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Abstract
Pointer information is a prerequisite for most program analyses,
and the quality of this information can greatly affect theirprecision
and performance. Inclusion-based (i.e. Andersen-style) pointer
analysis is an important point in the space of pointer analyses,
offering a potential sweet-spot in the trade-off between precision
and performance. However, current techniques for inclusion-based
pointer analysis can have difficulties delivering on this potential.

We introduce and evaluate two novel techniques for inclusion-
based pointer analysis—one lazy, one eager1—that significantly
improve upon the current state-of-the-art without impacting pre-
cision. These techniques focus on the problem of online cycle de-
tection, a critical optimization for scaling such analyses. Using a
suite of six open-source C programs, which range in size from169K
to 2.17M LOC, we compare our techniques against the three best
inclusion-based analyses—described by Heintze and Tardieu [11],
by Pearceet al. [21], and by Berndl et al. [4]. The combination
of our two techniques results in an algorithm which is on average3:2� faster than Heintze and Tardieu’s algorithm,6:4� faster than
Pearce et al.’s algorithm, and20:6� faster than Berndlet al.’s al-
gorithm.

We also investigate the use of different data structures to repre-
sent points-to sets, examining the impact on both performance and
memory consumption. We compare a sparse-bitmap implementa-
tion used in the GCC compiler with a BDD-based implementation,
and we find that the BDD implementation is on average 2� slower
than using sparse bitmaps but uses 5.5� less memory.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages–Program
analysis

General Terms Algorithms, Performance

Keywords pointer analysis

1. Introduction
Pointer information is a prerequisite for most program analyses, in-
cluding modern whole-program analyses such as program verifica-
tion and program understanding. The precision and performance of

1 Hence the reference to Aesop’s fable “The Ant and the Grasshopper” [1].
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these client analyses depend heavily on the precision of thepointer
information that they’re given [24]. Unfortunately, precise pointer
analysis is NP-hard [14]—any practical pointer analysis must ap-
proximate the exact solution. There are a number of different ap-
proximations that can be made, each with its own trade-off between
precision and performance [12].

The most precise analyses are flow-sensitive—respecting control-
flow dependencies—and context-sensitive—respecting the seman-
tics of function calls. Despite a great deal of work on both flow-
sensitive and context-sensitive algorithms [6, 8, 13, 15, 20, 27, 28,
29, 30], none has been shown to scale to programs with millions of
lines of code, and most have difficulty scaling to 100,000 lines of
code.

If flow- and context-sensitivity aren’t feasible for large pro-
grams, we’re left to consider flow- and context-insensitiveanaly-
ses. The most precise member of this class is inclusion-based (i.e.,
Andersen-style) pointer analysis [2], which is closely related to
computing the dynamic transitive closure of a graph. Inclusion con-
straints are generated from the program code and used to construct
a constraint graph, with nodes to represent each program vari-
able and edges to represent inclusion constraints between the vari-
ables. Indirect constraints—those involving pointer dereferences—
can’t be represented, since points-to information isn’t yet available.
Points-to information is gathered by computing the transitive clo-
sure of the graph; as more information is gained, new edges are
added to the constraint graph to represent the indirect constraints.
The transitive closure of the final graph yields the points-to solu-
tion. The exact algorithm is explained in Section 3.

Inclusion-based pointer analysis has a complexity ofO(n3); the
key to scaling it is to reduce the input size—i.e. maken smaller—
while maintaining soundness. The primary method for reducingn is online cycle detection: the analysis looks for cycles in the
constraint graph and collapses their components into single nodes.
Because the algorithm computes the transitive closure, allnodes
in the same cycle are guaranteed to have identical points-tosets
and can safely be collapsed together. The method used to find and
collapse cycles during the analysis has a significant impacton the
algorithm’s performance.

In this paper we introduce a new inclusion-based pointer anal-
ysis algorithm that employs a novel method of detecting cycles
calledLazy Cycle Detection(LCD). Rather than aggressively seek-
ing out cycles in the constraint graph, LCD piggybacks on top
of the transitive closure computation, identifying potential cycles
based on their effect—identical points-to sets. This lazy nature sig-
nificantly reduces the overhead of online cycle detection.

We also introduce a second method for detecting cycles called
Hybrid Cycle Detection(HCD). Hybrid Cycle Detection offloads
work to a linear-time offline analysis—a static analysis done prior
to the actual pointer analysis. The actual pointer analysisis then
able to detect cycles without performing any graph traversal. Thus,



HCD eagerly pays a small up-front cost to avoid a large amountof
later work. While HCD can be used on its own, its true power lies
in the fact that it can easily be combined with other inclusion-based
pointer analyses to significantly improve their performance.

We compare our new techniques against a diverse group of
inclusion-based pointer analyses representing the current state-
of-the-art. This group includes algorithms due to Heintze and
Tardieu [11] (HT), Pearceet al. [21] (PKH), and Berndlet al. [4]
(BLQ). All of these algorithms are explained in Section 2.

This paper makes the following contributions to inclusion-based
pointer analysis:� We introduce Lazy Cycle Detection, which recognizes that the

effects of cycles—identical points-to sets—can be used to de-
tect them with extremely low overhead. On average LCD is
faster than all three current state-of-the-art inclusion-based
analyses: 1.05� faster than HT, 2.1� faster than PKH, and
6.8� faster than BLQ.� We introduce Hybrid Cycle Detection, which dramatically re-
duces the overhead of online cycle detection by carefully par-
titioning the task into offline and online analyses. On average
HCD improves the performance of HT by 3.2�, PKH by 5�,
BLQ by 1.1�, and LCD by 3.2�. HCD is the first cycle de-
tection technique that has been shown to be practical for BDD-
based program analyses like BLQ.� We provide the first empirical comparison of the three current
state-of-the-art inclusion-based pointer analysis algorithms,
namely, HT, PKH, and BLQ. We find that HT is the fastest—
1.9� faster than PKH and 6.5� faster than BLQ.� We demonstrate that an algorithm that combines Lazy Cy-
cle Detection and Hybrid Cycle Detection (LCD+HCD) is the
fastest of the algorithms that we studied and can easily scale to
programs consisting of over a million lines of code. It is on av-
erage3:2� faster than HT,6:4� faster than PKH, and20:6�
faster than BLQ.� We investigate the memory consumption of the various analy-
ses, experimenting with two different data structures for repre-
senting points-to sets: sparse bitmaps as currently used inthe
GCC compiler, and a BDD-based representation. For the algo-
rithms that we study, we find that the BDD-based representation
is an average of 2� slower than sparse bitmaps but uses 5.5�
less memory.

The rest of this paper is organized as follows. In Section 2 we
place our techniques in the context of prior work. Section 3 pro-
vides background about inclusion-based pointer analysis.Section 4
describes our two new techniques for detecting cycles, and Sec-
tion 5 presents our experimental evaluation.

2. Related Work
Inclusion-based pointer analysis is described by Andersenin his
Ph.D. thesis [2], in which he formulates the problem in termsof
type theory. The algorithm presented in the thesis solves the in-
clusion constraints in a fairly naive manner by repeatedly iterating
through a constraint vector. Cycle detection is not mentioned. There
have been several significant updates since that time.

Faehndrichet al. [9] represent the constraints using a graph and
formulate the problem as computing the dynamic transitive closure
of that graph. This work introduces a method for partial online
cycle detection and demonstrates that cycle detection is critical
for scalability. A depth-first search of the graph is performed upon
every edge insertion, but the search is artificially restricted for the
sake of performance, making cycle detection incomplete.

Heintze and Tardieu introduce a new algorithm for computing
the dynamic transitive closure [11]. As new inclusion edgesare
added to the constraint graph from the indirect constraints, their
corresponding new transitive edges are not added to the graph. In-
stead, the constraint graph retains its pre-transitive form. During the
analysis, indirect constraints are resolved via reachability queries
on the graph. Cycle detection is performed as a side-effect of these
queries. The main drawback to this technique is unavoidableredun-
dant work—it is impossible to know whether a reachability query
will encounter a newly-added inclusion edge (inserted earlier due
to some other indirect constraint) until after it completes, which
means that potentially redundant queries must still be carried out
on the off-chance that a new edge will be encountered. Heintze
and Tardieu report excellent results, analyzing a C programwith
1.3M LOC in less than a second, but these results are for a field-
based implementation. A field-based analysis treats each field of
a struct as its own variable—assignments tox:f , y:f , and(�z):f
are all treated as assignments to a variablef , which tends to de-
crease both the size of the input to the pointer analysis and the
number of dereferenced variables (an important indicator of perfor-
mance). Field-based analysis is unsound for C programs, andwhile
such an analysis is appropriate for the work described by Heintze
and Tardieu (the client is a dependency analysis that is itself field-
based), it is inappropriate for many others. For the resultsin this
paper, we use a field-insensitive version of their algorithm, which
is dramatically slower than the field-based version2.

Pearceet al.have proposed two different approaches to inclusion-
based analysis, both of which differ from Heintze and Tardieu in
that they maintain the explicit transitive closure of the constraint
graph. Pearceet al.first proposed an analysis [22] that uses a more
efficient algorithm for online cycle detection than that introduced
by Faehndrichet al. [9]. In order to avoid cycle detection at every
edge insertion, the algorithm dynamically maintains a topologi-
cal ordering of the constraint graph. Only a newly-insertededge
that violates the current ordering could possibly create a cycle, so
only in this case are cycle detection and topological re-ordering
performed. This algorithm proves to still have too much overhead,
so Pearceet al. later proposed a new and more efficient algorithm
[21]. Rather than detect cycles at every edge insertion, theentire
constraint graph is periodically swept to detect and collapse any
cycles that have formed since the last sweep. It is this algorithm
that we evaluate in this paper.

Berndl et al. [4] describe a field-sensitive inclusion-based
pointer analysis for Java that uses BDDs [5] to represent both the
constraint graph and the points-to solution. BDDs have beenexten-
sively used in model checking as a way to represent large graphs in
a very compact form that allows for fast manipulation. Berndl et al.
were one of the first to use BDDs for pointer analysis. The analysis
they describe is specific to the Java language; it also doesn’t handle
indirect calls because it depends on a prior analysis to construct the
complete call-graph. The version of the algorithm that we use in
this paper is a field-insensitive analysis for C programs that does
handle indirect function calls.

Because Andersen-style analysis was previously considered to
be non-scalable, other algorithms, including Steensgaard’s near-
linear time analysis [25] and Das’ One-Level Flow analysis [7],
have been proposed to improve performance by sacrificing even
more precision. While Steensgaard’s analysis has much greater im-
precision than inclusion-based analysis, Das reports thatfor C pro-
grams One-Level Flow analysis has precision very close to that of

2 To ensure that the performance difference is in fact due to field-
insensitivity, we also benchmarked a field-based version ofour HT im-
plementation. We observed comparable performance to that reported by
Heintze and Tardieu [11].



Constraint Type Program Code Constraint Meaning
Base a = &b a � fbg lo
(b) 2 pts(a)

Simple a = b a � b pts(a) � pts(b)
Complex1 a = �b a � �b 8v 2 pts(b) : pts(a) � pts(v)
Complex2 �a = b �a � b 8v 2 pts(a) : pts(v) � pts(b)

Table 1. Constraint Types

inclusion-based analysis. This precision is based on the assump-
tion that multi-level pointers are less frequent and less important
than single-level pointers, which Das’ experiments indicate is usu-
ally (though not always) true for C, but which may not be true for
other languages such as Java and C++. In addition, for the sake of
performance, Das conservatively unifies non-equivalent variables,
much like Steensgaard’s analysis; this unification makes itdifficult
to trace dependency chains among variables. Dependency chains
are very useful for understanding the results of program analyses
such as program verification and program understanding, andalso
for use in automatic tools such as Broadway [10]. Inclusion-based
pointer analysis is a better choice than either Steensgaard’s analy-
sis or One-Level Flow,if it can be made to run in reasonable time
even on large programs with millions of lines of code; this isthe
challenge that we address in this paper.

In the other direction of increasing precision, there have been
several attempts to scale a context-sensitive version of inclusion-
based pointer analysis. One of the fastest of these attemptsis the
the algorithm by Whaleyet al. [28], which uses BDDs to scale
a context-sensitive, flow-insensitive pointer analysis for Java to
almost 700K LOC (measuring bytecode rather than source lines).
However, Whaleyet al.’s algorithm is only context-sensitive for
top-level variables, meaning that all variables in the heapare treated
context-insensitively; also, its efficiency depends heavily on certain
characteristics of the Java language—attempts to use the same
technique for analyzing programs in C have shown greatly reduced
performance [3].

Nystromet al. [20] present a context-sensitive algorithm based
on the insight that inlining all function calls makes a context-
insensitive analysis equivalent to a context-sensitive analysis of
the original program. Of course, inlining all function calls can
increase the program size exponentially, but intelligent heuristics
can make exponential growth extremely unlikely. An important
building block of this approach is context-insensitive inclusion-
based analysis—it is used while inlining the functions and also for
analyzing the resulting program. Nystromet al. manage to scale
the context-sensitive analysis to a C program with 200K LOC.The
new techniques described in this paper could be used to scaletheir
algorithm even further.

3. Background
Inclusion-based pointer analysis is a set-constraint problem. A
linear pass through the program code generates three types of
constraints—base, simple, andcomplex[11]. We eliminate nested
pointer dereferences by introducing auxiliary variables and con-
straints, leaving only one pointer dereference per constraint. Table 1
demonstrates the three types of constraints, how they are derived
from the program code, and what the constraints mean. For a vari-
ablev, pts(v) representsv’s points-to set andlo
(v) represents the
memory location denoted byv.

Following the example of prior work in this area [9, 11, 21, 4],
we solve the set-constraint problem by computing the dynamic
transitive closure of a constraint graph. The constraint graphG
has one node for each program variable. For each simple constrainta � b, G has a directed edgeb! a. Each node also has a points-to

let G =< V;E >W  V
while W 6= ; don SELECT-FROM(W )

for eachv 2 pts(n) do
for each constrainta � �n do

if v ! a =2 E thenE  E [ fv ! agW  W [ fvg
for each constraint�n � b do

if b! v =2 E thenE  E [ fb! vgW  W [ fbg
for eachn! z 2 E dopts(z) pts(z) [ pts(n)

if pts(z) changedthenW  W [ fzg
Figure 1. Dynamic Transitive Closure

set associated with it, initialized using the base constraints: for each
base constrainta � fbg, nodea’s points-to set containslo
(b). The
complex constraints are not explicitly represented in the graph; they
are maintained in a separate list.

To solve the constraints we compute the transitive closure ofG by propagating points-to information along its edges. As we
update the points-to sets, we must also add new edges to represent
the complex constraints. For each constrainta � �b and eachlo
(v) 2 pts(b), we add a new edgev ! a. Similarly, for each
constraint�a � b and eachlo
(v) 2 pts(a), we add a new edgeb! v.

Figure 1 shows a basic worklist algorithm that maintains the
explicit transitive closure ofG. The worklist is initialized with all
nodes inG that have a non-empty points-to set. For each noden
taken off the worklist, we proceed in two steps:

1. For eachlo
(v) 2 pts(n): for each constrainta � �n add an
edgev ! a, and for each constraint�n � b add an edgeb! v.
Any node that has had a new outgoing edge added is inserted
into the worklist.

2. For each outgoing edgen ! v, propagatepts(n) to nodev,
i.e. pts(v) := pts(v) [ pts(n). Any node whose points-to set
has been modified is inserted into the worklist.

The algorithm is presented as it is for clarity of exposition; various
optimizations are possible to improve its performance.

4. Our Solutions
The algorithm shown in Figure 1 computes the dynamic transitive
closure of the constraint graph but makes no attempt to detect cy-
cles. The particular method used for detecting cycles will in large
part determine the efficiency of the analysis—in fact, without cycle
detection our larger benchmarks run out of memory before com-
pleting, even on a machine with 2GB of memory. When perform-
ing online cycle detection, there is a tension between searching for



cycles too early—which leads to the overhead of repeatedly sweep-
ing the constraint graph—and searching for cycles too late—which
reduces the benefits of cycle elimination because points-toinfor-
mation can be redundantly propagated around cycles before they
are detected. We now present two new approaches for online cycle
detection that balance this tension in different ways.

4.1 Lazy Cycle Detection

Cycles in the constraint graph can be collapsed because nodes in the
same cycle are guaranteed to have identical points-to sets.We use
this fact to create a heuristic for cycle detection: before propagating
points-to information across an edge of the constraint graph, we
check to see if the source and destination already have equalpoints-
to sets; if so then we use a depth-first search to check for a possible
cycle.

This technique is lazy because rather than trying to detect cycles
when they are created,i.e. when the final edge is inserted that
completes the cycle, it waits until the effect of the cycle—identical
points-to sets—becomes evident. The advantage of this technique
is that we only attempt to detect cycles when we are likely to
find them. A potential disadvantage is that cycles may be detected
well after they are formed, since we must wait for the points-to
information to propagate all the way around the cycle beforewe
can detect it.

The accuracy of this technique depends upon the assumption
that two nodes usually have identical points-to sets only because
they are in the same cycle; otherwise it would waste time trying
to detect non-existent cycles. One additional refinement isneces-
sary to bolster this assumption and make the technique relatively
precise: we never trigger cycle detection on the same edge twice.
We thus avoid making repeated cycle detection attempts involving
nodes with identical points-to sets that are not in a cycle. This addi-
tional restriction implies that Lazy Cycle Detection is incomplete—
it is not guaranteed to find all cycles in the constraint graph.

The Lazy Cycle Detection algorithm is shown in Figure 2. Be-
fore we propagate a points-to set from one node to another, we
check to see if two conditions are met: (1) the points-to setsare
identical; and (2) we haven’t triggered a search on this edgeprevi-
ously. If these conditions are met, then we trigger cycle detection
rooted at the destination node. If there exists a cycle, we collapse
together all the nodes involved; otherwise we remember thisedge
so that we won’t repeat the attempt later.

4.2 Hybrid Cycle Detection

Cycle detection can be done offline, in a static analysis prior to
the actual pointer analysis, such as with Offline Variable Substitu-
tion described by Rountevet al. [23]. However, many cycles don’t
exist in the initial constraint graph and only appear as new edges
are added during the pointer analysis itself, thus the need for on-
line cycle detection techniques such as Lazy Cycle Detection. The
drawback to online cycle detection is that it requires traversing the
constraint graph multiple times searching for cycles; these repeated
traversals can become extremely expensive. Hybrid Cycle Detec-
tion (HCD) is so-called because it combines both offline and online
analyses to detect cycles, thereby getting the best of both worlds—
detecting cycles created online during the pointer analysis, without
requiring any traversal of the constraint graph.

We now describe the HCD offline analysis, which is a linear-
time static analysis done prior to the actual pointer analysis. We
build an offline version of the constraint graph, with one node for
each program variable plus an additionalref node for each variable
dereferenced in the constraints (e.g.�n). There is a directed edge
for each simple and complex constraint:a � b yields edgeb! a,a � �b yields edge�b! a, and�a � b yields edgeb! �a. Base
constraints are ignored. Figure 3 illustrates this process.

let G =< V;E >R ;W  V
while W 6= ; don SELECT-FROM(W )

for eachv 2 pts(n) do
for each constrainta � �n do

if v ! a =2 E thenE  E [ fv ! agW  W [ fvg
for each constraint�n � b do

if b! v =2 E thenE  E [ fb! vgW  W [ fbg
for eachn! z 2 E do

if pts(z) = pts(n) ^ n! z =2 R then
DETECT-AND-COLLAPSE-CYCLES(z)R R [ fn! zgpts(z) pts(z) [ pts(n)

if pts(z) changedthenW  W [ fzg
Figure 2. Lazy Cycle Detectiona = &
;d = 
;b = �a;�a = b;

(a) Programa � f
gd � 
b � �a�a � b
(b) Constraints

c d

*a b

(c) Offline Constraint Graph

Figure 3. HCD Offline Analysis Example: (a) Program code; (b)
constraints generated from the program code; (c) the offlinecon-
straint graph corresponding to the constraints. Note that�a andb
are in a cycle together; from this we can infer that in the online
constraint graph,b will be in a cycle with all the variables ina’s
points-to set.

Once the graph is built we detect strongly-connected compo-
nents (SCCs) using Tarjan’s linear-time algorithm [26]. Any SCCs
containing only non-ref nodes can be collapsed immediately. SCCs
containing ref nodes are more problematic: a ref node in the offline
constraint graph is a stand-in for a variable’s unknown points-to
set, e.g. the ref node�n stands for whatevern’s points-to set will
be when the pointer analysis is complete. An SCC containing aref
node such as�n actually means thatn’s points-to set is part of the
SCC; but since we don’t yet know what that points-to set will be,
we can’t collapse that SCC. The offline analysis knows which vari-
ables’ points-to sets will be part of an SCC, while the onlineanal-
ysis (i.e. the pointer analysis) knows the variables’ actual points-to
sets. The purpose of Hybrid Cycle Detection is to bridge thisgap.
Figure 4 shows how the online analysis is affected when an SCC
contains a ref node in the offline constraint graph.



a! f
g
(a) Points-to Info

c d

b

(b) Before edges added

c d

b

(c) After edges added

Figure 4. HCD Online Analysis Example: (a) The initial points-to
information from the constraints in Figure 3; (b) the onlinecon-
straint graph before any edges are added; (c) the online constraint
graph after the edges are added due to the complex constraints in
Figure 3. Note that
 andb are now in a cycle together.

let G =< V;E >W  V
while W 6= ; don SELECT-FROM(W )

if (n; a) 2 L then
for eachv 2 pts(n) do

COLLAPSE(v;a)W  W [ fag
for eachv 2 pts(n) do

for each constrainta � �n do
if v ! a =2 E thenE  E [ fv ! agW  W [ fvg

for each constraint�n � b do
if b! v =2 E thenE  E [ fb! vgW  W [ fbg

for eachn! z 2 E dopts(z) pts(z) [ pts(n)
if pts(z) changedthenW  W [ fzg

Figure 5. Hybrid Cycle Detection

We finish the offline analysis by looking for SCCs in the offline
constraint graph that consist of more than one node and that also
contain at least one ref node. Because there are no constraints of
the form�p � �q, no ref node can have a reflexive edge and any
non-trivial SCC containing a ref node must also contain a non-ref
node. For each SCC of interest we select one non-ref nodeb, and
for each ref node�a in the same SCC, we store the tuple(a; b) in
a listL. This tuple signifies to the online analysis thata’s points-
to set belongs in an SCC withb, and therefore everything ina’s
points-to set can safely be collapsed withb.

The online analysis is shown in Figure 5. The algorithm is
similar to the basic algorithm shown in Figure 1, except when
processing noden we first checkL for a tuple of the form(n; a). If
one is found then we preemptively collapse together nodea and all
members ofn’s points-to set, knowing that they belong to the same
cycle. For simplicity’s sake the pseudo-code ignores some obvious
optimizations.

Hybrid Cycle Detection is not guaranteed to find all cycles in
the online constraint graph, only those that can be inferredfrom

the offline version of the graph. Those cycles that it does find,
however, are discovered at the earliest possible opportunity and
without requiring any traversal of the constraint graph. Inaddition,
while HCD can be used on its own as shown in Figure 5, it can also
be easily combined with other algorithms such as HT, PKH, BLQ,
and LCD to enhance their performance.

5. Evaluation
5.1 Methodology

To compare the various inclusion-based pointer analyses, we imple-
ment field-insensitive versions of five main algorithms: Heintze and
Tardieu (HT), Berndlet al.(BLQ), Pearceet al.(PKH), Lazy Cycle
Detection (LCD), and Hybrid Cycle Detection (HCD). We also im-
plement four additional algorithms by integrating HCD withfour
of the main algorithms: HT+HCD, PKH+HCD, BLQ+HCD, and
LCD+HCD. The algorithms are written in C++ and handle all as-
pects of the C language except for varargs. They use as many com-
mon components as possible to provide a fair comparison, andthey
have all been highly optimized. The source code is availablefrom
the authors upon request. Some highlights of the implementations
include:� Indirect function calls are handled as described by Pearce et

al [21]. Function parameters are numbered contiguously start-
ing immediately after their corresponding function variable, and
when resolving indirect calls they are accessed as offsets to that
function variable.� Cycles are detected using Nuutilaet al.’s [19] variant of Tar-
jan’s algorithm, and they are collapsed using a union-find data
structure with both union-by-rank and path compression heuris-
tics.� BLQ uses the incrementalization optimization described by
Berndl et al. [4]. We use the BuDDy BDD library [16] to im-
plement BDDs.� LCD and HCD are both worklist algorithms—we use the work-
list strategy LRF,3 suggested by Pearceet al. [22], to priori-
tize the worklist. We also divide the worklist into two sections,
currentandnext, as described by Nielsonet al. [18]; items are
selected fromcurrent and pushed ontonext, and the two are
swapped whencurrent becomes empty. For our benchmarks,
the divided worklist yields significantly better performance than
a single worklist.� Aside from BLQ, all the algorithms use sparse bitmaps to im-
plement both the constraint graph and the points-to sets. The
sparse bitmap implementation is taken from the GCC 4.1.1
compiler.� We also experiment with the use of BDDs to represent the
points-to sets. Unlike BLQ, which stores the entire points-to
solution in a single BDD, we give each variable its own BDD
to store its individual points-to set. For example, ifa! fb; 
g
andd ! f
; eg, BLQ would have a single BDD representing
the set of tuplesf(a; b); (a; 
); (d; 
); (d; e)g. Instead, we givea a BDD representing the setfb; 
g and we gived a BDD
representing the setf
; eg. The use of BDDs instead of sparse
bitmaps is a simple modification that requires minimal changes
to the code.

The benchmarks for our experiments are described in Table 2.
Emacs is a text editor; Ghostscript is a postscript viewer; Gimp
is an image manipulation program; Insight is a GUI overlaid on

3 Least Recently Fired—the node processed furthest back in time is given
priority.



Name LOC Original Constraints Reduced Constraints Base Simple Complex
Emacs-21.4a 169K 83,213 21,460 4,088 11,095 6,277

Ghostscript-8.15 242K 169,312 67,310 12,154 25,880 29,276
Gimp-2.2.8 554K 411,783 96,483 17,083 43,878 35,522
Insight-6.5 603K 243,404 85,375 13,198 35,382 36,795

Wine-0.9.21 1,338K 713,065 171,237 39,166 62,499 69,572
Linux-2.4.26 2,172K 574,788 203,733 25,678 77,936 100,119

Table 2. Benchmarks: For each benchmark we show the number of lines ofcode (computed as the number of non-blank, non-comment lines
in the source files), the original number of constraints generated using CIL, the reduced number of constraints after being pre-processed, and
a break-down of the forms of the reduced constraints.

top of the gdb debugger; Wine is a Windows emulator; and Linux
is the Linux operating system kernel. The constraint generator
is separate from the constraint solvers: we generate constraints
from the benchmarks using the CIL C front-end [17], ignoringany
assignments involving types too small to hold a pointer. External
library calls are summarized using hand-crafted function stubs.
We pre-process the resulting constraint files using a variant of
Offline Variable Substitution [23], which reduces the number of
constraints by 60–77%. This pre-processing step takes lessthan a
second for Emacs and Ghostscript, and between 1 and 3 secondsfor
Gimp, Insight, Wine, and Linux. The results reported are forthese
reduced constraint files; they include everything from reading in
the constraint file from disk, creating the initial constraint graph,
and solving that graph.

We run the experiments on a dual-core 1.83 GHz processor with
2 GB of memory, using the Ubuntu 6.10 Linux distribution. Though
the processor is dual-core, the executables themselves aresingle-
threaded. All executables are compiled using gcc-4.1.1 andthe ’–
O3’ optimization flag. We repeat each experiment three timesand
report the smallest time; all the experiments have very low variance
in performance.

5.2 Time and Memory Consumption

Table 3 shows the performance of the various algorithms. The
times for HCD’s offline analysis are shown separately and notin-
cluded in the times for the various algorithms using HCD—they
are small enough to be essentially negligible. Table 4 showsthe
memory consumption of the algorithms. Figure 6 graphicallycom-
pares (using a log-scale) the performance of our combined algo-
rithm LCD+HCD—the fastest of all the algorithms—against the
current state-of-the-art algorithms. All these numbers were gath-
ered using the sparse-bitmap implementations of the algorithms
(except for BLQ).

BLQ’s memory allocation is fairly constant across all the bench-
marks. We allocate an initial pool of memory for the BDDs, which
dominates the memory usage and is independent of benchmark
size. While we can decrease the initial pool size for the smaller
benchmarks without decreasing performance, there is no easy way
to calculate the minimum pool size for a specific benchmark, so for
all the benchmarks we use the smallest pool size that doesn’timpair
the performance of our largest benchmark.

It is interesting to note the vast difference in analysis time be-
tween Wine and Linux for all algorithms other than BLQ. While
Wine has 32.5K fewer constraints than Linux, it takes 1.7–7.3�
longer to be analyzed, depending on the algorithm used. Thisdis-
crepancy points out the danger in using the size of the initial input
to predict performance when other factors can have at least as much
impact. Wine is a case in point: while its initial constraintgraph is
smaller than that of Linux, its final constraint graph at the end of
the analysis is an order-of-magnitude larger than that of Linux, due
mostly to Wine’s larger average points-to set size. BLQ doesn’t dis-
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Figure 6. Performance (in seconds) of our new combined algo-
rithm (LCD+HCD) versus three state-of-the art inclusion-based al-
gorithms. Note that the Y-axis is log-scale.

play this same behavior, because of its radically differentanalysis
mechanism that uses BDDs and because it lacks cycle detection.

Comparing HT, PKH, BLQ, LCD, and HCD. Figure 7 compares
the performance of the main algorithms by normalizing the times
for HT, PKH, BLQ, and HCD by that of LCD. Focusing on the
current state-of-the-art algorithms, HT is clearly the fastest, being
1.9� faster than PKH and 6.5� faster than BLQ. LCD is on
average 1.05� faster than HT and uses 1.2� less memory. HCD
runs out of memory for Wine, but excluding that benchmark it is
on average 1.8� slower than HT and 1.9� faster than PKH, using
1.4� more memory than HT.

Effects of HCD. Figure 8 normalizes the performance of the main
algorithms by that of their HCD-enhanced counterparts. On av-
erage, the use of HCD increases HT performance by 3.2�, PKH
performance by 5�, BLQ performance by 1.1�, and LCD per-
formance by 3.2�. HCD also leads to a small decrease in mem-
ory consumption for all the algorithms except BLQ—it decreases
memory consumption by 1.2� for HT, by 1.1� for PKH, and by
1.02� for LCD. Most of the memory used by these algorithms
comes from the representation of points-to sets. HCD improves
performance by finding and collapsing cycles much earlier than
normal, but it doesn’t actually find many more cycles than were
already detected without using HCD, so it doesn’t significantly re-
duce the number of points-to sets that need to be maintained.HCD
doesn’t improve BLQ’s performance by much because even though
no extra effort is required to find cycles, there is still someoverhead
involved in collapsing those cycles. Also, the performanceof BLQ
depends on the sizes of the BDD representations of the constraint



Emacs Ghostscript Gimp Insight Wine Linux
HCD-Offline 0.05 0.17 0.26 0.23 0.51 0.62

HT 1.66 12.03 59.00 42.49 1,388.51 393.30
PKH 2.05 20.05 92.30 117.88 1,946.16 1,181.59
BLQ 4.74 121.60 167.56 265.94 5,117.64 5,144.29
LCD 3.07 15.23 39.50 39.02 1,157.10 327.65
HCD 0.46 49.55 59.70 73.92 OOM 659.74

HT+HCD 0.46 7.29 11.94 14.82 643.89 102.77
PKH+HCD 0.46 10.52 17.12 21.91 838.08 114.45
BLQ+HCD 5.81 115.00 173.46 257.05 4,211.71 4,581.91
LCD+HCD 0.56 7.99 12.50 15.97 492.40 86.74

Table 3. Performance (in seconds), using bitmaps for points-to sets. The HCD-Offline analysis is reported separately and not included in the
times for those algorithms using HCD. The HCD algorithm runsout of memory on the Wine benchmark.

Emacs Ghostscript Gimp Insight Wine Linux
HT 17.7 84.9 279.0 231.5 1,867.2 901.3

PKH 17.6 83.9 269.5 194.7 1,448.3 840.7
BLQ 215.6 216.1 216.2 216.1 216.2 216.2
LCD 14.3 74.6 269.0 184.4 1,465.1 830.1
HCD 18.1 138.7 416.1 290.5 OOM 1,301.5

HT+HCD 12.4 80.8 253.9 186.5 1,391.4 842.5
PKH+HCD 13.9 79.1 264.6 186.0 1,430.2 807.5
BLQ+HCD 215.8 216.2 216.2 216.2 216.2 216.2
LCD+HCD 13.9 73.5 263.9 183.6 1,406.4 807.9

Table 4. Memory consumption (in megabytes), using bitmaps for points-to sets..
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Figure 7. Performance comparison of individual benchmarks,
where performance is normalized against LCD. HCD runs out of
memory for Wine, so there is no HCD bar for that benchmark.

and points-to graphs, and because of the properties of BDDs,re-
moving edges from the constraint graph can potentially increase
the size of the constraint graph BDD.

The combination of our two new algorithms, LCD+HCD, yields
the fastest algorithm among all those studied: It is3:2� faster than
HT, 6:4� faster than PKH, and20:6� faster than BLQ.

5.3 Understanding the Results

There are a number of factors that determine the relative perfor-
mance of these algorithms, but three of the most important are:
(1) the number of nodes collapsed due to strongly-connectedcom-
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Figure 8. Performance comparison of the individual benchmarks,
where the performance of each main algorithm is normalized
against its respective HCD-enhanced counterpart.

ponents; (2) the number of nodes searched during the depth-first
traversals of the constraint graph; and (3) the number of propa-
gations of points-to information across the edges of the constraint
graph.

The number of nodes collapsed is important because it reduces
both the number of nodes and the number of edges in the constraint
graph; the more nodes that are collapsed, the smaller the input and
the more efficient the algorithm.

The depth-first searches are pure overhead due to cycle detec-
tion. As long as roughly as many cycles are being detected, then
the fewer nodes that are searched the better.



Emacs Ghostscript Gimp Insight Wine Linux
HT 3.44 18.55 46.98 65.00 1,551.89 419.38

PKH 4.23 19.55 81.53 96.50 1,172.15 801.13
LCD 4.96 19.34 47.29 64.57 1,213.43 380.26
HCD 3.96 24.65 49.11 65.01 731.20 267.69

HT+HCD 2.58 15.65 33.69 42.33 737.37 209.90
PKH+HCD 3.06 14.70 33.71 43.20 744.35 172.43
LCD+HCD 3.09 13.69 33.04 43.17 625.82 183.97

Table 5. Performance (in seconds), using BDDs for points-to sets.

Emacs Ghostscript Gimp Insight Wine Linux
HT 33.1 49.3 100.7 100.0 811.2 274.3

PKH 33.2 33.6 50.4 66.8 226.4 182.1
LCD 33.2 33.2 40.1 33.9 251.1 73.5
HCD 33.1 37.1 36.8 37.0 239.6 65.8

HT+HCD 33.1 37.8 51.2 53.9 410.6 100.7
PKH+HCD 33.1 33.2 36.0 33.2 103.9 45.2
LCD+HCD 33.1 33.2 33.2 33.2 173.6 42.6

Table 6. Memory consumption (in megabytes), using BDDs for points-to sets.

The number of points-to information propagations is an impor-
tant metric because propagation is one of the most expensiveopera-
tions in the analysis. It is strongly influenced by both the number of
cycles collapsed and by how quickly they are collapsed. If a cycle
is not detected quickly, then points-to information could be redun-
dantly circulated around the cycle a number of times.

We now examine these three quantities to help explain the per-
formance results seen in the previous section. Due to its radically
different analysis mechanism, we don’t include BLQ in this exam-
ination.4

Nodes Collapsed. PKH is the only algorithm guaranteed to detect
all strongly-connected components in the constraint graph; how-
ever, HT and LCD both do a very good job of finding and col-
lapsing cycles—for each benchmark they detect and collapseover
99% of the nodes collapsed by PKH. HCD by itself doesn’t do as
well, collapsing only 46–74% of the nodes collapsed by PKH. This
deficiency is primarily responsible for HCD’s greater memory con-
sumption.

Nodes Searched. HCD is, of course, the most efficient algorithm
in terms of searching the constraint graph, since it doesn’tsearch
at all. HT is the next most efficient algorithm, because it only
searches the subset of the graph necessary for resolving indirect
constraints. PKH searches 2.6� as many nodes as HT, as it period-
ically searches the entire graph for cycles. LCD is the leastefficient,
searching 8� as many nodes as HT.

Propagations. LCD has the fewest propagations, showing that
its greater effort at searching for cycles pays off by findingthose
cycles earlier than HT or PKH. HT has 1.8� as many propagations,
and PKH has 2.2� as many. Since they both find as many cycles as
LCD (as shown by the number of nodes collapsed), this difference
is due to the relative amount of time it takes for each of the

4 It is difficult to find statistics to directly explain BLQ’s performance rela-
tive to HT, PKH, LCD, and HCD. It doesn’t use cycle detection,so it adds
orders of magnitude more edges to the constraint graph—but propagation
of points-to information is done simultaneously across allthe edges using
BDD operations, and the performance of the algorithm is due more to how
well the BDDs compress the constraint and points-to graphs than anything
else.

algorithms to find cycles. HCD has the most propagations, 5.2�
as many as LCD. HCD finds cycles as soon as they are formed, so
it finds them much faster than LCD does, but as shown above, it
finds substantially fewer cycles than the other algorithms.

Effects of HCD. The main benefit of combining HCD with the
other algorithms is that it helps these algorithms find cycles much
sooner than they would on their own. While it does little to increase
the number of nodes collapsed or decrease the number of nodes
searched, it greatly decreases the number of propagations,because
cycles are collapsed before the points-to information has achance
to propagate around the cycles. The addition of HCD decreases the
number of propagations by 10� for HT and by 7.4� for both PKH
and LCD.

Discussion. Despite its lazy nature, LCD searches more nodes
than either HT or PKH, and it propagates less points-to information
than either as well. It appears that being more aggressive pays off,
which naturally leads to the question: could we do better by being
even more aggressive? However, past experience has shown that
we must carefully balance the work we do—too much aggression
can lead to overhead that overwhelms any benefits it may provide.
This point is shown in both Faehndrichet al.’s algorithm [9] and
Pearceet al.’s original algorithm [22]. Both of these algorithms
are very aggressive in seeking out cycles, and both are an order
of magnitude slower than any of the algorithms evaluated in this
paper.

5.4 Representing Points-to Sets

Table 4 shows that the memory consumption of all the algorithms
that use sparse bitmaps is extremely high. Profiling revealsthat
the majority of this memory usage comes from the bit-map rep-
resentation of points-to sets. BLQ, on the other hand, uses rela-
tively little memory even for the largest benchmarks, due toits
use of BDDs. It is thus natural to wonder how the other algo-
rithms would compare—in terms of both analysis time and mem-
ory consumption—if they were to instead use BDDs to represent
points-to sets.

Tables 5 and 6 show the performance and memory consump-
tion of the modified algorithms. Figure 9 graphically shows the
performance cost of the modified algorithms by normalizing them
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Figure 10. Memory consumption of the bitmap-based implemen-
tations normalized by their BDD-based counterparts, averaged over
all the benchmarks.

by their bitmap-based counterparts, and Figure 10 shows themem-
ory savings by normalizing the bitmap-based algorithms by their
BDD-based counterparts. As with BLQ, we allocate an initialpool
of memory for the BDDs that is independent of the benchmark
size, which is why memory consumption actually increases for the
smallest benchmark, Emacs, and never goes lower than 33.1MBfor
any benchmark.

On average, the use of BDDs increases running time by 2�
while it decreases memory usage by 5.5�. Most of the extra time
comes from a single function,bdd allsat, which is used to extract
all the elements of a set contained in a given BDD. This function is
used when iterating through a variable’s points-to set while adding
new edges according to the complex constraints. However, both
PKH and HCD are actually faster with BDDs on all benchmarks
except for Emacs (Figure 9 shows that they are slower on average,
but this is solely because of Emacs). These are the two algorithms
that propagate the most points-to information across constraint
edges. BDDs make this operation much faster than using sparse
bitmaps, and this advantage makes up for the extra time takenby
bdd allsat.

When BDDs are used, HCD is less effective in improving per-
formance than it was when using bitmaps because HCD decreases
the number of propagations required, but using BDDs already
makes propagation a fairly cheap operation. However, with BDDs,
HCD’s effect on memory consumption is much more noticeable,
since the constraint graph represents a much larger proportion of
the memory usage.

6. Conclusion
We have significantly improved upon the current state-of-the-art
in inclusion-based pointer analysis by introducing two novel tech-
niques:Lazy Cycle Detection(LCD) andHybrid Cycle Detection
(HCD). As their names suggest, both techniques improve the effi-
ciency and effectiveness of online cycle detection, which is criti-
cal to the scalability of all inclusion-based pointer analyses. Lazy
Cycle Detection detects cycles based on their effects on points-to
sets, piggybacking on top of the transitive closure computation that
is inherent to this type of analysis. Its lazy nature yields ahighly
efficient algorithm. Hybrid Cycle Detection takes a different ap-
proach, paying a tiny up-front cost to perform an offline analysis
that allows the subsequent online analysis to detect cycleswithout
ever having to traverse the constraint graph. Hybrid Cycle Detec-
tion can be used to enhance other algorithms for inclusion-based
pointer analysis, significantly improving their performance. Our re-
sults show that the combination of LCD and HCD is on average the
most efficient of all the algorithms we studied. On our suite of six
large open source C benchmarks, which range in size from 169K
to 2.17M lines of code, the LCD+HCD algorithm is an average of3:2� faster than the Heintze and Tardieu algorithm,6:4� faster
than the Pearceet al. algorithm, and20:6� faster than the Berndl
et al.algorithm.

We have also investigated the use of different data structures
to represent points-to sets, examining the impact on both perfor-
mance and memory consumption. In particular, we have compared
the sparse-bitmap implementation used in the GCC open-source
compiler with a BDD-based implementation, and we have found
that the BDD implementation is on average 2� slower but uses
5.5� less memory.

Many program analyses that require pointer information sac-
rifice precision in the pointer analysis for the sake of reasonable
performance. This performance is the attraction of analyses such as
Steensgaard’s near-linear-time analysis [25] and Das’ One-Level
Flow analysis [7]. However, the precision of subsequent program
analysis is often limited by the precision of the pointer informa-
tion used [24], so it behooves an analysis to use the most precise
pointer information that it can reasonably acquire. Our work has
made inclusion-based pointer analysis a reasonable choiceeven for
applications with millions of lines of code.
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