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Abstract. This paper presents a new client-driven pointer analysis algorithm that
automatically adjusts its precision in response to the needs of client analyses. We
evaluate our algorithm on 18 real C programs, using five significant error detec-
tion problems as clients. We compare the accuracy and performance of our al-
gorithm against several commonly-used fixed-precision algorithms. We find that
the client-driven approach effectively balances cost and precision, often produc-
ing results as accurate as fixed-precision algorithms that are many times more
costly. Our algorithm works because many client problems only need a small
amount of extra precision applied to the right places in each input program.

1 Introduction

Pointer analysis is critical for effectively analyzing programs written in languages like
C, C++, and Java, which make heavy use of pointers and pointer-based data structures.
Pointer analysis attempts to disambiguate indirect memory references, so that subse-
quent compiler passes have a more accurate view of program behavior. In this sense,
pointer analysis is not a stand-alone task: its purpose is to provide pointer information
to other client analyses.

Existing pointer analysis algorithms differ considerably in their precision. Previous
research has generally agreed that more precise algorithms are often significantly more
costly to compute, but has disagreed on whether more precise algorithms yield more
accurate results, and whether these results are worth the additional cost [23, 22, 16, 10,
20]. Despite these differences, a recent survey claims that the choice of pointer analysis
algorithm should be dictated by the needs of the client analyses [15].

p = safe_string_copy("CGood"); char * safe_string_copy(char * s)
g = safe_string_copy("Bad"); {
r = safe_string_copy("Ugly"); if (s !=0) return strdup(s);
el se return 0;
}

Fig. 1. Context-insensitive pointer analysis hurts accuracy, but whether or not that matters de-
pends on the client analysis.

In this paper we present a new client-driven pointer analysis algorithm that ad-
dresses this viewpoint directly: it automatically adjusts its precision to match the needs




of the client. The key idea is to discover where precision is needed by running a fast
initial pass of the client. The pointer and client analyses run together in an integrated
framework, allowing the client to provide feedback about the quality of the pointer in-
formation it receives. Using these initial results, our algorithm constructs a precision
policy customized to the needs of the client and input program. This approach is related
to demand-driven analysis [17, 14], but solves a different problem: while demand-driven
algorithms determine which parts of the analysis need to be computed, client-driven
analysis determines which parts need to be computed using more precision.

For example, consider how context-insensitive analysis treats the string copying
routine in Figure 1: the pointer parameter s merges information from all the possible
input strings and transfers it to the output string. For a client that associates dataflow
facts with string buffers, this could severely hurt accuracy—the appropriate action is
to treat the routine context-sensitively. However, for a client that is not concerned with
strings, the imprecision is irrelevant.

We evaluate our algorithm using five security and error detection problems as clients.
These clients are demanding analysis problems that stress the capabilities of the pointer
analyzer, but with adequate support they can detect significant and complex program
defects. We compare our algorithm against five fixed-precision algorithms on a suite of
18 real C programs. We measure the cost in terms of time and space, and we measure
the accuracy simply as the number of errors reported: the analysis is conservative, so
fewer error reports always indicates fewer false positives.

This paper makes the following contributions. (1) We present a client-driven pointer
analysis algorithm that adapts its precision policy to the needs of client analyses. For our
error detection clients, this algorithm effectively discovers where to apply more anal-
ysis effort to reduce the number of false positives. (2) We present empirical evidence
that different analysis clients benefit from different kinds of precision—flow-sensitivity,
context-sensitivity, or both. In most cases only a small part of each input program needs
such precision. Our algorithm works because it automatically identifies these parts. (3)
Our results show that whole-program dataflow analysis is an accurate and efficient tool
for error detection when it has adequate pointer information.

The rest of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 describes the implementation of our framework, and Section 4 presents our client-
driven algorithm. Section 5 describes our experimental methodology. Section 6 presents
our results, and we conclude in Section 7.

2 Redated Work

Previous work in various kinds of program analysis, including pointer analysis, has ex-
plored ways to reduce the cost of analysis while still producing an accurate result. Our
client-driven algorithm addresses this problem specifically for the precision of pointer
analysis. It is closely related to demand-driven algorithms and mixed-precision anal-
yses. We also describe recent related work in error detection, focusing on the role of
pointer analysis.



2.1 Precision versus cost of analysis

Iterative flow analysis [18] is the only other algorithm that we are aware of that adjusts
its precision automatically in response to the quality of the results. Plevyak and Chien
use this algorithm to determine the concrete types of objects in programs written using
the Concurrent Aggregates object-oriented language. When imprecision in the analysis
causes a type conflict, the algorithm can perform function splitting, which provides
context-sensitivity, or data splitting, which divides object creation sites so that a single
site can generate objects of different types. The basic mechanism is similar to ours, but
it differs in important ways. First, since the type of an object cannot change, iterative
flow analysis does not include flow-sensitivity. By contrast, our approach supports a
larger class of client analyses, known as typestate problems [24], which include flow-
sensitive problems. More significantly, our algorithm manages the precision of both the
client and the pointer analysis, allowing it to detect when pointer aliasing is the cause
of information loss.

Demand-driven pointer analysis [14] addresses the cost of pointer analysis by com-
puting just enough information to determine the points-to sets for a specific subset of the
program variables. Client-driven pointer analysis is similar in the sense that it is driven
by a specific query into the results. However, the two algorithms use this information
to manage different aspects of the algorithm. Client-driven analysis dynamically varies
precision, but still computes an exhaustive solution. Demand-driven pointer analysis is
a fixed-precision analysis that computes only the necessary part of the solution. The
two ideas are complementary and could be combined to obtain the benefits of both.

Demand interprocedural dataflow analysis [17] also avoids the cost of exhaustive
program analysis by focusing on computing specific dataflow facts. This algorithm
produces precise results in polynomial time for a class of dataflow analyses problems
called IFDS—interprocedural, finite, distributive, subset problems. However, this class
does not include pointer analysis, particularly when it supports strong updates (which
removes the distributive property).

Combined pointer analysis [27] uses different pointer algorithms on different parts
of the program. This technique divides the assignments in a program into classes and
uses a heuristic to choose different pointer analysis algorithms for the different classes.
Zhang et al. evaluate this algorithm by measuring the number of possible objects ac-
cessed or modified at pointer dereferences. Client-driven pointer analysis is more feed-
back directed: instead of using a heuristic, it determines the need for precision dynami-
cally by monitoring the analysis.

2.2 Pointer analysis for error detection

Automatic error checking of C programs is a particularly compelling application for
pointer analysis. One of the major challenges in analyzing C programs is constructing
a precise enough model of the store to support accurate error detection. Previous work
has generally settled for a low-cost fixed-policy pointer analysis, which computes min-
imal store information without overwhelming the cost of error detection analysis [21,
2, 11]. Unfortunately, this store information often proves inadequate. Experiences with
the ESP system [7] illustrate this problem: while its dataflow analysis engine is more



powerful and more efficient than ours, the imprecision of its underlying pointer analy-
sis can block program verification. The authors solve this problem by manually cloning
three procedures in the application in order to mimic context-sensitivity. In this paper,
our goal is not to propose an alternative technique for detecting errors, but rather to
present a pointer analysis algorithm that supports these clients more effectively. Our
algorithm detects when imprecision in the store model hampers the client and automat-
ically increases precision in the parts of the program where it’s needed.

3 Framework

Our analysis framework is part of the Broadway compiler system, which supports high-
level analysis and optimization for C programs [13]. In this section we describe the de-
tails of this framework, including the overall architecture, the representation of pointer
information, and the implementation of the different precision policies.

We use a lightweight annotation language to specify the client analysis problems [12].
The language is designed to extend compiler support to software libraries; it is not used
to describe the application programs. The language allows us to concisely summarize
the pointer behavior of library routines, and it provides a way to define new library-
specific dataflow analysis problems. The dataflow analysis framework manages both
the pointer analysis and the client analyses, which run concurrently. Analysis is whole-
program, interprocedural, and uses an iterative worklist algorithm.

3.1 Pointer representation

Our base pointer analysis can be roughly categorized as an interprocedural “Andersen-
style” analysis [1]: it is flow-insensitive, context-insensitive, and inclusion-based. We
represent the program store using an enhanced implementation of the storage shape
graph [3]. Each memory location—Ilocal variable, global variable, or heap-allocated
memory—is a node in the graph, with directed points-to edges from pointers to their
targets. Our algorithm is a “may” analysis: a points-to edge in the graph represents
a possible pointer relationship in the actual execution of the program. Conservative
approximation of program behavior often leads to multiple outgoing points-to edges.
However, when a node has exactly one target it is a “must” pointer, and assignments
through it admit strong updates.

3.2 Configurable precision

We can add precision, at a fine grain, to the base pointer analysis: individual memory
locations in the store can be either flow-sensitive or flow-insensitive, and individual
procedures can be either context-sensitive or context-insensitive. For a flow-sensitive
location, we record separate points-to sets and client dataflow facts for each assignment
to the location. We maintain this information using interprocedural factored def-use
chains, which are similar to SSA form [5] except that we store the phi functions in a
separate data structure. For a flow-insensitive location, we accumulate the information
from all of its assignments. Our algorithm still visits assignments in order, however,



so our flow-insensitive analysis often yields slightly more precise information than a
traditional algorithm.

To analyze a context-sensitive procedure, we treat each call site as a completely
separate instantiation, which keeps information from different call sites separate. More
efficient methods of implementing context-sensitivity exist [26], but we show in Sec-
tion 6 that we can often avoid it altogether. To analyze a context-insensitive procedure,
we create a single instantiation and merge the information from all of its call sites.
Since our analysis is interprocedural, we still visit all of the calling contexts. However,
the analyzer can often skip over a context-insensitive procedure call when no changes
occur to the input values, which helps the analysis converge quickly. The main draw-
back of this mode is that it suffers from the unrealizable paths problem [26], in which
information from one call site is returned to a different call site.

3.3 Heap objects

For many C programs, manipulation of heap allocated objects accounts for much of the
pointer behavior. Our pointer analyzer contains two features that help improve analysis
of these objects. First, the analyzer generates one heap object for each allocation site
in each calling context. This feature can dramatically improve accuracy for programs
that allocate memory through a wrapper function around mal | oc() . It also helps dis-
tinguish data structure elements that are allocated by a single constructor-like function.
By making these functions context-sensitive, we produce a separate object for each
invocation of the function.

Second, heap objects in the store model can represent multiple memory blocks at
runtime. For example, a program may contain a loop that repeatedly calls mal | oc() —
our analyzer generates one heap object to represent all of the instances. We adopt the
multiple instance analysis from Chase et al. [3] to determine when an allocation truly
generates only one object. Previous work has also referred to this flow-sensitive prop-
erty as linearity [11].

4 Client-driven algorithm

Our client-driven pointer analysis is a two-pass algorithm. The key idea is to use a fast,
low-precision pointer analysis in the first pass to discover which parts of the program
need more precision. The algorithm uses this information to construct a fine-grained,
customized precision policy for the second pass. This approach requires a tighter cou-
pling between the pointer analyzer and the client analyses: in addition to providing
memory access information to the client, the pointer analyzer receives feedback from
the client about the accuracy of the client flow values. For example, the client analysis
can report when a confluence point, such as a control-flow merge or context-insensitive
procedure call, adversely affects the accuracy of its analysis. The interface between the
pointer analyzer and the client is simple, but it is the core mechanism that allows the
framework to tailor its precision for the particular client and target program.

The implementation of this algorithm adds two components to our analysis frame-
work: a monitor that detects and tracks loss of information during program analysis,
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Fig. 2. Our analysis framework allows client analyses to provide feedback, which drives correc-
tive adjustments to the precision.

and an adaptor that uses the output of the monitor to determine corrective adjustments
to the precision. During program analysis, the monitor identifies the places where in-
formation is lost, and it uses a dependence graph to track the memory locations that are
subsequently affected. When analysis is complete the client takes over and performs its
tasks—afterword it reports back to the adaptor with a set of memory locations that are
not sufficiently accurate for its purposes. Borrowing terminology from demand-driven
analysis, we refer to this set as the query. The adaptor starts with the locations in the
query and tracks their values back through the dependence graph. The nodes and edges
that make up this back-trace indicate which variables and procedures need more preci-
sion. The framework reruns the analysis with the customized precision policy. Figure 2
shows a diagram of the system.

Even though the algorithm detects information loss during analysis, it waits un-
til the analysis is complete to change precision. One reason for this is pragmatic: our
framework cannot change precision during analysis and recompute the results incre-
mentally. There is a more fundamental reason, however: during analysis it is not readily
apparent that imprecision detected in a particular pointer value will adversely affect the
client later in the program. For example, a program may contain a pointer variable with
numerous assignments, causing the points-to set to grow large. However, if the client
analysis never needs the value of the pointer then it is not worth expending extra effort
to disambiguate it. By waiting to see its impact, we significantly reduce the amount of
precision added by the algorithm.

4.1 Polluting Assignments

The monitor runs along side the main pointer analysis and client analysis, detecting
information loss and recording its effects. Loss of information occurs when conserva-
tive assumptions about program behavior force the analyzer to merge flow values. In
particular, we are interested in the cases where accurate, but conflicting, information is
merged, resulting in an inaccurate value—we refer to this as a polluting assignment.
For “may” pointer analysis smaller points-to sets indicate more accurate information—

a points-to set of size one is the most accurate. In this case the pointer relationship is
unambiguous, and assignments through the pointer allow strong updates [3]. Therefore,

a pointer assignment is polluting if it combines one or more unambiguous pointers and
produces an ambiguous pointer.



For the client analysis information loss is problem-specific, but we can define it
generally in terms of dataflow lattice values. We take the compiler community’s view of
lattices: higher lattice values represent better analysis information. Lower lattice values
are more conservative, with lattice bottom denoting the worst case. Therefore, a client
update is polluting if it combines a set of lattice values to produces a lattice value that
is lower than any of the individual members.

We classify polluting assignments according to their cause. In our framework there
are three ways that conservative analysis can directly cause the loss of information [8].
We will refer to them as directly polluting assignments, and they can occur in both the
pointer analysis and the client analysis:

— Context-insensitive procedure call: the parameter assignment merged conflicting
information from different call sites.

— Flow-insensitive assignment: multiple assignments to a single memory location
merge conflicting information.

— Control-flow merge: the SSA phi function merges conflicting information from dif-
ferent control-flow paths.

The current implementation of the algorithm is only concerned with the first two
classes. It can detect loss of information at control-flow merges, but it currently has no
corrective mechanism, such as node splitting or path sensitivity, to remedy it.

In addition to these classes, there are two kinds of polluting assignments that are
caused specifically by ambiguous pointers. These assignments are critical to the client-
driven algorithm because they capture the relationship between accuracy in the pointer
analysis and accuracy in the client. We refer to them as indirectly polluting assignments,
and they always refer to the offending pointer:

— Weak access: the right-hand side of the assignment dereferences an ambiguous
pointer, which merges conflicting information from the pointer targets.

— Weak update: the left-hand side assigns through an ambiguous pointer, forcing a
weak update that loses information.

4.2 Monitoring Analysis

During analysis, the monitor detects the five kinds of polluting assignments described
above, both for the client analysis and the pointer analysis, and it records this informa-
tion in a directed dependence graph. The goal of the dependence graph is to capture the
effects of polluting assignments on subsequent parts of the program.

Each node in the graph represents a memory location whose analysis information,
either points-to set or client flow value, is polluted. The graph contains a node for each
location that is modified by a directly polluting assignment, and each node has a label
that lists of all the directly polluting assignments to that memory location—for our ex-
periments we only record the parameter passing or flow-insensitive assignment cases.
The monitor builds this graph online by adding nodes to the graph and adding assign-
ments to the labels as they are discovered during analysis. These nodes represent the
sources of polluted information, and the labels indicate how to fix the imprecision.



The graph contains two types of directed edges. The first type of edge represents
an assignment that passes polluted information from one location to another. We refer
to this as a complicit assignment, and it occurs whenever the memory locations on the
right-hand side are already represented in the dependence graph. The monitor creates
nodes for the affected left-hand side locations, if necessary, and adds edges from those
nodes back to the right-hand side nodes. Note that the direction of the edge is opposite
the direction of assignment so that we can trace dependences backward in the program.
The second type of edge represents indirectly polluting assignments. The monitor adds
nodes for the left-hand side locations and it adds a directed edge from each of these
nodes back to the offending pointer variable. This kind of edge is unique to our analysis
because it allows our algorithm to distinguish between the following two situations: (1)
an unambiguous pointer whose target is polluted, and (2) an ambiguous pointer whose
targets have precise information.

p = &; p X =5, y = 10; p
if (cond) x = 5; if (cond) p = &;
el se x = 10; \‘ el se p = &; /\
z = (*p); X=1 z = (*p); y=10  x=5

1 2

Fig. 3. Both code fragments assign bottom to z: in (1) x is responsible, in (2) p is responsible.

Figure 3 illustrates this distinction using constant propagation as an example client.
Both code fragments assign lattice bottom to z, but for different reasons. Case (1) is
caused by the polluted value of x, so the monitor adds an edge in dependence graph
from z back to x. Case (2), however, is caused by the polluted value of the pointer p,
so the monitor adds an edge from z to p.

We store the program locations of all assignments, but for performance reasons the
monitor dependence graph is fundamentally a flow-insensitive data structure. As a re-
sult, the algorithm cannot tell which specific assignments to an memory location affect
other location. For example, a location might have multiple polluting assignments, some
of which occur later in the program than complicit assignments that read its value. In
most cases, this simplification does not noticeably hurt the algorithm, but occasionally
it leads to overly aggressive precision, particularly when it involves global variables that
are used in many different places and for different purposes.

4.3 Diagnosing Information Loss

When analysis is complete, the client has an opportunity to use the results for its pur-
poses, such as checking for error states or applying an optimization. The client provides
feedback to the adaptor, in the form of a query, indicating where it needs more accu-
racy. The adaptor uses the dependence graph to construct a precision policy specifically
tailored to obtain the desired accuracy. The output of the adaptor is a set of memory lo-



cations that need flow-sensitivity and a set of procedures that need context-sensitivity.
The new precision policy applies to both the pointer analysis and the client analysis.

The client query consists of a set of memory locations that have “unsatisfactory”
flow values. For example, if the client tests a variable for a particular flow value, but
finds lattice bottom, it could add that variable to the query. The goal of the adaptor is to
improve the accuracy of the memory locations in the query. The corresponding nodes
in the dependence graph serve as a starting point, and the set of nodes reachable from
those nodes represents all the memory locations whose inaccuracy directly or indirectly
affects the flow values of the query. The key to our algorithm is that this subgraph
is typically much smaller than the whole graph—we rarely to need to fix all of the
polluting assignments.

The adaptor starts at the query nodes in the graph and visits all of the reachable
nodes in the graph. It inspects the list of directly polluting assignments labeling each
node (if there are any) and determines the appropriate corrective measures: for polluting
parameter assignments it adds the corresponding procedure to the set of procedures
that need context-sensitivity; for flow-insensitive assignments it adds the corresponding
memory location to the set of locations that need flow-sensitivity.

4.4 Chaining precision

In addition to addressing each polluting assignment, the adaptor increases precision
along the whole path from each polluting assignment back to the original query nodes.
When it finds a node that needs flow-sensitivity, it also applies this additional precision
to all the nodes back along the path. When it makes a procedure context-sensitive, it also
determines the set of procedures that contain all the complicit assignments back along
the path, and it adds that set to the context-sensitive set. The motivation for this chaining
is to ensure that intermediate locations preserve the additional accuracy provided by
fixing polluting assignments.

By aggressively chaining the precision, we also avoid the need for additional analy-
sis passes. The initial pass computes the least precise analysis information and therefore
covers all the regions of the program for which more precision might be beneficial. Any
polluting assignments detected in later passes would necessarily occur within these
regions and thus would already be addressed in the customized precision policy. We
validated this design decision empirically: subsequent passes typically discover only
spurious instances of imprecision and do not improve the quality of the client analysis.

5 Experiments

In this section we describe our experiments, including our methodology, the five error
detection clients, and the input programs. The query that these clients provide to the
adaptor consists of the set of memory locations that trigger errors. We compare both
the cost and the accuracy of our algorithm against four fixed-precision algorithms. In
Section 6 we present the empirical results.

We run all experiments on a Dell OptiPlex GX-400, with a Pentium 4 processor
running at 1.7 GHz and 2 GB of main memory. The machine runs Linux with the 2.4.18



kernel. Our system is implemented entirely in C++ and compiled using the GNU g++
compiler version 3.0.3.

5.1 Methodology

Our suite of experiments consists of 18 C programs, five error detection problems, and
five pointer analysis algorithms—four fixed-precision pointer algorithms and our client-
driven algorithm. The fixed-precision algorithms consist of the four possible combina-
tions of flow-sensitivity and context-sensitivity—we refer to them in the results as CIFlI,
CIFS CSFl, and CSFS For each combination of program, error problem, and pointer
analysis algorithm, we run the analyzer and collect a variety of measurements, including
analysis time, memory consumption, and number of errors reported.

The number of errors reported is the most important of these metrics. The more
false positives that an algorithm produces, the more time a programmer must spend
sorting through them to find the real errors. Our experience is that this is an extremely
tedious and time consuming task. Using a fast inaccurate error detection algorithm is
false economy: it trades computer time, which is cheap and plentiful, for programmer
time, which is valuable and limited. Our view is that it is preferable to use a more
expensive algorithm that can reduce the number of false positives, even if it has to run
overnight or over the weekend. When two algorithms report the same number of errors,
we compare them in terms of analysis time and memory consumption.

In some cases, we know the actual number of errors present in the programs. This
information comes from security advisories published by organizations such as CERT
and SecurityFocus. We have also manually inspected some of the programs to validate
the errors. For the client-driven algorithm we also record the number of procedures
that it makes context-sensitive and the number of memory locations that it makes flow-
sensitive. Unlike previous research on pointer analysis, we do not present data on the
points-to set sizes because this metric is not relevant to our algorithm.

5.2 Error detection clients

We define the five error detection client analyses using our annotation language. This
language allows us to define simple dataflow analysis problems that are associated with
a library interface: for each library routine, we specify how it affects the flow values of
the problem. The language also provides a way to test the results of the analysis and
generate reports. For each analysis problem we show some representative examples
of the annotations, but due to space limitations we cannot present the full problem
specification.

These error detection problems represent realistic errors that actually occur in prac-
tice and can cause serious damage. Like many error detection problems, they involve
data structures, such as buffers and file handles, that are allocated on the heap and
manipulated through pointers. The lifetimes of these data structures often cross many
procedures, requiring interprocedural analysis to properly model. Thus, they present a
considerable challenge for the pointer analyzer.



File access errors Library interfaces often contain implicit constraints on the order in
which their routines may be called. File access rules are one example of this kind of
usage constraint. A program can only access a file in between the proper open and close
calls. The purpose of this analysis client is to detect possible violations of this usage
rule. The first line in Figure 4 defines the flow value for this analysis, which consists of
the two possible states, “Open” and “Closed”.

property FileState : { Open, Closed} initially Cosed

procedure fopen(path, node)

{
on_exit { return --> new file_stream--> new file_handl e }
anal yze FileState { file_handle <- Open }

}

procedure fgets(s, size, f)
{
on_entry { f --> file_stream--> handle }
error if (FileState : handle could-be Cosed) "Error: file_mi ght_be closed";

}

Fig. 4. Annotations for tracking file state: to properly model files and files descriptors, we asso-
ciate the state with an abstract “handle”.

To track this state, we annotate the various library functions that open and close
files. Figure 4 shows the annotations for the f open() function. The on_ent ry and
on_exi t annotations describe the pointer behavior of the routine: it returns a pointer
to a new file stream, which points to a new file handle. The anal yze annotation sets
the state of the newly created file handle to open. At each use of a file stream or file
descriptor, we check to make sure the state is open. Figure 4 shows an annotation for
the f get s() function, which emits an error if the file could be closed.

Format string vulnerability (FSV) A number of output functions in the Standard
C Library, such as pri ntf () and sysl og(), take a format string argument that
controls output formatting. A format string vulnerability (FSV) occurs when untrusted
data ends up as part of the format string. A hacker can exploit this vulnerability by
sending the program a carefully crafted input string that causes part of the code to be
overwritten with new instructions. These vulnerabilities are a serious security problem
that have been the subject of many CERT advisories.

To detect format string vulnerabilities we define an analysis that determines when
data from an untrusted source can become part of a format string. We consider data to
be tainted [25, 21] when it comes from an untrusted source. We track this data through
the program to make sure that all format string arguments are untainted.

Our formulation of the Taint analysis starts with a definition of the Taint property,
shown at the top of Figure 5, which consists of two possible values, Tai nt ed and
Unt ai nt ed. We then annotate the Standard C Library functions that produce tainted
data. These include such obvious sources of untrusted data as scanf () andr ead(),




property Taint : { Tainted, Untainted } initially Untainted
procedure read(fd, buffer_ptr, size)

on_entry { buffer_ptr --> buffer }
anal yze Taint { buffer <- Tainted }

}

procedure strdup(s)

{
on_entry { s --> string }
on_exit { return --> string_copy }
anal yze Taint { string_copy <- string }

}

procedure syslog(prio, fnt, args)

on_entry { fnt --> fnt_string }
error if (Taint : fmt_string could-be Tainted) "Error:_tainted format_string.";

}

Fig. 5. Annotations defining the Taint analysis: taintedness is associated with strings and buffers,
and can be transferred between them.

and less obvious ones such as r eaddi r () and get env() . Figure 5 shows the an-
notations for the r ead() routine. Notice that the annotations assign the Tai nt ed
property to the contents of the buffer rather than to the buffer pointer. We then annotate
string manipulation functions to reflect how taintedness can propagate from one string
to another. The example in Figure 5 annotates the st r dup() function: the string copy
has the same Taint value as the input string.

Finally, we annotate all the library functions that accept format strings (including
sprint f () )toreport when the format string is tainted. Figure 5 shows the annotation
for the sysl og() function, which is often the culprit.

Remote access vulnerability Hostile clients can only manipulate programs through
the various program inputs. We can approximate the extent of this control by tracking
the input data and observing how it is used. We label input sources, such as file han-
dles and sockets, according to the level that they are trusted. All data read from these
sources is labeled likewise. The first line of Figure 6 defines the three levels of trust
in our analysis—internal (trusted), locally trusted (for example, local files), and remote
(untrusted).

We start by annotating functions that return fundamentally untrusted data sources,
such as Internet sockets. Figure 6 shows the annotations for the socket () function.
The level of trust depends on the kind of socket being created. When the program reads
data from these sources, the buffers are marked with the Trust level of the source.

The Trust analysis has two distinguishing features. First, data is only as trustworthy
as its least trustworthy source. For example, if the program reads both trusted and un-
trusted data into a single buffer, then we consider the whole buffer to be untrusted. The
nested structure of the lattice definition captures this fact. Second, untrusted data has a
domino effect on other data sources and sinks. For example, if the file name argument to




property Trust : { Renpte { External { Internal }}}
procedure socket (domai n, type, protocol}

on_exit { return --> new file_handle }
anal yze Trust {
if (domain == AF_UNIX) file_handle <- External
if (domain == AF_INET) file_handle <- Renpte
}
}

procedure open(path, flags)
{
on_entry { path --> path_string }
on_exit { return --> new file_handle }
anal yze Trust { file_handle <- path_string }

}

Fig. 6. Annotations defining the Trust analysis. Note the cascading effect: we only trust data from
a file handle if we trust the file name used to open it.

open() is untrusted, then we treat all data read from that file descriptor as untrusted.
The annotations in Figure 6 implement this policy.

As with the Taint analysis above, we annotate string manipulation functions to prop-
agate the Trust values from one buffer to another. We generate an error message when
untrusted data reaches certain sensitive routines, including any file system manipulation
or program execution routines, such as exec() .

Remote FSV The Taint analysis defined above tends to find many format string vulner-
abilities that are not exploitable security holes. For example, consider a program that
uses a data from a file as part of a format string. If a hacker can dictate the name of
the file or can control the contents of the file, then the program contains a remotely
exploitable vulnerability. If a hacker cannot control the file, however, then the program
still contains a bug, but the bug does not have security implications.

To identify exploitable format string vulnerabilities more precisely, we can combine
the Taint analysis with the Trust analysis, which specifically tracks data from remote
sources. We revise the error test so that it only emits an error message when the format
string is tainted and it comes from a remote source.

FTP behavior The most complex of our client analyses checks to see if a program can
behave like an FTP (file transfer protocol) server. Specifically, we want to determine
if it is possible for the program to send the contents of a file to a remote client, where
the name of the file read is determined, at least in part, by the remote client itself. This
behavior is not necessarily incorrect: it is the normal operation of the two FTP daemons
that we present in our results. We can use this error checker to make sure the behavior
is not unintended (for example, in a finger daemon) or to validate the expected behavior
of the FTP programs.

We use the Trust analysis defined above to determine when untrusted data is read
from one stream to another. However, we need to know that one stream is associated




with a file and the other with a remote socket. Figure 7 defines the flow value to track
different kinds of sources and sinks of data. We can distinguish between different kinds
of sockets, such as “Server” sockets, which have bound addresses for listening, and
“Client” sockets, which are the result of accepting a connection.

property FDKind : { File, dient, Server, Pipe, Conmmand, Stdl O}

procedure wite(fd, buffer_ptr, size)
{
on_entry { buffer_ptr --> buffer
fd -->file_handle }
error if ((FDKind : buffer could-be File) &&
(Trust : buffer coul d-be Renpte) &&
(FDKind : file_handle could-be ient) &&
(Trust : file_handl e coul d-be Renote))
"Error: _possibl e FTP_behavior";

Fig. 7. Annotations to track kinds of data sources and sinks. In combination with Trust analysis,
we can check whether a call towr i t () behaves like FTP.

Whenever a new file descriptor is opened, we mark it according to the kind. In
addition, like the other analyses, we associate this kind with any data read from it. We
check for FTP behavior in the wri t e() family of routines, shown in Figure 7, by
testing both the buffer and the file descriptor.

5.3 Programs

Table 1 describes our input programs. We use these particular programs for our experi-
ments for a number of reasons. First, they are all real programs, taken from open-source
projects, with all of the nuances and complexities of production software. Second, many
of them are system tools or daemons that have significant security implications because
they interact with remote clients and provide privileged services. Finally, several of
them are specific versions of programs that are identified by security advisories as con-
taining format string vulnerabilities. In addition, we also obtain subsequent versions in
which the bugs are fixed, so that we can confirm their absence.

We present several measures of program size, including number of lines of source
code, number of lines of preprocessed code, and number of procedures. The table is
sorted by the number of CFG nodes, and we use this ordering in all subsequent tables.

6 Results

We measure the results for all combinations of pointer analysis algorithms, error de-
tection clients, and input programs—a total of over 400 experiments. We present the
results in five graphs, one for each error detection client. Each bar on the graph shows
the performance of the different analysis algorithms on the given program. To more
easily compare different programs we normalize all execution times to the time of the




Program Description Priv LOC|CFG nodes|Procedures
stunnel 3.8 Secure TCP wrapper|yes | 2K /13K 2264 42
pfingerd 0.7.8 Finger daemon yes | 5K /30K 3638 47
muh 2.05¢ IRC proxy yes | 5K /25K 5191 84
muh 2.05d IRC propy yes | 5K /25K 5390 84
pure-ftpd 1.0.15 FTP server yes | 13K /45K 11,239 116
crond (fcron-2.9.3) cron daemon yes | 9K /40K 11,310 100
apache 1.3.12 (core only)|Web server yes | 30K /67K 16,755 313
make 3.75 make 21K /50K 18,581 167
BlackHole 1.0.9 E-mail filter 12K / 244K 21,370 71
wu-ftpd 2.6.0 FTP server yes | 21K /64K 22,196 183
openssh client 3.5p1 Secure shell client 38K /210K 22,411 441
privoxy 3.0.0 Web server proxy |yes | 27K /48K 22,608 223
wu-ftpd 2.6.2 FTP server yes | 22K /66K 23,107 205
named (BIND 4.9.4) DNS server yes | 26K /84K 25,452 210
openssh daemon 3.5p1  |Secure shell server |yes |50K /299K 29,799 601
cfengine 1.5.4 System admin tool |yes |34K /350K 36,573 421
sglite 2.7.6 SQL database 36K /67K 43,333 387
nn 6.5.6 News reader 36K /116K 46,336 494
Table 1. Properties of the input programs. Many of the programs run in privileged mode, making

their security critical. Lines of code (LOC) is given both before and after preprocessing. CFG
nodes measures the size of the program in the compiler internal representation—the table is
sorted on this column.

fastest algorithm on that program, which in all cases is the context-insensitive, flow-
insensitive algorithm. Each point on these graphs represents a single combination of
error detection client, input program, and analysis algorithm. We label each point with
the number of errors reported in that combination. In addition, Figure 13 shows the
actual analysis times, averaged over all five clients.

For the 90 combinations of error detection clients and input programs, we find:

— In 87 out of 90 cases the client-driven algorithm equals or beats the accuracy of
the best fixed-precision policy. The other three cases appear to be anomalies, and
we believe we can address them.

— In 64 of those 87 cases the client-driven algorithm also equals or beats the perfor-
mance of the comparably accurate fixed-precision algorithm. In 29 of these cases
the client-driven algorithm is both the fastest and the most accurate.

— In 19 of the remaining 23 cases the client-driven algorithm performs within a factor
of two or three of the best fixed-precision algorithm. In many of these cases the best
fixed-precision algorithm is the fastest fixed-precision algorithm, so in absolute
terms the execution times are all low.

Note that for many of the larger programs the fully flow-sensitive and context-
sensitive algorithm either runs out of memory or requires an intolerable amount of time.
In these cases we cannot measure the accuracy of this algorithm for comparison. How-
ever, we do find that for the smaller programs the client-driven algorithm matches the
accuracy of the full-precision algorithm.
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Fig. 8. Checking file access requires flow-sensitivity, but not context-sensitivity. The client-driven
algorithm beats the other algorithms because it makes only the file-related objects flow-sensitive.

In general, the only cases where a fixed-policy algorithm performs better than the
client-driven algorithm are those in which the client requires little or no extra preci-
sion. In particular, the format string vulnerability problem rarely seems to benefit from
higher levels of precision. In these cases, though, the analysis is usually so fast that the
performance difference is practically irrelevant.

For the problems that do require more precision, the client-driven algorithm consis-
tently outperforms the fixed-precision algorithms. Table 2 provides some insight into
this result. For each program and each client, we record the number of procedures that
the algorithm makes context-sensitive and the percentage of memory locations that it
makes flow-sensitive. (In this table, hyphens represent the number 0.) These statistics
show that client analyses often need some extra precision, but only a very small amount.
In particular, the clients that benefit from context-sensitivity only need a tiny fraction
of their procedures analyzed in this way.

6.1 Client-specific results

The client-driven algorithm reveals some significant differences between the precision
requirements of the five error detection problems.

Figure 8 shows the results for the file access client, which benefits significantly
from flow-sensitivity but not from context-sensitivity. This result makes sense because
the state of a file handle can change over time, but most procedures only accept open file
handles as arguments. We suspect that few of these error reports represent true errors,
and we believe that many of the remaining false positives could be eliminated using
path-sensitive analysis.

Figure 9 shows the results for detecting format string vulnerabilities. The tainted-
ness analysis that we use to detect format string vulnerabilities generally requires no
extra precision. We might expect utility functions, such as string copying, to have unre-
alizable paths that cause spurious errors, but this does not happen in any of our example
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Fig.9. Detecting format string vulnerabilities rarely benefits from either flow-sensitivity or
context-sensitivity—the client-driven algorithm is only slower because it is a two-pass algorithm.

programs. The high false positive rates observed in previous work [21] are probably due
to the use of equality-based analysis.

Figure 11 shows the results for determining the remote exploitability of format
string vulnerabilities. We find that this client is particularly difficult for the client-driven
analysis, which tends to add too much precision without lowering the false positive
count. Interestingly, many spurious FSV errors are caused by typos in the program: for
example, cf engi ne calls spri nt f () in several places without providing the string
buffer argument.

For two of the input programs, muh and wu- f t p, we obtained two versions of
each program: one version known to contain format string vulnerabilities and a subse-
quent version with the bugs fixed. Our system accurately detects the known vulnerabil-
ities in the old versions and confirm their absence in the newer versions. Our analysis
also found the known vulnerabilities in several other programs, including st unnel ,
cf engi ne, sshd, and narred. In addition, our system reports a format string vulner-
ability in the Apache web server. Manual inspection, however, shows that it is unex-
ploitable for algorithmic reasons that are beyond the scope of our analysis.

Figure 10 shows the results for remote access vulnerability detection. Accurate
detection of remote access vulnerabilities requires both flow-sensitivity and context-
sensitivity because the “domino effect” of the underlying Trust analysis causes infor-
mation loss to propagate to many parts of the program. For example, all of the false
positives in BlackHole are due to unrealizable paths through a single function called
my_strl cpy(), which implements string copying. The client-driven algorithm de-
tects the problem and makes the routine context-sensitive, which eliminates all the false
positives.

Figure 12 shows the results for detecting FTP-like behavior, which is the most chal-
lenging problem because it depends on the states of multiple memory locations and mul-
tiple client analyses. However, our analysis does properly detect exactly those program
points in the two FTP daemons that perform the “get” or “put” file transfer functions.
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Fig. 10. Detecting remote access vulnerabilities can require both flow-sensitivity and context-
sensitivity. In these cases the client-driven algorithm is both the most accurate and the most
efficient.

Context-sensitivity helps eliminate a false positive in one interesting case: in wu- f t p,
a data transfer function appears to contain an error because the source and target could
either be files or sockets. However, when the calling contexts are separated, the combi-
nations that actually occur are file-to-file and socket-to-socket.

7 Conclusions

This paper presents a new client-driven approach to managing the tradeoff between cost
and precision in pointer analysis. We show that such an approach is needed: no single
fixed-precision analysis is appropriate for all client problems and programs. The low-
precision algorithms do not provide sufficient accuracy for the more challenging client
analysis problems, while the high-precision algorithms waste time over-analyzing the
easy problems. Rather than choose any of these fixed-precision policies, we exploit the
fact that many client analyses require only a small amount of extra precision applied to
specific places in each input program. Our client-driven algorithm can effectively detect
these places and automatically apply the necessary additional precision.
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Added Precision: # of Proceduresset C-S % of Memory Locations set F-S
Client Program: || File [FSV|Remote|Remote| FTP File |FSV|Remote|Remote| FTP
Access Access| FSV |Behavior||Access Access| FSV |Behavior

stunnel-3.8 - - - - - 0.20 | - - - 0.19
pfinger-0.7.8 - - 1 - - - ]0.53] 0.20 | 0.53 0.61
muh2.05¢ - - - - 6 0.10 | - - 0.07 0.31
muh2.05d - - - - 6 0.10 | - - - 0.33
pure-ftpd-1.0.15 - - 2 - 9 013 | - | 0.12 - 0.10
fcron-2.9.3 - - - - - | 0.03 - 0.26
apache-1.3.12 - 2 8 2 10 0.18 |0.91| 0.89 | 1.07 0.83
make-3.75 - - - - - 0.02 | - - - 2.19
BlackHole-1.0.9 - - 2 - 5 004 | - | 024 - 0.32
wu-ftpd-2.6.0 - - - - 17 0.09 |0.22] 0.34 | 0.24 0.08
openssh-3.5p1-client 1 - 10 - - 0.06 [0.55| 0.35 | 0.56 0.96
privoxy-3.0.0-stable - - - - 5 001 | - - - 0.10
wu-ftpd-2.6.2 - 4 - 4 17 0.09 |0.51] 0.63 | 0.53 0.23
bind-4.9.4-REL - 2 1 1 4 0.01 |0.23] 0.14 | 0.20 0.42
openssh-3.5pl-server|| 1 - 13 - - 059 | - | 0.49 - 1.19
cfengine-1.5.4 - 1 4 3 31 0.04 |0.46] 0.43 | 0.48 0.03
sqlite-2.7.6 - - - - - 001 | - | 147 - 1.43
nn-6.5.6 - 1 2 1 30 0.17 |1.99| 1.82 | 2.03 0.97

Table 2. The precision policies created by the client-driven algorithm. Different clients have
different precision requirements, but the amount of extra precision needed is typically very small.
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Fig. 13. The client-driven algorithm performs competitively with the fastest fixed-precision algo-

rithm.




