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Abstract
Pointer analysis is a prerequisite for many program analyses, and
the effectiveness of these analyses depends on the precision of
the pointer information they receive. Two major axes of pointer
analysis precision areflow-sensitivityand context-sensitivity, and
while there has been significant recent progress regarding scalable
context-sensitive pointer analysis, relatively little progress has been
made in improving the scalability of flow-sensitive pointeranalysis.

This paper presents a new interprocedural, flow-sensitive pointer
analysis algorithm that combines two ideas—semi-sparseanalysis
and a novel use of BDDs—that arise from a careful understanding
of the unique challenges that face flow-sensitive pointer analysis.
We evaluate our algorithm on 12 C benchmarks ranging from 11K
to 474K lines of code. Our fastest algorithm is on average 197×
faster and uses 4.6× less memory than the state of the art, and it
can analyze programs that are an order of magnitude larger than
the previous state of the art.

Categories and Subject Descriptors D.3.4 [Processors]: Com-
pilers; F.3.2 [Semantics of Programming Languages]: Program
Analysis

General Terms Algorithms, Languages

Keywords Pointer analysis, alias analysis

1. Introduction
Almost all program analyses are more effective when given precise
pointer information, and the scalability of such program analyses is
often dictated by the precision of this pointer information[46]. Two
major dimensions of pointer analysis precision areflow-sensitivity
andcontext-sensitivity, which improve precision in complementary
ways. A context-sensitive analysis respects the semanticsof pro-
cedure calls by analyzing each distinct procedure context indepen-
dently, whereas a context-insensitive analysis merges contexts to-
gether. A flow-sensitive analysis respects the control-flowof a pro-
gram and instead computes a separate solution for each program
point, whereas a flow-insensitive analysis does not respectcontrol-
flow and computes a single solution that conservatively holds for
the entire program.

Recently, the scalability of both flow-insensitive pointeranaly-
sis [4, 22, 23, 25, 40, 41] and context-sensitive pointer analysis [10,
30, 33, 36, 39, 48, 52] has been greatly improved. In contrast, there
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has been relatively little progress on improving the performance
of flow-sensitive pointer analysis. This lack of progress isunfortu-
nate, because flow-sensitive pointer analysis has been shown to be
beneficial to important problems, also known asclients, such as se-
curity analysis [7, 17], deep error checking [20], hardwaresynthe-
sis [51], and the analysis of multi-threaded programs [45],among
others [3, 9, 18].

In this paper, we present a new interprocedural, flow-sensitive
pointer analysis algorithm that significantly improves upon the state
of the art. The algorithm as presented is context-insensitive, but it
could be extended to add context-sensitivity using one of several
available techniques. Indeed, there is evidence that flow-sensitivity
and context-sensitivity conspire to improve the behavior of client
analyses [20]. Nevertheless, by concentrating exclusively on flow-
sensitivity, we isolate its effects and directly address its particular
challenges.

1.1 Challenges and Insights

Flow-sensitive pointer analysis presents unique challenges that hin-
der scalability. We will discuss these challenges in detailin Sec-
tion 2.3 after describing flow-sensitive pointer analysis in Sec-
tion 2.1, but we summarize the challenges now so that we can ex-
plain our insights for dealing with them.

Traditional flow-sensitive pointer analysis relies on the standard
iterative dataflow technique, which must conservatively and inef-
ficiently propagate pointer information to all reachable program
points in case any of those points uses that information. Many
program analyses have instead employedstatic single assignment
(SSA) form to enablesparse analysis, which allows dataflow in-
formation to flow directly from variable definitions to theircor-
responding uses [43]. These def-use chains allow the analysis
to avoid propagating information where it is not needed, greatly
increasing analysis efficiency. Unfortunately, the construction of
these def-use chains requires pointer analysis to determine where
variables are defined and used, so pointer analysis itself isunable
to exploit this technique.

In addition, flow-sensitive pointer analysis has prohibitive mem-
ory requirements and uses expensive set operations. Previous work
on pointer analysis has appliedsymbolic analysis, using binary de-
cision diagrams (BDDs) [6], to both reduce memory usage and de-
crease the cost of set operations [4, 48, 52]. Unfortunately, flow-
sensitive analysis presents a challenge for symbolic analysis be-
cause of the presence ofstrong updates. Strong updates enable the
analysis to kill old pointer information when a variable is assigned
new information. Indirect strong updates (those involvingmem-
ory store instructions such as*x = y) are problematic for sym-
bolic analysis because they require that each program statement be
processed independently, something for which BDDs are not well-
suited. Previous attempts at using BDDs for flow-sensitive pointer
analysis [52] have been forced to sacrifice precision to achieve ac-
ceptable performance.

Our algorithm overcomes these challenges with two insights:



1. There exists a subset of program variables (those that cannot
be referenced indirectly via a pointer, calledtop-levelvariables)
that can be converted to SSA form without the benefit of pointer
information. For most programs, the majority of variables are
top-level variables, so our solution employs apartial static sin-
gle assignment form that performs a sparse analysis on top-level
variables while using the standard iterative dataflow algorithm
for the remaining variables.

2. We can both preserve the precision benefits of strong updates
and obtain most of the performance benefit of symbolic analy-
sis by confining the use of BDDs to the representation of pointer
information, leaving the rest of the analysis unchanged. Inef-
fect, we use a partially-symbolic pointer analysis.

1.2 Contributions

This paper introduces a new flow-sensitive pointer analysisalgo-
rithm that is significantly more efficient—both in terms of analysis
time and memory usage—than the previous state of the art. More
specifically, our contributions are as follows:

• We identify three major challenges that limit the performance of
flow-sensitive pointer analysis, and we explain how all previous
approaches to optimizing the analysis—as well as our new
algorithm—target one or more of these challenges.

• We introduce a new type of flow-sensitive pointer analysis
calledsemi-sparse analysis, which significantly improves scal-
ability. We further introduce two new optimizations for flow-
sensitive analysis,Top-Level Pointer Equivalenceand Local
Points-to Graph Equivalence, that are enabled by the use of
semi-sparse analysis.

• We present the first use of BDDs for flow-sensitive pointer
analysis that allows the use of indirect strong updates. We
also explore the BDD data structure’s strengths and weaknesses
compared to more conventional data structures.

• We compare our new semi-sparse analysis (SS) and semi-sparse
analysis extended with our two new optimizations (SSO) against
a baseline algorithm for flow-sensitive pointer analysis (IFS,
standing forI terative dataflowFlow-Sensitive analysis) based
on the work of Hind and Pioli [28]. Our evaluation uses 12
C programs ranging in size from 11K to 474K lines of code
(LOC), and it considers two different data structures for storing
pointer information, namely, BDDs and sparse bitmaps. These
two data structures are used to create two different versions of
each algorithm:IFS, SS, andSSO.

When using sparse bitmaps to store pointer information for both
SSO and IFS, we find thatSSO is 183× faster thanIFS and
uses 47× less memory. When using BDDs for both algorithms,
we find thatSSO is 114× faster thanIFS and uses 1.4× less
memory. Overall, our fastest analysis (SSO using BDDs) is
197× faster, uses 4.6× less memory, and can analyze programs
that have 323K lines of code, which is an order of magnitude
larger than the baseline algorithm (IFS using sparse bitmaps).

The rest of the paper is organized as follows. Section 2 ex-
plains flow-sensitive pointer analysis and identifies the three major
challenges that hinder scalability. Section 3 describes related work
and it addresses these challenges. Section 4 describes partial static
single assignment form, Section 5 introduces our new semi-sparse
analysis and optimizations, and Section 6 explores the usefulness
of BDDs. Section 7 gives a detailed evaluation of all the analyses,
and Section 8 concludes.

2. Background
This section briefly describes flow-sensitive pointer analysis and
enumerates the major challenges in making the analysis practi-
cal for large programs. Further details on the basic flow-sensitive
pointer analysis algorithm are described by Hind et al [27].

2.1 Flow-Sensitive Pointer Analysis

Flow-sensitive pointer analysis respects a program’s control flow
and computes a separate solution for each program point, in con-
trast to a flow-insensitive analysis, which ignores statement order-
ing and computes a single solution that is conservatively correct for
all program points.

Traditional flow-sensitive pointer analysis uses an iterative
dataflow analysis framework, which employs a lattice of dataflow
factsL , a meet operator on the lattice, and a family of monotone
transfer functionsfi : L→ L that map lattice elements to other lat-
tice elements. For pointer analysis the lattice elements are points-to
graphs, the meet operator is set union, and each transfer function
computes the effects of a program statement to transform an input
points-to graph into an output points-to graph. Analysis iscarried
out on thecontrol-flow graph(CFG), a directed graphG = 〈N,E〉
with a finite set of nodes (orprogram points), N, corresponding to
program statements and a set of edgesE ⊆ N×N corresponding
to the control flow between statements. To ensure decidability of
the analysis branch conditions are uninterpreted and branches are
treated as non-deterministic.

Each nodek of the CFG maintains two points-to graphs:INk,
representing the incoming pointer information, andOUTk, repre-
senting the outgoing pointer information. Each node is associated
with a transfer function that transformsINk to OUTk, characterized
by the setsGENk andKILL k, which represent the pointer informa-
tion generated by the node and killed by the node, respectively. The
contents of these two sets depend on the particular program state-
ment associated with nodek, and the contents can vary over the
course of the analysis as new pointer information is accumulated
(though the transfer function is still guaranteed to be monotonic).
The analysis iteratively computes the following two functions for
all nodesk until convergence:

INk =
[

x∈pred(k)

OUTx (1)

OUTk = GENk∪ (INk−KILL k) (2)

TheKILL set determines whether the analysis performs astrong
or weakupdate to the left-hand side of an assignment. When the
left-hand side definitely refers to a single memory locationv, a
strong update occurs in which theKILL set is used to remove all
points-to relationsv→ x prior to updatingv with a new set of
points-to relations. If the left-hand side cannot be determined to
point to a single memory location, then a weak update occurs:The
analysis cannot be surewhich of the possible memory locations
should actually be updated by the assignment, so to be conservative
it must setKILL to the empty set to preserve all of the existing
points-to relations.

An important aspect of any pointer analysis is theheap model,
i.e., how the conceptually infinite-size heap is abstractedinto a
finite set of memory locations. The most common practice, which
we follow in this paper, is to treat each static memory allocation site
as a single abstract memory location (which may map onto multiple
concrete memory locations during program execution).



2.2 The Importance of Flow-Sensitive Pointer Analysis

Some previous work has created a perception that the extra preci-
sion of flow-sensitive pointer analysis is not beneficial [28, 37], but
as researchers attack new program analysis problems, we believe
that this perception should be questioned for the followingreasons:

• Different client program analyses require different amounts of
precision from the pointer analysis [26]. The list of clientanaly-
ses that have been shown to benefit from flow-sensitive pointer
analysis includes several software engineering applications of
growing importance, including security analysis [7, 17], deep
error checking [20], hardware synthesis [51], and the analysis
of multi-threaded programs [45], among others [3, 9, 18].

• The precision of pointer analysis is typically measured in terms
of metrics that are averaged over the entire program. In cases
such as security analysis and parallelization, these metrics can
be misleading—a small amount of imprecision in isolated parts
of the program can significantly impact the effectiveness ofthe
client analysis, as demonstrated by Guyer et al [20]. Thus, two
different pointer analyses can have very similar average points-
to set sizes but very different impact on the client analysis.

• In a vicious cycle, the lack of an efficient flow-sensitive pointer
analysis has inhibited the use of flow-sensitive pointer analy-
ses. The development and widespread use of a scalable flow-
sensitive pointer analysis would likely uncover additional client
analyses that benefit from the added precision.

• Several techniques [8, 17, 20, 21, 49] can improve the preci-
sion of flow-sensitive pointer analysis, but most of these tech-
niques greatly increase the cost of the pointer analysis, mak-
ing an already non-scalable analysis even more impractical. A
significantly more efficient flow-sensitive pointer analysis algo-
rithm would improve the practicality of such techniques, mak-
ing flow-sensitive pointer analysis even more useful.

Thus, we conclude that there are many reasons to seek a more
scalable interprocedural flow-sensitive pointer analysis.

2.3 Challenges Facing Flow-Sensitive Pointer Analysis

There are three major performance challenges facing flow-sensitive
pointer analysis:

1. Conservative propagation.Without pointer information it is in
general not possible to determine where variables are defined or
used. Therefore, the analysis must propagate the pointer infor-
mation generated at each nodek to all nodes in the CFG reach-
able fromk in case those nodes use the information. Typically,
however, only a small percentage of the reachable nodes actu-
ally require the information, so most of the nodes receive the
information needlessly. The effect is to greatly delay the con-
vergence of equations (1) and (2).

2. Expensive transfer functions.Equations (1) and (2) require a
number of set operations with complexity linear in the sizesof
the sets involved. These sets tend to be large, with potentially
hundreds to thousands of elements. This problem is exacerbated
by the analysis’ conservative propagation which requires the
nodes to needlessly re-evaluate their transfer functions when
they receive new pointer information even when that informa-
tion is irrelevant to the node.

3. High memory requirements. Each node in the CFG must
maintain two separate points-to graphs,IN for the incoming in-
formation andOUT for the outgoing information. For large pro-
grams that have hundreds of thousands of nodes, these points-to
graphs consume a significant amount of memory. This problem
is also exacerbated by the analysis’ conservative propagation

which requires theIN andOUT graphs to hold pointer informa-
tion irrelevant to the node in question.

All of the work in improving the scalability of flow-sensitive
pointer analysis can be seen as addressing one or more of these
challenges. In the next section we review past efforts at meeting
these challenges before describing our own solution to the problem.

3. Related Work
The current state of the art for traditional flow-sensitive pointer
analysis using iterative dataflow analysis is described by Hind and
Pioli [27, 28], and their analysis is the baseline that we usefor
evaluating our new techniques. Their analysis employs three major
optimizations:

1. Sparse evaluation graph (SEG) [11, 16, 42].These graphs are
derived from the CFG by eliding nodes that do not manipu-
late pointer information—and hence are irrelevant to pointer
analysis—while maintaining the control-flow relations among
the remaining nodes. There are a number of techniques for con-
structing SEGs, which vary in the complexity of the algorithm
and the size of the resulting graph. The use of SEGs addresses
challenges (1) and (3) by significantly reducing the input tothe
analysis.

2. Priority-based worklist. Nodes awaiting processing are placed
on a worklist prioritized by the topological order of the CFG,
such that nodes higher in the CFG are processed before nodes
lower in the CFG. This optimization aims to amass at each
node as much new incoming pointer information as possible
before processing the node, thereby addressing challenge (2)
by reducing the number of times the node must be processed.

3. Filtered forward-binding. When passing pointer information
to the target of a function call, it is unnecessary to pass every-
thing. The only pointer information that the callee can access is
that which is accessible from a global or from one of the func-
tion parameters. Challenges (1) and (3) can thus be addressed
by filtering out the remaining information to add. Less informa-
tion is propagated unnecessarily, which leads to smaller points-
to graphs.

These optimizations speed up the analysis by an average of over
25×. The largest benchmarks analyzed are up to 30,000 lines of
code (LOC).

To improve scalability, several non-traditional approaches to
flow-sensitive pointer analysis have been proposed. These ap-
proaches take inspiration from a number of non-pointer-related
program analyses which have addressed similar challenges using a
sparse analysis, including the use of static single assignment (SSA)
form. Pointer analysis cannot directly make use of SSA because
pointer information is required to compute SSA form. Cytronet
al [14] do propose a scheme for incrementally computing pointer
information while converting to SSA form; by incorporatingthe
minimum amount of pointer information necessary, this scheme re-
duces the size of the resulting SSA form. However, this technique
does not speed up the computation of the pointer informationit-
self. We now describe two approaches that use SSAs for the actual
computation of pointer information.

Hasti and Horwitz [24] propose a scheme composed of two
passes: a flow-insensitive pointer analysis that gathers pointer in-
formation and a conversion pass that uses the pointer information
to transform the program into SSA form. The result of the second
pass is iteratively fed back into the first pass until convergence is
reached. Hasti and Horwitz leave open the question of whether the
resulting pointer information is equivalent to a flow-sensitive anal-
ysis; we believe that the resulting information is less precise than a



full flow-sensitive pointer analysis. No experimental evaluation of
this technique has been published.

Chase et al [8] propose a technique that dynamically transforms
the program to SSA form during the course of the flow-sensitive
pointer analysis. There is no experimental evaluation of this pro-
posed technique; however, a similar idea is described and experi-
mentally evaluated by Tok et al [47]. The technique can analyze
programs that are twice as large as those that use iterative dataflow,
enabling the analysis of 70,000 LOC in approximately half-an-
hour. Unfortunately, the cost of dynamically computing SSAform
limits the scalability of the analysis.

We cannot use a common infrastructure to compare Tok et al’s
technique with ours, because their technique targets programs that
begin in non-SSA form, whereas we use the LLVM infrastruc-
ture [32], which automatically transforms a program into partial
SSA form as described in Section 4. While the comparison is im-
perfect due to infrastructure differences, our fastest analysis (SSO
using BDDs) is 1,286× faster and uses 11.5× less memory on
sendmail, the only benchmark common to both studies.

A different approach that primarily targets challenges (2)and
(3) is symbolic analysis using Binary Decision Diagrams (BDDs),
which has been used with great success in model checking [2].A
number of papers have shown that symbolic analysis can greatly
improve the performance of flow-insensitive pointer analysis [4, 48,
50, 52]. In addition, Zhu [51] uses BDDs to compute a flow- and
context-sensitive pointer analysis for C programs. The analysis is
fully symbolic (everything from the CFG to the pointer information
is represented using BDDs) but not fully flow-sensitive—theanal-
ysis cannot perform indirect strong updates, so theKILL sets are
more conservative (i.e., smaller) than a fully flow-sensitive anal-
ysis. Symbolic analysis is discussed in more detail in Section 6.
Zhu does not show results for a flow-sensitive, context-insensitive
analysis, so we cannot directly compare his techniques withours.

There have been several other approaches to optimizing flow-
sensitive pointer analysis that improve scalability by pruning the
input given to the analysis. Rather than improve the scalability of
the pointer analysis itself, these techniques reduce the size of its
input. Client-driven pointer analysis analyzes the needs of a partic-
ular client and applies flow-sensitive pointer analysis only to por-
tions of the program that require that level of precision [20]. Fink
et al use a similar technique specifically for typestate analysis by
successively applying more precise pointer analyses to a program,
pruning away portions of the program as each stage of precision
has been successfully verified [17]. Kahlon bootstraps the flow-
sensitive pointer analysis by using a flow-insensitive pointer analy-
sis to partition the program into sections that can be analyzed inde-
pendently [29]. These approaches can be combined with our new
flow-sensitive pointer analysis to achieve even greater scalability.

4. Partial Static Single Assignment Form
Static single assignment (SSA) form is an intermediate representa-
tion that requires each variable in a program to be defined exactly
once. Variables defined multiple times in the original representa-
tion are split into separate instances, one for each definition. When
separate instances of the same variable are live at a join point in the
control-flow graph, they are combined using aφ function, which
takes the old instances as arguments and assigns the result to a new
instance.

One benefit of SSA form is that each use of a variable is domi-
nated by exactly one definition, so it is trivial to match definitions
with their corresponding uses, enablingsparseanalyses. Thus, SSA
form addresses all three major challenges identified in Section 2.3:
It speeds up convergence, reduces the number of times transfer
functions need to be evaluated, and reduces the sizes of the points-
to graphs stored at each node.

int a, b, *c, *d;

int* w = &a;
int* x = &b;
int** y = &c;
int** z = y;

c = 0;
*y = w;
*z = x;
y = &d;
z = y;
*y = w;
*z = x;

w1 = ALLOCa
x1 = ALLOCb
y1 = ALLOCc
z1 = y1
STORE0 y1
STOREw1 y1
STOREx1 z1
y2 = ALLOCd
z2 = y2
STOREw1 y2
STOREx1 z2

Figure 1. Example partial SSA code. On the left is the original C
code, on the right is the transformed code in partial SSA form.

There are many known algorithms for converting a program into
SSA form [1, 5, 13, 15]. However, the problem becomes more
difficult when we consider indirect definitions through pointers.
To correctly construct SSA form, we must know which variables
are defined and/or used at each statement, which in turn requires
pointer analysis. Even after pointer information becomes available,
we must either greatly complicate the SSA form [12] or sacrifice
much of its utility [31].

To overcome these issues, modern compilers such as GCC [38]
and LLVM [32] use a variant of SSA, which we refer to aspartial
SSA form. The key idea is to divide variables into two classes. One
class contains variables that are never referenced by pointers, so
their definitions and uses can be trivially determined by inspection,
and these variables can be converted to SSA using any algorithm
for constructing SSA form. The other class contains those vari-
ables thatcan be referenced by pointers, and these variables are
not placed in SSA form because of the above-mentioned complica-
tions.

4.1 LLVM

Our semi-sparse analysis is implemented in the LLVM infrastruc-
ture, so the rest of this section describes LLVM’s internal repre-
sentation (IR) and its particular instantiation of partialSSA form.
While the details and terminology are specific to LLVM, the ideas
can be translated to other forms of partial SSA.

LLVM’s IR recognizes two classes of variables: (1)top-level
variables are those that cannot be referenced indirectly via a
pointer, i.e., those whose address is never exposed via the address-
of operator or returned via a dynamic memory allocation; (2)
address-takenvariables are those that have had their address ex-
posed and therefore can be indirectly referenced via a pointer. Top-
level variables are kept in a (conceptually) infinite set of virtual reg-
isters which are maintained in SSA form. Address-taken variables
are kept in memory, and they are not in SSA form. Address-taken
variables are accessed viaLOAD and STORE instructions, which
take top-level pointer variables as arguments. These address-taken
variables are never referenced syntactically in the IR; they instead
are only referenced indirectly using theseLOAD and STORE in-
structions. LLVM instructions use a 3-address format, so there is at
most one level of pointer dereference for each instruction.

Figure 1 provides an example of a C code fragment and its
corresponding partial SSA form. Variablesw, x, y, andz are top-
level variables and have been converted to SSA form; variablesa, b,
c, andd are address-taken variables, so they are stored in memory
and accessed solely viaLOAD and STORE instructions. Because
the address-taken variables are not in SSA form, they can each be
defined multiple times, as with variablesc andd in the example.



int **a, *b, c;
a = &b;
b = &c;
c = 0;

a = ALLOCb
t = ALLOCc
STOREt a
STORE0 t

Figure 2. Example partial SSA code. On the left is the original C
code, on the right is the transformed code in partial SSA form.

Because address-taken variables cannot be directly named,
LLVM maintains the invariant that each address-taken variable
has at least one virtual register that refers only to that variable. To
illustrate this point, Figure 2 shows how a temporary variable, t,
is introduced in the LLVM IR to take the place of the variableb,
which in the original C code is referenced by a pointer.

LLVM also treats global variables specially. Def-use chains
for global variables can span multiple functions; however,in the
presence of indirect function calls it is not possible to construct
precise def-use chains across function boundaries withoutpointer
information. To address this issue, LLVM adds an extra levelof
indirection to each global variable:T glob becomesconst T*
glob, whereT is the type of the global declared in the original
program. The const pointers are initialized to point to an address-
taken variable that represents the original global variable. This
modification means that pointer information for global variables
is propagated along the SEG rather than relying on cross-function
def-use chains.

Note: The rest of this paper will assume the use of the LLVM IR,
which means that any named variable is a top-level variable and not
an address-taken variable.

4.2 Advantages of Partial SSA

For flow-sensitive pointer analysis, partial SSA form has several
important implications which have not been previously identified
or explored:

1. The analysis can use a single global points-to graph to hold
the pointer information for all top-level variables. Sincethe
variables are in SSA form, they will necessarily have the same
pointer information over the entire program. The presence of
this global points-to graph means the analysis can avoid storing
and propagating the pointer information for top-level variables
among CFG nodes.

2. Def-use information for top-level variables is immediately
available, as in a sparse analysis. When pointer information for
a top-level variable changes, the affected program statements
can be directly determined, which can dramatically speed up
the convergence of the analysis and reduce the number of trans-
fer functions that must be evaluated.

3. Local points-to graphs, i.e., separateIN and OUT graphs for
each CFG node, are still needed forLOAD and STORE state-
ments, but these graphs only hold pointer information for
address-taken variables. The exclusion of top-level variables
can significantly reduce the sizes of these local points-to graphs.

5. Semi-Sparse Analysis
Semi-sparse analysis takes advantage of partial SSA form togreatly
increase the efficiency of the flow-sensitive pointer analysis. In
order to do so, we introduce a construct called theDataflow Graph.
We first describe the characteristics of the dataflow graph and how
it is constructed, and we then describe the semi-sparse analysis
itself, followed by the new optimizations enabled by partial SSA.

Inst Type Example Def-Use Info
ALLOC x = ALLOCi DEFtop

COPY x = y z DEFtop, USEtop
LOAD x = *y DEFtop, USEtop, USEadr

STORE *x = y USEtop, DEFadr, USEadr
CALL x = foo(y) DEFtop, USEtop, DEFadr, USEadr

RET return x USEtop, USEadr

Table 1. Types of instructions relevant to pointer analysis. Instruc-
tions such asx = &y are converted intoALLOC instructions, much
like C’s alloca.Def-Use Infodescribes whether the instruction can
define or use top-level variables (DEFtop andUSEtop, respectively)
and whether it can define or use address-taken variables (DEFadr
and USEadr, respectively). Recall that all named variables are, by
construction, top-level.

5.1 The Dataflow Graph

The dataflow graph (DFG) is a combination of a sparse evaluation
graph (SEG) and def-use chains. This combination is required by
the nature of partial SSA form, which provides def-use information
for the top-level variables but not for the address-taken variables.

Without access to def-use information, an iterative dataflow
analysis propagates information along the control-flow graph. As
described in Section 3, the SEG is simply an optimized version of
the control-flow graph that elides nodes that neither define nor use
pointer information. Since address-taken variables do nothave def-
use information available, program statements that define or use
address-taken variables must be connected via a path in the SEG
so that variable definitions will correctly reach their correspond-
ing uses. Since top-level variables have def-use information imme-
diately available, program statements that define or use top-level
variables can be connected via these def-use chains.

To construct the DFG there are 6 types of relevant program
statements, shown in Table 1. For each statement, the table lists
whether it defines and/or uses top-level variables (DEFtop and
USEtop, respectively) and whether the statement defines and/or uses
address-taken variables (DEFadr andUSEadr, respectively).STORE

instructions are labeledUSEadr because weak updates require the
updated variable’s previous points-to set.CALL instructions are la-
beledDEFadr because they can modify address-taken variables via
the callee function.CALL andRET instructions are labeledUSEadr
because they need to pass the address-taken pointer information
to/from the callee function.COPY instructions can have multiple
variables on the right-hand side, which allows it to accommodate
SSAφ functions.

The DFG is constructed in two stages. In the first stage, a stan-
dard algorithm for creating an SEG (such as Ramalingam’s linear-
time algorithm [42]) is used. Only program statements labeled
DEFadr or USEadr are considered relevant; all others are elided.
Then a linear pass through the partial SSA representation isused
to connect program statements that define top-level variables with
those that use those variables. Figure 3 shows the DFG correspond-
ing to the partial SSA code in Figure 1.

Theorem 1 (Correctness of the DFG). There exists a path in the
DFG from all variable definitions to their corresponding uses.

Proof. We proceed by cases based on the type of variable:

Top-level: Def-use information for top-level variables is exposed
by the partial SSA form; the DFG directly connects top-level
variable definitions to their uses, so the theorem is trivially true.

Address-taken: All uses of a variable’s definition must be reach-
able from the statement that created the definition in the original



w1 = ALLOCa

x1 = ALLOCb

y1 = ALLOCc

y2 = ALLOCd

z1 = y1

z2 = y2

STORE0 y1

STOREw1y1

STOREx1z1

STOREw1y2

STOREx1z2

Figure 3. Example DFG corresponding to the code in Figure 1.
Dashed edges are def-use chains; solid edges are for the SEG.

control-flow graph. The SEG preserves control-flow informa-
tion for all statements that either define or use address-taken
variables. Therefore any use of an address-taken variable’s def-
inition must be reachable from the statement that created the
definition in the SEG.

5.2 The Analysis

The pointer analysis itself is similar to that described by Hind and
Pioli [27, 28]. The analysis uses the following data structures:

• Each function F has its own program statement worklist
StmtWorklistF . The worklist is initialized to contain all state-
ments in the function that define a variable (i.e., are labeled
DEFadr or DEFtop).

• Each program statementk that uses or defines address-taken
variables (i.e., is labeledUSEadr or DEFadr) has two points-to
graphs,INk and OUTk, which hold the incoming and outgoing
pointer information for address-taken variables. LetPk(v) be
the points-to set of address-taken variablev in INk.

• A global points-to graphPGtop holds the pointer information
for all top-level variables. LetPtop(v) be the points-to set of
top-level variablev in PGtop.

• A worklist FunctionWorklistholds functions waiting to be pro-
cessed. The worklist is initialized to contain all functions in the
program.

The main body of the analysis is listed in Algorithm 1. The outer
loop selects a function from the function worklist, and the inner
loop iteratively selects a program statement from that function’s
statement worklist and processes it, continuing until the statement
worklist is empty. Then the analysis selects a new function from

the function worklist, continuing until the function worklist is also
empty. Each type of program statement is processed as shown in
Algorithms 5–10. These algorithms use the helper functionslisted
in Algorithms 2–4. The←֓ operator represents set update and
du
−→ and

SEG
−−→ represent a def-use edge or SEG edge in the DFG,

respectively.

Algorithm 1 Main body of the semi-sparse analysis algorithm.

Require: DFG = 〈N,E〉
while FunctionWorklistis not emptydo

F =SELECT(FunctionWorklist)
while StmtWorklistF is not emptydo

k =SELECT(StmtWorklistF )
switch typeof(k):

caseALLOC: processAlloc(F,k)
caseCOPY: processCopy(F,k)
caseLOAD: processLoad(F,k)
caseSTORE: processStore(F,k)
caseCALL : processCall(F,k)
caseRET: processRet(F,k)

Algorithm 2 propagateTopLevel(F,k)
if PGtop changedthen

StmtWorklistF ←֓ { n | k
du
−→ n∈ E}

Algorithm 3 propagateAddrTaken(F,k)

for all {n∈N | k
SEG
−−→ n∈ E} do

INn ←֓ OUTk
if INn changedthen

StmtWorklistF ←֓ {n}

Algorithm 4 filter(k)
return the subset ofINk reachable from either a call argument
or global variable

5.3 Optimizations

Partial SSA form allows us to introduce two additional optimiza-
tion opportunities:top-level pointer equivalenceandlocal points-to
graph equivalence.

5.3.1 Top-level Pointer Equivalence

Top-level Pointer Equivalence reduces the number of top-level vari-
ables in the DFG, which reduces the amount of pointer information
that must be maintained by the global top-level points-to graph.
In addition, it eliminates nodes from the DFG, which reducesthe
number of transfer functions that must be processed, speeding up
convergence. The basic idea is to identify sets of variablesthat have
identical points-to sets and to replace each set by a single set repre-
sentative.

Pointer equivalentvariables are those that have identical points-
to sets. More formally, let→ be the points-to relation and⊲⊳
be the pointer equivalence relation; then∀x,y,z ∈ Variables :
x ⊲⊳ y iff x → z ⇔ y → z. Program variables can be partitioned
into disjoint sets based on the pointer equivalence relation; an arbi-
trary member of each set is then selected as the set representative.
By replacing all variables in a program with their respective set
representatives and then eliding trivial assignments (e.g., x = x),



Algorithm 5 processAlloc(F,k) : [x = ALLOCi ]

PGtop ←֓ {x→ ALLOCi}
propagateTopLevel(F,k)

Algorithm 6 processCopy(F,k) : [x = y z ...]

for all v∈ right-hand sidedo
PGtop ←֓ {x→ Ptop(v)}

propagateTopLevel(F,k)

Algorithm 7 processLoad(F,k) : [x = *y]

PGtop ←֓ {x→ Pk(Ptop(y))}
OUTk ←֓ INk
propagateTopLevel(F,k)
propagateAddrTaken(F,k)

Algorithm 8 processStore(F,k) : [*x = y]

if Ptop(x) represents a single memory locationthen
// strong update
OUTk ←֓ (INk \Ptop(x))∪{Ptop(x)→ Ptop(y)}

else// weak update
OUTk ←֓ INk∪{Ptop(x)→ Ptop(y)}

propagateAddrTaken(F,k)

Algorithm 9 processCall(F,k) : [x = foo(y)]

if foo is a function pointerthen
targets:= Ptop(foo)

else
targets:= {foo}

filt := filter(k)
for all C∈ targetsdo

for all call argumentsa and corresponding parametersp do
PGtop ←֓ {p→ Ptop(a)}
propagateTopLevel(C,p)

Let n be the SEG start node for functionC
INn ←֓ filt
if INn changedthen

StmtWorklistC ←֓ {n}
if StmtWorklistC changedthen

FunctionWorklist←֓ {C}
OUTk ←֓ INk \filt
propagateAddrTaken(F,k)

Algorithm 10 processRet(F,k) : [return x]

callsites:= the set ofCALL statements targetingF
for all n∈ callsitesdo

Let Fn be the function containingn
OUTn ←֓ OUTk
propagateAddrTaken(Fn,n)
if n is of the formr = F(...) then

PGtop ←֓ {r→ Ptop(x)}
propagateTopLevel(Fn,n)

if StmtWorklistFn changedthen
FunctionWorklist←֓ {Fn}

we can reduce the number of variables and the size of the program
that are given as input to the pointer analysis. This idea hasbeen
previously explored for flow-insensitive pointer analysis[23, 44].

A different approach that primarily targets challenges (2)and
(3) is symbolic analysis using Binary Decision Diagrams (BDDs),
which has been used with great success in model checking [2].A
number of papers have shown that symbolic analysis can greatly
improve the performance of flow-insensitive pointer analysis [4, 48,
50, 52]. In addition, Zhu [51] uses BDDs to compute a flow- and
context-sensitive pointer analysis for C programs. The analysis is
fully symbolic (everything from the CFG to the pointer information
is represented using BDDs) but not fully flow-sensitive—theanal-
ysis cannot perform indirect strong updates, so theKILL sets are
more conservative (i.e., smaller) than a fully flow-sensitive analy-
sis. This work is explored in more detail in Section 6. Zhu does not
show results for a flow-sensitive, context-insensitive analysis, so
we cannot directly compare his techniques with ours. Partial SSA
form provides an opportunity to apply this optimization to flow-
sensitive pointer analysis as well. To do so, we must be able to iden-
tify pointer-equivalent variables prior to the pointer analysis itself.
Theorem 2 shows how we can identify top-level pointer-equivalent
variables under certain circumstances.

Theorem 2(Top-level pointer equivalence). A COPY statement of
the form[x = y]⇒ x ⊲⊳ y.

Proof. Top-level variables are in SSA form, which means that they
are each defined exactly once. Therefore, the value of each top-level
variable does not change once it is defined.

Sincex andy are top-level variables, their values never change.
TheCOPYstatement assignsx the value ofy, sox ⊲⊳ y.

Theorem 2 says that variables involved in aCOPY statement
with a single variable on the right-hand side are pointer equivalent,
so they can be replaced with a single representative variable. The
COPY statement (called asingle-useCOPY) is then redundant and
can be discarded from the DFG. When statements are discarded,
any edges to those statements must be updated to point to the
successors of the discarded statement. If noden is discarded from
DFG = 〈N,E〉 then the result is a newDFG = 〈N′,E′〉 where:

• N′ = N\{n}

• E′ = E \{k→ n}∪{k→ p | {k→ n,n→ p} ⊆ E}

In Figure 3,y1 ⊲⊳ z1 andy2 ⊲⊳ z2. We can replace all occurrences
of z1 with y1, replace all occurrences ofz2 with y2, and eliminate
the nodes for[z1 = y1] and [z2 = y2]. The def-use edge from
[y1 = ALLOCc] to [z1 = y1] is removed, and a new def-use edge is
added from[y1 = ALLOCc] to [STOREx1 y1]. Similarly, the def-use
edge from[y2 = ALLOCd] to [z2 = y2] is removed, and a new def-
use edge is added from[y2 = ALLOCd] to [STOREx1 y2]. Figure 4
shows the optimized version of Figure 3.

Theorem 3 (Correctness of the Transformation). The top-level
pointer equivalence transformation preserves SSA form fortop-
level variables.

Proof. There are two characteristics of SSA form that the transfor-
mation must preserve:

Every variable is defined exactly once.Let V be a set of
pointer-equivalent variables found by the transformationand letS
be the set of statements that define these variables.S contains ex-
actly one statement that is not a single-useCOPY. S must contain
at least one such statement because otherwiseS forms a cycle in
the def-use graph such that a variable is used before it is defined,
which would violate SSA form.S cannot contain more than one
such statement because only single-useCOPYs are considered when



w1 = ALLOCa
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y1 = ALLOCc

y2 = ALLOCd

STORE0 y1
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Figure 4. Figure 3 optimized using top-level pointer equivalence.

finding equivalent variables. After the equivalent variables are re-
placed by their set representative, all of the single-useCOPYs in S
are deleted, leaving exactly one statement that defines the represen-
tative variable.

Every definition dominates all of its uses.Every single-use
COPY in S is dominated by a statement inS—if a statementx =
y ∈ S, then x,y ∈ V and by definitionS must also contain the
statement definingy. There is exactly one statement inS that is
not a single-useCOPY; therefore that statement must dominate all
other statements inS. When the single-useCOPYs are deleted, all
of the edges pointing to those statements are updated as described
above—therefore the remaining statement inS must dominate all
statements in the program that used a variable inV.

5.3.2 Local Points-to Graph Equivalence

Local Points-to Graph Equivalence allows nodes in the DFG that
are guaranteed to have identical points-to graphs to share asingle
graph rather than maintain separate copies. This sharing can sig-
nificantly reduce the memory consumption of the pointer analysis,
as well as reduce the number of times pointer information must be
propagated among nodes.

To identify nodes with identical points-to graphs, we definethe
notion ofnon-preservingnodes. The points-to graphs that are local
to nodes in the DFG (i.e.,INk and OUTk) only contain pointer
information for address-taken variables. By the nature of partial
SSA form, onlySTOREinstructions andCALL instructions (which
reflect the changes caused bySTORE instructions in the callee
function) can modify the address-taken pointer information; we
call these nodesnon-preserving. Other instructions may use this
information (e.g.,LOAD andRET instructions), but they propagate
the pointer information through the DFG unchanged; we call these
nodespreserving. We say that non-preserving nodep reachesnode
q (p q) if there is a path in the DFG fromp to q, using only SEG
edges, that does not contain a non-preserving node. There may be
a number of nodes in the DFG that are all reachable from the same

set of non-preserving nodes; Theorem 4 says that these nodesare
guaranteed to have identical points-to graphs.

Theorem 4 (Local points-to graph equivalence). Let Nnp⊆ N be
the set of non-preserving DFG nodes.∀p∈Nnp and q, r ∈N : (p 
r⇔ p q)⇒ q and r have identical points-to graphs.

Proof. Assume∃q, r ∈ N.(∀p ∈ Nnp : p q⇔ p r), and that
q and r do not have identical points-to graphs. Then one of the
nodes (assume it isq) must have received pointer information that
the other did not. However, by construction of the partial SSA
form, non-preserving nodes are the only places that can generate
new pointer information for address-taken variables (the only kind
of variable present in the local points-to graphs). Therefore ∃p ∈
Nnp.(p q∧¬(p r)). But this violates our initial assumption
that bothp andq are reachable from the same set of non-preserving
nodes. Therefore,p andq must have identical points-to graphs.

A simple algorithm (see Algorithm 11) can detect nodes that
can share their points-to graphs. For eachSTOREand CALL node
in the DFG, the algorithm labels all nodes that are reachablevia
a sequence of SEG edges without going through anotherSTOREor
CALL node with a label unique to the originating node. Since nodes
may be reached by more than oneSTOREor CALL node, each node
will end up with a set of labels. This process takesO(n3) time,
wheren is the number of nodes in the SEG portion of the DFG.
These labels represent the propagation of the unknown pointer
information computed by the originating node. All nodes with an
identical set of labels are guaranteed to have identical local points-
to graphs and can therefore share a single graph among them.

Algorithm 11 Detecting nodes with equivalent points-to graphs.

Require: DFG = 〈N,E〉
Require: ∀n∈ N : idn is a unique identifier
Require: Worklist= N

while Worklist is not emptydo
n =SELECT(Worklist)

for all {k∈N | k
SEG
−−→ n∈ E} do

if typeof(k) ∈ {STORE,CALL} then
labeln ←֓ {idk}

else
labeln ←֓ labelk

if labeln changedthen

for all {p∈ N | n
SEG
−−→ p∈ E} do

Worklist←֓ {p}

By potentially sacrificing a small amount of precision we can
greatly increase the effectiveness of this optimization.CALL nodes
turn out to be a large percentage of the total number of nodes in
the DFG. By assuming that callees do not modify address-taken
pointer information accessible by their callers, thereby allowing Al-
gorithm 11 to treatCALL nodes exactly the same as all other non-
STOREnodes, we can significantly increase the amount of sharing
between nodes. This assumption is sound—the optimization only
causes nodes to share points-to graphs, so if a callee does modify
address-taken pointer information, the pointer information is prop-
agated to additional nodes that it otherwise wouldn’t have reached.
The effect of this assumption on precision and performance is ex-
plored in Section 7.

6. Symbolic Analysis
This section briefly discusses the pros and cons of using Binary De-
cision Diagrams (BDDs) for flow-sensitive pointer analysis. BDDs
are data structures for compactly representing sets and relations [6].



BDDs have several advantages over other data structures forthis
purpose: (1) the size of a BDD is only loosely correlated withthe
number of elements in the set that the BDD represents, meaning
that large sets can be stored in very little space, and (2) thecom-
plexity of set operations involving BDDs depends only on thesizes
of the BDDs involved, not on the number of elements in the sets.
Symbolic analysistakes advantage of these characteristics to per-
form analyses that would be prohibitively expensive—both in time
and memory—using more conventional data structures. Thereare
a number of examples of symbolic pointer analyses in the litera-
ture [4, 48, 50, 51, 52]. These analyses are fully symbolic: all rel-
evant information is stored as either a set or relation usingBDDs,
and the analysis is completely expressed in terms of operations on
those BDDs. When applied specifically to flow-sensitive pointer
analysis [51], the relevant information is the control-flowgraph
and the points-to relations; these are stored in BDDs and thetrans-
fer functions for the CFG nodes are expressed as BDD operations.
Thus, the analysis essentially compute the transfer functions for all
nodes in the CFG simultaneously, making the analysis very effi-
cient.

The strength of symbolic analysis lies in its ability to quickly
perform operations on entire sets. Its weakness is that it isnot
well-suited for operating on individual members of a set inde-
pendently from each other. This weakness directly impacts flow-
sensitive pointer analysis. TheKILL sets for indirect assignments,
such as*x = y, cannot be efficiently computed on-the-fly because
their contents depend not only on the pointer information computed
during the analysis itself but also on the individual characteristics
of the points-to set elements at the node in question, e.g., whether
a particular element represents a single memory location ormul-
tiple memory locations (as would be true for a variable summa-
rizing the heap). Therefore a fully symbolic flow-sensitivepointer
analysis must either process each indirect assignment separately,
at prohibitive cost, or conservatively set allKILL sets for indirect
assignments to the empty set, sacrificing precision.

We propose an alternative to a fully symbolic analysis, which
is to encode only a subset of the problem using BDDs. For pointer
analysis the most useful subset to encode is the set of points-to re-
lations, which is responsible for the vast majority of both memory
consumption and set operations in the analysis. By isolating the
pointer information representation into its own source code mod-
ule, we can easily substitute a BDD-based implementation while
leaving the rest of the analysis completely unchanged, including
the on-the-fly computation ofKILL sets. In our experimental evalu-
ation we study the effects of using BDDs to represent pointerinfor-
mation for both the baseline analysis (based on Hind and Pioli [28])
and our new semi-sparse analysis.

7. Experimental Evaluation
To evaluate our new techniques, we implement three flow-sensitive
pointer analysis algorithms: a baseline analysis based on Hind and
Pioli [28] (IFS); semi-sparse flow-sensitive analysis (SS); and the
semi-sparse analysis augmented with our two new optimizations,
top-level pointer equivalence and local points-to graph equivalence
(SSO). All the algorithms are field-sensitive (i.e., they treat each
field of a struct as a separate variable) and for each algorithm
we evaluate two versions, one that implements pointer information
using sparse bitmaps and a second that uses BDDs.

The bitmap versions ofIFS, SS, andSSOfilter pointer informa-
tion at call-sites as described by Hind and Pioli (see Section 3 and
Section 5.2). The BDD versions of these algorithms do not usefil-
tering. The goal of filtering is to reduce the amount of pointer in-
formation propagated between callers and callees in order to speed
up convergence and reduce the sizes of the points-to graphs.As
mentioned earlier, with the use of BDDs we don’t need to worry

about the sizes of the points-to graphs, and in fact for the BDD
versions the overhead involved in filtering the pointer information
overwhelms any potential benefit.

The algorithms are implemented in the LLVM compiler infras-
tructure [32], and the BDDs use the BuDDy BDD library [35]. The
algorithms are written in C++ and handle all aspects of the C lan-
guage except for varargs. The source code for the various algo-
rithms is freely available at the authors’ website.

The benchmarks for our experiments are described in Table 2.
Six of the benchmarks are taken from SPECINT 2000 (the largest
six applications from that suite) and six from various open-source
applications. Function calls to external code are summarized using
hand-crafted function stubs. The experiments are run on a 1.83
GHz processor with 2 GB of memory, using the Ubuntu 7.04 Linux
distribution.

7.1 Performance Results

Table 3 gives the analysis time and memory consumption of the
various algorithms. These numbers include the time to buildthe
data structures, apply the optimizations, and compute the pointer
analysis.

For the bitmap versions of these algorithms, memory is the
limiting factor. IFS only scales to 20.5K LOC before running out of
memory,SSscales to 67.2K LOC, andSSOscales to 252.6K LOC.
For the two benchmarks thatIFS manages to complete,SS is 75×
faster and uses 26× less memory, whileSSO is 183× faster and
uses 47× less memory. For the four benchmarks thatSScompletes,
SSOis 2.5× faster and uses 6.8× less memory.

For the BDD versions of these algorithms, memory is not an
issue and all three algorithms scale to 323.5K LOC. However,the
two largest benchmarks (gdb andghostscript) do not complete
within our arbitrary time limit of eight hours. For the ten bench-
marks that they do complete,SS is 44.8× faster thanIFS and uses
1.4× less memory, whileSSO is 114× faster and uses 1.4× less
memory. Comparing the fastest algorithm in our study (SSOusing
BDDs) with our baseline algorithm (IFS using bitmaps) using the
two benchmarks thatIFS manages to complete, we have sped up
flow-sensitive analysis 197× while using 4.6× less memory.

Figures 5 and 6 describe various analysis statistics to explain
the relative performance of these algorithms. Figure 5 gives the
percentage of points-to graphs thatSS and SSO have compared
to IFS (i.e., the number of points-to graphs maintained at each
node summed over all the nodes). Figure 6 gives the percentage of
instructions that are processed bySSandSSOcompared toIFS (i.e.,
the total number of nodes popped off of the statement worklists in
Algorithm 1).

For IFS the pointer-related instructions have been grouped into
basic blocks to reduce the number of points-to graphs that need
to be maintained. This grouping is not possible forSS and SSO
because they have def-use chains between individual instructions.
However, averaged over all the benchmarks,SS still has 24.6%
fewer points-to graphs thanIFS because only nodes in the SEG
portion of the dataflow graph require points-to graphs. Alsorecall
that the points-to graphs forSS andSSOonly have to hold pointer
information for address-taken variables, so they are much smaller
than the points-to graphs forIFS. SSOreduces the number of points-
to graphs by another 66.6% overSS using local points-to graph
equivalence.

The use of top-level def-use chains for semi-sparse analysis
pays off: averaged over all the benchmarks,SS processes 62.9%
fewer instructions thanIFS. SSO further reduces the number of
instructions processed by 13.7% overSS.



Name Description LOC Statements Functions Call Sites
197.parser parser 11.4K 33.6K 99 774
ex-050325 text processor 34.4K 37.0K 325 2,519
300.twolf place and route simulator 20.5K 45.0K 107 331

255.vortex object-oriented database 67.2K 69.2K 271 4,420
sendmail-8.11.6 email server 88.0K 69.3K 273 3,203

254.gap group theory interpreter 71.4K 132.2K 725 6,002
253.perlbmk PERL language 85.5K 184.6K 726 8,597

vim-7.1 text processor 323.5K 316.4K 1,935 15,962
nethack-3.4.3 text-based game 252.6K 356.3K 1,385 23,001

176.gcc C language compiler 226.5K 376.2K 1,159 19,964
gdb-6.7.1 debugger 474.1K 484.3K 3,801 37,119

ghostscript-8.15 postscript viewer 429.0K 494.0K 4,815 18,050

Table 2. Benchmarks: lines of code (LOC ) is obtained by runningwc on the source.Statementsreports the number of statements in the
LLVM IR. The benchmarks are ordered by number of statements.

Name
bitmap BDD

IFS SS SSO IFS SS SSO
time mem time mem time mem time mem time mem time mem

197.parser 80.25 888 1.28 53 0.52 15 7.24 142 0.64 142 0.48 142
ex-050325 — OOM 15.74 198 7.33 39 7.95 142 0.66 143 0.46 142
300.twolf 72.28 415 0.82 32 0.34 12 6.41 143 0.46 144 0.32 143

255.vortex — OOM 33.37 1,275 11.70 81 14.39 150 0.97 151 0.78 150
sendmail-8.11.6 — OOM — OOM 86.38 258 38.51 150 2.16 154 1.40 152

254.gap — OOM — OOM 191.72 518 68.66 167 2.50 168 2.34 166
253.perlbmk — OOM — OOM — OOM 1,477.05 280 50.22 182 21.25 177

vim-7.1 — OOM — OOM — OOM 4,759.37 535 573.28 300 112.16 263
nethack-3.4.3 — OOM — OOM 4,762.07 1,648 3,435.48 423 13.68 225 5.37 220

176.gcc — OOM — OOM — OOM 2,445.27 595 39.71 234 9.37 226
gdb-6.7.1 — OOM — OOM — OOM OOT — OOT — OOT —

ghostscript-8.15 — OOM — OOM — OOM OOT — OOT — OOT —

Table 3. Performance: time (in seconds) and memory consumption (in megabytes) of the various analyses. Results under thebitmap
columns are obtained using pointer information implemented using sparse bitmaps; those under theBDD columns are obtained using pointer
information implemented using BDDs. OOM means the benchmark ran out of memory; OOT means it ran out of time (exceeded an eight
hour time limit).
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Figure 5. Number of points-to graphs maintained bySS andSSO
compared toIFS. Lower is better (fewer points-to graphs).
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7.2 Performance Discussion

Semi-sparse analysis delivers on its promise. Based on the num-
ber of instructions processed and the reported efficiency, semi-
sparse analysis significantly speeds up convergence. When using
bitmaps, the global top-level points-to graph significantly reduces
memory consumption as well, especially when coupled with the
top-level pointer equivalence and local points-to graph equivalence
optimizations. However, there are some results which may bea bit
surprising; we highlight these results and explain them in this sec-
tion.

First, note the memory requirements for the BDD analyses as
compared to the sparse bitmap analyses. We see for the smaller
benchmarks that the BDDs actually require more memory than
the bitmaps, even though the premise behind BDDs is that they
are more memory efficient. This discrepancy arises because of the
implementation of the BuDDy library—an initial pool of memory
is allocated before the analysis begins, then expanded as necessary.
As we look at the larger benchmarks we see that the memory
requirements for the BDD analyses rise much more slowly than
that for the bitmaps, bearing out our initial premise.

Second, the bitmap version ofSSOcompletes for nethack-3.4.3,
but runs out of memory for two benchmarks with fewer statements
(253.perlbmk and vim-7.1). This showcases the difficulty ofpre-
dicting analysis performance based solely on the input size—the
actual performance of the analysis also depends on factors that are
impossible to predict before the analysis is complete, suchas the
points-to set sizes of the variables and how widely the pointer in-
formation is dispersed via indirect calls.

Third, the time required for theSS and SSO BDD analyses
to analyze 253.perlbmk, vim-7.1, gdb-6.7.1, and ghostscript-8.15
seem disproportionately long considering the analysis times for the
other benchmarks. There is one minor and one major reason for
this anomaly. The minor reason is specific to 253.perlbmk—the
field-sensitive solution has an average points-to set size over twice
that of the field-insensitive solution. This result seems counter-
intuitive, since field-sensitivity should add precision and hence
reduce points-to set size. However, to account for the individual
fields of the structs, field-sensitive analysis increases the number
of address-taken variables, in some cases (such as 253.perlbmk)
making the points-to set sizes larger than for a field-insensitive
analysis, even though the analysis results are, in fact, more precise.
With the exception of 253.perlbmk, all the other benchmarksdo
have smaller points-to set sizes for the field-sensitive analysis.

For the remaining three benchmarks with disproportionately
large analysis times (vim-7.1, gdb-6.7.1, and ghostscript-8.15), the
major reason for the anomaly is the BDDs themselves. To confirm
this finding, we measure the average processing time per nodefor
each of the benchmarks and find that these three benchmarks have
a much higher time per node than the others. The main cost of pro-
cessing a node is the manipulation of pointer information, which
points out a weakness of BDDs—their performance is directlyre-
lated to how well they compact the information that they are stor-
ing, and it is impossible to determinea priori how well the BDDs
will do so. The performance of the pointer analysis can vary dra-
matically depending on this one factor. There are BDD optimiza-
tions that we have not yet explored, and these may improve per-
formance; these include the re-arrangement of the BDD variable
ordering, the use ofdon’t carevalues in the BDD, and other formu-
lations of BDDs such as Zero-Suppressed BDDs (ZBDDs). Vari-
ous other BDD-based pointer analyses have benefitted from one or
more of these optimizations [34, 48]

While for now the BDD versions have superior performance,
there is still much that can be done to improve the bitmap ver-
sions. Memory is the critical factor, and most of the memory con-
sumption comes from the local points-to graphs. Even after apply-
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Figure 7. Analysis time and memory usage (normalized to our
baseline) for the bitmap version ofSSOwithout the assumption on
CALLs versusSSOwith the assumption—i.e.,SSOwithout/SSOwith.

ing the local points-to graph equivalence optimization, a signifi-
cant number of the remaining local points-to graphs containidenti-
cal information—further efforts to identify and collapse these local
graphs ahead of time could have a dramatic impact on memory con-
sumption. For example, there are several possible schemes for dy-
namically identifying and sharing identical bitmaps across multiple
points-to graphs. In addition, by combining semi-sparse analysis
with dynamically computed static single assignment form [8, 47]
we could greatly reduce the sizes of the local points-to graphs.
We can decrease the cost of evaluating the transfer functions us-
ing techniques such as the incremental evaluation of transfer func-
tions [19]. We believe that there is still significant room for im-
provement in the bitmap version of theSSOalgorithm, which we
plan to explore in future work.

7.3 SSOPrecision

The version ofSSO used in these experiments makes use of the
assumption discussed at the end of Section 5.3.2, i.e., thatcallee
functions do not modify address-taken pointer informationaccessi-
ble by their callers. This assumption increases the effectiveness of
the optimizations (see Figures 7 and 8 for a comparison), butpo-
tentially sacrifices some precision. To test how much precision is
lost we compute the thru-deref metric forSSOboth with and with-
out this assumption. The thru-deref metric examines eachLOAD
andSTORE in the program and averages the points-to set sizes of
the dereferenced variables, weighted by the number of timeseach
variable is dereferenced—the larger the value, the less precise the
pointer analysis.

We find that our benchmarks do not suffer a significant precision
loss by making this assumption; on average the thru-deref metric
increased by 0.1%, with a maximum increase of 0.2%.

8. Conclusion
Flow-sensitive pointer analysis is an important enabling technology
for program analysis. We have identified the major challenges that
stand in the way of scalable flow-sensitive pointer analysis, and we
have directly addressed these challenges with our newsemi-sparse
analysis, thereby significantly improving on the previous state of
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Figure 8. Analysis time and memory usage (normalized to our
baseline) for the BDD version ofSSO without the assumption on
CALLs versusSSOwith the assumption—i.e.,SSOwithout/SSOwith.

the art. We have also described how BDDs can be effectively used
for a fully flow-sensitive pointer analysis without sacrificing pre-
cision. Our techniques are 197× faster and use 4.6× less memory
than traditional flow-sensitive pointer analysis.

In the future we plan on further optimizing the analysis, im-
plementing a number of precision-enhancing features, and building
various client analyses (such as security and error-checking appli-
cations) to showcase the usefulness of our techniques. We believe
that flow-sensitive pointer analysis has an important position in the
realm of program analysis and that our work has made it possible
for clients that use flow-sensitive pointer information to scale to
applications with hundreds of thousands of lines of code.
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