
except for Emacs (Figure 9 shows that they are slower on gegra
but this is solely because of Emacs). These are the two Higusi
that propagate the most points-to information across cainst
edges. BDDs make this operation much faster than using espars
bitmaps, and this advantage makes up for the extra time taken
bdd allsat.

When BDDs are used, HCD is less effective in improving per-
formance than it was when using bitmaps because HCD desrease
the number of propagations required, but using BDDs already
makes propagation a fairly cheap operation. However, wiliDB,
HCD’s effect on memory consumption is much more noticeable,
since the constraint graph represents a much larger propant
the memory usage.

6. Conclusion

We have significantly improved upon the current state-efdrt

in inclusion-based pointer analysis by introducing twoeldech-
nigues:Lazy Cycle DetectioLCD) andHybrid Cycle Detection
(HCD). As their names suggest, both techniques improvefthe e
ciency and effectiveness of online cycle detection, whikriti-

cal to the scalability of all inclusion-based pointer asaly. Lazy
Cycle Detection detects cycles based on their effects antgptd
sets, piggybacking on top of the transitive closure compriahat

is inherent to this type of analysis. Its lazy nature yieldsghly
efficient algorithm. Hybrid Cycle Detection takes a diffierep-
proach, paying a tiny up-front cost to perform an offline sa&l
that allows the subsequent online analysis to detect cydltbsut
ever having to traverse the constraint graph. Hybrid Cyciéeb-
tion can be used to enhance other algorithms for inclusaset
pointer analysis, significantly improving their perforneanOur re-
sults show that the combination of LCD and HCD is on average th
most efficient of all the algorithms we studied. On our suitei®
large open source C benchmarks, which range in size from 169K
to 2.17M lines of code, the LCD+HCD algorithm is an average of
3.2x faster than the Heintze and Tardieu algorittnix faster
than the Pearcet al. algorithm, and20.6 x faster than the Berndl
et al. algorithm.

We have also investigated the use of different data strestur
to represent points-to sets, examining the impact on botfoipe
mance and memory consumption. In particular, we have cosdpar
the sparse-bitmap implementation used in the GCC operesour
compiler with a BDD-based implementation, and we have found
that the BDD implementation is on average 3lower but uses
5.5x less memory.

Many program analyses that require pointer information sac
rifice precision in the pointer analysis for the sake of reabte
performance. This performance is the attraction of analgseh as
Steensgaard’'s near-linear-time analysis [25] and Das-iavel
Flow analysis [7]. However, the precision of subsequentm
analysis is often limited by the precision of the pointerommfa-
tion used [24], so it behooves an analysis to use the mosisprec
pointer information that it can reasonably acquire. Ourknoas
made inclusion-based pointer analysis a reasonable cbeérefor
applications with millions of lines of code.
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