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Ray tracing is an attractive rendering option because it can produce high

quality images that faithfully represent physically-based phenomena. Its embarrass-

ingly parallel nature makes it a natural choice for rendering large-scale scene data,

especially on machines that lack specialized graphics hardware. Unfortunately, the

traditional recursive ray tracing algorithm is exceptionally memory inefficient for

large scenes, especially when using a shading model that generates incoherent sec-

ondary rays. Queueing ray tracers have been shown to control scene state under

these conditions, but they allow ray state to grow unchecked. Instead, we propose a

ray tracing framework that controls both ray and scene state by dynamically adjust-

ing the rendering algorithm to meet memory requirements. Our dynamic scheduling

framework generalizes recursive and queueing tracers into a spectrum of ray sched-

ules that can vary the active amount of ray and scene data in order to match the

characteristics of the hardware’s memory system.

This dissertation describes our dynamic ray scheduling approach that op-

erates on memory-bound work units, which consist of both rays and scene data.
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It builds these work units by tracing rays iteratively and queueing them in spatial

regions along with nearby data. By dynamically scheduling these work units, our

approach can reduce data loads and improve total runtime by 2× to 30×. In addi-

tion, we show that our algorithm scales across more than 1000 distributed proces-

sors, which is an order of magnitude larger than previously published results. Our

approach enables the use of complex lighting models on large data, particularly

scientific data, which improves image quality and thereby improves the scientific

insights possible.
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Chapter 1

Introduction

Humans are visual creatures, and as such, we consume the majority of our

information through images. The quality of an image has a direct bearing on its abil-

ity to convey information: to inform, to persuade, to entertain. Ray tracing remains

a popular technique for generating high-quality images because it can produce a

wide range of realistic visual phenomena, including accurate shadows, reflections

and light-surface interactions. Since ray tracing simulates the physical travel of

light through a scene, it can model complex lighting effects like caustics, multi-

ple scattering in participating media and wavelength-specific behavior. Its physi-

cal basis makes ray tracing attractive both for general rendering and for scientific

visualization, where physically accurate lighting can provide improved insight in

addition to high image quality [37]. In addition, ray tracing can be used in radiative

transfer simulations, where the end product is not an image but rather the physical

model itself. Unfortunately, ray tracing’s physical basis also makes it computation-

ally more expensive than other image generation techniques, which limits its use

in high-performance rendering. In particular, ray tracing has been considered too

expensive for tasks that require real-time rendering, like video games, or for tasks

that require operating on massive amounts of data, like large-scale visualizations or

simulations.
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Recent research [45, 91, 115] and improved hardware performance address

ray tracing’s computational bottleneck, but current hardware trends make efficient

memory use increasingly important. At the chip level, the trend toward dense chip

multiprocessors means that future chips will have less cache per core and more

contention for bus bandwidth between DRAM and on-chip cache. At the large

system level, the trend towards clusters and distributed file systems [103] means

that future systems will have only a small amount of local memory per node and

more contention for bandwidth between the file system to local DRAM.

The recursive ray tracing algorithm itself, however, remains fundamentally

memory-inefficient. The unbounded memory requests caused by recursive ray trac-

ing can create a memory bandwidth bottleneck, especially when rendering large

scenes or when rendering complex lighting effects that use incoherent rays. Due to

this bottleneck, users must choose between long render time or low render quality.

Large data is often rendered only with simple lighting, when it can be rendered

at all. Industrial users with dedicated machines might choose to spend additional

hours or days rendering each image1, but scientists with a limited allocation on a

shared resource are typically unable to commit sufficient cycles for high-quality ray

tracing. This cycle limit has an even greater impact on radiative transfer simulations

for which simulation accuracy is critical: for example, large-scale cosmology sim-

ulations typically model cosmic radiation 1000× more coarsely than they model

gravitation due to the inefficiencies of the radiative transfer model [49].

1For example, each frame of a ray traced movie typically requires tens of hours: in 2006, Cars
averaged 15 hours per frame; in 2009, Avatar averaged 30 – 50 hours per frame.
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In this dissertation, we create a new interpretation of ray tracing that gen-

eralizes previous algorithms as points on a spectrum of ray schedules that organize

ray and data operations. In particular, our dissertation contributes the following:

• it creates an analytic memory performance model for recursive ray tracing

that exposes the contributing factors for the memory bandwidth bottleneck;

• it creates an algorithmic framework for dynamic ray scheduling;

• it presents a dynamic scheduling algorithm for a single processing core, tar-

geting DRAM-to-L2 bandwidth, that achieves up to 100× savings in geome-

try bandwidth and 10× savings in total bandwidth;

• it presents a dynamic scheduling algorithm for distributed memory clusters,

targeting disk-to-DRAM bandwidth, that achieves over 10× data load reduc-

tion and runtime improvement.

Through the development of our analytic model for recursive ray tracing,

we show that repeated visits to dense regions of a dataset can increase the size of

the working set, which is the data required to complete the computation. Once the

working set grows beyond a particular size, it begins to evict itself from small, fast

memory as it is processed. As a result, it will be loaded repeatedly into these up-

per levels of memory from the larger, slower memory below them. These repeated

loads drive the consumption of memory resources during ray tracing and hurt run-

time performance. By studying the memory utilization and the memory bandwidth

3



efficiency of a high-performance recursive ray tracer [91] under a range of render-

ing conditions, we corroborate the insights suggested by our model. We determine

that when large models are ray traced with shading that uses incoherent rays, the

order of memory requests can result in many loads from lower memory that create a

memory bandwidth bottleneck, particularly when the working set exceeds available

local memory. A ray tracing algorithm that can vary the order of memory requests

can make ray tracing efficient for broader classes of visual effects across a broader

range of data sizes.

Prior ray tracing algorithms lack the flexibility to effectively manage both

rays and scene data. These algorithms each implement a static schedule for ren-

dering operations, often one embedded in the implementation itself. Recursive

ray tracers keep active ray state constant, usually at a single ray or a small col-

lection of rays, while allowing active scene data to grow unbounded. In contrast,

ray tracers that use computational reordering [85], which we call queueing, keep

active scene data constant at each queue point while allowing active ray state to

grow unbounded. Our broader formulation of ray scheduling shows these two al-

gorithms to be points on a spectrum of ray schedules that actively optimize data

movement and computation. We show that using queueing ray tracing, we can cre-

ate algorithms that dynamically schedule groups of rays and scene data for efficient

processing. Our approach schedules ray operations dynamically according to the

data resident in targeted memory, whether the cache of a single processor or the

main memory for each processor of a distributed-memory machine. By associat-

ing rays and data into self-contained groups with known memory bounds, our ray

4



tracer has the flexibility to schedule the processing of these groups to improve sys-

tem performance. We show that dynamic scheduling of rays and data can improve

performance for complex lighting algorithms and for large datasets where memory

use limits performance, all without incurring significant communication overhead

for smaller, compute-bound datasets. Our algorithm effectively manages data traf-

fic in processor cache, often reducing the bandwidth consumption by an order of

magnitude versus competing algorithms. Our algorithm can also render massive

datasets on distributed-memory machines that competing algorithms cannot ren-

der. When rendering smaller datasets for which the other algorithms do complete,

our dynamic scheduler significantly reduces traffic between local memory and disk.

Our scheduler also exhibits better performance than static strategies for volumetric

ray casting.

The remainder of the dissertation presents the supporting case for these con-

tributions. We place our approach within the broad context of previous ray tracing

work in Chapter 2; we compare our approach against specific related work in each

chapter as appropriate. In Chapter 3, we motivate our work with an analytic evalua-

tion of the bandwidth consumed by popular ray tracing algorithms. We confirm our

evaluation in Chapter 4 with a study of the bandwidth performance of a state-of-

the-art ray tracer. We present our dynamic scheduling algorithm and performance

results targeting a single core machine in Chapter 5; and we present our dynami-

cally scheduled distributed memory ray tracer and performance results targeting a

large distributed-memory cluster in Chapter 6. We make concluding observations

in Chapter 7.
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Chapter 2

Background

This dissertation centers on the memory behavior of ray tracing algorithms.

To understand this behavior, we must first understand how the ray tracing algo-

rithm itself functions. In this chapter, we provide background on ray tracing and

supporting concepts that will clarify our discussion through the remainder of this

work. We give a ray tracing primer, including observations that underlie our new

approach, in Section 2.1. In Section 2.2 we formally define key terms used in our

later discussion.

2.1 Ray Tracing Fundamentals

Ray tracing is an image generation technique that simulates the travel of

light through a dataset or scene to determine: first, which surfaces are visible from

a particular viewpoint [9]; and then, how those surfaces are lit by the surrounding

environment [119]. Since ray tracing is physically-based, it can be used to model

a wide variety of realistic lighting effects and can generate photo-realistic images.

High realism often comes with high computation cost, however, and simplifications

are often made that reduce computational complexity while still generating a high-

quality, if not photo-realistic, image.
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Figure 2.1: A ray tracing example. The left diagram shows a camera ray (A) traced
into a scene and the secondary rays that are spawned (one reflection ray (B) and
two shadow rays (C,D)); the right diagram contains the ray tree that corresponds to
the rays on the left. A ray tracing algorithm determines in what order the rays in
the tree are processed.
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Ray tracing works by tracing simulated light rays though a scene, but op-

posite to the direction light actually travels. We are accustomed to light travelling

forward, where light is generated by some emitter (the Sun, for example), certain

wavelengths are reflected from objects around us, and some small percentage finally

reaches our eye and registers as an image. Ray tracing models this process, but for

efficiency, rays are traced “backward” from a viewpoint, often called the camera or

eye, through an image plane, and into a scene (see Figure 2.1). These first rays that

originate from the viewpoint are called primary rays, since they primarily deter-

mine what is visible from the viewpoint. It is common to model the viewpoint as a

pinhole camera, which allows all primary rays to have the same origin. More com-

plex camera models can be used [60, 87], but they require increased computational

effort. Rays are usually generated with a perspective projection through the image

plane, which makes rays fan out as they travel away from the viewpoint. Rays gen-

erated with an orthographic projection each travel parallel to the view direction,

which can be used for rendering objects without perspective distortion.

Other rays generated during image generation are called secondary rays,

since they calculate secondary effects that enhance the image generated by the pri-

mary rays. Any ray that is not a primary ray is called a secondary ray, regardless

of whether it was generated from a primary ray or from another secondary ray.

When a ray hits or intersects a surface, new secondary rays can be generated or

spawned. Secondary rays model different aspects of light behavior: shadow rays

sample whether an intersection point is visible to a light source; reflection rays

model the reflection of light off a surface; refraction rays model the refraction of
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light through a surface. Figure 2.1 contains both shadow rays (marked s) and re-

flection rays (marked r).

The rays generated in a scene can be represented hierarchically in a tree

layout, called a ray tree, where each node in the tree corresponds to a ray generated

during image generation. Each tree branch represents a “generates / generated-by”

relationship: the node for each primary ray roots a tree that contains the nodes of

all secondary rays generated by the primary ray and its descendents. We also use

the term ray tree more generally to refer to the tree of all rays cast during rendering,

which is formed by collecting the tree for each primary ray under a single root.

Consider the ray tree for a single primary ray. The root node, at level 0, rep-

resents the primary ray. The nodes at level 1, the primary ray’s direct descendents,

represent the secondary rays generated directly from the primary ray. The nodes

at level 2 represent the secondary rays generated directly by the rays from level 1.

Thus the nodes at level n of the tree represent rays generated by rays from level

n−1 of the tree. See Figure 2.1 for an example ray tree.

At its core, a ray tracing algorithm does not determine which rays are put

into the ray tree (that is a function of the lighting and shading used in the scene), but

rather in what order the rays in the ray tree are processed. Most ray tracers funda-

mentally operate according to Whitted’s recursive algorithm [119], called Whitted-

style or recursive ray tracing1. Figure 2.2 contains pseudocode for this recursive

algorithm. The algorithm results in a depth-first traversal of the ray tree for each

1Note that path tracing [56] operates recursively, but it generates only one ray at each intersection
rather than the tree of child rays common in a Whitted-style tracer
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function MakeImage(pixels)

{

i = 0;

primary_rays = GeneratePrimaryRays();

foreach ray in primary_rays

{

pixels[i] = TraceRay( ray );

i = i + 1;

}

}

function TraceRay(ray)

{

closest_obj = NONE;

closest_dist = MAX;

pixel_color = Blank();

foreach object in scene

{

if (Intersects( ray, object ))

{

if (Distance( ray, object) < closest_dist)

{

closest_obj = object;

closest_dist = Distance( ray, object );

}

}

}

if (closest_obj != NONE)

{

secondary_rays = GenerateSecondaryRays( ray, object);

foreach r in secondary_rays

{

pixel_color = pixel_color + TraceRay(r);

}

}

return pixel_color;

}

Figure 2.2: Pseudocode for Whitted’s recursive ray tracing algorithm.
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primary ray. Thus, once tracing begins on a primary ray, the algorithm will trace all

descendent rays of that primary ray before beginning another primary ray. We will

explore the implications of this ray ordering in Section 2.1.3.

2.1.1 Acceleration Structures

Each ray traced solves an instance of the visibility problem: what can be seen

in the ray’s direction from the ray’s origin? Generally, two outcomes are possible:

the ray intersects an object, or the ray exists the scene. However, multiple objects

may lie along a ray’s path, and the tracer usually must determine the nearest object

a ray intersects2. Early ray tracers performed poorly on complex scenes, scenes

that contain many objects, because they solved the visibility problem for each ray

by testing it for intersection against every scene object [102]. All these ray-object

intersection tests were necessary because, other than the objects themselves, there

was no spatial information in the scene description that could be used to determine

whether a ray might hit a particular object.

Acceleration structures were created to provide additional spatial informa-

tion to the ray tracer. These structures reduce ray-object intersection tests by par-

titioning, and thereby sorting, scene space. Objects not in a ray’s path are quickly

eliminated from further consideration and only objects that are likely to be inter-

sected are actually tested. Traversal of a ray through an acceleration structure pro-

ceeds as follows. A ray is first intersected against the acceleration structure, and

2Shadow rays are a notable exception to this condition. It is common to terminate shadow ray
traversal when any intersection is detected, since one occluding object is enough to block the light
source for which the shadow ray is testing visibility.
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Figure 2.3: Bounding volume examples, projected into 2D. Bounding volumes con-
tain each triangle (left). Outer boxes form a bounding volume hierarchy (BVH).
Since they subdivide object space, the boxes can overlap. A tree representation of
the bounding volume hierarchy (right) can be used to determine which bounding
volumes must be considered at each level. A BVH limits bounding volume tests
since sub-volumes need not be tested if a ray misses an enclosing volume. The
BVH here uses a branching factor of two, but higher branching factors can be used.
The hierarchy boxes are normally tight-fitting, but they have been expanded here
for clarity.

only the intersected parts of the structure are considered further. The intersected

parts are usually ordered by increasing distance along the ray, and the ray is tested

against the objects contained in each intersected part until the nearest object inter-

section is found.

Acceleration structure partitions can be created either in object space or in

scene space. An object space partition forms non-intersecting sets of objects, each

represented by a bounding volume [92] that tightly encloses the space occupied by
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the object set. Rays are tested for intersection against these bounding volumes first,

and if the ray misses the bounding volume, the object is not tested. This reduces the

number of object tests, which are generally more expensive than bounding volume

tests. However, because the bounding volumes do not subdivide scene space, a ray

must be tested for intersection against all bounding volumes to find the closest in-

tersection. A hierarchy of bounding volumes (see Figure 2.3), where increasingly

larger volumes tightly enclose several smaller volumes, helps limit the number of

bounding volume tests at each level of the hierarchy. Intersection tests are then per-

formed only on objects within the bounding volumes hit by a ray. If these bounding

volumes are considered in order of increasing distance along the ray, more distant

volumes and their objects can be discarded if a closer object intersection is found.

Bounding volumes may overlap in scene space, so only volumes that do not over-

lap the potential object intersection point can be discarded; the objects in bounding

volumes that overlap the point must also be tested for intersection, in case a closer

intersection can be found.

In contrast to an object space partition, a scene space partition forms dis-

tinct spatial regions. These distinct spatial regions are usually formed by linear

divisions, such as with a grid [29] or with planes [33], and they eliminate the ex-

tra intersection tests necessary when object space partitions overlap. Rays are first

tested for intersection against the spatial regions, and because the regions do not

overlap, an intersection point found in one region is guaranteed to be closer than

any possible intersection point in a more distant region. Thus, any objects con-

tained in those distant regions can be rejected without explicitly testing them for
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Figure 2.4: Space partitioning examples. A regular grid (left) divides space evenly,
but it does not adapt to dense regions of data. A k-d tree (center, right) adapts by
subdividing the dense region with additional planes. Objects that overlap space par-
tition boundaries must be addressed by the construction algorithm. Typically, such
objects are either divided, so that each part fits into a single region, or duplicated,
so that a copy is put into each region. Here, object C has been duplicated. Note
that the k-d tree planes are usually tight-fitting, but they have been spaced here for
clarity.

intersection. A regular scene space partition, one that creates evenly-sized spatial

volumes, can create inefficiencies. It might subdivide space too coarsely, so that

there are many objects in each region, or too finely, so that there are many empty

regions to traverse. An adaptive space partitioning algorithm attempts to balance

the number of objects in each region and thereby limit the number of intersection

tests required, either by adjusting the division boundaries or by subdividing regions

that contain too many objects. Adaptive algorithms often create a spatial hierarchy

by subdividing only regions with many objects; regions with few (or no) objects

remain large to limit traversal operations. Adaptive algorithms usually select parti-

tions heuristically to balance structure quality against construction time. Figure 2.4

shows both a regular and an adaptive scene space partition.
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Our work focuses on the behavior of acceleration structures that partition

scene space. In particular, our work uses k-d trees [34], an adaptive algorithm that

recursively subdivides scene space with axis-aligned planes according to a subdi-

vision heuristic. These subdivisions are represented by a binary tree where each

internal node represents a subdivision plane, the branches that descend from each

internal node represent the two subregions created by the node’s plane, and each

leaf represents a subregion containing objects (see Figure 2.4). Branches that rep-

resent empty subregions can be pruned, which makes traversal of the tree more

efficient.

The traversal of a k-d tree proceeds as follows. First, an initial test is made

against a bounding volume that contains the entire scene, to eliminate any rays that

miss the scene entirely. If the ray hits the scene, the ray is tested for intersection

against the plane represented by the root node of the k-d tree. Three outcomes are

possible:

• the ray travels only in the subregion represented by the left branch of the

tree, so the plane on the left branch is considered next and the right branch is

discarded

• the ray travels only in the subregion represented by the right branch of the

tree, so the plane on the right branch is considered next and the left branch is

discarded

• the ray intersects the plane and both branches are kept, with the plane on the

closer branch considered first and the plane on the distant branch pushed on
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Figure 2.5: This diagram shows how single-ray and packet-based recursive algo-
rithms traverse rays. A single-ray traversal completes all the rays in one tree before
beginning the next: both the primary and shadow ray in tree A, then the four rays
in tree B, the three rays in tree C, and last the four in tree D. A packet traversal
traces the primary rays for A, B, C and D together in one packet. Depending on
the implementation, the three shadow rays generated off the sphere may be traced
together, but the reflection rays and the shadow rays off each cube are likely traced
individually. Note how the primary rays tend to remain coherent as they travel
through space, but the reflection rays spawned by those primary rays quickly lose
coherence.

a stack for later consideration.

This decision is repeated for each plane until a leaf is reached and ray-object

intersections are performed against the leaf’s objects. If no object intersection is

found, a plane is taken from the top of the stack and traversal resumes. This con-

tinues until an intersection is found or until the stack is empty, which means the ray

missed all objects in the scene.
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2.1.2 Selecting Rays for Traversal

Recursive ray tracing often traces a single ray at a time, as presented in Fig-

ure 2.2. For rays that traverse similar paths through the acceleration structure, how-

ever, it can be more efficient to trace these rays together. We will call rays coherent

if they traverse the same part of the acceleration structure at the same time. Coherent

rays can be traced together, represented either as a continuous beam [5, 43] (where

member rays are not explicitly defined) or as packets of discrete rays [115]. The

wide SIMD instruction support available on modern processors has helped make

packet tracing popular in recent ray tracers [16, 18, 30, 91, 105]. Because of its

popularity, we include packet tracing as a test case in many of our experiments.

Algorithmically, packet tracing operates exactly like recursive ray tracing

but with each traversal and intersection operation applied to multiple rays at once. If

the rays do not share identical direction vectors, the rays will become less coherent

as the packet moves through scene space, and some traversal and intersection steps

will not apply to every ray. When this occurs, a mask is applied to the packet so only

the proper rays are affected by each operation. As rays in the packet lose coherency,

there is less benefit realized by processing them together. When packet coherence is

lost, a packet tracer will usually fall back to single-ray recursive tracing. Figure 2.5

shows ray selection for both single-ray and packet-based recursive tracing.

2.1.3 Ray Scheduling

A ray schedule defines the order in which rays in a ray tree are traversed.

Every ray tracer employs a schedule for its work, though a recursive tracer defines
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the schedule implicitly, and therefore statically, within its algorithm. A recursive

tracer schedules rays according to a formal depth-first or breadth-first traversal of

each ray tree, though as mentioned in Section 2.1.2, several trees can be traced

simultaneously using a packet or a beam.

Recently, two new classes of ray tracers have been developed that can sched-

ule rays differently from a recursive tracer: reordering ray tracers [18] that can

change the order in which child nodes are visited on each ray tree branch, but that

do not pause rays during traversal; and queueing ray tracers [3, 19, 25, 76, 85, 99]

that can both reorder rays and enqueue them at points during acceleration struc-

ture traversal, effectively pausing their traversal until a later time when all rays in a

selected queue are traversed together.

We contend that these seemingly disparate ray tracing algorithms actually

implement particular points on a spectrum of ray scheduling algorithms, where the

schedule defines the rays that are traced at each algorithm step and over which data

the selected rays are traced. In this section, we compare these three classes of ray

tracers and how the schedule each uses can affect rendering performance.

2.1.3.1 Non-reordering Recursive Ray Tracers

Most ray tracers use a non-reordering recursive approach based on Whit-

ted’s algorithm [119], where a ray is traced to completion once the tracing of it has

begun. These tracers use an implicit, static ray schedule: operate first on a set of

camera rays, then trace each child ray (alone or in sets) before tracing another set

of camera rays. Put another way, this ray schedule performs a depth-first traversal
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Figure 2.6: This diagram shows a traversal order of the scene from Figure 2.5
when rendered with a reordering tracer. The initial traversal proceeds much like
the packet traversal example, where primary rays A, B, C and D are traced in one
packet. However, the ray trees are traversed breadth-first, so while primary rays are
traced in packets, there is a reordering step before any child ray is traced. The child
rays can be regrouped into new packets. Here, the rays spawned from A might be
grouped with rays spawned by the previous primary packet (A′), and rays spawned
from D might be grouped with rays spawned from the subsequent primary packet
(D′).

of each primary ray’s tree. As a result, the schedule is set by the size of each set of

camera rays and the order in which the camera ray sets are traced (see Figure 2.5).

Because the ray schedule is set at the start of rendering, it cannot be adjusted

to build ray coherence or to react if the working set grows large in memory. If the

entire working set cannot fit in memory, this rigid schedule can cause thrashing as

rays re-request evicted data. Thrashing can be especially severe for incoherent rays,

since their processing can access disparate regions of scene space and thus increase

the size of the working set.
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2.1.3.2 Ray Reordering Tracers

Several recent ray tracers [17, 18] augment the classic recursive algorithm

by modifying ray sets during traversal and between generations of child rays. In

particular, these tracers reorder rays into more coherent sub-groups within a ray

set as they are traversed, and they can re-form ray sets between generations. Note,

however, that the ray reordering occurs only within the original ray set, and the ray

set itself remains intact until all member rays are successfully intersected. Since

ray sets are re-formed between ray generations, the schedule is determined by the

set of rays formed at each generation. Figure 2.6 contains an example.

This more flexible approach can build ray coherence by assembling sets of

rays with similar origins and directions; it also makes efficient requests to memory

by assembling ray sets that use the same shader and by reordering rays to improve

acceleration structure efficiency. Tracers in this class, however, do not enqueue rays

in the acceleration structure as the rays are traversed. Once the traversal of a ray

set begins, it will be completed for all rays in the set: no ray is ever deferred or

“paused” during its traversal. Therefore, these reordering tracers can still thrash

memory if the entire work unit does not fit in core.

2.1.3.3 Queueing Ray Tracers

Separately, researchers are exploring queueing3 ray tracers that enqueue

rays in regions of data space to build working sets with many rays and a known,

3Pharr et al. refer to this algorithm as “computation reordering”. We coin the term “queueing”
to better differentiate these tracers from those that only reorder rays
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Figure 2.7: This diagram shows a traversal order of the scene from Figures 2.5 and
2.6 when rendered with a queueing tracer. The queue points are marked in the scene
by stippled boxes and in each ray tree by small nodes. The flight of a single ray can
be divided into multiple steps through the scene, with other computation occurring
between steps. For example, the primary ray in tree A and the shadow ray in tree D
are each enqueued first at the queue point around the sphere. After they are tested
for intersection, they continue to their next queue point. Note that the primary ray
and second shadow ray for tree D cannot be in the sphere’s queue at the same time
because there is a direct dependency between them: the primary ray must intersect
and generate the reflection ray, which must then intersect before the shadow ray can
be generated.

21



bounded quantity of data [3, 19, 25, 76, 85, 99]. For tracers in this class, rays are

traced iteratively rather than recursively. As a result, the traversal of a ray can be de-

ferred or “paused” at each queue point and resumed at a later time, which allows the

traversal computations to be rearranged to achieve system performance goals. The

ability to defer ray traversals distinguishes these tracers from the previous classes

described.

Each ray queue forms a dynamic ray set that can exploit coherence for rays

without requiring that they share a common origin, a similar direction, or even

the same generation in the ray tree. Exploiting this broader notion of ray coher-

ence requires additional state per ray and increases computational complexity. The

schedule for these tracers is determined by the order in which queues are selected

for processing. See figure 2.7 for an example. Tracing rays in this way enables the

dynamic scheduling of ray queues that lie at the core of our algorithms.

Further, because each queue point builds a dense collection of both ray and

scene data, we observe that the operations over the rays at a queue resemble regular

loop iterations used in matrix computations. As such, we can now apply system-

level loop optimizations for regular data [7, 20, 69, 73, 120] that are not normally

applicable to the irregular computation structure of recursive ray tracing. We be-

lieve that we are the first to make this observation.

2.2 Formal Definitions

We now provide formal definitions to concepts central in our discussion.

Some of these terms have already been introduced informally in this chapter. These
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definitions will help distinguish nuances among the various algorithms we discuss

and among the various forms of coherence these algorithms exploit to make efficient

use of the memory system.

2.2.1 Algorithmic Definitions

ray — a discrete approximation of one segment of light travel through a region

of space. We consider a ray’s lifetime to begin when it is spawned and to

end when it is successfully intersected. Any rays generated as a result of

the intersection (reflection rays, refraction rays, shadow rays) are considered

distinct descendants on the ray tree. An intersection with a semi-transparent

surface generates a new ray, so that we do not consider multiple intersections

or bounces for a single ray. In the special case of volume ray casting, a ray’s

lifetime runs from when it is spawned until when it accumulates maximum

opacity.

ray tree — a tree that represents the parent-child relationships for a single primary

and its descendants, or for all rays generated during the rendering of an image.

Each node in the tree represents a single ray, and each branch represents the

relationship between the intersection of a ray and the spawning of each of its

descendants.

ray operations — the calculations required to successfully trace a ray. For sur-

face rendering, ray operations include acceleration structure traversal and ob-

ject intersection tests. For direct volume ray casting, ray operations include

traversing the dataset and sampling the data at intervals along the ray path.

23



atomic execution — the complete set of ray operations that must occur together

for a given ray under a particular algorithm. For recursive tracers, the atomic

execution period of a ray covers all ray operations performed on it. For queue-

ing tracers, however, an atomic execution period covers only the work done

on a ray for a single queue, and total operations on a ray will be divided into

an atomic execution period for each queue the ray enters.

ray set — a collection of rays that are processed together in a single atomic execu-

tion period. The set may contain a single ray; a discrete collection of rays (a

ray packet or a ray queue); or a continuous collection of rays (a ray beam or

cone).

unit of work — (or work unit) a ray set and the data needed to process one atomic

execution period for it. For a recursive tracer, each ray belongs to exactly one

unit of work that covers the lifetime of each ray it contains. For a queueing

tracer, each unit of work covers only the time a ray is in a particular queue,

and a ray may be part of several work units during its lifetime.

schedule — an ordering imposed on a series of work units. A schedule can be

represented by the traversal order of branches on the ray tree.

2.2.2 Rendering Coherence Definitions

Sutherland, Sproull and Schumacker define coherence in graphics as “the

extent to which the environment or the picture of it is locally constant” [102]. Later,

Green and Paddon [35] defined coherence terms specifically for ray tracing effi-
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ciency. We will refer to Green and Paddon’s terms, defined below, throughout the

remainder of this work to distinguish the memory behavior of ray tracing algorithms

and to explain their performance.

image coherence — rays traced through adjacent pixels are likely to travel through

the same regions of scene space, traverse the same acceleration structure

nodes, and intersect the same object. Tracing primary rays that pass through

contiguous pixels, such as in tiles [115] or along a space-filling curve [104],

exploits image coherence. Tracing primary rays from widely separated pixels

is image-incoherent, but can achieve good load-balancing for parallel recur-

sive ray tracers [36, 114].

ray coherence — rays that travel a similar path are likely to require the same data

for their traversal and intersection computations. Ray packeting [115], and

similar techniques that trace a group of rays together, exploit ray coherence

to achieve better performance. Pharr et al. [85] expand this concept to include

rays that occupy the same region of scene space simultaneously, regardless

of their origins or directions. We use this broader definition in our work.

Secondary rays generated by ray-coherent primary rays often do not remain

ray-coherent themselves; ray reordering [18] and ray queueing [3, 19, 25, 76,

85, 99] techniques build ray-coherent groups of secondary rays.

data coherence — objects that are nearby in scene space are stored in nearby loca-

tions in machine memory. This relationship translates the coherent references

of an algorithm into coherent requests in memory. Data coherence must exist
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for image- or ray-coherent traversals to maximize efficient use the memory

system [35, 78, 85]. Otherwise, coherent accesses in the scene might result

in random requests in memory, eliminating the coherent benefit.
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Chapter 3

Modeling Bandwidth Consumption

This thesis approaches ray tracing from a systems perspective, so we first ex-

amine the impact of recent hardware trends on ray tracing algorithms. Modern chips

with many processing cores promise to provide ample processing power for high-

performance ray tracing calculations, and ray tracing’s embarrassingly parallel na-

ture would seem to lend itself well to such architectures. However, these multi-core

architectures introduce a new bottleneck in the memory-system, because bandwidth

to the lowest-level of cache must be shared among many cores. This contention can

be exacerbated when ray tracing with a complex lighting model, which is neces-

sary for photo-realistic images. Complex lighting algorithms, such as Monte-Carlo

methods and photon mapping [53], can generate incoherent memory accesses and

can require the use of additional data structures [53]. We conclude, then, that im-

proving the memory efficiency of ray tracing will facilitate high-performance ray

tracing of scenes with complex lighting.

We believe recursive ray tracers [119] are not memory-efficient because they

traverse rays depth-first. In a depth-first traversal, consecutive primary rays might

be tested for intersection against the same geometry, but these tests can be widely

separated in time: all child rays of the first primary ray must be traversed before
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the second primary ray can begin. If the scene is small enough or the cache large

enough, the impact of this inefficiency can be masked, but that becomes less likely

as rendering trends point to larger scenes rendered using more realistic lighting

models. Optimizations such as the tracing of rays in SIMD-friendly packets [115]

or the use of ray frustums [91] help, but only if rays are sufficiently coherent, which

is typically only the case for primary and perhaps shadow rays. Unfortunately, they

offer little benefit for incoherent rays in a realistically-lit scene.

In this chapter, we evaluate the memory behavior of recursive ray tracing

through an analytic model of it bandwidth consumption. Our model exposes the key

factors that impact the algorithm’s memory behavior and enables us to understand

the mechanisms that cause its memory inefficiencies, particularly for incoherent

rays. This insight will be instrumental in the design of our new algorithm presented

in Chapter 5.

3.1 Overview

In this chapter, we introduce an analytic model for describing ray tracing

systems that can reasonably predict bandwidth consumption. We choose band-

width consumption as our performance metric because we believe bandwidth to be

the primary bottleneck for future ray tracing systems. The model presented can

be adapted to measure computation by replacing the memory-specific terms with

instruction-specific counterparts, but a thorough treatment of a computation model

is beyond our scope here.

By exposing the various factors of ray tracing that contribute to bandwidth

28



consumption, our model allows us to make educated choices about system design.

Without loss of generality, we limit our discussion to the k-d tree acceleration

structure [34], since it is supported by many current high-performance ray trac-

ers [16, 91, 115].

After a discussion of related work in Section 3.2, we explain the opera-

tion of a computer’s memory system and the importance of bandwidth efficiency in

Section 3.3. We present our model in Section 3.4 and we evaluate its predictive ca-

pability against the measured bandwidth consumption of an experimental ray tracer

in Section 3.5.

3.2 Related Work

Several recent research projects target ray tracing performance issues. These

efforts focus primarily on practical acceleration structure efficiency, whereas we

investigate the algorithmic effects of the traversal upon the acceleration structure.

Vlastimil Havran’s dissertation [39] provides an excellent study on the em-

pirical performance of many ray tracing acceleration structures. Hurley et al. [47],

describe an analytic model for building efficient k-d trees. Warren Hunt’s disserta-

tion [46] contains the current best practices regarding fast construction of efficient

k-d trees.

The turnover terms of our model are inspired by the intrinsic and extrinsic

interference terms in the general cache model of Agarwal et al. [2]. Our initial

model of turnover was inspired by the cache model designed by Lam et al. [63].
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Figure 3.1: The memory system hierarchy for a typical machine.

3.3 The Memory System and Why Bandwidth Matters

A computer’s memory system fetches data required by the computational

units (the ALUs) of a processor and stores the results of computation for later use.

The memory system is organized as a hierarchy of data storage devices to help en-

sure that data is supplied quickly when requested, as shown in Figure 3.1. Memory

devices that are close to the computational units can fetch stored data quickly (they

have low latency), but these devices cannot store much data (they have small ca-

pacity). Memory devices that are further away from the computational units have

higher latencies but also larger capacities. Each level of the memory hierarchy acts

as a cache, in that data stored at its level does not need to be retrieved from a lower,

slower level of the hierarchy. For example, memory requests to system RAM typi-

cally have much higher latencies than do requests to processor cache, so data kept
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in processor cache can be supplied more quickly to the computational units of the

processor.

Bandwidth expresses the rate at which data can be moved between two lo-

cations. In our context, it is the rate at which data can be moved between adjacent

levels of the memory hierarchy. Specifically, we are interested in read bandwidth:

the rate at which a level of memory can supply data to the next higher level. Data

can move no faster than this rate, but it can move much slower if the amount of data

requested exceeds the available bandwidth. In this case, bandwidth becomes satu-

rated and excess data must wait until the preceding data have been moved. Thus,

too many data requests, too much bandwidth consumption, can saturate bandwidth

and delay the entire computation.

We will construct our model to estimate the actual amount of data requested

and to identify the particular algorithm behavior that generates the requests. In so

doing, we can identify the aspects of the tracing algorithm that should be modified

or replaced if a bandwidth problem exists.

3.3.1 “Coherency”, “Locality” and the Memory System

Graphics literature and computer systems literature have adopted conflicting

terminology for similar memory concepts. In graphics, coherency refers to repeated

accesses to the same data, like the same object in a scene. In systems, this concept

is closest to memory locality, where data that reside nearby in address space tend

to move together through the memory hierarchy (since loads move blocks of data,

not individual addresses) and so requests for nearby data tend to succeed without
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an additional load. Systems literature defines coherency as data consistency across

multiple memories, either between levels of the memory hierarchy or between sep-

arate memories at the same level. In our discussion, we use coherency and coherent

as defined for graphics to minimize confusion with related graphics work.

Coherent (spatially local, in systems terms) memory requests use the mem-

ory system efficiently because data stays high in the hierarchy where it can be ac-

cessed quickly. An incoherent request can replace the data in the upper memory hi-

erarchy and if that data is needed later, it must be loaded again. These data reloads

increase bandwidth consumption and too many will saturate bandwidth.

We want our model to express the coherency of memory requests, so we

can determine how much data will be reloaded. Below, we define several terms for

memory system coherency that will influence our model’s design.

memory coherent ray access — two rays r1 and r2 are coherent with respect to

memory access if they traverse the same path through the acceleration struc-

ture and all rays that are processed between the time r1 is processed and the

time r2 is processed also traverse that same path.

memory-coherent ray set (MCRS) — a maximal set of coherent rays is called a

coherent ray set (MCRS): i.e., neither the ray before nor the ray after the rays

in the MCRS traverse the same path as the rays in the MCRS. This should not

be confused with a ray set as defined in Section 2.2, where the set is defined

by the processing order of the algorithm. In contrast, a MCRS is defined by

the path the member rays take through the acceleration structure. An MCRS
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may span several ray sets, or a ray set could contain several MCRSs. A

MCRS may also contain subsets of several ray sets. See Figure 3.4.4 for an

example of memory coherent ray sets.

memory-coherent data set (MCDS) — the data loaded in the process of travers-

ing a memory-coherent ray set. This is similar to a unit of work as defined in

Section 2.2 applied to a memory-coherent ray set. Whereas MCRS describes

a logical set of rays, MCDS refers to the physical data loaded, which includes

ray, node and geometry data.

memory-coherent set (MCS) — an MCRS and its corresponding MCDS.

head leaf — the starting leaf of an MCRS. For the special case where the ray starts

outside the acceleration structure (some camera or shadow rays, for example),

the root acts as the head leaf.

tail leaf — the ending leaf of a coherent ray set. A leaf may be the tail leaf for

multiple MCRSs.

3.4 The Bandwidth Consumption Model

In this section, we present our model as equations that estimate the band-

width consumed by a recursive ray tracer. We attempt to keep the discussion of

acceleration structure as general as possible, but we assume a k-d tree at points that

call for specificity. The terminology we use reflects this assumption (i.e., node,

leaf). However, we use node to mean any part of the acceleration structure, and leaf

to mean specifically a terminal unit at which geometry must be intersected.
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We have identified several bandwidth consumption factors that affect the

total bandwidth consumed during rendering, which we discuss in Section 3.4.1.

These factors interact through several consumption modes of the rendering process

that we describe in Section 3.4.2. We then derive the consumption equation itself

in Sections 3.4.3 and 3.4.4.

3.4.1 Bandwidth Consumption Factors

The bandwidth consumption factors are initial conditions for the ray tracing

algorithm, which can be determined before ray traversal begins. These factors can

be aspects of the ray tracer implementation (packet size, ray traversal order), or they

can be supplied by inputs (frame buffer resolution, geometry distribution). Each

factor is represented in our consumption equation by a parameter or a combination

of parameters, which are described in Table 3.1.

framebuffer resolution and sampling rate — the resolution of the framebuffer

combined with the rate at which it is sampled (i.e., number and location of

rays per pixel) determine both how many primary rays will be traced and the

spacing between these rays.

camera location and view direction — the location of the camera and the direc-

tion it points both determine which part of the scene and acceleration structure

will be accessed by primary rays. Shadow rays and other secondary rays may

access other parts of the scene, but even these are indirectly influenced by the

original camera position and view direction.
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ray traversal order — the order in which primary rays are selected to be traced

through the acceleration structure. This order determines when particular

parts of the acceleration structure and scene geometry will be accessed.

packet size — the number of rays traced simultaneously. The origins and direc-

tions of the rays determines the packet’s ray coherence (see Section 2.2.2).

Larger packets allow more rays to be traced simultaneously, but they typi-

cally lose ray coherence more quickly than smaller packets.

geometry distribution — the distribution of geometry through the scene affects

the shape and quality of the acceleration structure that is produced, which in

turn affects which geometry is accessed at each leaf.

acceleration structure adaptiveness — the adaptiveness of the acceleration struc-

ture determines how well the structure can separate regions with high concen-

trations of geometry into small groups. Note that achieving smaller groups of

geometry increases the depth of the acceleration structure and the number of

nodes that must be loaded for traversal.

3.4.2 Bandwidth Consumption Modes

The consumption factors described above interact through four consump-

tion modes of the rendering algorithm: compulsory, average turnover, large-leaf

turnover and saturation-leaf turnover. Each mode is represented by a term in the

bandwidth consumption equation, which are described in Table 3.2.

compulsory consumption — the total cost of each ray, node and geometric object
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loaded during rendering. Each ray traversed, and each node and object tested

for intersection, must be brought into cache at least once.

average turnover consumption — the cost of reloading ray, node or object data

that has been loaded previously but is no longer in cache.

large-leaf turnover consumption — the cost of intersecting rays against a leaf

that contains enough geometry to occupy a significant percentage of the avail-

able cache (a large leaf). Processing such a leaf causes the displacement of

data that would otherwise be accessed coherently under average turnover.

saturation-leaf turnover consumption — the cost of intersecting rays against a

leaf of the acceleration structure that contains more data than can fit in avail-

able cache. When such a leaf is processed, all previously cached data is

evicted from cache. Any coherence from caching is lost, and the leaf data

must be reloaded for each ray, or SIMD ray group, in a large ray set. These

saturation leaves can occur in geometrically-dense regions of the scene where

the acceleration structure algorithm failed to sufficiently separate the objects,

whether due to an algorithm deficiency, a depth-vs-quality heuristic, a time-

vs-quality heuristic, or some combination of reasons.

3.4.3 General Consumption Equation

The bandwidth required for a rendering pass (BW ) is composed of (1) the

bandwidth to load the rays traced (BWr) plus (2) the bandwidth to load nodes of

the acceleration structure for ray traversal (BWn) plus (3) the bandwidth to load

36



COSTr cost (in bytes) to load a ray

COSTn cost (in bytes) to load a node of the acceleration
structure

COSTg cost (in bytes) to load a unit of geometry

R total number of rays traced

Ra the number of rays traced together (e.g., the ray
set size)

p the number of rays able to be processed in par-
allel (e.g., via SIMD processing)

n expected number of acceleration structure nodes
loaded per coherent ray set

l expected number of acceleration structure leaves
loaded per ray. Note that l ≤ n

g expected amount of geometry contained within
a leaf node.

cn number of coherent ray accesses per internal
node.

cl number of coherent ray accesses per leaf node.
In the equations below, we will use cl as a con-
servative estimate for cn.

Table 3.1: Parameters for Equations 3.1–3.9.
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BW total bandwidth consumed, i.e. the number of bytes
required to complete rendering operations

BWr bandwidth consumed for ray data

BWn bandwidth consumed for acceleration structure
node data

BWg bandwidth consumed for geometry data

C compulsory bandwidth consumption, which is ex-
actly the bandwidth cost of the first touch to all
touched nodes and geometry.

θa average turnover of data in the cache; the amount
of data expected to be reloaded into the cache as a
result of incoherent access to scene data.

θl large-leaf turnover of data in the cache; the band-
width consumed by processing a leaf that is larger
than the expected leaf size, but not large enough to
fill the entire cache1.

θs saturation-leaf turnover of data in the cache: the
bandwidth consumed in processing a leaf that con-
tains more geometry than can be cached at once2.

Table 3.2: Derived Terms for Equations 3.1–3.9.
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geometry for intersection testing (BWg). We can express bandwidth as the sum of

these three terms:

BW = BWr +BWn +BWg (3.1)

This is the most general formulation of the bandwidth consumption equa-

tion. Reading the equation from left-to-right, it implies a causal relationship among

the sources of bandwidth consumption: rays are traced through some number of

nodes. Some of these nodes (the leaves) contain geometry, and those objects must

be loaded for intersection. Reading right-to-left presents the negative causal rela-

tionship: geometry is not loaded unless the node that contains it is loaded. A node

is not loaded unless a ray pierces it.

Unfortunately, this form does not distinguish between data that must be

loaded for the computation and data that is reloaded due to incoherent accesses.

Therefore, we reformulate the bandwidth equation as the sum of terms that repre-

sent each of the bandwidth consumption modes described in Section 3.4.2: com-

pulsory, average turnover, large-leaf turnover, and saturation-leaf turnover. These

last three terms model bandwidth consumption by leaves that contain increasing

amounts of geometry: those smaller than and up to the mean size, those between

the mean size and the cache size, and those larger than the cache size (see Fig-

ure 3.4.3). We will find in our subsequent analysis that large- and saturation-leaves

exacerbate incoherent accesses because they replace large amounts of cached data.
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Figure 3.2: Terms as Related to Leaf Size — the terms average turnover (θa), large-
leaf turnover (θl), and saturation-leaf turnover (θs) account for the span of possible
leaf sizes. θa represents leaves up to the expectation µ . θl represents leaves that are
larger than the expectation but smaller than the cache size. θs represents leaves that
are larger than the cache.

BW = C +θa +θl +θs (3.2)

While these general formulations confirm our basic insights, we want a

more specific version of the equation that exposes the particular factors described

in Section 3.4.1 and that uses the parameters defined in Table 3.1. In Section 3.4.4,

we derive a formula for each term in Equation 3.2. We include an equation for

bandwidth consumed in the absence of a cache, which expresses the upper bound

on bandwidth consumption, in Appendix A.
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3.4.4 Memory-Sensitive Consumption Equation

During ray tracing, the actual bandwidth consumed between two levels of

memory is influenced by the data resident in the higher level, since data that is

present does not need to be fetched from the lower level. The data that is present

in the higher level memory is influenced by the coherence of the memory requests,

which in turn is affected by the coherence of the rays traced. Tracing coherent rays

reduces bandwidth consumed because these rays travel through the same nodes

and are tested for intersection against the same geometry, which generate coherent

requests to memory. Thus, we want our equation to contain terms that express ray

coherence with respect to nodes and leaves, since that coherence directly determines

the coherence of the memory requests.

We want terms that express both the ray coherence at internal nodes of the

acceleration structure (cn) and the ray coherence at leaves of the acceleration struc-

ture (cl). We expect cn to vary significantly for nodes at different levels of the ac-

celeration structure, and providing a coherence term for each level of the structure

would excessively complicate our equation. Since a leaf is guaranteed by construc-

tion to contain a volume no bigger than the internal nodes above it, we will use cl ,

the coherence at the leaves, as a conservative estimate of the coherence at internal

nodes. The value of cl for a particular leaf l is exactly the total size of the MCRSs

that: (1) end at l (l is the tail leaf, the last leaf touched by the MCRS), and (2) are

processed atomically (i.e., no other MCRS is processed between two MCRSs for

which l is the tail leaf). We use the expected value of cl across all leaves touched by

rays in the bandwidth equation. Figure 3.4.4 provides a visual reference for these
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Figure 3.3: Memory-Coherent Ray Sets (MCRS) — This simple k-d tree demon-
strates the MCRS concept defined in Section 3.3.1. The three rays shown are repre-
sentative members of three MCRSs: ray α belongs to the MCRS (root→C→ D);
ray β belongs to the MCRS (root → A→ C → B); ray γ belongs to the MCRS
(root→ A→ B).

terms.

Armed with a term that defines ray coherence with respect to the acceler-

ation structure, we are now prepared to derive the formulas for each term in the

bandwidth equation, which we show in Sections 3.4.4.1–3.4.4.4.

3.4.4.1 Compulsory Bandwidth: C

Compulsory bandwidth C represents the first data load of each ray, node and

object required for the ray tracing computation to complete. These are loads that

must occur. The expected compulsory bandwidth consumed is the number of rays

traced times the expected amount of data touched per ray:

C = R
[
COSTr +E[# CRS / ray] (nCOSTn +gCOSTg)

]
(3.3)
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3.4.4.2 Average Turnover Term: θa

To define the average turnover term θa, we must answer to two questions:

1. how much node and geometry data do we expect to revisit during the render-

ing pass?

2. is this data evicted from cache before each revisit, incurring a bandwidth cost

to reload the data when it is next needed?

To answer the first question, we need the expected number of coherent ray

sets that touch a leaf. We obtain this value from a profiling run by: (1) maintaining

a ray mailbox at each leaf, (2) updating a global coherent ray set counter when the

last ray traced matches the ray in the mailbox, and (3) dividing the global counter

by the total number of leaves touched. Then, to obtain the expected number of times

scene data is revisited, we multiply the expected number of MCRSs per leaf by the

expected number of leaves touched during rendering.

To answer the second question, we must determine, between memory-coherent

ray sets that end in a given leaf, how much other data (from outside the given co-

herent sets) will be loaded into cache. For this term, we use the expected leaf size.

We explicitly account for leaves larger than the expected size with our large-leaf

turnover and saturation-leaf turnover terms (θl and θs), since it is particularly these

leaves that impact bandwidth consumption.

The data loaded between touches to a particular leaf, plus the given memory-

coherent data sets, define the total data footprint of all the memory-coherent ray sets
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for a given leaf. Required data that exceeds the cache size, divided by the cache size,

expresses the expected rate at which the cache overflows per leaf. We will use the

following terms to simplify notation in the formula:

• E[MCRSbt ] — the expected number of memory-coherent ray sets visited be-

tween two separate touches of a given leaf

• E[raysbt ] — the expected number of rays traced between touches of a given

leaf

• Bcache — the size of the cache, the upper memory where data requests get

stored, in bytes

• E[# revisits / lea f ] — the expected number of times a leaf will be revisited,

exactly one less than the expected number of MCRSs that visit a leaf. In

algorithmic terms, the expected number of times that ray traversals through

this leaf are interrupted by the traversal of rays that do not visit this leaf.

We have already expressed the expected bandwidth cost for a particular

MCRS. To obtain the total data footprint, the complete working set, we need only

to determine the expected number of MCRSs visited. The expected number of

memory-coherent ray sets visited between two separate touches of a given leaf

(E[MCRSbt ]) is represented by the expected number of rays processed between

touches of the given leaf, divided by the expected size of a coherent ray set (see

Figure 3.4.4.2 for an example frame buffer and MCRS).
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Figure 3.4: This portion of a frame buffer demonstrates how ray traversal affects
memory use, both by revisits to an MCRS and by rays processed between visits
to that MCRS. Assuming one primary ray per pixel, the pixels in blue represent
nine rays that access the same series of MCRSs (we project the 3D leaves onto the
2D frame buffer for this example). The red pixels represent rays that do not touch
the tail leaves of the MCRSs in question. Thus, for this example, E[|MCRS|] = 3,
E[raysbt ] = 5, (rows traced along Y ) = 3, and E[# MCRS / ray] is the number of
MCRSs projected onto the blue pixels.

E[MCRSbt ] =
E[raysbt ]×E[# MCRS / ray]

E[|MCRS|]
(3.4)

We now need the expected number of rays processed between touches of

a given leaf. If we assume a scan-line traversal and that the next touch of the

given leaf begins at the same X value, then the expected number of rays processed

between touches of a leaf is the number of rays traced along X (sampling rate along

the X-axis), minus the expected size of a coherent ray set (note that this equation

would need to be adjusted for other image-plane sampling patterns, such as tiling

or a space-filling curve):
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E[raysbt ] = (rays traced along X)−E[|MCRS|] (3.5)

We can now write the formula for the average turnover term, Equation 3.6.

In words, it is: the expected number of iterations across X (line 1); times the ex-

pected amount of data in the the current MCDS (line 2); times the expected size

of all the memory-coherent data sets processed between two MCDS that include

the current leaf (line 3); all minus the cache size (line 4). We assume that the total

working set of the problem is larger than cache, so that θa ≥ 0.

θa =
(rows traced along Y )√

Ra

× (E[CRSbt ]+E[# CRS / ray])

× (COSTr +
n
cl

COSTn +
g
cl

COSTg)

− Bcache (3.6)

3.4.4.3 Large-Leaf Turnover: θl

We now consider the case when a ray pierces a leaf that contains more than

the expected amount of geometry, but not so much that the geometry data cannot fit

entirely in cache. We call these θl-leaves.

The expected cost of processing a θl-leaf is the expected extra size of the

leaf (above the expected leaf size), times the probability that such a leaf will be

touched during the traversal, times the expected number of leaves touched during

rendering. We then multiply that amount by the expected MCRS size, because once
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the leaf is hit, it is likely to be hit by subsequent rays in an MCRS. We do not count

reuse here because a large leaf may be partially or completely evicted from cache

between successive rays in an MCRS.

In our discussion of average turnover ta, we determined that the expression

for the expected number of leaves touched is:

(rows traced along Y )× (E[CRSbt ]+E[# CRS / ray]) (3.7)

Therefore, we need only to determine the expected extra size of a θl-leaf

and the probability that it will be touched. The expected extra size of θl-leaves

is the expected size of a θl-leaf minus the expected size of a leaf g. We want the

extra size because we already accounted for the expected size in the ta term. The

probability distribution for θl-leaves is the probability distribution for θa-leaves

minus the probability distribution for a large leaf. We assume the expected large

leaf size is at least g (large lea f ≥ g), since the contribution of leaves up to the

expected size is accounted for by the average turnover term θa. The tl term is

defined by Equation 3.8.

θl =
(rows traced along Y )√

Ra

×
(
E[CRSbt ]+E[# CRS / ray]

)
×

(
P(θs lea f )−P(large lea f )

)
×

(
E[size θl lea f ]−g

)
COSTg

× E[|CRS|] (3.8)
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3.4.4.4 Saturation-Leaf Turnover: θs

For small memory sizes, there can be leaves in the acceleration structure that

contain more geometry than can be stored in upper memory at one time. Processing

these leaves causes saturation-leaf turnover. When a ray pierces a saturation leaf,

the data will evict all other data from cache. Processing the intersections will elimi-

nate the benefit of coherent ray accesses because some or all of the geometry for the

leaf will be reloaded for each ray3. Thus, no geometry is shared and bandwidth con-

sumption is increased significantly beyond the consumption effects of large leaves.

To model this effect, we identify each leaf that contains more geometry than can

be stored in cache, then estimate how much bandwidth will be consumed both pro-

cessing the ts leaves and reloading the data evicted by each ts leaf. We define ts in

Equation 3.9.

θs =
(
rows traced along Y

)
×

(
E[CRSbt ]+E[# CRS / ray]

)
×

(
1−P(θs lea f )

)
×

(
nCOSTn +E[size θs lea f ]COSTg

)
× E[|CRS|]

+ (
Ra

p
−1) (E[size θs lea f ])COSTg (3.9)

3processing rays in parallel, e.g. via SIMD instructions, maintains the coherent ray access benefit
for the rays in a single parallel instruction block, but any coherence benefit is lost for successive
blocks of rays.
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3.5 Evaluating the Bandwidth Equation

To evaluate the accuracy of our bandwidth equation, we compare its con-

sumption estimates against the measured bandwidth consumption of an experimen-

tal ray tracer with a simulated cache.

3.5.1 Experimental Ray Tracer Configuration

We have constructed an experimental ray tracer on which we can measure

bandwidth consumed with respect to various ray traversal algorithms. The mem-

ory model implements a fully-associative cache with a least-recently-used (LRU)

replacement policy. We use this configuration to minimize bandwidth consumption

due to caching effects. In our implementation, we use the high-level cache model

code from the SimpleScalar project [98].

We model eleven cache sizes in increasing binary powers from 4 KB to

4 MB. For these experiments, we focus only on memory behavior for data, ignoring

memory effects for instructions. Each cache line is 64 bytes, which is the smallest

size available in our simulation. One ray occupies an entire cache line, two accel-

eration nodes occupy one line (left and right siblings of a parent node), and one

triangle occupies two cache lines. We choose these sizes both as reasonable esti-

mates and so that there will be no address interference between objects in cache.

3.5.2 Test Scenes

We render four test scenes to provide a range of inputs for the parameters

in Table 3.1. We use a k-d tree as the acceleration structure for each scene, built
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according to the algorithm in Pharr and Humphrey’s Physically-Based Ray Tracer

(PBRT) [84]. Our algorithm is efficient, but it does not contain advanced optimiza-

tions, such as multi-level k-d tree traversal [91], that could further reduce memory

accesses. Each scene is rendered at 1024×1024 resolution.

room — a room from a first-person perspective video game. This scene has a low

total geometry count and a low used-to-total geometry ratio. The geometry is

simple building geometry with some complexity from pipes and railing. The

camera is located inside the acceleration structure.

soda hall — an architectural rendition of Soda Hall at Berkeley. This scene has a

high total geometry count and a low fraction of visible geometry. The geom-

etry is simple building geometry with some complexity from office furniture.

The camera is located outside the acceleration structure.

sphereflake — a fractal-like sphereflake from Eric Haines’s Standard Procedural

Database (SPD) scene set. This scene has a high total geometry count and

a high used-to-total geometry ratio. The geometry is complex and fractal-

like, with many dense regions at the smallest spheres. The camera is located

outside the acceleration structure.

grove — a collection of tree models (courtesy of Tim Purcell). This scene has a low

total geometry count and a high used-to-total geometry ratio. The geometry

is complex and organic, with many areas of geometric density. The camera is

located outside the acceleration structure.
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room soda hall sphereflake grove
R 1048576 1048576 1048576 1048576

COSTr 64 64 64 64
COSTn 32 32 32 32
COSTg 128 128 128 128

n 25.6 24.6 31.3 26.9
g 5.4 6.0 4.8 3.7

cl (primary) 775.7 77.9 19.7 19.8
cl (shadow) 775.7 28.6 4.6 10.9

E[# MCRS / ray] 9.8 1.4 12.2 21.7

Table 3.3: Values used for equation parameters in our tests.

3.5.3 Equation Evaluation Results

We now compare the equation’s bandwidth consumption estimates against

the measured bandwidth consumption of the experimental ray tracer. We present

results for the four test scenes under both single-ray traversals and 8× 8 packet

tracing, a packet size that has been shown to achieve good memory system behav-

ior [96]. The values for equation terms are presented in Table 3.3.

We present the comparison between the model estimates and our experimen-

tal measurements for single-ray traversal in Table 3.4 and for 8×8 packet traversal

in Table 3.5. We report both the raw results and the percent error between the

estimate and the measured value.

Our model provides a qualitative estimate for bandwidth performance. Both

the model and the measured bandwidth exhibit threshold behavior as the cache

size increases. The model predicts the thresholds accurately for soda hall, but it

systematically predicts the thresholds at too-small cache sizes for sphereflake and
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primary rays
cache room soda hall sphereflake grove

size est act ∆% est act ∆% est act ∆% est act ∆%

4 KB 1835 9710 429 547 794 45 1736 5782 233 5488 12205 122
8 KB 2035 6375 213 372 524 41 1491 4245 185 4605 10401 126

16 KB 1090 851 28 360 332 8 1426 1727 21 4290 7790 82
32 KB 403 163 147 233 252 8 810 707 14 3287 3095 6
64 KB 220 160 38 170 205 20 414 602 45 1612 964 67

128 KB 67 139 107 120 143 19 302 596 97 595 939 58
256 KB 67 82 32 85 86 1 280 586 109 307 929 203
512 KB 67 68 1 80 71 13 273 555 103 247 903 266

1024 KB 67 68 1 80 71 13 273 188 45 247 821 232
2048 KB 67 68 1 80 71 13 273 178 53 247 342 38
4096 KB 67 68 1 80 71 13 273 178 55 247 218 13

primary + shadow rays
cache room soda hall sphereflake grove

size est act ∆% est act ∆% est act ∆% est act ∆%

4 KB 1902 12293 546 627 916 46 3033 20803 586 5922 15982 170
8 KB 2102 4687 123 452 522 15 2788 17988 545 5038 11878 136

16 KB 1157 585 98 440 348 26 2723 10666 292 4724 7463 60
32 KB 470 226 108 313 273 15 2107 4293 104 3721 2806 33
64 KB 287 224 28 250 228 10 1692 2332 38 2046 989 107

128 KB 133 222 67 200 169 18 1516 2193 45 1026 963 6
256 KB 133 166 25 165 122 35 1366 2167 59 610 954 56
512 KB 133 132 1 160 94 70 1104 2136 93 494 928 88

1024 KB 133 132 1 160 94 70 1093 2052 88 494 850 72
2048 KB 133 132 1 160 94 70 1093 1640 50 494 427 16
4096 KB 133 132 1 160 94 70 1093 639 71 494 243 103

Table 3.4: Estimated bandwidth consumed (est) versus measured bandwidth con-
sumed (act) for single-ray traversal. Bandwidth consumption is measured in
megabytes. The model significantly underestimates bandwidth consumed by cache
thrashing, such as for small cache sizes or for scenes where the acceleration struc-
ture is imbalanced (sphereflake , grove).
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primary rays
cache room soda hall sphereflake grove

size est act ∆% est act ∆% est act ∆% est act ∆%

4 KB 901 1754 95 471 511 8 938 3291 251 3518 7954 126
8 KB 473 468 1 159 271 70 456 1754 285 1147 4550 297

16 KB 195 189 3 121 147 21 418 742 76 772 1741 126
32 KB 109 86 27 99 91 9 340 337 1 627 633 1
64 KB 86 80 8 91 83 10 291 262 11 418 454 9

128 KB 67 80 19 85 81 5 277 235 18 290 319 10
256 KB 67 79 18 81 81 0 274 232 18 254 313 23
512 KB 67 78 16 80 81 1 273 232 18 247 313 27

1024 KB 67 68 1 80 71 13 273 230 19 247 309 25
2048 KB 67 68 1 80 71 13 273 205 33 247 297 20
4096 KB 67 68 1 80 71 13 273 178 53 247 268 8

primary + shadow rays
cache room soda hall sphereflake grove

size est act ∆% est act ∆% est act ∆% est act ∆%

4 KB 945 11089 1073 551 1112 102 1817 18260 905 3788 14137 273
8 KB 540 6658 1133 239 591 147 1336 13664 922 1417 9901 599

16 KB 261 978 275 201 248 23 1298 6042 365 1042 6051 481
32 KB 175 151 16 179 128 40 1220 2840 133 897 2465 175
64 KB 153 144 6 171 106 61 1168 1415 21 688 536 28

128 KB 133 144 8 165 104 59 1146 980 17 560 344 63
256 KB 133 143 8 161 104 55 1127 860 31 508 338 50
512 KB 133 143 8 160 104 54 1094 842 30 494 338 46

1024 KB 133 141 6 160 97 65 1093 839 30 494 334 48
2048 KB 133 132 1 160 94 70 1093 821 33 494 325 52
4096 KB 133 132 1 160 94 70 1093 807 35 494 298 66

Table 3.5: Estimated bandwidth consumed (est) versus measured bandwidth con-
sumed (act) for 8× 8 packet traversal. Bandwidth consumption is measured in
megabytes. The model still underestimates bandwidth consumed by thrashing at
small cache sizes. However, the model better estimates bandwidth at larger cache
sizes, since tracing coherent ray packets reduces the thrashing effects caused by
imbalance in the acceleration structure.
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grove. We believe this misprediction is due to the greater variance in leaf depth

and leaf size in these scenes. The model is least accurate for room; we believe

that the scene size lacks sufficient geometry to obtain good values for the statistical

measures on which our model is based.

3.5.4 Discussion

The results presented in Table 3.4 and Table 3.5 show that even under our

conservative ray coherence assumptions, the actual bandwidth consumed at small

cache sizes exceeds our model’s predictions. Our model tends to underestimate

bandwidth consumption through the middle range of cache sizes tested, the range

of sizes where most individual leaves fit in cache but a significant number of leaves

(for example, all the leaves touched for a scan-line of rays) cannot yet be held at

once. The equation underestimates the bandwidth for this range because the large-

leaf turnover and saturation turnover components (θl and θs) are expected values

taken over a wide interval, and thus contains high variance. The equation results

exhibits steps at the sizes where the θs and θl contribution estimates reach zero

(about 8KB and 128KB for room and soda hall, and about 16KB and 256KB for

sphereflake and grove).

3.6 Summary

In this chapter, we have presented a model that qualitatively estimates the

bandwidth consumption for ray tracing. Even under conservative assumptions for

ray coherence, we find that our equation underestimates bandwidth consumed by
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an actual tracer for small memory sizes and large scenes. This suggests that a band-

width bottleneck exists: memory scarcity magnifies the impact of each memory

request, and a scene with more data increases the likelihood of incoherent memory

requests, which can ultimately saturate bandwidth.

Our model validation used an unoptimized research ray tracer with a range

of reasonable hypothetical cache sizes. While this demonstrated that a bandwidth

problem might exist for recursive ray tracing in general, we want evidence of a

bandwidth bottleneck impacting a highly-optimized implementation running on ac-

tual hardware. It could be that the optimizations in a high-performance ray tracer

cause it to use bandwidth more efficiently: for example, an optimized implemen-

tation might build a higher-quality k-d tree and traverse it more efficiently, which

would result in fewer memory requests. In addition, scene data could be prepro-

cessed in order to obtain more coherent memory accesses. In Chapter 4, we present

a bandwidth consumption study using a high-performance ray tracer with actual

hardware measurements that confirm a bandwidth bottleneck.
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Chapter 4

Bandwidth Consumption Study for Single-Core Ray
Tracing

Our model analysis in Chapter 3 suggests that a bandwidth bottleneck might

exist for recursive ray tracers, but our validation was performed on an unoptimized

ray tracer for hypothetical cache sizes. In this chapter, we measure the DRAM-to-

cache bandwidth consumed by a highly-optimized, state-of-the-art recursive tracer

for actual hardware configurations when tracing both coherent and increasingly in-

coherent (divergent) rays. We conclude that for current packet-tracing algorithms,

bandwidth will not be a bottleneck for coherent rays, but that it will be a bottleneck

for divergent rays. The trend in chip-multiprocessors for the next several years is

for on-chip FLOPS to grow much faster than bandwidth to off-chip DRAM, so we

expect that the bandwidth bottleneck will worsen in the future. This bottleneck is

caused primarily by dramatically lower cache hit rates rather than by an increase in

total working set, which suggests that substantial reductions in memory bandwidth

consumption might be possible with a traversal algorithm that can create coherent

groups from divergent secondary rays. In Chapters 5 and 6, we present our algo-

rithms that demonstrate a substantial bandwidth savings over competing algorithms.
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4.1 Overview

Performance of ray tracing systems might be limited by either raw FLOPS

or by DRAM bandwidth. When designing algorithms, it is important to under-

stand which potential bottlenecks are relevant. This chapter examines the potential

DRAM bandwidth bottleneck by measuring the bandwidth consumed by packet-

based recursive ray tracing, which is the de facto standard for contemporary sys-

tems. We report results for two cases that represent distinct classes of ray behavior:

primary (camera) rays, which tend to be strongly coherent; and soft shadow rays,

which can be slightly to significantly incoherent depending on the size, position and

sampling of the light source. Soft shadow rays tend to be more coherent than rays

generated by other secondary effects, such as ambient occlusion, diffuse reflection,

or photon mapping, so we consider our soft shadow results to be a conservative

estimate of expected performance.

Because the rays within a soft-shadow secondary-ray packet tend to diverge

more rapidly than rays within a primary-ray packet, we expect that memory ac-

cesses for soft-shadow rays will less coherent, and in fact we find that this is the

case. We conclude that today’s popular algorithms are inefficient with respect to

bandwidth usage for divergent secondary rays, and that these algorithms should be

adapted or replaced to improve their utilization of the memory hierarchy.

The remainder of the chapter is organized as follows: we describe related

work in Section 4.2. In Section 4.3 we describe our experimental method. We

present our results in Section 4.4, and we summarize the chapter in Section 4.5.
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Figure 4.1: The scenes used in this chapter: conference (283K total triangles, 54K
visible); and statue (1088K total triangles, 369K visible)

4.2 Related Work

There are several published results for the bandwidth requirements of trac-

ing primary rays and hard shadows. Schmittler et al. [96, 97] and Woop et al. [121]

report primary ray and hard shadow memory bandwidth consumption on dedicated

ray tracing hardware. Benthin et al. [13] measure memory traffic for primary rays

on the IBM CELL processor. Purcell et al. [88] measure bandwidth between on-

board RAM and processor for GPU-based ray casting. When scaled by cache size,

our measured bandwidth consumption for primary rays and hard shadows are simi-

lar to these related results.

We are aware of only a few published bandwidth results for ray tracing with

divergent secondary rays. Purcell et al. [88] report bandwidth consumption for

specular reflection and for path tracing on a GPU. They find that tracing secondary

58



rays increases DRAM to processor memory traffic 3× to 4× over primary ray traf-

fic. Pharr et al. [85] describe bandwidth consumption between main memory and

disk for a complex scene rendered with a Monte Carlo global illumination simula-

tion. Though this paper deals with a lower level of the memory hierarchy, they find

significant excess bandwidth consumption due to thrashing data from disk to main

memory. We will compare their findings with ours in Section 4.5.

4.3 Experimental Method

In this section, we describe our experimental set-up. We model the cache

configurations of three current hardware architectures in order to test the bandwidth

consumed by coherent primary rays and divergent soft shadow rays. For each con-

figuration, we render a low-complexity scene and a high-complexity scene. We

provide additional details below.

4.3.1 Cache Configurations

We use cache configurations that correspond to three current processors:

two traditional CPUs and a chip-multiprocessor (CMP) system. For our CPU selec-

tions, we use a current processor from Intel and AMD: an Intel Prescott core with

975x chipset [51] and an AMD Toledo core and memory controller [1]. We use

the Sun Niagara processor [61] for our CMP model (though we assume floating-

point support), since it has hardware multi-threading, a large L2, and high DRAM

to L2 bandwidth. Note that Niagara has a 3MB L2 cache, but our cache simulator

forces us to use power-of-two sizes. We conservatively use a 4MB L2. The system
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L1 cache L2 cache DRAM to L2
Processor configuration configuration bandwidth

Intel 16KB, 8-way, 1MB, 8-way, 10.7 GB/s
Prescott 64B lines 64B lines (975x chipset)

AMD 64KB, 2-way, 1MB, 16-way 8.0 GB/s
Toledo 64B lines 64B lines

Sun Niagara 8KB, 4-way, 4MB, 12-way, 20 GB/s
(constructive) 16B lines 16B lines

Sun Niagara 2KB, 4-way, 128KB, 12-way, 20 GB/s
(destructive) 16B lines 16B lines

IBM CELL 25.6 GB/s

GeForce 51.2 GB/s
7900 GTX

SaarCOR 1 – 2 GB/s

Table 4.1: System Configurations — the first four rows contain the systems we
simulate: two traditional CPUs and two cases for a CMP system. We include other
rendering hardware for bandwidth comparison only.

configurations are summarized in Table 4.1.

We model two configurations for the Niagara: a constructive cache inter-

ference pattern, where all processing resources can share cached data; and a de-

structive cache interference pattern, where no processing resource shares data. For

the destructive interference pattern, we partition memory-system resources evenly

to each thread on each core. These two interference patterns establish upper and

lower limits on memory system performance.

4.3.2 Scenes

We use two scenes in our survey (shown in Figure 4.1), each rendered at

1024× 1024 resolution. We use conference, since it was used in previously re-
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ported performance results for the tested ray tracer [91]. This permits us to compare

our results against previous work. We also use a scene with the Stanford Buddha

statue so that we have more scenes with many visible triangles. We trace each

scene using two different methods: primary rays only, and primary rays with soft

shadows. We choose these methods as representative samples from coherent and

divergent classes of ray complexity to help judge the capacity of each memory sys-

tem. We generate one frame’s worth of memory traffic data for each scene. We use

the single-frame data to estimate animation memory traffic at 60 fps.

4.3.3 Ray Tracing Algorithms

Our work uses a state of the art ray tracer as the basis for our architecture

study. At the time of its publication, the MLRTA system [91] achieved the best

published frame rates on CPUs for static scenes.

In this system, primary rays are traced in packets of 16 rays, generated

through contiguous 4×4 pixel blocks. Soft shadow sampling is performed in 4×4

packets that also correspond directly to hit points for a primary ray packet. Shadow

ray origins are generated randomly on the surface of the area light, with a separate

origin created for each ray in the packet. Nine soft shadow samples per primary-

ray hit point are generated per sampling round. If the surface is too rough, only

one sampling round is performed. Otherwise, soft shadow sampling continues until

sample variance is under a given threshold. Surface roughness is determined by tak-

ing the cosine of the angle between surface normals at each pair of hit points from

the primary ray packet and comparing the minimal cosine value against a threshold.
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4.3.4 Measurement Methodology

We create a trace of memory requests made by the MLRTA ray tracer when

rendering each combination of scene and ray tracing algorithm. We record a cache

read for ray and node data at each traversal step and a read for ray and geometry

data at each intersection step. We never record cache writes. We use the Dinero IV

cache simulator [31] to model each memory system. This light-weight simulator

provides cache usage statistics without modeling functionality or providing timing

estimates.

Our measurements conservatively estimate the memory system resources

required to process the sample loads because we only model data reads during ray

traversal and intersection. We do not model acceleration structure generation, in-

struction cache traffic, shading or writing the image. As such, we expect our mea-

surements to serve as a lower bound for the memory-system requirements for ray

tracing systems.

We report our findings both in terms of bandwidth consumed and in terms of

cache efficiency. We define cache efficiency as compulsory bandwidth consumed

(i.e. total size of working set) divided by total bandwidth consumed. With this

measure, we can estimate how much cache utilization could be improved.

4.4 Results

We traced coherent camera rays and divergent soft-shadow rays on confer-

ence, a scene with relatively few visible triangles (54K visible) and on statue, a
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primary rays only
L2 to L1 DRAM to L2 compulsory

machine scene traffic traffic traffic

Intel conference 14 649 856 4 836 416 4 833 024
Prescott statue 63 664 000 32 026 688 32 001 472

AMD conference 11 039 616 4 835 776 4 833 024
Toledo statue 59 739 840 32 011 072 32 001 472

Sun Niagara conference 13 726 672 4 214 736 4 214 736
(constructive) statue 49 424 016 28 732 560 28 732 560

Sun Niagara conference 40 396 432 5 420 320 4 214 736
(destructive) statue 78 355 200 41 465 696 28 732 560

primary + soft shadows
L2 to L1 DRAM to L2 compulsory

machine scene traffic traffic traffic

Intel conference 902 914 496 28 859 264 8 705 280
Prescott statue 16 886 719 744 9 090 462 080 54 827 456

AMD conference 371 575 744 29 347 904 8 705 280
Toledo statue 16 121 283 648 8 795 612 672 54 827 456

Sun Niagara conference 977 741 632 8 230 672 8 220 272
(constructive) statue 10 673 545 664 1 929 019 776 51 919 504

Sun Niagara conference 2 785 107 632 106 545 280 8 220 272
(destructive) statue 12 070 645 792 9 737 228 000 51 919 504

consumption increase for divergent rays
L2 to L1 DRAM to L2 compulsory

machine scene traffic traffic traffic

Intel conference 61.63x 5.97x 1.80x
Prescott statue 265.25x 283.84x 1.71x

AMD conference 33.66x 6.07x 1.80x
Toledo statue 269.86x 274.77x 1.71x

Sun Niagara conference 71.23x 1.95x 1.95x
(constructive) statue 215.96x 67.14x 1.81x

Sun Niagara conference 68.94x 19.66x 1.95x
(destructive) statue 154.05x 234.83x 1.81x

Table 4.2: Memory Traffic — total data traffic in bytes for a single frame of (con-
ference and statue). Dividing compulsory traffic by total traffic provides our effi-
ciency measurement for each cache level. Compulsory traffic is slightly lower for
the Niagara tests because it has shorter cache lines.
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Figure 4.2: DRAM to L2 data traffic in bytes for primary rays, extrapolated to
60 fps. The traffic is well within current DRAM to L2 bandwidth rates in Table 4.1
(8 GB – 20 GB).

Figure 4.3: DRAM to L2 data traffic in bytes for primary + soft shadows, extrapo-
lated to 60 fps. When there are few visible triangles (conference), traffic is within
current DRAM to L2 bandwidth rates (8 GB – 20 GB). When there are many visible
triangles (statue), traffic exceeds current bandwidth rates by 10× or more.
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Figure 4.4: DRAM to L2 efficiency for primary rays only — when tracing only
primary rays, bandwidth between DRAM and L2 is used efficiently, even for the
128KB L2 of the Sun Niagara (destructive) case.

Figure 4.5: DRAM to L2 efficiency for primary + soft shadows — when trac-
ing soft shadows, bandwidth efficiency is maintained when the working set can be
maintained in cache (Sun Niagara (constructive)). When the working set cannot be
maintained in cache, cache efficiency degrades significantly (conference) or catas-
trophically (statue).
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scene with significantly more visible triangles (389K visible). As the data in Ta-

ble 4.2 shows, rendering with divergent secondary rays can increase bandwidth

consumed between main memory and L2 by several factors; for scenes with many

visible triangles, rendering with divergent secondary rays can increase bandwidth

consumed by one to two orders of magnitude.

In Figure 4.2 and Figure 4.3, we extrapolate these data to simulate rendering

at 60 fps. Bandwidth demand for scenes with few visible triangles is within the

current memory-to-core bandwidth rates for general-purpose hardware reported in

Table 4.1, but bandwidth demand for scenes with many visible triangles exceeds

current bandwidth rates by more than an order of magnitude.

The dramatic increase in bandwidth consumption for divergent secondary

rays cannot be explained solely by the increase in the size of the working set, which

is measured by compulsory memory loads. By comparing the total bytes loaded to

the compulsory byte loads (Figure 4.4 and Figure 4.5), we see that there is a large

difference in how efficiently the L2 cache is used. Primary rays produce high L2 hit

rates, whereas divergent secondary rays produce much lower hit rates. The Niagara

results are particularly evocative. First, consider the results for few visible triangles.

In the constructive interference case, where the entire 4MB of cache is available for

scene data, the L2 hit rate is high; in the destructive interference case, where only

a fraction of the L2 is available, the L2 hit rate is considerably lower. When we

consider the results for many visible triangles, we see that the hit rate is miserable

for both L2 cases.
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4.5 Summary

We have examined the DRAM bandwidth bottleneck for ray tracing sys-

tems, and we conclude that recursive traversal algorithms are inefficient with re-

spect to divergent secondary rays. This inefficiency is a result of poor cache man-

agement rather than a dramatic increase in the working set. Future ray tracing

systems must either maintain better ray coherence or increase available cache to

maintain the entire working set. Since new processor designs have less cache per

core, ray tracing algorithms for such systems should be modified or replaced to

achieve better utilization of the memory hierarchy.

A queueing ray tracing algorithm might provide sufficient secondary ray co-

herency. Pharr et al. [85] compare the memory performance of a recursive tracer

and a queueing tracer rendering a 9.6M triangle scene with Monte Carlo path trac-

ing. On a system with 325MB RAM dedicated to geometry data, the recursive

tracer generates 120MB of compulsory geometry traffic and 2.1GB of additional

traffic from incoherent geometry accesses, which is only 5% efficient by our mea-

sure. Their ray queueing strategy eliminated excess geometry traffic while incur-

ring 70MB of new ray traffic, which is 63% efficient (including ray traffic) and over

12×more efficient than the recursive tracer. With only 50MB of RAM dedicated to

geometry data, the queueing tracer generated 938MB excess geometry traffic and

70 MB of ray traffic, which is 12% efficient and still more than twice as efficient

as the recursive tracer (which had 6.5× more memory). For such a technique to

be viable, it should be compatible with modern surface shaders and SIMD-based

instruction optimizations. The additional memory traffic generated by maintain-
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ing ray state must be factored against any savings from lower geometry traffic. In

Chapters 5 and 6, we demonstrate that by using a queueing tracer, we can create

dynamic scheduling algorithms that efficiently use the memory hierarchy.
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Chapter 5

Dynamic Scheduling for a Single Core

As we discussed at the end of Chapter 4, queueing rays can be a potent

means to increase memory system efficiency during ray tracing. We want to de-

termine what algorithmic adjustments to Pharr et al.’s algorithm [85], if any, are

required to target higher levels of the memory hierarchy. In this chapter, we exam-

ine dynamic ray scheduling from the perspective of a single processing core of a

multi-core chip. We will broaden our scope to distributed memory multi-processor

systems in Chapter 6.

5.1 Overview

In the last chapter, we showed the stress that incoherent rays, and the in-

coherent memory requests they generate, place on processor cache and on system

RAM. Pharr et al. built an ray tracer [85] that improves memory efficiency by pro-

cessing rays according to their location in scene space, independent of their place

in a traversal of the ray tree. In this algorithm, rays traverse a uniform grid, and

they are enqueued at any grid cell that contains geometry. When a cell is selected

for processing, all rays enqueued at that cell are tested for intersection against ge-

ometry in the cell. Rays that do not intersect an object are traversed to the next
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non-empty cell. This approach significantly reduces bandwidth usage between disk

and main memory and increases the utilization of geometry data in main memory.

However, the algorithm is not suited for managing traffic between main memory

and the processor cache because it allows ray state to grow unchecked, and because

the acceleration structure does not adapt to the local geometric density of the scene.

These two factors create workloads of highly variable sizes, the effects of which

are masked at main memory scale (hundreds of MB) but cannot be masked at cache

scale (hundreds of KB).

In this chapter, we present an algorithm that schedules the processing of

rays by actively managing both ray and geometry state to maximize cache utiliza-

tion and bandwidth efficiency. As we described in Chapter 2, Pharr et al.’s queue-

ing algorithm and Whitted’s recursive algorithm are two points in a spectrum of

ray scheduling algorithms that control which rays are traced together and against

which data those rays are traced. In this view, our new approach generalizes both

algorithms, selecting the appropriate point in the spectrum based on the available

resources of the host architecture. To demonstrate its feasibility, we use a detailed

simulation to show that our algorithm significantly reduces the amount of geometry

loaded when traversing incoherent secondary rays, with only moderate overhead

to handle ray state. Our algorithm performs best when the amount of visible ge-

ometry is much larger than available cache and when that geometry is traced with

incoherent rays. For example, on the 164K triangle grove scene rendered with hard

shadows and diffuse reflections with 512KB cache available, our algorithm reduces

DRAM-to-L2 bandwidth consumption 7.8× compared to packet ray tracing. We
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conclude that our notion of dynamically scheduled rays provides data access pat-

terns that are spatially coherent both in the scene and in the machine address space.

Our algorithm can be combined with current ray tracing optimizations for coherent

ray data, and, unlike those optimizations, it promises to scale for use with complex

lighting models.

The rest of the chapter proceeds as follows. First, we describe specific re-

lated work in Section 5.2. Then, in Section 5.3, we describe how the insights from

our bandwidth model led to an initial dynamic scheduling algorithm for primary

rays and present initial results that demonstrate its ability to outperform both recur-

sive and Pharr-like traversals. We then present the full the algorithm in Section 5.4.

We explain our testing methodology for the full algorithm in Section 5.5, and we

present results in Section 5.6.

5.2 Related Work

Our work builds on several previous ray scheduling schemes to create an

algorithm in which both geometry and rays are actively managed. We now discuss

this and other related work to better distinguish the contributions of our algorithm.

As we described in Section 2.1.3, all recursive ray tracers implement some

form of Whitted’s original recursive ray tracing algorithm [119]. Techniques like

packet tracing [115] can increase the number of rays active in the system at once,

but once a ray (or packet of rays) is selected for traversal, the selected ray(s) and

all child rays must be traced to completion before another selection choice is made.

The fixed active ray state in these algorithms hampers their ability to efficiently
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use the memory system. Reordering tracers [18] can reform packets between ray

generations, but the active ray state remains fixed during traversal of each packet.

Pharr et al. [85], take an approach quite different from the Whitted tracing

model. Their algorithm permits ray queueing by using a linear formulation of the

rendering equation [56], where the outgoing radiance is the weighted sum of the in-

coming radiance. This formulation computes radiance as rays are traced rather than

accumulating it on the recursion stack. As a consequence, many more rays can be

active in the system at once, providing greater opportunity to trace rays coherently.

As we discussed in Section 4.5, Pharr et al.’s algorithm improves secondary ray

coherency and reduces traffic between disk and RAM when rendering large models

on a single machine.

Since Pharr et al.’s algorithm targets disk-to-RAM efficiency, there are as-

pects of it that are poorly suited to manage RAM-to-cache traffic. The acceleration

structure is a uniform grid, which, because it is non-adaptive, makes it difficult

to constrain the amount of geometry at any particular cell. This variance can be

masked at the RAM level, but at the cache level it complicates effective schedul-

ing. Also, while rays can be enqueued under Pharr et al.’s algorithm, there is no

bound on the number of active rays. Instead, the algorithm quickly descends into

the ray tree, so many secondary rays of many ray generations can be active in the

system at once. Again, while this technique may be effective when considering

disk-to-RAM traffic, the ray state explosion that results can cause serious thrashing

in cache-sized memories. Our technique controls both geometry state and ray state

to ensure efficient operation within a given system.
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We are aware of two other prior implementations of queueing algorithms.

Dachille and Kaufman [25] implemented a queueing traversal for dedicated volume

rendering hardware. In this system, rays are collected at each cell of the volume,

much the way that rays are collected in Pharr et al.’s uniform grid. Cells are then

scheduled for processing as in Pharr et al.’s algorithm. They were able to achieve

interactive frame rates using a hardware simulator Because they use direct volume

rendering, there is no significant geometry traffic per cell: the system loads the eight

vertices of the cell and tri-linearly interpolates each sample along each ray, so their

system has virtually no geometry traffic to manage. Steinhurst et al. [99] use Pharr-

like queueing to obtain better cache performance for photon mapping. Like Pharr

et al., their system experiences ray state explosion. However, its effects cannot be

masked at the cache level, and the performance of their system suffers. We expect

that our algorithm might perform better on this task because it actively manages ray

state, and our results on diffuse reflection rays support our hypothesis.

5.3 Dynamic Scheduling for Primary Rays Only

In Chapter 3, we discovered that incoherent ray traversals of large leaves,

terminal nodes of the acceleration structure that contain more geometry than av-

erage, can dramatically increase incoherent memory requests. These requests can

ultimately saturate bandwidth between main memory and processor cache. Using

the equations presented in Section 3.4, we develop an algorithm that mitigates the

effects of large leaves on memory system efficiency. Specifically, we design our al-

gorithm to enqueue rays at these large leaves to increase the number of rays that use
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the leaf data per load. To use our equation terms, we create new memory-coherent

ray sets (MCRSs) at each large leaf. We want to maximize the size of each MCRS.

This new algorithm exploits the spatial coherence of all rays, similar to the schedul-

ing grid queues described in Pharr et al. [85], rather than just the spatial coherence

of rays in a particular packet.

We find that this new algorithm consumes less bandwidth than packet trac-

ing when cache resources are scarce. In addition, when there is little or no cache

pressure, the new algorithm avoids the overhead of Pharr et al.’s algorithm, since it

does not enqueue at each leaf. We call this new algorithm dynamic ray scheduling

since the queue points are determined dynamically according to the acceleration

structure behavior and the cache resources available on the particular hardware.

5.3.1 Creating the Dynamic Ray Scheduling Algorithm

The inspiration for the dynamic ray scheduling algorithm came from an

analysis of the large leaf turnover equation, Equation 3.8. If the algorithm reduces

the number of times the data at a large leaf is requested, it will reduce the memory

effects of that large leaf on the rest of the rendering. We walk through the steps of

the algorithm below.

• Trace each ray packet recursively [115]. If the packet does not hit any large

leaves, its traversal is identical to a recursive packet-based traversal.

• If a large leaf is encountered, enqueue the current packet by adding it to a

queue of packets maintained at that leaf. Begin tracing the next packet of
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primary rays.

• After all primary rays have been traced:

– If no packets have been enqueued, rendering is complete.

– If packets have been enqueued, select a leaf that contains queued pack-

ets. For this work, we choose the leaf closest to the camera so that a leaf

with enqueued packets will be touched only once. The full algorithm

uses a different queue selection method.

– Perform ray-object intersection tests for the objects stored at the leaf.

We perform the intersection tests in ray-order (test one ray against all

geometry before considering the next ray), but other intersection order-

ings are possible (object-order, for example).

– For each packet that still has active (not yet intersected) rays, continue a

packet traversal for the packet as though it had not been enqueued at the

current leaf. If a packet encounters another large leaf, queue the packet

at the new leaf and begin tracing the next packet from the current leaf.

– Continue selecting leaves with queued packets until all rays have been

traced.

We now walk through a toy example of the algorithm in action. Imagine

an acceleration structure that contains one large leaf. To simplify the presentation,

say that 10% of camera rays hit this leaf and are enqueued. The remaining 90% of

camera rays are traversed exactly as in a packet traversal. Now, we check for any
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enqueued rays. There is one leaf with a non-empty queue, so it is selected. We now

perform intersection tests for the rays and geometry at the selected leaf. Let us say

that 40% of the queued rays are successfully intersected. For each of the remaining

rays (6% of all the original camera rays), we resume a packet traversal, starting at

the ray’s exit point from the large leaf. Because there are no more large leaves, each

ray will complete its traversal without being enqueued again.

This traversal minimizes visits to each large leaf. Further, the traversal in-

creases ray coherence because it traverses one set of queued rays to completion1

before processing another queue. In the next section, we will describe how to select

the size threshold for large leaves, and we will present our bandwidth consumption

results for the dynamic traversal.

5.3.2 Primary Ray Scheduling Results

In this section, we compare the bandwidth consumption of primary rays for

a dynamic scheduling traversal against the consumption for single-ray traversal, a

2×2 packet traversal, an 8×8 packet traversal, and an “always enqueue” traversal

similar to Pharr et al., but that uses the same queue selection metric as our dynamic

traversal (proximity to the camera). This Pharr-like algorithm always enqueues

rays at a particular node depth to approximate their the scheduling grid, whereas

our algorithm enqueues only at large leaves. We find that when cache resources

are scarce, our dynamic scheduling traversal reduces bandwidth consumption com-

1By completion, we mean the ray was successfully intersected, enqueued at another large leaf,
or exited the acceleration structure.
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pared to each recursive traversal, and it remains competitive with the “always en-

queue” traversal. When cache resources are plentiful, our algorithm is competitive

with the recursive traversals, and it does not suffer from the same overhead costs as

the “always enqueue” traversal.

For these experiments, we modified our experimental ray tracer described

in Section 3.5.1 to perform a dynamic traversal. We then rendered each of the four

scenes described in Section 3.5.2. We will present results from camera locations

and directions that are representative of the performance of each traversal on each

scene.

5.3.2.1 Selecting Where to Enqueue Rays

Since we define a large leaf heuristically in Section 3.4.4.3, we test a range

of leaf sizes to measure the impact of selecting the leaf size at which rays will be

enqueued. Our tests range from 4 KB, where rays are enqueued at every leaf, to 64

KB, where rays are never enqueued. We find that the ideal point to start deferring

rays occurs when: (1) there are leaves large enough to cause significant turnover

in cache, and (2) enough rays hit those leaves to counter the queueing overhead.

For our tests, we found the best queue point to be at leaves that contain geometry

equivalent to at least one-quarter of the total data cache. We used this queue point

for our results.
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single rays
cache room soda hall sphereflake grove

size rec enq ∆% rec enq ∆% rec enq ∆% rec enq ∆%

4 KB 35.2 24.9 41 5.9 4.1 44 56.6 28.1 101 64.8 40.2 61
8 KB 7.9 4.4 80 4.3 2.8 54 45.1 29.7 52 46.9 20.3 131

16 KB 2.1 1.7 24 3.5 1.7 106 19.4 12.8 52 22.7 7.8 191
32 KB 1.6 1.6 0 2.9 1.8 61 8.8 8.6 2 6.4 5.4 18
64 KB 1.6 1.6 0 2.2 2.2 0 8.0 8.0 0 5.2 5.2 0

2 × 2 packets
cache room soda hall sphereflake grove

size rec enq ∆% rec enq ∆% rec enq ∆% rec enq ∆%

4 KB 13.9 24.2 -74 4.2 3.8 10 30.2 25.7 18 45.0 39.7 13
8 KB 4.5 3.8 18 3.1 2.6 19 22.5 19.3 16 26.2 18.8 39

16 KB 1.5 1.4 7 1.9 1.4 36 10.4 8.7 19 11.1 6.2 79
32 KB 1.3 1.3 0 1.7 1.4 21 5.8 5.8 0 4.0 3.7 8
64 KB 1.3 1.3 0 1.5 1.5 0 5.0 5.0 0 3.3 3.3 0

8 × 8 packets
cache room soda hall sphereflake grove

size rec enq ∆% rec enq ∆% rec enq ∆% rec enq ∆%

4 KB 17.8 23.8 -33 5.5 4.5 22 47.6 30.6 56 59.0 44.7 32
8 KB 3.9 4.1 -5 3.2 2.6 23 24.4 18.5 32 24.2 18.0 34

16 KB 1.2 1.2 0 1.8 1.2 50 7.7 6.8 13 6.6 5.3 24
32 KB 1.1 1.1 0 1.2 1.2 0 4.0 4.3 -8 2.4 2.5 -4
64 KB 1.1 1.1 0 1.2 1.2 0 3.2 3.2 0 1.8 1.8 0

Table 5.1: Bandwidth consumed by a recursive traversal (rec) versus our queueing
variant (enq). Bandwidth consumption is measured in megabytes.

5.3.2.2 Measured Bandwidth Consumption

We compare the bandwidth consumption of a dynamic traversal against the

bandwidth consumption of several other traversal algorithms. For single-ray and

packet traversals, we make pair-wise comparisons of the standard traversal versus

its dynamic counterpart in Table 5.1. We also compare the bandwidth consumption

of our algorithm against an “always enqueue” algorithm in Table 5.2. We present

the bandwidth consumption measurements graphically in Figures 5.3 – 5.4.
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single rays
cache room soda hall sphereflake grove

size always large ∆% always large ∆% always large ∆% always large ∆%

4 KB 10.7 24.9 -133 4.1 4.1 0 22.4 28.1 -25 38.2 40.2 -5
8 KB 8.4 4.4 91 3.2 2.8 14 17.5 29.7 -70 18.9 20.3 -7

16 KB 6.2 1.7 265 2.0 1.7 18 10.1 12.8 -27 8.3 7.8 6
32 KB 5.7 1.6 256 2.0 1.8 11 9.3 8.6 8 6.4 5.4 18
64 KB 5.7 1.6 256 1.9 2.2 -16 8.8 8.0 10 6.1 5.2 17

Table 5.2: Bandwidth consumed by always queueing (always) versus queueing at
only large leaves (large). Bandwidth consumption is measured in megabytes.

Figure 5.1: Bandwidth consumed by primary rays for room.
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Figure 5.2: Bandwidth consumed by primary rays for soda hall.

Figure 5.3: Bandwidth consumed by primary rays for grove.
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Figure 5.4: Bandwidth consumed by primary rays for sphereflake.

5.3.3 Discussion

Our results show that using a dynamic scheduling traversal can reduce band-

width consumed for all scenes tested. The largest bandwidth savings came from

making the single-ray traversal dynamic. This result was expected, since a single-

ray traversal benefits only from image coherence and not from any ray coherence.

Our algorithm also improves the bandwidth consumed by packet traversals when

cache resources are scarce. While a packet traversal benefits from ray coherence, it

only exploits memory coherence between packets when the cache is large enough

to hold the entire unit of work for the packet. Our algorithm captures this lost

coherence by increasing the work done for each large leaf.

As cache size increases, the benefit of our algorithm decreases for all scenes.

This is by design, since as cache size increases fewer leaves are deemed large, and

thus fewer rays are enqueued. When no large leaves are found, our algorithm per-
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forms as a recursive algorithm, with slight overhead cost to check for large leaves.

It does not suffer the more significant overhead measured for the “always enqueue”

strategy.

Our algorithm performed worst on the room scene, though bandwidth sav-

ings were realized for the smallest cache sizes. We attribute this performance to the

low geometry load of the scene in general2 and thus to there being few large leaves

present. The bandwidth savings at these few leaves is not sufficient to amortize the

queueing overhead.

5.4 Complete Dynamic Scheduling

Our complete dynamic scheduling algorithm actively manages ray and ge-

ometry state to provide better cache utilization and lower bandwidth requirements,

which enables faster execution. Our algorithm is rooted in two concepts: rays can

be traced independently (non-recursively), and rays can be enqueued at regions in

scene space where the geometry in that region fits completely in available memory.

Taken together, these concepts permit tight control of the use of memory resources

because, for any particular queue point, there is a known, tight upper bound on the

amount of data that must be touched to process all the rays in that queue.

Our algorithm seeks to optimize both (1) bandwidth utilization between

main memory and the lowest level of processor cache and (2) utilization of the

2room is our smallest test scene and it is overly simplified in two respects: first, it was created for
rendering on a z-buffer rasterizing architecture, which encourages low geometric complexity (since
all geometry must be touched during the algorithm’s execution); and second, there are no characters
in the scene that would add significant geometric complexity.
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lowest level of processor cache itself. We conservatively treat this as a dedicated

cache; contention among cores for a shared cache will further decrease bandwidth

utilization (see the Sun Niagara results in Section 4.4) and increase the value of

our approach. Without loss of generality, we will refer to DRAM-to-L2 bandwidth

and L2 utilization in our discussion, since these are common components of the

hardware that we target.

The algorithm described here uses a k-d tree as the acceleration structure,

but it could be adapted to other acceleration structures, including regular grids,

hierarchical grids, and bounding volume hierarchies. The ability of the acceleration

structure to adapt to varying densities of scene geometry directly affects schedule

quality by limiting the flexibility that we have in choosing queue points for rays.

Our discussion will provide insight as to how the acceleration structure interacts

with other parts of the algorithm, but a thorough analysis of the impact of different

acceleration structures is beyond the scope of this chapter.

5.4.1 Traversal Algorithm

Our traversal algorithm traces rays from the root of the acceleration struc-

ture down to queue points, where further ray processing is deferred. It later iterates

over these queue points to complete all ray traversals. To simplify our discussion,

we first describe the traversal of primary rays only, which adjusts the primary-only

algorithm described in Section 5.3. We then expand the discussion to include sec-

ondary rays. Section 5.4.3 contains an implementation sketch.
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Figure 5.5: Queue Point Selection — Here, we demonstrate how our queue point
selection algorithm works on a toy k-d tree. We measure the amount of cache
available to hold geometry and determine the maximum amount of geometry (gmax)
that can be loaded without exceeding available cache capacity. We select the first
node on each branch of the tree that contains geometry: g ≤ gmax. In this fig-
ure, if gmax ≥ 26, the root (marked A) is the only queue point, and our algorithm
degenerates to Whitted-style ray tracing because all geometry fits in cache. If
26 > gmax ≥ 16, the internal nodes marked B are queue points. If 16 > gmax ≥ 10,
the C nodes are queue points. If gmax ≤ 10, the leaves (marked D) are queue points.
Note that even if gmax is smaller than the amount of geometry at a leaf, that leaf is
made a queue point because there is no remaining acceleration structure beneath it
(see Section 5.4.3).
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5.4.1.1 Traversing Primary Rays

To handle secondary rays in our dynamic scheduler, we found it necessary to

adjust our initial algorithm. Rather than targeting only large leaves, we now select

queue points in the acceleration structure based on the amount of geometry that fits

in available cache. Each queue point is the root of a subtree of the acceleration

structure, a subtree that contains as much geometry as possible, but no more than

will fit into L2 cache. See Figure 5.5 for an example. If the entire scene fits into

cache, then the root of the acceleration structure is the only queue point, and a

recursive traversal is used.

Our algorithm efficiently schedules for worst-case conditions. Sometimes

the construction of the acceleration structure cannot adapt to dense local geometry.

At such points in a k-d tree, a leaf with an unusually large amount of geometry is

placed in the acceleration structure. If the geometry at that leaf exceeds cache ca-

pacity, a recursive ray traversal will always thrash the cache each time such a leaf is

pierced by a ray. Our algorithm treats such leaves as a separate scheduling problem

by loading blocks of both rays and geometry to process the queue efficiently.

Our algorithm enqueues all primary rays, then iterates over the queues until

all rays have terminated or have left the bounds of the scene. When a queue is pro-

cessed, each ray traverses any of the remaining subtree and is tested for intersection

against the geometry at each leaf of the subtree that the ray might reach. Once a

ray is selected at this stage, it is processed until either a successful intersection is

found or until the ray exits the bounds of the subtree. If the ray exits the bound of

the subtree, it continues its traversal through the full acceleration structure, either
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to the next queue point or until it exits the bounds of the scene.

When a ray intersects a surface, we can either shade the intersection point

immediately (as in ray casting) or save it for deferred casting of secondary rays. A

pixel id is maintained with the ray so that the proper pixel can be shaded. When

super-sampling, samples can be blended in the framebuffer as they arrive. If sec-

ondary rays are cast, then the point is shaded iteratively as each secondary ray is

processed.

5.4.1.2 Traversing Secondary Rays

Our algorithm traces secondary rays in generations according to ray type:

shadow rays from the current generation are processed, then any newly spawned

non-shadow rays are processed. By processing rays in generations, we limit the

amount of active ray state in the system while still providing coherent access to

scene geometry.

To generate shadow rays and other secondary rays, we maintain the intersec-

tion points for the current generation of rays. For each point light, we trace shadow

rays from the light toward the intersection points, which makes the traversal identi-

cal to the primary ray traversal method. Shadow rays inherit both the pixel id and

the shading information from their spawning ray. Thus, when light visibility has

been determined, the shading contribution, if any, can be added to the appropriate

pixel.

Once all shadow rays for the current generation have terminated, we tra-

verse newly spawned non-shadow rays. Each new ray starts at the queue point that

86



contains its origin. Our algorithm then iterates over queue points to traverse rays,

as before. While our algorithm may achieve less coherence here than for primary

and shadow rays, it can achieve better ray-object coherence than a recursive ray

tracer by allowing many secondary rays to be active at once. Once all rays of this

new generation have been processed, any resulting intersection points are used to

generate the next generation of shadow and secondary rays. This process continues

until no new secondary rays are generated.

5.4.2 Tiling Ray and Scene Data

While we use a recursive traversal to test each single ray against the re-

quired scene data at a queue point, this is not the only strategy available. As we

mentioned in Section 2.1.3.3, the localized groups of rays and scene data at each

queue point create a dense, regular data layout, and the traversal and intersection

iterations resemble the nested loop iterations used in matrix computations. Thus,

we can apply loop tiling or blocking optimizations used for dense matrix opera-

tions [7, 20, 69, 73, 120] to improve data locality and reuse at the highest levels

of the memory hierarchy. Our approach makes these transformations possible by

collecting significant numbers of both ray and scene data at each queue point and

by bounding the total data amount per queue. Note that these optimizations can-

not be applied easily to recursive ray tracers because the general recursive traversal

contains too many conditional steps to effectively block scene data and because

recursive tracers maintain too little active ray state to make blocking worthwhile.

Loop tiling improves data locality and reuse for a nested loop by keeping
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a tile of data for one variable X resident in memory while iterating across data for

another variable Y . In this way, each tile of X is loaded once and each tile of Y is

loaded once for each tile of X . If we define Cost(X) to be the bandwidth cost of

loading a tile of X and Tiles(X) to be the number of tiles of X , we can calculate the

total cost for a particular tiling strategy with Formula 5.1.

Cost(X) ·Tiles(X)+Cost(Y ) ·Tiles(Y ) ·Tiles(X) (5.1)

For ray tracing, we use rays and scene objects as variables, where the scene

objects include both acceleration structure data and geometry 3. Either ray tiles or

object tiles can be kept resident (used as the X variable), though the best choice

depends on the size of the target memory, the number of tiles of each type, and the

bandwidth cost to load each tile type. In Figure 5.6, we show bandwidth costs for

both variants across a range of ray and object counts and assuming a 32 KB cache.

5.4.3 Implementation Sketch

We now describe how our algorithm can be implemented on a multi-core

processor, assuming a 4MB L2 cache. We keep geometry and acceleration structure

data cached while streaming rays to keep threads maximally occupied.

We represent k-d tree nodes using eight bytes, similar to the k-d tree used in

PBRT [84]. We use an additional bit from the least-significant end of the mantissa

3For generality, we include both acceleration structure data and geometry data, since the accel-
eration structure tests determine which geometry data is tested. If the queue point is at a leaf of the
acceleration structure, then only geometry is included.
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Figure 5.6: Bandwidth cost when tiles of rays or tiles of objects are kept resident
for a 32 KB cache assuming 64 bytes per ray and 128 bytes per triangle object.
Tiles are sized so that the maximum number of rays or objects can be kept resident
at once.
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of the split location to indicate whether a node is a queue point, leaving 20 bits

for the single-precision mantissa representation. We expect this quantization to not

significantly affect the quality of the k-d tree. With this representation, 128K nodes

can remain resident if we reserve 1MB of the L2 for nodes. If the k-d tree is larger,

we can use a “forest and sub-tree” structure [93] by maintaining only the top of

the tree, from the root down to the queue points, then loading each subtree before

processing its associated queue. This structure is only needed for extremely large

scenes where the added cost for loading the subtree will be insignificant compared

to the cost of loading the associated geometry.

We also maintain a table that associates each queue point with a buffer in

main memory that contains the actual ray queue. We keep this table and its asso-

ciated buffers in memory so that rays can be enqueued quickly. This table costs 8

bytes per entry, and we expect 32K queue points to be sufficient for most trees, so

the table requires 256KB.

Rays must be cached to perform traversals and intersections, yet we expect

to have hundreds to thousands of rays queued at each point. For example, if the

camera point lies within the acceleration structure, all primary rays will begin in

one queue. If we bring in too many rays, we evict other needed data from cache, so

we buffer only enough rays to mask the latency of the initial cache miss on a leaf’s

geometry. We know that all queued rays must be traversed through the active sub-

tree, so this work will be available as long as there are queued rays. Each traversal

step in a k-d tree computes a ray-plane intersection test, which is made simpler be-

cause the plane is guaranteed to be axis-aligned. The ray-plane intersection test can
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be computed with a multiply, an add, and a comparison. With instruction latency,

the test takes about seven cycles to complete [100]. Assuming current DRAM la-

tencies and an average of ten traversal steps to take a ray from the queue point to a

leaf, two to four rays per thread should be sufficient to prevent idle threads.

We use a tight, 64-byte ray representation, with support for adaptive sam-

pling. Our ray layout supports up to 160-bit color, which must be included with

each ray for linear processing. We include space for a pointer to adaptive sam-

pling information, if required. We pad the structure to 64 bytes to maintain cache

alignment.

Finally, we must cache geometry. We select queue points in the acceleration

structure so that the geometry in the subtree will fit in available cache, taking into

account the acceleration structure, ray buffer, etc., described above. We could load

all geometry in the subtree immediately, but we cannot know which geometry, if

any, will actually be tested for intersection. To avoid spurious geometry loads, we

lazily load geometry when a ray needs it for an intersection test. If a queue point is

at a leaf, then we load the geometry immediately to be tested for intersection.

5.5 Experimental Methodology

This section describes how we obtained our results. We perform all exper-

iments using an unoptimized ray tracer with a simulated L2 cache. We evaluate

the performance of our algorithm in terms of cache utilization and bandwidth con-

sumption.
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Figure 5.7: Test scene images — We test our complete algorithm on three scenes:
room, grove, and sphereflake. Note that the geometry artifacts in room are con-
tained in the scene specification and are not due to our ray tracer.

To obtain the cache measurements for our simulation, we create a memory

trace with explicit reads and writes, then run that trace through various cache con-

figurations using Dinero IV [31], a light-weight trace-driven simulator. We simulate

cache sizes in power-of-two increments from 1KB to 4MB, with 64B cache lines.

This size range allows us to measure the performance of our algorithm both when

cache resources are scarce and when they are plentiful. Each cache is fully asso-

ciative to eliminate conflict misses. Thus, after the cache is warm, all misses are

capacity misses.

Our simulator is single-threaded, which eliminates multi-threaded cache is-

sues, such as false sharing, from our measurements. In an optimized implementa-

tion, threads will collaboratively process the rays at a single queue point. Because

the geometry associated with each queue point fits in available cache, we expect to

avoid most thread-related contention.
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We test our algorithm on three scenes, shown in Figure 5.7. The scenes are

rendered at 1024×1024 resolution for all runs except for diffuse reflections, where

they are rendered at 512× 512 resolution. These models provide a variety of to-

tal geometry, potentially-visible geometry, and geometric topology. We use room,

a small architectural scene (47K triangles); grove, a grove of tree models (164K

triangles); and sphereflake, a four-level sphereflake model from the Standard Pro-

cedural Database [38] (797K triangles). We specifically mention potentially-visible

geometry when tracing primary and secondary rays because it more accurately mea-

sures the geometry loaded when rendering. Total geometry affects the size and

quality of the acceleration structure and whether the scene can fit in main memory,

but it does not impact the geometry traffic between main memory and processor

cache unless all geometry must be tested for intersection.

We compare our algorithm against two recursive ray tracers: a single-ray

tracer using rays ordered along a Hilbert curve, which is an ordering known to

produce good image-plane coherence [104]; and a ray packet tracer using 8× 8

packets tiled over the image plane. We use an 8× 8 packet size since it is the

midpoint of currently popular packet sizes (4×4 [91, 110] to 16×16 [109]) and it

was recently found to provide the most speed-up among sizes in this range [17].

5.6 Results and Discussion

This section shows that dynamic ray scheduling can improve cache utiliza-

tion for geometry data by as much as an order of magnitude over recursive ray

tracing. These savings will become increasingly important for rendering complex
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models that require more data to be loaded, adding additional stress on the cache.

5.6.1 Interpreting the Result Charts and Tables

Figures 5.8 – 5.13 provide a comparison of the bandwidth consumed by

our approach to the bandwidth consumed by the single-ray recursive tracer. Ta-

bles B.1 – B.12 in Appendix B show all our results, including the bandwidth con-

sumed when tracing 8× 8 packets. The tables show both the raw bandwidth mea-

surements and the relative improvement of each approach compared to the recursive

ray tracer performance.

For each configuration, we list the amount of geometry that is potentially

visible. This is the amount of geometry that is tested for intersection against at

least one ray, and thus it is the total amount of geometry that must be loaded into

the cache. This amount represents the cache pressure from geometry more accu-

rately than either total geometry or visible geometry, since total geometry includes

geometry that is culled by the acceleration structure and visible geometry omits

geometry that is tested for intersection but either is not hit or is occluded by other

nearby geometry.

Each table includes both the size of the cache sizes tested and the frac-

tion of the potentially visible geometry that fits into each cache size. This frac-

tion expresses the cache pressure in the system for a particular combination of

scene and cache size. Smaller values indicate greater pressure. Values greater than

1.0 indicate that all potentially visible geometry can be cached, which minimizes

cache pressure. This fraction allows a fair comparison among scenes with different
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amounts of potentially visible geometry. Cache sizes that hold similar fractions of

geometry should be compared (for example, 32K for room and 512K for grove),

rather than comparing results for the same cache sizes.

When tracing shadow rays, the amount of potentially visible geometry dif-

fers slightly for our algorithm and the other algorithms. This is because shadow

rays in our algorithm are traced from the light source to the non-shadow hit point,

whereas the other algorithms tested trace from hit point toward the light source.

5.6.2 Tracing Primary Rays

We present our measurements for tracing primary rays in Figures 5.8, 5.10

and 5.12. These results show that our algorithm reduces geometry traffic between

DRAM and L2 for all cache sizes at the cost of increased ray traffic. Ray traffic

is more desirable than geometry traffic, since a thread must block for a geometry

load but can switch to another ray if one is available. In other words, we want to

keep geometry in cache and stream rays, as long as there are enough rays in cache

to keep all threads busy.

Further, our algorithm significantly reduces geometry traffic when system

resources are scarce. When the data load on the system is greatest, our algorithm

adapts to make efficient use of available resources. Recursive ray tracing cannot

adapt in this way and thrashes the cache with geometry data. The problem is that

recursive ray tracing maximally constrains the amount of ray traffic at the potential

cost of increased geometry traffic. Our algorithm relaxes this constraint, allowing

ray traffic to grow while significantly reducing geometry traffic. Thus our algorithm
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Figure 5.8: Performance improvement for dynamic scheduling over recursive trac-
ing for primary rays and for hard shadows on room — Numbers greater than one
indicate better bandwidth utilization compared to single-ray recursive tracing. See
Tables B.1 and B.2 for the underlying data.
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Figure 5.9: Performance improvement for dynamic scheduling over recursive trac-
ing for specular reflections and for diffuse reflections on room — Numbers greater
than one indicate better bandwidth utilization compared to single-ray recursive trac-
ing. See Tables B.3 and B.4 for the underlying data.
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Figure 5.10: Performance improvement for dynamic scheduling over recursive trac-
ing for primary rays and for hard shadows on grove — Numbers greater than one
indicate better bandwidth utilization compared to single-ray recursive tracing. See
Tables B.5 and B.6 for the underlying data.
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Figure 5.11: Performance improvement for dynamic scheduling over recursive trac-
ing for specular reflections and for diffuse reflections on grove — Numbers greater
than one indicate better bandwidth utilization compared to single-ray recursive trac-
ing. See Tables B.7 and B.8 for the underlying data.
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Figure 5.12: Performance improvement for dynamic scheduling over recursive trac-
ing for primary rays and for hard shadows on sphereflake — Numbers greater than
one indicate better bandwidth utilization compared to single-ray recursive tracing.
See Tables B.9 and B.10 for the underlying data.
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Figure 5.13: Performance improvement for dynamic scheduling over recursive trac-
ing for specular reflections and for diffuse reflections on sphereflake — Numbers
greater than one indicate better bandwidth utilization compared to single-ray recur-
sive tracing. See Tables B.11 and B.12 for the underlying data.
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can make efficient use of system resources and adapt to various system loads.

5.6.3 Tracing Secondary Rays

Our algorithm performs well when both primary and secondary rays are

traced. We present measurements for primary rays, shadow rays from three point-

lights, specular reflections, and diffuse reflections. We separate the specular and

diffuse reflection cases to better observe their respective behavior. All reflections

are limited to two bounces.

We use hemispherical sampling to generate diffuse reflection rays, similar

to techniques used in Monte-Carlo global illumination techniques and in photon-

mapping [53]. Nine reflection rays are generated per sample, using a 3× 3 sam-

pling grid over the hemisphere. Each bounce has only a 10% chance of generating

another sampling round. Our sampling is insufficient for accurate global illumina-

tion simulation, but it provides a reasonable approximation of system performance

when tracing maximally incoherent rays.

In Figures 5.8 – 5.13, we present the traffic from main memory to processor

cache for our algorithm when tracing hard shadows and incoherent reflection rays

(both specular and diffuse). The relative performance of our algorithm increases as

ray incoherence and ray density increase, and the total data traffic of our algorithm

never explodes as it does in the recursive algorithms tested.

Our algorithm performs best when visible geometry is large compared to

available cache and when many rays are active at once. For example, on the

164K triangle grove scene rendered with hard shadows and diffuse reflections with
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512KB cache available, our algorithm reduces DRAM-to-L2 bandwidth consump-

tion 7.8× compared to packet ray tracing. In contrast, on the 797K triangle sphere-

flake scene with the same configuration, our algorithm does not reduce bandwidth

consumption because the scene is over-tessellated for the sampling rate used. Each

sphere is tessellated fully in the scene representation, which can be unnecessar-

ily fine for a sphere that covers only a few pixels and against which few rays are

tested for intersection. For such scenes, a multi-resolution system similar to Djeu

et al. [30], with coarsification added, would boost our algorithm’s performance.

Our algorithm does comparatively worse when the working set of the recur-

sive algorithm fits in available cache. However, we believe these negative results

will not translate into negative system performance because they only occur when

much of the scene fits in cache. In such cases, the additional bandwidth consumed

under our algorithm occurs when bandwidth is not fully utilized. Further, recursive

algorithms struggle to maintain memory locality under complex lighting models.

Global illumination approximations can generate tens to hundreds of secondary

rays per primary ray, each of which may access new, uncached geometry. A re-

cursive ray tracer will eventually thrash the cache with geometry data, whereas our

algorithm will continue to process these rays coherently.

5.6.4 Results for room

Tables B.1 – B.4 contain the measured traffic from main memory to proces-

sor cache for room. Even on our smallest test scene, both in total geometry and in

visible geometry, our algorithm reduces geometry traffic. The most dramatic traffic
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reduction comes at the smaller tested cache sizes. For diffuse reflection rays, when

rays are maximally incoherent, we can reduce geometry traffic by as much as two

orders of magnitude (16K – 128K) and total traffic by as much as an order of mag-

nitude. When the working set for the recursive algorithm fits in available cache, the

relative performance of our algorithm suffers because of the overhead to maintain

the ray queues. Note that while our relative performance numbers are worse for

these resource-plentiful situations, the total bandwidth consumed is relatively low,

so the impact on system performance is small.

5.6.5 Results for grove

Tables B.5 – B.8 contain the measured traffic from main memory to proces-

sor cache for grove.On this larger test scene, the benefit of our algorithm becomes

clear. When cache resources are scarce, our algorithm significantly reduces data

traffic. When cache resources are plentiful our algorithm achieves better cache uti-

lization with respect to geometry, at the cost of increased ray traffic. The results for

incoherent rays (specular and diffuse reflections) are particularly striking, where our

algorithm significantly reduces total data traffic even with megabytes of available

cache.

5.6.6 Results for sphereflake

Tables B.9 – B.12 contain the measured traffic from main memory to proces-

sor cache for sphereflake. This scene has both the most and the most potentially-

visible geometry in our test set. Although our performance here is worse than on
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other test scenes, the bandwidth usage is relatively low in all cases, so we expect the

overhead of our algorithm to have little impact on system performance. This scene

is a worst case for our algorithm because the geometry is severely over-tessellated:

The smallest spheres are fully represented, which concentrates tens-of-thousands

of triangles in the area of a few pixels. As a result, there is very little geometry

shared among ray intersections. Also, the queue-points for our algorithm are deep

in the k-d tree, which limits the number of rays queued and thus the coherence ben-

efits of our algorithm. As discussed in Section 5.6.3, a multi-resolution geometry

representation would boost our relative performance for this case.

5.7 Summary

In this chapter, we presented a ray tracing algorithm that dynamically en-

queues and schedules rays in order to actively manage both ray and geometry

data. Compared to recursive traversals, our algorithm significantly reduces single-

processor DRAM-to-L2 geometry traffic and moderately increases ray traffic. Our

algorithm dramatically reduces total bandwidth consumed between main memory

and processor cache when cache resources are scarce, which makes it particularly

suited for ray tracing large, complex scenes. When cache resources are plentiful,

our algorithm can consume more bandwidth than recursive algorithms due to in-

creased ray traffic, though the absolute bandwidth consumed in such cases remains

small.

We have shown that our dynamic algorithm can efficiently manage memory

for single core, and previous work [85] shows that queueing tracers can manage
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memory for a single machine. Therefore, we expect our algorithm to be well-suited

for ray tracing scientific data on large clusters, which are the dominant architecture

in modern supercomputing [103]. These clusters generate datasets of increasing

size and complexity, the largest of which cannot be efficiently moved from the orig-

inating machine. There is a growing need for rendering algorithms that can operate

efficiently on the distributed architectures where such large data is produced. In

Chapter 6, we develop a dynamic scheduling algorithm to efficiently render large,

complex scenes that require the assembled resources of many distributed machines.
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Chapter 6

Dynamically Scheduled Distributed Memory Ray
Tracing

Our work to this point demonstrates that dynamic scheduling is particularly

well-suited for rendering tasks that operate on large datasets under tight memory

constraints. This suggests that a dynamic scheduling algorithm might be a good

candidate to render large-scale scientific data on large distributed clusters. This

rendering problem is particularly challenging because each dataset can be as large

as the aggregate memory of tens or hundreds of cluster nodes and each individual

node has a relatively small amount of local RAM per core. A suitable rendering

algorithm must scale to hundreds of nodes in order to gather enough aggregate

memory for the largest datasets, and it must function within the limited per-core

resources at each node. In this chapter, we explain how the dynamic scheduling

algorithm can operate on large distributed clusters.

6.1 Overview

In Chapters 3 and 4, we showed that recursive ray tracing operates efficiently

when all required data can fit in memory. This result remains true for large-scale

parallel ray tracing. Many previous large-scale recursive ray tracers assume they
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operate in shared memory, a single global memory address space across the entire

machine. This assumption is attractive because such memory can be used like the

memory on a single-core machine, just at a larger scale. As in the single-core case,

however, these algorithms struggle if required data is larger than available memory.

In addition, large-scale shared memory environments typically have non-uniform

access times across the address space; the environment might not indicate that a

memory request will have extra latency, which complicates handling such requests

efficiently.

Most large scientific simulations are now run on distributed memory su-

percomputing clusters [103] for which shared memory assumptions do not directly

apply. Shared memory can be simulated as a virtualization layer between the appli-

cation and the hardware [26], but such a layer can exacerbate the non-uniform ac-

cess penalty for requests for non-local memory. Further, the layer does not change

the memory request pattern for a ray tracer: even if the shared memory system

caches non-local data [26], we have shown that the many incoherent memory re-

quests generated by recursive tracing will result in poor memory performance.

To further complicate the situation, many large simulations produce ter-

abytes of data per timestep. Such data are too large to move off the machine that

produced them to a different machine for processing. Therefore, we assume that a

ray tracer must run on the same distributed-memory machine that produced the data.

Further, it is impractical, and sometimes impossible, to pre-compute highly-tuned

acceleration structures for these large datasets. Pre-processing requires significant

additional machine-time and disk space, and the resulting acceleration structure
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would consume significant additional DRAM during rendering which can exceed

the available memory. It is not clear that researchers will be willing or able to spend

part of a finite machine allocation to generate these structures, particularly if the

data will not be rendered enough times to offset the cost.

In this chapter, we present a dynamic ray scheduling algorithm for distributed-

memory ray tracing. Our algorithm schedules ray traversal and intersection cal-

culations according to the data resident on each processor in a manner similar to

scheduling for a single core. By associating rays and data into locally coherent work

units, our algorithm can adjust to evolving data requirements and alter the schedule

of these work units across the parallel environment to achieve better overall sys-

tem performance. We show that dynamic scheduling can improve performance for

large datasets where disk I/O limits performance. Our algorithm is able to render

a 650 GB n-body dataset on a 1024 core cluster, which a statically scheduled ray

tracer could not. For a smaller n-body data set for which the static schedule does

complete, our dynamic scheduler reduces data loads by 10× to 48×. Our sched-

uler also demonstrates better performance than static strategies for volumetric ray

casting.

The remainder of this chapter proceeds as follows. We first discuss related

large-scale ray tracing work in Section 6.2. In Section 6.3, we present our approach

in detail. We describe our testing methodology in Section 6.5, including a light-

weight event based simulator we built to test schedules prior to full implementation.

We present our full system results in Section 6.6; the raw data from our results are

in Appendix C.
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6.2 Related Work

In this section, we place our approach in the context of prior work and other

approaches to large-scale ray tracing.

6.2.1 Shared-Memory Ray Tracing

Most recent ray tracing systems use algorithms designed for shared memory

architectures, including multi-core workstations and larger symmetric multiproces-

sors (SMPs). Significant shared-memory systems include RTRT (also called *-Ray)

by Parker et al. [78, 79, 80], Reshetov et al.’s multi-level ray tracing algorithm (ML-

RTA) [91], and SCI’s Manta ray tracer [16]. Wald et al. [112, 113] provide a deeper

discussion of the current state of the art for shared memory approaches.

6.2.2 Distributed-Memory Ray Tracing

A number of specialized, distributed-memory ray tracing architectures were

proposed though the 1980s, though few were actually manufactured and most per-

formance results were obtained through simulation. Green and Paddon [36] survey

these systems in detail.

We are aware of several distributed-memory ray tracers that divide data

across processors and send each ray to the processor that contains its required data.

Each of these systems use specialized hardware rather than a cluster of general-

purpose machines. Dippé and Swensen [29] proposed a specialized architecture

for distributed-memory ray tracing that loads scene data across aggregate system

memory, then dynamically changes the acceleration structure boundaries to load-
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balance the system. This requires frequent data communication among the affected

processors in addition to ray traffic. Kobayashi et al. [59] statically subdivide scene

space among processors and use a number of processing elements at each proces-

sor to perform ray calculations. This approach may map well to modern clusters,

but overhead from small and frequent ray communication would likely degrade

performance. Dachille and Kaufman [25] used ray reordering and queueing in a

specialized hardware-based volume renderer. They support lighting, including sim-

ple global illumination and scattering effects, and reflections. They schedule rays

using a static assignment of spatial subdivisions to processors, and pass rays among

them.

Recent non-queueing distributed-memory ray tracers divide work according

to image coherence, either by tracing contiguous pixels to achieve coherent scene

references or by tracing disparate pixels to achieve better load balance. Salmon and

Goldsmith [93] compare these two approaches. Green and Paddon [36] proposed,

to our knowledge, the first distributed-memory ray tracer using general-purpose ma-

chines. Their approach uses an image-space distribution of rays with load balancing

achieved by serving rays on-demand to processes that require work. They use a ini-

tial low-resolution rendering pass to load required data on processors, and each

processor receives a contiguous block of pixels based on the initial low-resolution

pass. Wald et al. [107, 114] trace disparate pixels to load-balance their system and

achieve interactive rates with a ray tracer on a small cluster, but this technique re-

quires significant pre-processing of the dataset to achieve better data coherency.

DeMarle et al. [26, 27, 28] adapt *-Ray to run on a distributed memory cluster at
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interactive rates, though they also rely on preprocessing the data to achieve better

data coherency. They also statically distribute scene data to processors, then rely

on a distributed shared memory subsystem to cache required data not stored lo-

cally. Such a system requires excess memory per node for this cache, and system

performance degrades significantly if caching memory is unavailable.

Scherson and Caspary [94] used a data distribution, but load-balanced tasks

between ray traversal and ray intersection tasks. Lefer [64] introduced a hybrid

scheduling scheme for distributed memory ray tracing, where data is distributed

across the cluster and ray tasks are pulled on-demand to processors that need work.

Reinhard et al. [89, 90] implement another hybrid approach that combines data dis-

tribution across the cluster with tasks assigned to processes based on load. This

approach keeps camera and shadow rays on the originating process, while passing

reflection and refraction rays to a process that contains the data required to process

them. The Kilauea system [57, 58] maps the entire scene space across all proces-

sors, but distributes only part of the scene data to each to achieve load balancing

and scalability. Each ray is duplicated and sent to all processes. After all copies of

a ray have been traced, the originating process collects the results and determines

the front-most hit point. Scaling results are reported only to sixteen processes. This

system requires scene data to fit entirely in aggregate memory, and it is unclear how

its small, frequent ray communication will scale beyond tens of processes. It is

also unclear whether the system can accommodate scientific data that does not have

pre-tessellated surfaces.
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6.2.3 Large-Scale Direct Volume Ray Casting

Recent work in large-scale ray casting uses a fixed data decomposition

approach to render images across thousands to hundreds-of-thousands of proces-

sors [22, 44, 82]. These approaches process the entire dataset in-core by rendering

each sub-domain separately and then composite the results into the final image.

This approach, which ultimately is a form of speculative execution, is effective be-

cause there is a fixed and regular amount of work to perform in the absence of

reflections. However, when including reflections, this fixed data approach is prone

to load imbalance. Further, the speculative rendering of these approaches wastes

the work used to generate sub-domain images that are rejected by the final image

composition pass.

6.3 Algorithm Overview

In this section, we summarize ray scheduling for distributed memory ma-

chines and discuss the potential advantages of our approach.

6.3.1 Distributed-Memory Ray Scheduling

In Chapter 5, we demonstrated that a dynamically scheduled queueing ray

tracer can improve memory efficiency for single core rendering. We also discussed

in Section 4.5 how Pharr et al. [85] showed that queueing can improve efficiency

between disk and system RAM. We now expand the scope of our dynamic schedul-

ing work to address the I/O bottleneck experienced by previous distributed-memory

ray tracers. Using dynamic ray scheduling, we create a distributed-memory system
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where I/O costs can be effectively controlled, even when processing incoherent

secondary rays. This I/O savings is realized by using a scheduling algorithm that is

sensitive to the computational load and the size of the image that is being rendered.

We describe our tested schedules below, and give pseudocode for each algorithm in

Figures 6.2 – 6.4.

We establish a performance baseline for our approach by using two static

schedules inspired by previous systems, though our implementation varies in this

important respect: our queueing implementation builds more coherence than the

non-queueing implementations referenced below, so we expect better memory sys-

tem performance in our implementation, especially for our largest out-of-core tests.

Since none of these systems enqueue rays, we expect this schedule to be a conserva-

tive comparison against our dynamic schedules. The I/O behavior of this schedule

will be more favorable than it would be in the recursive framework used by the

related work.

Image Decomposition — rays are evenly divided across processes by contiguous

image plane decomposition, and data is loaded as ray computation requires.

At each scheduling step, each process selects the domain with the most lo-

cal rays queued. This is most similar to previous image coherence strategies

employed [16, 26, 27, 28, 36, 79, 80, 107, 114]. This schedule also corre-

sponds to the demand-driven component of the schedule used by Reinhard et

al. [89, 90]; and it represents the extension of Pharr et al.’s single-machine

queueing algorithm [85] to a distributed-memory machine, though we do not
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consider the final image contribution of each ray. See pseudocode in Fig-

ure 6.2.

Domain Decomposition — data is partitioned into spatial domains then domains

are evenly divided across processes. A process can be assigned multiple do-

mains if there are more domains than processes, or it can be assigned no

domain if there are more processes than domains. Note that domain data is

loaded at first use, rather than prefetched. Rays are sent to process that con-

tains data needed for computation. At each scheduling step, each process

selects the assigned domain with the most local rays queued. This is similar

to previous domain decomposition strategies [25, 29, 59]; and to the data par-

allel component of the scheduling strategy in Reinhard et al. [89, 90]. This

also corresponds to the data distribution used in large-scale volume render-

ers [22, 44, 82]. See pseudocode in Figure 6.3.

We test two dynamic ray schedules to compare their potential benefit against

the static schedule baseline. The two dynamic schedules are identical except for

whether the number of waiting rays are considered. By this, we can verify the im-

portance of including the number of rays in the scheduling metric. See pseudocode

in Figure 6.4.

Spread — rays are evenly divided across processes. After the initial ray distribu-

tion, each scheduling step sends rays to processors that already contain the

domain data required for intersection. Processors that have domain data not
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ProcessQueue(queue)

{

while (! queue.empty() )

{

r = q.top();

q.pop();

// intersection for ray tracing

// traversal for direct volume ray casting

// generated rays inserted into q

PerformRayOperations(d, r, q);

if (! RayFinished(r) ) Enqueue(queues, r);

else ColorFramebuffer(r);

}

}

Figure 6.1: Pseudocode for ProcessQueue(), used in each schedule pseudocode (see
Figures 6.2 – 6.4).

ImageDecompositionTrace()

{

// produces ray division for the current proc

rays = GenerateRays();

// generates an ordered list of domains for each ray

// enqueues them for first domain each requires

queues = EnqueueRays(rays);

while (! queues.empty() )

{

q = FindQueueWithMostRays(queues);

d = LoadDomain(q.domain_id);

ProcessQueue(q);

queues.delete(q);

}

MergeFramebuffers();

}

Figure 6.2: Pseudocode for Image Decomposition Static Schedule.
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DomainDecompositionTrace()

{

// produces all camera rays

rays = GenerateRays();

// generates an ordered list of domains for each ray

// enqueues rays that require a domain assigned to this process

// discard other rays (they will be enqueued by another process)

queues = EnqueueRays(rays);

last_d = NONE;

done = FALSE;

while (! done )

{

q = FindQueueWithMostRays(queues);

if (q.domain_id != last_d)

{

d = LoadDomain(q.domain_id);

last_d = q.domain_id;

}

ProcessQueue(q);

queues.delete(q);

// for each queue where

// the domain is assigned to another process

// send those rays to the assigned process

// receive rays coming here

SendRaysToNeighbors(queues);

done = NoProcessHasRays();

}

MergeFramebuffers();

}

Figure 6.3: Pseudocode for Domain Decomposition Static Schedule.
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DynamicScheduledTrace()

{

// produces ray division for the current proc

rays = GenerateRays();

// generates an ordered list of domains for each ray

// enqueues them for first domain each requires

queues = EnqueueRays(rays);

q = FindQueueWithMostRays(queues);

d = LoadDomain(q.domain_id);

last_d = q.domain_id;

done = FALSE;

while (! done )

{

if (q.domain_id != last_d)

{

d = LoadDomain(q.domain_id);

last_d = q.domain_id;

}

ProcessQueue(q);

queues.delete(q);

// determine schedule for next round

// send rays to assigned processors

// receive rays coming here

q = ScheduleNextRound(last_d, queues);

done = NoProcessHasRays();

}

MergeFramebuffers();

}

Figure 6.4: Pseudocode for Dynamic Schedules. ProcessQueue() is defined in Fig-
ure 6.1 and ScheduleNextRound() is defined in Figure 6.5.
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ScheduleNextRound(loaded_domain, queues)

{

foreach q in queues

queue_info.insert( pair(q.domain_id, q.size()) );

SendQueueInfoToMaster(loaded_domain, queue_info);

if (isMaster())

{

ReceiveQueueInfo(loaded_domains, queue_infos);

foreach p in ProcessCount()

foreach q in queue_infos[p]

{

to_schedule.insert(q.domain_id);

is_loaded.insert( pair(loaded_domains[p], p) );

}

foreach p in ProcessCount()

if (! to_schedule.contains(loaded_domains[p])

to_evict.insert( p ); // data not needed this round

foreach domain_id in to_schedule

if ( is_loaded.contains(domain_id) )

{

proc_id = is_loaded[domain_id];

schedule.insert( pair(proc_id, domain_id) );

}

else

to_assign.insert(domain_id);

if (UseRayWeighting()) sort( to_assign, queue_infos );

while (! (to_assign.empty() || to_evict.empty()) )

{

domain_id = to_assign.top();

proc_id = to_evict.top();

schedule.insert( pair(proc_id, domain_id) );

to_assign.pop();

to_evict.pop();

}

SendScheduleToAll( schedule );

}

ReceiveSchedule( schedule );

return schedule[ MyProcessId() ];

}

Figure 6.5: Pseudocode for ScheduleNextRound(), called for dynamic schedules.
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needed by any rays may be assigned to load new domain data that is immedi-

ately needed by current rays.

Ray-Weighted Spread — the Spread algorithm, modified so that domains with

the most queued rays are preferred when new domain data is assigned to

processors. While this schedule considers total rays in a similar way to the

cost-benefit analysis used to schedule rays by Pharr et al. [85], it differs in

two important aspects. First, because we keep only one sub-domain in mem-

ory per process, our schedule acts to keep already-loaded data alive as long

as there are rays that require it. Second, we do not include each ray’s contri-

bution to the final image as part of our weighting.

Compared to previous work, our approach can render a large scale dataset

out-of-core with efficient I/O utilization. We accomplish this by reordering rays and

deferring their computation until the required data has been loaded. By dynamically

scheduling the queued rays, our algorithm can reduce the number domain loads by

over an order of magnitude compared to a static image-plane decomposition and it

can achieve better load balancing than a static domain decomposition. We verify

this claim with a light-weight ray scheduling simulator, described in Section 6.4,

and with a full implementation, described in Sections 6.5 and 6.6.

6.4 Ray Scheduling Simulator

To test the theoretical performance of our schedules, we built a light-weight,

event-based distributed-memory ray tracing simulator that measures theoretical per-
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Schedule I/O Behavior Network Behavior

Image domains loaded no communication
redundantly across processes

Domain domains loaded rays sent to process
by one process that contains required data

Spread domains loaded rays sent to process
by one process that contains required data

Ray-Weighted domains loaded rays sent to process
Spread by one process that contains required data

Table 6.1: Sketch of the expected schedule behavior on a cluster’s network and file
system.

N-Body CT scan

5123 resolution 5123 resolution
Comparative 512 domains 125 domains

8.7 GB total size 1.9 GB total size

61443 resolution 40963 resolution
Scaling 4096 domains 4096 domains

650 GB total size 116 GB total size

Table 6.2: Dataset Sizes and Decomposition
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Figure 6.6: Sample images of the cosmology dataset used in our experiments. On
left: direct volume ray casting; on right: ray traced isosurface. N-body data cour-
tesy of Ilian Iliev (U. Sussex) and Paul Shapiro (UT-Austin).

formance for given costs of I/O, network communication, and ray traversal and

intersection. We tested the image decomposition, domain decomposition and dy-

namic spread schedules that we described in Section 6.3.1. Our simulator results

suggest that when I/O costs dominate the calculation, the dynamic spread schedule

reduces bandwidth consumption more than 10× over static scheduling. We found

that the results of our full implementation, which we present in Sections 6.5 and

6.6, are in line with the simulator results.

6.4.1 Simulator Description

Our ray tracing simulator is built for rapid prototyping, so it provides re-

liable quantitative performance estimates without implementing a fully functional

tracer. To achieve this, we employ a statistical model of ray behavior: each ray
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Figure 6.7: Sample image of the CT scan dataset used in our experiments. Image
rendered using ray traced isosurface. CT scan data courtesy of Michael Meißner
(Viatronix, Inc.)
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contains an ordered list of data domains that fall along its path, and each ray per-

forms randomly determined amount of “work” at each domain to simulate traversal

and intersection tests. Each ray has a user-defined likelihood of terminating at each

domain, and those that terminate may spawn shadow and reflection rays. Shadow

rays travel in the same way from the domain in which they are spawned toward each

light source. We simplify reflections by choosing a uniformly random direction for

each ray spawned. This simplification assumes a variety of surface orientations in

each domain on which the reflection rays can be spawned.

Data I/O cost and ray communication cost are also user-defined parameters.

We assume that only one data domain can be loaded at a time, so I/O costs are

incurred each time a different data domain is loaded. We model asynchronous, non-

blocking, point-to-point communication between processes, and we assume that

each process has a separate communication thread so that work can be performed

simultaneously.

6.4.2 Simulator Evaluation Methodology

Our simulator enables us to evaluate the system effects according to three

parameters: cost of data I/O, cost of ray communication, and cost of ray traversal

and intersection. For our tests, we chose to simulate rendering a 1024×1024 image

of a data 4×4×4 brick (64 data domains total) on systems of 4 processors, 16 pro-

cessors and 64 processors. We ran three test sets for each system: one tracing only

primary rays, one tracing primary rays plus shadow rays, and one tracing primary

rays plus shadow and reflection rays.
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Each test set contains four runs of each of three schedules: image decom-

position, domain decomposition, and dynamic spread. The parameters for each of

the four runs are listed below (parameter costs are in simulation timesteps).

baseline — I/O cost of 1020 per domain load; communication cost of 128 per ray

sent; ray operation (traversal and intersection) costs of 1000 per ray.

large I/O — baseline, but with I/O costs increased to 1030.

large comm — baseline, but with communication cost of 16384 per ray sent.

large ray ops — baseline, but with ray operation costs of 100,000 per ray.

6.4.3 Simulator Results

Since our simulator is not cycle-accurate, we present our results as the rela-

tive performance improvement (or decline) of the dynamic spread schedule versus

each of the static schedules. We present our simulation results in Table 6.3. The

dynamic spread schedule performed as well as or better than both static schedules

for 58% (21 of 36) of our tests. For 97% (35 of 36) of our tests, the dynamic spread

schedule outperformed at least one static schedule.

The dynamic spread schedule outperforms the image decomposition sched-

ule for cases with large I/O costs and secondary rays spawned; the dynamic sched-

ule outperforms the domain decomposition schedule for cases with high ray com-

munication costs and no secondary rays spawned.
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4 processors
rays baseline large I/O large comm large ray ops

traced ∆% img ∆% dom ∆% img ∆% dom ∆% img ∆% dom ∆% img ∆% dom

primary 0 123 0 22 0 216 0 124
+ shadow 19 -247 193 6 13 68 3 82
+ reflect 13 -287 190 6 7 43 6 56

16 processors
rays baseline large I/O large comm large ray ops

traced ∆% img ∆% dom ∆% img ∆% dom ∆% img ∆% dom ∆% img ∆% dom

primary 0 160 0 77 0 700 0 150
+ shadow 60 19 740 -21 27 141 5 83
+ reflect 35 -101 748 -25 -20 12 9 59

64 processors
rays baseline large I/O large comm large ray ops

traced ∆% img ∆% dom ∆% img ∆% dom ∆% img ∆% dom ∆% img ∆% dom

primary -176 63 -1 1 -405 461 -189 37
+ shadow 78 43 4959 2 -180 87 -116 47
+ reflect 38 34 4509 2 -525 -6 -173 33

Table 6.3: Relative performance improvement of the dynamic spread schedule over
the image decomposition schedule (∆% img) and over the domain decomposition
schedule (∆% dom).

126



The dynamic spread schedule performs significantly worse than the image

decomposition schedule only when two conditions are present: there are many pro-

cessors across which to parallelize the image decomposition; and data I/O costs are

not the dominant factor in the total computation cost. Note the performance for the

64 processor test cases: when the I/O cost parameter is small, the dynamic spread

schedule under-performs the image decomposition schedule; however, when the

I/O cost parameter is large, the dynamic spread schedule becomes more competi-

tive when only primary rays are traced and wins significantly when secondary rays

are traced.

The dynamic spread schedule performs worse than the domain decompo-

sition schedule only when three conditions are present: there are few processors,

all parameters are at their small values (the baseline case) and secondary rays are

spawned. Note the performance for the 4 processor test cases: the dynamic spread

schedule under-performs the domain decomposition when all parameters are at their

small values and when secondary rays are spawned; but when any of the parame-

ter values are set to their large value, the dynamic spread schedule outperforms the

domain decomposition.

6.5 Full Implementation Methodology

This section describes our experimental methodology, including the hard-

ware platform, the datasets, and the rendering methods that we use to evaluate our

implemented scheduling strategies.
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6.5.1 Hardware Configuration

All experiments were run on Longhorn, a 2048 core, 256 node distributed

cluster hosted at the Texas Advanced Computing Center. Each node contains two

four-core Intel Xeon E5540 “Gainestown” processors and 48 GB of local RAM.

All nodes are connected via a Mellanox QDR InfiniBand switch, and we use MVA-

PICH2 v1.4 for our MPI implementation. Our ray tracer is implemented within

VisIt [21], a visualization tool designed to operate in parallel on large-scale data.

We use the VisIt infrastructure to load data and to generate isosurfaces; we imple-

mented all code related to ray tracing and ray scheduling. To focus on the effects

of the schedules, we turn off all caching within the VisIt infrastructure, so that only

one dataset is maintained per process. Each load of non-resident data accesses the

I/O system.

All MPI communication in our implementation is two-way asynchronous.

This implementation decision impacts dynamic schedules most, since they have the

highest degree of communication among processes. We anticipate that moving to

a one-way communication model will further increase the relative performance of

dynamic schedules over static schedules.

6.5.2 Datasets

We evaluate our approach using two types of scientific data: a particle den-

sity field from an n-body cosmological simulation and a high-resolution CT scan

of an abdominal cavity. For our comparative evaluation, we use a 5123 resolution

version of each dataset. For our scaling evaluation, we use a separate 61443 resolu-
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tion cosmology dataset and a version of the 5123 CT scan upscaled to 40963. The

particular data sizes and decompositions on disk are presented in Table 6.2, and

sample images of the data are in Figures 6.6–6.7.

For each dataset, we extract an isosurface using VisIt’s VTK-based isosur-

facing, then ray trace the returned geometry using two directional lights and, for

the n-body particle data, two-bounce reflections. While the isosurface extraction is

performed each time the dataset is loaded from disk, the cost is small relative to the

I/O cost. For the n-body particle density field, we also perform direct volume ray

casting, as described by Levoy [65, 66].

We study the effects of the disk decomposition of the data in Section 6.6.2.

The results presented in Section 6.6 are for the decompositions that yielded fastest

runtime for all tested schedules. As the results show, the decomposition that were

most beneficial to the static schedules also were most beneficial to the dynamic

schedules, and the dynamic schedules were able to exploit the benefit for faster

runtimes relative to the static schedules.

6.6 Results

This section presents results of our ray tracer and four scheduling strategies

on several scientific datasets. Our primary results are based on rendering 2048×

2048 images of each dataset. In addition, we provide results that estimate the impact

of a more optimized ray tracer by rendering 512×512 images of each dataset, which

keeps data access costs about the same while reducing the per-ray computation cost.

The difference between the primary results and the 512×512 results thus illustrate
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the impact of advances in per-ray optimizations and in improved CPU performance

(relative to memory bandwidth).

We evaluate our algorithm using two data sets, one consisting of particle

densities from a cosmological n-body simulation, and the other an isosurface ex-

tracted from a CT scan of an abdominal cavity. We render the particle densities in

two ways: (1) using direct volume ray casting and (2) performing ray tracing on an

extracted isosurface.

Figure 6.8 shows results for direct volume ray casting on the n-body particle

density dataset. When data load costs dominate the total computation cost, our

dynamic scheduling approach outperforms static scheduling by 7× to 13× across

tested process ranges. If ray computation costs dominate, the speed-up achieved

by our dynamic scheduling approach is reduced to 2× to 4× better than a static

scheduling strategy.

Dynamic scheduling also provides significant performance gains for ray

traced isosurfaces, as shown in Figure 6.9 and Figure 6.10. When data load costs

dominate the computation, ray-weighted dynamic scheduling improves runtimes

8× to 14× over static scheduling. If ray computation costs are large, ray-weighted

dynamic scheduling improves runtimes 3× to 5× over static scheduling. If data

load costs are relatively low, as they are with the CT scan dataset, ray-weighted

dynamic scheduling runs roughly 10% faster than a static domain decomposition,

which benefits from most processes having only one domain assigned, and ray-

weighted dynamic scheduling still runs 2× than a static image plane decomposi-

tion. However, if ray costs dominate, the image decomposition can be as much as
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Figure 6.8: Direct Volume Ray Casting of N-Body Particle Density — Sched-
ule performance for direct volume ray casting on a 5123 particle density field. As
ray calculation cost are reduced, the impact of the particular scheduling algorithm
increases. When ray calculation costs are low relative to data I/O cost (512× 512
case), our dynamic scheduling method can improve runtime by an order of magni-
tude over static schedules. Runtime is seconds per frame.
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78% faster than dynamic scheduling, since the I/O costs are amortized over many

ray calculations. While important to note, this case is an outlier in two respects:

our tracer is unoptimized, artificially inflating the cost of ray calculations; and the

abdominal CT scan isosurface is our smallest dataset, and our technique is targeted

at much larger data. However, this result suggests that if the data can reside com-

pletely in memory, an image decomposition is a competitive technique.

Our performance gains are due primarily to the ability of our dynamic schedul-

ing approach to reduce data domains loads from disk. As shown in Figure 6.11,

ray-weighted dynamic scheduling can reduce data loads by 10× to 48×, regardless

of ray computation load. We note that the image decomposition schedule always

touches more domains as the number of processes increases, since each process

must load a domain if even one ray requires it. Under the domain decomposition

schedule, a process will repeatedly swap among its assigned sub-domains. This

swapping only stops when there are sufficient processes available to assign a single

domain to most processes, as is the case with the Abdominal CT scan dataset.

6.6.1 Scaling

To test the scalability of our approach, we ran the ray-weighted spread

schedule on large versions of our datasets (exact details are in Table 6.2). The

static schedules failed to run to completion on these larger datasets. The domain

decomposition schedule failed when the ray queue became too large for a particular

process to contain all queued rays and the currently-loaded sub-domain. The image

plane decomposition schedule failed to finish within runtime limits on Longhorn.
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Figure 6.9: Ray Tracing of N-Body Particle Density Isosurface — Schedule per-
formance for ray tracing on an isosurface of a 5123 particle density field. The render
includes two-bounce reflections and shadow rays for two directional lights. Our dy-
namic scheduling method can improve runtime by an order of magnitude over static
schedules. Runtime is seconds per frame.
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Figure 6.10: Ray Tracing of Abdominal CT scan — Schedule performance for
ray tracing on an isosurface of a 5123 abdominal CT scan. The render includes
shadow rays for two directional lights. When data I/O costs dominate, the domain
decomposition performs on-par with our dynamic schedule because data load costs
are relatively small. Also, as the number of processes approaches the number of
domains, more domains are loaded only once and remain resident throughout the
execution. However, the image decomposition schedule still suffers from poor I/O
efficiency even in this case, since domains are loaded on each process where rays
require it. Yet, when ray costs dominate, the image decomposition performs best
since the I/O costs can be amortized across many rays. Runtime is seconds per
frame.
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Figure 6.11: Spatial Domains Loaded from Disk — Number of domains (spa-
tial subdivisions) loaded from disk for each schedule for our three test cases. Our
dynamic scheduling method significantly reduces the number of domains loaded
from disk, which is the primary factor for the performance gain of our approach. A
similar number of domains are accessed in our two ray cost models.
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Results for the ray-weighted dynamic schedule when tracing large data are pre-

sented in Figure 6.12. We believe that the increased runtime for the largest number

of processes tested is due to increased communication overhead.

In Figure 6.13, we compare strong scaling speed-up for ray-weighted dy-

namic scheduling and for image plane decomposition. Ray-weighted dynamic

scheduling demonstrates monotonically increasing speed-up until the scaling limit

of the problem size is reached. The slope of the speed-up line might be improved

with additional optimizations for ray operations and for ray communication among

processes.

6.6.2 Effects of Decomposition on Disk

Because the I/O system has a significant impact on performance, we eval-

uate the effects of the decomposition of the dataset on disk by putting our two

n-body datasets through two levels of subdivision. We find that dividing the disk

representation of the data into spatially distinct sub-domains can improve schedul-

ing performance. Too few sub-domains limit the flexibility of the scheduler, while

too many sub-domains fragment the data and limit the number of rays queued at

each domain. Empirically, a good balance seems to be struck when the number of

sub-domains is several times the number of processes used to render them. The

runtimes presented in Table 6.4 are for direct volume ray casting.
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Figure 6.12: Dynamic Schedules for Large Data — Dynamic schedule perfor-
mance for direct volume ray casting of a 61443 n-body particle density field and
for ray tracing of an isosurface extracted from a 40963 abdominal CT scan. The
isosurface render includes shadow rays for two directional lights and two-bounce
specular reflections. Runtime is seconds per frame.
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Figure 6.13: Schedule Speed-Up — Image decomposition and ray-weighted
spread schedule performance for direct volume ray casting and ray tracing an isosur-
face of a 5123 n-body particle density field. The isosurface render includes shadow
rays for two directional lights and 16× sampled, two-bounce diffuse reflections.
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5123 N-Body Particle Density
128 processes

sub-domains n=8 64 512

MB per sub-domain 1100 130 17

R-W Spread 151 54 21
Spread 156 54 32

Domain 186 86 78
Image 92 56 44

61443 N-Body Particle Density
256 processes

sub-domains n=512 4096 32768

MB per sub-domain 3400 436 55

R-W Spread 2881 2164 6340
Spread — — —

Domain — — —
Image — — —

Table 6.4: Effects of Disk Decomposition on Runtimes — Effect of the number
of data files on scheduling performance. The runtimes presented below are for
direct volume ray casting. Cases marked ’—’ failed to execute successfully, due to
exceeding either memory limits or runtime limits.
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6.7 Summary

In this chapter, we have presented a dynamic scheduling approach to large-

scale distributed memory ray tracing. Our ray-weighted dynamic schedule is robust

across many data sizes and rendering modes, and our approach can achieve an or-

der of magnitude speed-up over static scheduling methods when data access costs

dominate the computation. In addition, our dynamic schedule can render datasets

that cannot be rendered by a static schedule. Our ray tracer has not been thoroughly

optimized, and we have argued that as ray calculation costs are reduced through

optimization, the relative performance of our approach will improve further against

competing techniques.

We have just begun to explore the space of possible dynamic schedules,

and further work is warranted to identify schedules that achieve particular system

goals. In particular, it may be possible to schedule a sub-domain across several

available processes, though this may increase both I/O and communication costs.

A dynamic schedule could also speculatively load data based on anticipated ray

travel, particularly for an animation sequence where rendering information from

the previous frame is available.
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Chapter 7

Conclusion

In this dissertation, we have presented dynamic ray scheduling, a new for-

mulation of ray tracing that treats both rays and scene data as first-class schedulable

elements. This interpretation creates a spectrum of possible scheduling strategies

to optimize data movement and computation. In addition, it incorporates previous

ray tracing algorithms as special-case schedules. We demonstrate that dynamically

scheduled ray tracing provides the flexibility to optimize rendering performance

across a wide range of hardware configurations.

First, in Chapter 3, we presented an analytic model of the bandwidth con-

sumed by recursive ray tracing, which explicitly defines the factors that cause excess

bandwidth consumption. We demonstrated that bandwidth consumption is driven

by the rate at which data is replaced in memory, which in turn is primarily de-

termined by the amount of scene data accessed when traversing the acceleration

structure. A traversal step to a “large leaf”, a node that evicts a significant por-

tion of resident data from memory, can trigger a chain-reaction of evictions if many

rays have that traversal step on their path. The model predicts that if several paths

contain large leaves, their traversal can cause thrashing and excessive bandwidth

consumption. We validated our model against an efficient but unoptimized research
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ray tracer, and we discovered that small memory sizes amplified the effect of large

leaves, potentially increasing bandwidth consumed by 10× to 100×.

Our analytic model suggested a bandwidth bottleneck for recursive ray trac-

ing, and in Chapter 4, we confirmed the existence of this bottleneck. Using an

instrumented, fully-optimized recursive ray tracer [91], we showed that recursive

ray tracers are bandwidth-limited particularly when rendering large models with

shading that requires tracing incoherent secondary rays. Further, this bandwidth

limitation is caused by poor cache utilization rather than by a large increase in the

working set. A tracer that can rearrange ray computations in order to build ad-

ditional ray coherence might achieve better cache utilization, and thereby achieve

better system performance. We noted that queueing tracers [85] can provide this

algorithmic flexibility.

In Chapter 5, we presented our dynamic scheduling algorithm for a sin-

gle core processor, which targets memory traffic between DRAM and the lowest

processor cache. We demonstrated that this algorithm can significantly reduce ge-

ometry traffic by as much as 100×, but at the cost of increased ray traffic. When

tracing incoherent rays with scarce memory resources, our algorithm can provide

a net bandwidth savings of 10× or more. When memory is plentiful, our algo-

rithm consumes more bandwidth than a recursive tracer, but keeps total bandwidth

consumption low.

We showed in Chapter 6 that our dynamic scheduling algorithm can effi-

ciently render large-scale data on distributed-memory clusters by targeting disk to

DRAM bandwidth. Our dynamic approach can render large-scale data over 10×
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faster than statically scheduled approaches, and our approach demonstrates better

scaling. As in the single-core case, the distributed-memory version of our dynamic

algorithm can consume more bandwidth than a static algorithm for cases where

memory resources are plentiful, but the absolute bandwidth consumed by our algo-

rithm in these cases remains small.

Through this dissertation, we have demonstrated that our approach can sig-

nificantly improve memory system efficiency over recursive algorithms, both for

the cache of a single processor and across the aggregate distributed memory of a

large-scale cluster, while reducing the overhead present in other queueing tracers.

Our new interpretation of ray tracing algorithms as schedulers opens new opportu-

nities for algorithm development. In particular, we can explore additional optimiza-

tions for data locality from compiler literature [7, 20, 69, 73, 120] and additional

scheduling ideas from the thread scheduling literature [11, 86].

We would like to integrate our dynamic scheduling algorithm into general

ray tracing frameworks [16, 81, 84] to leverage the considerable effort that has gone

into them, but because these frameworks are built around the recursive algorithm, it

is not clear how to do so without breaking many optimizations intrinsic to their per-

formance. Our algorithm can be applied to ray tracing on other memory-constrained

parallel systems, such as on rasterizing graphics hardware [3, 4, 19, 81, 88]. Aila

and Karras provide excellent initial work in this direction by implementing dynamic

scheduling for a hypothetical GPU-like architecture [3]. Also, Budge et al. present

a queueing path tracer that renders large scenes using the combined resources of

distributed CPUs and GPUs across a small cluster [19].
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Looking to the future, we also would like to expand dynamic scheduling

to animation sequences, where information from previous frames can inform the

scheduler and provide additional performance gain. Since the data to be rendered

tends to remain constant between animation frames [102], information gathered

when rendering previous frames can be powerful guides for the scheduler to dis-

tribute work effectively.
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Appendix A

No-Cache Bandwidth Equation

The amount of bandwidth consumed without caching is the upper bound on

bandwidth consumption for a system. We will use the general bandwidth equation

(Equation 3.1) to determine, first, the bandwidth consumption per ray, and, second,

the bandwidth consumed by the rendering process. This equation will form the

basis for our equations in Section 3.4.4 that consider caching effects. Please refer

to Tables 3.1 and 3.2 for the definition of equation parameters and derived terms.

Equation 3.1 shows that bandwidth consumption is the sum of the ray con-

tribution (BWr), the acceleration structure node contribution (BWn), and the geom-

etry contribution (BWg). For a single ray, the ray contribution is simply the cost of

loading that single ray, represented as Cr. Thus, BWr = Cr. The ray must be tested

against some number n of acceleration structure nodes during traversal. If the cost

of loading each node is Cn, then the node contribution BWn = nCn. If the ray reaches

any leaf of the acceleration structure, the ray must be tested for intersection against

the geometry at that leaf. We assume that each leaf of the acceleration structure

has g geometric objects (recall that g is the expected amount of geometry at each

node). We use Cg to represent the cost to load each geometric object. So if the ray

reaches l leaves (where l ≤ n), each of which has g geometric objects, the geometry
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contribution is BWg = lgCg. We combine these three contributions in Equation A.1,

which describes the bandwidth cost per ray absent any caching.

BWper ray = Cr +nCn + lgCg (A.1)

Since this case assumes no caching, all node and geometry data must be

loaded for each ray. Therefore, we multiply the per-ray equation (Equation A.1) by

the number of rays traced R to determine the bandwidth consumed by the rendering

process (Equation A.2). Note that it is unlikely that all rays will traverse exactly the

same number of nodes or reach the same number of leaf nodes. We use expected

values for the node count n and leaf count l, which estimate normal behavior. It is

possible to choose a camera position and direction for which the actual nodes and

leaves touched will vary significantly from the expected values.

BW = R
[
Cr +nCn + lgCg

]
(A.2)
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Appendix B

Tabular Results for Single Core Ray Tracer

room — 47K triangles (5.76 MB)
primary rays only — 6.7K triangles (0.82 MB) potentially visible

avail frac of geometry traffic (MB) total traffic (MB)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K 0.001 1190.51 661.19 612.05 1254.51 725.19 889.37
2 K 0.002 705.89 331.50 297.29 769.89 395.50 652.42
4 K 0.005 327.04 186.61 170.71 391.04 250.61 516.08
8 K 0.010 142.32 90.95 83.64 206.32 154.95 430.08

16 K 0.019 2.76 4.30 1.28 66.76 68.30 318.91
32 K 0.038 1.13 3.24 1.11 65.13 67.24 297.08
64 K 0.076 1.02 1.65 0.97 65.02 65.65 264.60

128 K 0.153 0.93 0.83 0.89 64.93 64.83 188.59
256 K 0.306 0.90 0.82 0.86 64.90 64.82 141.26
512 K 0.612 0.84 0.82 0.83 64.84 64.82 105.32

1024 K 1.224 0.82 0.82 0.82 64.82 64.82 102.15
2048 K 2.448 0.82 0.82 0.82 64.82 64.82 65.16
4096 K 4.896 0.82 0.82 0.82 64.82 64.82 64.82

avail frac of relative improvement (geometry) relative improvement (total)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K 0.001 1.00 1.80 1.95 1.00 1.73 1.41
2 K 0.002 1.00 2.13 2.37 1.00 1.95 1.18
4 K 0.005 1.00 1.75 1.92 1.00 1.56 0.76
8 K 0.010 1.00 1.56 1.70 1.00 1.33 0.48

16 K 0.019 1.00 0.64 2.16 1.00 0.98 0.21
32 K 0.038 1.00 0.35 1.02 1.00 0.97 0.22
64 K 0.076 1.00 0.62 1.05 1.00 0.99 0.25

128 K 0.153 1.00 1.12 1.04 1.00 1.00 0.34
256 K 0.306 1.00 1.10 1.05 1.00 1.00 0.46
512 K 0.612 1.00 1.02 1.01 1.00 1.00 0.62

1024 K 1.224 1.00 1.00 1.00 1.00 1.00 0.63
2048 K 2.448 1.00 1.00 1.00 1.00 1.00 0.99
4096 K 4.896 1.00 1.00 1.00 1.00 1.00 1.00

Table B.1: Traffic from main memory to processor cache for room for primary rays.
Larger numbers indicate larger factors of improvement.
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room — 47K triangles (5.76 MB)
primary + hard shadow rays — 10.0K triangles (1.22 MB) potentially visible

avail frac of geometry traffic (MB) total traffic (MB)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K 0.001 6503.33 5952.17 2235.40 6567.33 6016.17 2668.93
2 K 0.002 4902.58 3798.42 1143.81 4966.58 3862.42 1655.15
4 K 0.003 2854.40 1642.33 628.22 2918.40 1706.33 1129.82
8 K 0.006 1050.32 680.11 289.06 1114.32 744.11 791.77

16 K 0.013 45.60 23.45 4.65 109.60 87.45 478.53
32 K 0.026 4.63 11.17 4.05 68.63 75.17 456.45
64 K 0.051 3.31 8.65 3.51 67.31 72.65 424.16

128 K 0.102 2.78 4.39 3.15 66.78 68.39 347.25
256 K 0.205 2.46 1.94 2.99 66.46 65.94 301.12
512 K 0.409 2.05 1.70 2.41 66.05 65.70 269.90

1024 K 0.819 1.32 1.35 0.88 65.32 65.35 271.00
2048 K 1.638 1.22 1.22 0.88 65.22 65.22 221.76
4096 K 3.276 1.22 1.22 0.88 65.22 65.22 221.08

avail frac of relative improvement (geometry) relative improvement (total)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K 0.001 1.00 1.09 2.91 1.00 1.09 2.46
2 K 0.002 1.00 1.29 4.29 1.00 1.29 3.00
4 K 0.003 1.00 1.74 4.54 1.00 1.71 2.58
8 K 0.006 1.00 1.54 3.63 1.00 1.50 1.41

16 K 0.013 1.00 1.94 9.81 1.00 1.25 0.23
32 K 0.026 1.00 0.41 1.14 1.00 0.91 0.15
64 K 0.051 1.00 0.38 0.94 1.00 0.93 0.16

128 K 0.102 1.00 0.63 0.88 1.00 0.98 0.19
256 K 0.205 1.00 1.27 0.82 1.00 1.01 0.22
512 K 0.409 1.00 1.21 0.85 1.00 1.01 0.24

1024 K 0.819 1.00 0.98 1.50 1.00 1.00 0.24
2048 K 1.638 1.00 1.00 1.39 1.00 1.00 0.29
4096 K 3.276 1.00 1.00 1.39 1.00 1.00 0.30

Table B.2: Traffic from main memory to processor cache for room for primary +
hard shadow rays. Larger numbers indicate larger factors of improvement.
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room — 47K triangles (5.76 MB)
primary + hard shadow + specular reflection rays

14.4K triangles (1.76 MB) potentially visible

avail frac of geometry traffic (MB) total traffic (MB)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K 0.001 24319.32 22343.64 9520.93 24383.32 22407.64 9990.26
2 K 0.001 19825.02 15450.62 5581.49 19889.02 15514.62 6128.63
4 K 0.002 15699.61 8993.06 3786.84 15763.61 9057.06 4324.23
8 K 0.004 9894.89 4758.64 1750.56 9958.89 4822.64 2289.07

16 K 0.009 3011.72 862.27 30.28 3075.72 926.27 539.95
32 K 0.018 326.39 355.33 25.55 390.39 419.33 513.74
64 K 0.036 168.02 193.90 20.90 232.02 257.90 477.34

128 K 0.071 103.16 133.41 17.68 167.16 197.41 399.42
256 K 0.142 62.06 95.12 15.70 126.06 159.12 356.66
512 K 0.284 30.10 45.64 11.53 94.10 109.64 334.52

1024 K 0.569 7.42 8.15 4.93 71.42 72.15 330.56
2048 K 1.138 1.76 1.76 1.63 65.76 65.76 258.47
4096 K 2.276 1.76 1.76 1.63 65.76 65.76 257.68

avail frac of relative improvement (geometry) relative improvement (total)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K 0.001 1.00 1.09 2.55 1.00 1.09 2.44
2 K 0.001 1.00 1.28 3.55 1.00 1.28 3.25
4 K 0.002 1.00 1.75 4.15 1.00 1.74 3.65
8 K 0.004 1.00 2.08 5.65 1.00 2.07 4.35

16 K 0.009 1.00 3.49 99.01 1.00 3.32 5.70
32 K 0.018 1.00 0.92 12.77 1.00 0.93 0.76
64 K 0.036 1.00 0.87 8.04 1.00 0.90 0.49

128 K 0.071 1.00 0.77 5.83 1.00 0.85 0.42
256 K 0.142 1.00 0.65 3.95 1.00 0.79 0.35
512 K 0.284 1.00 0.66 2.61 1.00 0.86 0.28

1024 K 0.569 1.00 0.91 1.51 1.00 0.99 0.22
2048 K 1.138 1.00 1.00 1.08 1.00 1.00 0.25
4096 K 2.276 1.00 1.00 1.08 1.00 1.00 0.26

Table B.3: Traffic from main memory to processor cache for room for primary +
hard shadow + specular reflection rays. Larger numbers indicate larger factors of
improvement.
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room — 47K triangles (5.76 MB)
primary + hard shadow + diffuse reflection rays

15.4K triangles (1.84 MB) potentially visible

avail frac of geometry traffic (MB) total traffic (MB)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K 0.001 27132.28 26859.52 8342.00 27148.28 26875.52 8651.32
2 K 0.001 22145.86 21716.53 3832.36 22161.86 21732.53 4161.13
4 K 0.002 17562.88 16970.06 2352.53 17578.88 16986.06 2678.87
8 K 0.004 12730.80 12230.42 1015.58 12746.80 12246.42 1342.18

16 K 0.008 8846.82 8485.41 34.85 8862.82 8501.41 354.26
32 K 0.017 6178.04 5964.22 28.90 6194.04 5980.22 342.95
64 K 0.033 3746.91 3707.78 24.19 3762.91 3723.78 331.01

128 K 0.067 1976.33 1965.16 19.90 1992.33 1981.16 307.49
256 K 0.133 821.24 819.68 17.10 837.24 835.68 294.37
512 K 0.266 225.58 230.60 12.41 241.58 246.60 285.18

1024 K 0.533 20.97 30.31 5.89 36.97 46.31 279.32
2048 K 1.065 1.84 1.88 1.76 17.84 17.88 257.98
4096 K 2.130 1.84 1.88 1.76 17.84 17.88 258.07

avail frac of relative improvement (geometry) relative improvement (total)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K 0.001 1.00 1.01 3.25 1.00 0.99 3.14
2 K 0.001 1.00 1.02 5.78 1.00 0.98 5.33
4 K 0.002 1.00 1.03 7.47 1.00 0.97 6.56
8 K 0.004 1.00 1.04 12.54 1.00 0.96 9.50

16 K 0.008 1.00 1.04 253.85 1.00 0.96 25.02
32 K 0.017 1.00 1.04 213.77 1.00 0.97 18.06
64 K 0.033 1.00 1.01 154.89 1.00 0.99 11.37

128 K 0.067 1.00 1.01 99.31 1.00 0.99 6.48
256 K 0.133 1.00 1.00 48.03 1.00 1.00 2.48
512 K 0.266 1.00 0.98 18.18 1.00 1.02 0.85

1024 K 0.533 1.00 0.69 3.56 1.00 1.25 0.13
2048 K 1.065 1.00 0.98 1.05 1.00 1.00 0.07
4096 K 2.130 1.00 0.98 1.05 1.00 1.00 0.07

Table B.4: Traffic from main memory to processor cache for room for primary +
hard shadow + diffuse reflection rays. Larger numbers indicate larger factors of
improvement.
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grove — 164K triangles (20.11 MB)
primary rays only — 127K triangles (15.49 MB) potentially visible

avail frac of geometry traffic (MB) total traffic (MB)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 4878.67 4759.77 4611.01 4942.67 4823.77 5198.92
2 K < 0.001 3940.24 3274.72 2730.68 4004.24 3338.72 3310.41
4 K < 0.001 3091.94 2006.40 1478.22 3155.94 2070.40 2011.84
8 K 0.001 2112.50 874.21 512.41 2176.50 938.21 993.60

16 K 0.001 839.94 194.23 58.30 903.94 258.23 455.63
32 K 0.002 75.01 53.69 30.61 139.01 117.69 378.94
64 K 0.004 25.63 42.82 26.71 89.63 106.82 333.69

128 K 0.008 21.60 42.18 23.66 85.60 106.18 300.77
256 K 0.016 19.21 40.68 20.53 83.21 104.68 252.69
512 K 0.032 17.78 35.07 19.08 81.78 99.07 211.12

1024 K 0.065 16.81 15.53 18.27 80.81 79.53 197.00
2048 K 0.129 16.26 15.49 17.39 80.26 79.49 185.47
4096 K 0.258 15.89 15.49 16.38 79.89 79.49 175.73

avail frac of relative improvement (geometry) relative improvement (total)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 1.00 1.02 1.06 1.00 1.02 0.95
2 K < 0.001 1.00 1.20 1.44 1.00 1.20 1.21
4 K < 0.001 1.00 1.54 2.09 1.00 1.52 1.57
8 K 0.001 1.00 2.42 4.12 1.00 2.32 2.19

16 K 0.001 1.00 4.32 14.41 1.00 3.50 1.98
32 K 0.002 1.00 1.40 2.45 1.00 1.18 0.37
64 K 0.004 1.00 0.60 0.96 1.00 0.84 0.27

128 K 0.008 1.00 0.51 0.91 1.00 0.81 0.28
256 K 0.016 1.00 0.47 0.94 1.00 0.79 0.33
512 K 0.032 1.00 0.51 0.93 1.00 0.83 0.39

1024 K 0.065 1.00 1.08 0.92 1.00 1.02 0.41
2048 K 0.129 1.00 1.05 0.94 1.00 1.01 0.43
4096 K 0.258 1.00 1.03 0.97 1.00 1.01 0.45

Table B.5: Traffic from main memory to processor cache for grove for primary
rays. Larger numbers indicate larger factors of improvement.
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grove — 164K triangles (20.11 MB)
primary + hard shadow rays — 146K triangles (17.86 MB) potentially visible

avail frac of geometry traffic (MB) total traffic (MB)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 16456.48 16369.24 11761.99 16520.48 16433.24 12377.85
2 K < 0.001 13453.69 12751.53 6939.68 13517.69 12815.53 7547.35
4 K < 0.001 10932.37 9541.58 3831.61 10996.37 9605.58 4393.17
8 K < 0.001 8349.56 6299.49 1335.52 8413.56 6363.49 1888.32

16 K 0.001 5205.51 3135.72 185.01 5269.51 3199.72 653.95
32 K 0.002 1747.25 1005.87 94.37 1811.25 1069.87 514.31
64 K 0.003 312.82 331.45 80.48 376.82 395.45 459.08

128 K 0.007 147.59 200.51 70.20 211.59 264.51 418.93
256 K 0.014 93.47 179.10 63.12 157.47 243.10 399.26
512 K 0.028 64.60 169.80 58.19 128.60 233.80 354.22

1024 K 0.056 46.52 159.46 55.15 110.52 223.46 337.96
2048 K 0.112 33.44 132.42 51.85 97.44 196.42 324.04
4096 K 0.224 26.15 38.64 48.00 90.15 102.64 311.68

avail frac of relative improvement (geometry) relative improvement (total)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 1.00 1.01 1.40 1.00 1.01 1.33
2 K < 0.001 1.00 1.06 1.94 1.00 1.05 1.79
4 K < 0.001 1.00 1.15 2.85 1.00 1.14 2.50
8 K < 0.001 1.00 1.33 6.25 1.00 1.32 4.46

16 K 0.001 1.00 1.66 28.14 1.00 1.65 8.06
32 K 0.002 1.00 1.74 18.51 1.00 1.69 3.52
64 K 0.003 1.00 0.94 3.89 1.00 0.95 0.82

128 K 0.007 1.00 0.74 2.10 1.00 0.80 0.51
256 K 0.014 1.00 0.52 1.48 1.00 0.65 0.39
512 K 0.028 1.00 0.38 1.11 1.00 0.55 0.36

1024 K 0.056 1.00 0.29 0.84 1.00 0.49 0.33
2048 K 0.112 1.00 0.25 0.64 1.00 0.50 0.30
4096 K 0.224 1.00 0.68 0.54 1.00 0.88 0.29

Table B.6: Traffic from main memory to processor cache for grove for primary +
hard shadow rays. Larger numbers indicate larger factors of improvement.
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grove — 164K triangles (20.11 MB)
primary + hard shadow + specular reflection rays

161K triangles (19.65 MB) potentially visible

avail frac of geometry traffic (MB) total traffic (MB)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 32234.51 32097.76 24307.08 32298.51 32161.76 25086.99
2 K < 0.001 26554.50 25509.81 15047.44 26618.50 25573.81 15819.16
4 K < 0.001 21971.56 19602.54 8632.18 22035.56 19666.54 9357.80
8 K < 0.001 17897.54 13787.43 3357.71 17961.54 13851.43 4030.91

16 K 0.001 13488.00 8555.37 717.55 13552.00 8619.37 1306.88
32 K 0.002 8413.83 5266.98 456.06 8477.83 5330.98 996.39
64 K 0.003 4141.86 3720.42 378.81 4205.86 3784.42 877.79

128 K 0.006 2658.29 2744.06 318.88 2722.29 2808.06 787.99
256 K 0.013 2053.98 2146.78 279.52 2117.98 2210.78 703.68
512 K 0.025 1587.80 1676.14 248.25 1651.80 1740.14 632.31

1024 K 0.051 1149.28 1302.49 224.13 1213.28 1366.49 594.96
2048 K 0.102 715.54 943.60 202.18 779.54 1007.60 562.51
4096 K 0.204 332.24 644.69 179.82 396.24 708.69 531.92

avail frac of relative improvement (geometry) relative improvement (total)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 1.00 1.00 1.33 1.00 1.00 1.29
2 K < 0.001 1.00 1.04 1.76 1.00 1.04 1.68
4 K < 0.001 1.00 1.12 2.55 1.00 1.12 2.35
8 K < 0.001 1.00 1.30 5.33 1.00 1.30 4.46

16 K 0.001 1.00 1.58 18.80 1.00 1.57 10.37
32 K 0.002 1.00 1.60 18.45 1.00 1.59 8.51
64 K 0.003 1.00 1.11 10.93 1.00 1.11 4.79

128 K 0.006 1.00 0.97 8.34 1.00 0.97 3.45
256 K 0.013 1.00 0.96 7.35 1.00 0.96 3.01
512 K 0.025 1.00 0.95 6.40 1.00 0.95 2.61

1024 K 0.051 1.00 0.88 5.13 1.00 0.89 2.04
2048 K 0.102 1.00 0.76 3.54 1.00 0.77 1.39
4096 K 0.204 1.00 0.52 1.85 1.00 0.56 0.74

Table B.7: Traffic from main memory to processor cache for grove for primary +
hard shadow + specular reflection rays. Larger numbers indicate larger factors of
improvement.
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grove — 164K triangles (20.11 MB)
primary + hard shadow + diffuse reflection rays

161K triangles (19.62 MB) potentially visible

avail frac of geometry traffic (MB) total traffic (MB)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 23581.31 23567.99 19718.37 23597.31 23583.99 20105.27
2 K < 0.001 19448.90 19350.91 12368.50 19464.90 19366.91 12753.37
4 K < 0.001 16195.96 15946.00 7247.89 16211.96 15962.00 7621.18
8 K < 0.001 13492.55 13017.76 3037.43 13508.55 13033.76 3397.65

16 K 0.001 11276.60 10581.27 801.17 11292.60 10597.27 1140.42
32 K 0.002 9654.98 8963.49 539.21 9670.98 8979.49 866.23
64 K 0.003 8359.51 7950.33 440.57 8375.51 7966.33 757.26

128 K 0.006 7013.85 6892.24 360.19 7029.85 6908.24 669.42
256 K 0.013 5741.27 5687.78 315.06 5757.27 5703.78 613.09
512 K 0.025 4435.86 4393.57 276.74 4451.86 4409.57 564.75

1024 K 0.051 3008.07 3055.72 245.21 3024.07 3071.72 529.93
2048 K 0.102 1631.21 1682.71 218.59 1647.21 1698.71 500.76
4096 K 0.204 615.06 748.40 182.56 631.06 764.40 463.14

avail frac of relative improvement (geometry) relative improvement (total)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 1.00 1.00 1.20 1.00 1.00 1.17
2 K < 0.001 1.00 1.01 1.57 1.00 0.99 1.53
4 K < 0.001 1.00 1.02 2.23 1.00 0.98 2.13
8 K < 0.001 1.00 1.04 4.44 1.00 0.96 3.98

16 K 0.001 1.00 1.07 14.08 1.00 0.94 9.90
32 K 0.002 1.00 1.08 17.91 1.00 0.93 11.16
64 K 0.003 1.00 1.05 18.97 1.00 0.95 11.06

128 K 0.006 1.00 1.02 19.47 1.00 0.98 10.50
256 K 0.013 1.00 1.01 18.22 1.00 0.99 9.39
512 K 0.025 1.00 1.01 16.03 1.00 0.99 7.88

1024 K 0.051 1.00 0.98 12.27 1.00 1.02 5.71
2048 K 0.102 1.00 0.97 7.46 1.00 1.03 3.29
4096 K 0.204 1.00 0.82 3.37 1.00 1.21 1.36

Table B.8: Traffic from main memory to processor cache for grove for primary +
hard shadow + diffuse reflection rays. Larger numbers indicate larger factors of
improvement.
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sphereflake — 797K triangles (97.31 MB)
primary rays only — 47K triangles (5.74 MB) potentially visible

avail frac of geometry traffic (MB) total traffic (MB)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 1318.02 1070.85 1019.79 1382.02 1134.85 1263.22
2 K < 0.001 999.68 664.19 596.86 1063.68 728.19 817.53
4 K 0.001 506.36 212.43 157.68 570.36 276.43 372.15
8 K 0.001 152.01 70.89 48.55 216.01 134.89 247.83

16 K 0.003 17.34 17.31 7.77 81.34 81.31 234.10
32 K 0.005 8.16 14.63 7.13 72.16 78.63 217.31
64 K 0.011 7.08 13.87 6.74 71.08 77.87 234.71

128 K 0.022 6.53 10.03 6.31 70.53 74.03 221.64
256 K 0.044 6.17 6.66 6.07 70.17 70.66 189.51
512 K 0.087 5.90 5.74 5.88 69.90 69.74 169.82

1024 K 0.174 5.80 5.74 5.80 69.80 69.74 136.77
2048 K 0.348 5.78 5.74 5.80 69.78 69.74 127.40
4096 K 0.697 5.75 5.74 5.75 69.75 69.74 107.07

avail frac of relative improvement (geometry) relative improvement (total)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 1.00 1.23 1.29 1.00 1.22 1.09
2 K < 0.001 1.00 1.51 1.67 1.00 1.46 1.30
4 K 0.001 1.00 2.38 3.21 1.00 2.06 1.53
8 K 0.001 1.00 2.14 3.13 1.00 1.60 0.87

16 K 0.003 1.00 1.00 2.23 1.00 1.00 0.35
32 K 0.005 1.00 0.56 1.14 1.00 0.92 0.33
64 K 0.011 1.00 0.51 1.05 1.00 0.91 0.30

128 K 0.022 1.00 0.65 1.03 1.00 0.95 0.32
256 K 0.044 1.00 0.93 1.02 1.00 0.99 0.37
512 K 0.087 1.00 1.03 1.00 1.00 1.00 0.41

1024 K 0.174 1.00 1.01 1.00 1.00 1.00 0.51
2048 K 0.348 1.00 1.01 1.00 1.00 1.00 0.55
4096 K 0.697 1.00 1.00 1.00 1.00 1.00 0.65

Table B.9: Traffic from main memory to processor cache for sphereflake for pri-
mary rays. Larger numbers indicate larger factors of improvement.
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sphereflake — 797K triangles (97.31 MB)
primary + hard shadow rays — 117K triangles (14.34 MB) potentially visible

avail frac of geometry traffic (MB) total traffic (MB)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 4769.71 4351.34 3587.01 4833.71 4415.34 3977.61
2 K < 0.001 3782.92 3156.72 2141.18 3846.92 3220.72 2509.02
4 K < 0.001 2240.22 1498.01 561.76 2304.22 1562.01 923.41
8 K 0.001 779.93 486.30 225.10 843.93 550.30 571.55

16 K 0.001 117.18 92.90 29.88 181.18 156.90 403.39
32 K 0.002 37.71 51.64 28.01 101.71 115.64 385.37
64 K 0.004 27.60 45.93 26.42 91.60 109.93 401.58

128 K 0.009 23.41 45.11 25.15 87.41 109.11 387.66
256 K 0.017 20.61 37.60 24.45 84.61 101.60 355.07
512 K 0.035 18.60 27.50 23.88 82.60 91.50 335.01

1024 K 0.070 17.00 17.66 23.52 81.00 81.66 301.68
2048 K 0.140 15.98 16.63 23.40 79.98 80.63 292.18
4096 K 0.279 15.03 15.25 21.73 79.03 79.25 270.22

avail frac of relative improvement (geometry) relative improvement (total)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 1.00 1.10 1.33 1.00 1.09 1.22
2 K < 0.001 1.00 1.20 1.77 1.00 1.19 1.53
4 K < 0.001 1.00 1.50 3.99 1.00 1.48 2.50
8 K 0.001 1.00 1.60 3.46 1.00 1.53 1.48

16 K 0.001 1.00 1.26 3.92 1.00 1.15 0.45
32 K 0.002 1.00 0.73 1.35 1.00 0.88 0.26
64 K 0.004 1.00 0.60 1.04 1.00 0.83 0.23

128 K 0.009 1.00 0.52 0.93 1.00 0.80 0.23
256 K 0.017 1.00 0.55 0.84 1.00 0.83 0.24
512 K 0.035 1.00 0.68 0.78 1.00 0.90 0.25

1024 K 0.070 1.00 0.96 0.72 1.00 0.99 0.27
2048 K 0.140 1.00 0.96 0.68 1.00 0.99 0.27
4096 K 0.279 1.00 0.99 0.69 1.00 1.00 0.29

Table B.10: Traffic from main memory to processor cache for sphereflake for pri-
mary + hard shadow rays. Larger numbers indicate larger factors of improvement.
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sphereflake — 797K triangles (97.31 MB)
primary + hard shadow + specular reflection rays

377K triangles (46.01 MB) potentially visible

avail frac of geometry traffic (MB) total traffic (MB)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 9743.36 8943.02 7187.02 9807.36 9007.02 7622.55
2 K < 0.001 8113.40 6783.33 4533.29 8177.40 6847.33 4946.01
4 K < 0.001 5690.98 3868.27 1627.90 5754.98 3932.27 2034.42
8 K < 0.001 3125.39 2020.36 838.34 3189.39 2084.36 1229.67

16 K < 0.001 1211.01 1074.17 270.49 1275.01 1138.17 688.88
32 K 0.001 716.38 789.93 250.94 780.38 853.93 653.18
64 K 0.001 594.22 635.80 236.87 658.22 699.80 656.90

128 K 0.003 516.94 546.56 224.05 580.94 610.56 631.51
256 K 0.005 450.48 493.95 211.91 514.48 557.95 587.40
512 K 0.011 384.35 455.32 203.66 448.35 519.32 559.72

1024 K 0.022 316.83 415.70 192.86 380.83 479.70 515.96
2048 K 0.043 246.62 353.04 188.18 310.62 417.04 501.91
4096 K 0.087 177.82 231.79 177.75 241.82 295.79 471.19

avail frac of relative improvement (geometry) relative improvement (total)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 1.00 1.09 1.36 1.00 1.09 1.29
2 K < 0.001 1.00 1.20 1.79 1.00 1.19 1.65
4 K < 0.001 1.00 1.47 3.50 1.00 1.46 2.83
8 K < 0.001 1.00 1.55 3.73 1.00 1.53 2.59

16 K < 0.001 1.00 1.13 4.48 1.00 1.12 1.85
32 K 0.001 1.00 0.91 2.85 1.00 0.91 1.19
64 K 0.001 1.00 0.93 2.51 1.00 0.94 1.00

128 K 0.003 1.00 0.95 2.31 1.00 0.95 0.92
256 K 0.005 1.00 0.91 2.13 1.00 0.92 0.88
512 K 0.011 1.00 0.84 1.89 1.00 0.86 0.80

1024 K 0.022 1.00 0.76 1.64 1.00 0.79 0.74
2048 K 0.043 1.00 0.70 1.31 1.00 0.74 0.62
4096 K 0.087 1.00 0.77 1.00 1.00 0.82 0.51

Table B.11: Traffic from main memory to processor cache for sphereflake for pri-
mary + hard shadow + specular reflection rays. Larger numbers indicate larger
factors of improvement.
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sphereflake — 797K triangles (97.31 MB)
primary + hard shadow + diffuse reflection rays

286K triangles (34.96 MB) potentially visible

avail frac of geometry traffic (MB) total traffic (MB)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 6953.68 6864.16 5156.22 6969.68 6880.16 5457.10
2 K < 0.001 5702.46 5544.66 3249.32 5718.46 5560.66 3544.51
4 K < 0.001 3942.86 3679.92 1183.91 3958.86 3695.92 1477.55
8 K < 0.001 2646.05 2399.73 612.09 2662.05 2415.73 901.92

16 K < 0.001 1764.12 1640.35 239.04 1780.12 1656.35 535.65
32 K 0.001 1262.47 1249.98 222.08 1278.47 1265.98 514.65
64 K 0.002 927.20 943.21 208.56 943.20 959.21 505.58

128 K 0.004 681.61 695.18 196.73 697.61 711.18 490.59
256 K 0.007 490.79 508.60 185.58 506.79 524.60 471.46
512 K 0.014 347.92 379.13 176.22 363.92 395.13 457.25

1024 K 0.029 239.30 298.16 165.33 255.30 314.16 438.11
2048 K 0.057 159.13 245.75 159.20 175.13 261.75 429.64
4096 K 0.114 102.09 148.61 145.61 118.09 164.61 410.97

avail frac of relative improvement (geometry) relative improvement (total)
cache pot-vis recursive packet dynamic recursive packet dynamic

1 K < 0.001 1.00 1.01 1.35 1.00 1.01 1.28
2 K < 0.001 1.00 1.03 1.75 1.00 1.03 1.61
4 K < 0.001 1.00 1.07 3.33 1.00 1.07 2.68
8 K < 0.001 1.00 1.10 4.32 1.00 1.10 2.95

16 K < 0.001 1.00 1.08 7.38 1.00 1.07 3.32
32 K 0.001 1.00 1.01 5.68 1.00 1.01 2.48
64 K 0.002 1.00 0.98 4.45 1.00 0.98 1.87

128 K 0.004 1.00 0.98 3.46 1.00 0.98 1.42
256 K 0.007 1.00 0.96 2.64 1.00 0.97 1.07
512 K 0.014 1.00 0.92 1.97 1.00 0.92 0.80

1024 K 0.029 1.00 0.80 1.45 1.00 0.81 0.58
2048 K 0.057 1.00 0.65 1.00 1.00 0.67 0.41
4096 K 0.114 1.00 0.69 0.70 1.00 0.72 0.29

Table B.12: Traffic from main memory to processor cache for sphereflake for pri-
mary + hard shadow + diffuse reflection rays. Larger numbers indicate larger factors
of improvement.
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Appendix C

Tabular Results for Distributed Memory Ray Tracer

C.1 Direct Volume Ray Casting of N-Body Particle Density

Table C.1 contains scheduler performance for direct volume ray casting on a

512-cubed particle density field. As ray calculation cost are reduced, the impact of

the particular scheduling algorithm increases. When ray calculation costs are low

relative to data I/O cost, our dynamic scheduling method can improve runtime by

an order of magnitude over static schedules.

C.2 Ray Tracing of N-Body Particle Density Isosurface

Table C.2 contains scheduler performance for ray tracing on an isosurface

of a 5123 particle density field. The render includes two-bounce reflections and

shadow rays for two directional lights. Our dynamic scheduling method can im-

prove runtime by an order of magnitude over static schedules.

C.3 Ray Tracing of Abdominal CT Scan Isosurface

Table C.3 contains scheduler performance for ray tracing on an isosurface

of a 5123 Abdominal CT scan. The render includes shadow rays for two directional

lights. When data I/O costs dominate, the domain decomposition performs on-par
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with our dynamic schedule because data load costs are relatively small. Also, as the

number of processes approaches the number of domains, more domains are loaded

only once and remain resident throughout the execution. However, the image de-

composition schedule still suffers from poor I/O efficiency even in this case, since

domains are loaded on each process where rays require it. Yet, when ray costs dom-

inate, the image decomposition performs best since the I/O costs can be amortized

across many rays.

C.4 Spatial Domains Loaded from Disk

Table C.4 contains the number of domains (spatial subdivisions) loaded

from disk for each schedule for each dataset. Our dynamic scheduling method sig-

nificantly reduces the number of domains loaded from disk, which is the primary

factor for the performance gain of our approach. A similar number of domains are

accessed in our two ray cost models.
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Low Ray Calculation Cost (512 x 512 image)

schedule n=16 24 32 48 64 96 128

R-W Spread 12 8 6 4 3 3 3
Spread 26 16 13 8 7 4 4

Domain 77 53 42 29 41 20 26
Image 59 54 45 41 39 35 32

High Ray Calculation Cost (2048 x 2048 image)

schedule n=16 24 32 48 64 96 128

R-W Spread 68 46 38 33 25 23 21
Spread 169 130 99 81 57 39 32

Domain 171 123 110 79 105 59 78
Image 118 97 76 63 57 52 44

Table C.1: Timing runs for direct volume ray casting of n-body particle density.
Runtimes are in seconds per frame.
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Low Ray Calculation Cost (512 x 512 image)

schedule n=16 24 32 48 64 96 128

R-W Spread 76 56 41 35 29 22 18
Spread 204 130 91 63 50 36 28

Domain 439 390 365 278 409 218 306
Image 451 411 383 339 306 270 246

High Ray Calculation Cost (2048 x 2048 image)

schedule n=16 24 32 48 64 96 128

R-W Spread 204 174 155 134 123 107 88
Spread 498 367 297 218 169 131 110

Domain 742 685 685 550 746 506 620
Image 742 684 645 613 566 532 494

Table C.2: Timing runs for ray tracing of n-body particle density. Runtimes are in
seconds per frame.
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Low Ray Calculation Cost (512 x 512 image)

schedule n=16 24 32 48 64 96 128

R-W Spread 246 224 175 134 120 111 107
Spread 183 169 139 129 109 113 108

Domain 222 186 188 132 133 116 99
Image 400 357 419 318 281 240 240

High Ray Calculation Cost (2048 x 2048 image)

schedule n=16 24 32 48 64 96 128

R-W Spread 1740 1321 1270 1033 847 589 591
Spread 1408 1008 1076 786 645 592 601

Domain 1133 951 1035 779 688 684 622
Image 940 690 602 487 463 336 336

Table C.3: Timing runs for ray tracing of CT scan. Runtimes are in seconds per
frame.
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Small N-Body Particle Density
Direct Volume Rendering

schedule n=16 24 32 48 64 96 128

R-W Spread 1637 1483 1327 1122 795 626 639
Spread 2303 1787 1672 1417 1317 1030 762

Domain 10128 11150 11182 11507 11229 11964 11876
Image 6900 8681 10159 13392 16328 21499 26937

Small N-Body Particle Density
Isosurface + Shadows + Reflections

schedule n=16 24 32 48 64 96 128

R-W Spread 4492 4227 4196 3959 3712 3365 2935
Spread 9281 7444 6280 5918 5829 5318 4736

Domain 29351 39069 46949 49671 64359 68910 75131
Image 26724 35201 42248 54678 65100 82620 97058

Small Abdominal CT Scan
Isosurface + Shadows

schedule n=16 24 32 48 64 96 128

R-W Spread 183 169 139 129 109 113 108
Spread 246 224 175 134 120 111 107

Domain 222 186 188 132 133 116 99
Image 400 357 419 318 281 240 240

Table C.4: Domains loaded from disk for each scheduling strategy
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