ZPL: A Machine Independent Programming Language
for Parallel Computefs

Bradford L. Chamberlain Sung-Eun Choi E Christopher Lewis
Calvin Lin* Lawrence Snyder W. Derrick Weathersby

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

T Los Alamos National Laboratory
Advanced Computing Laboratory
P.O. Box 1663, MS B287
Los Alamos, NM 87545

*Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

Abstract

The goal of producing architecture-independent paralleg@mms is complicated by the
competing need for high performance. The ZPL programmingdage achieves both goals by
building upon an abstract parallel machine and by provigirgramming constructs that al-
low the programmer to “see” this underlying machine. Thiggralescribes ZPL and provides
a comprehensive evaluation of the language with respeds tgoals of performance, porta-
bility, and programming convenience. In particular, wealid® ZPL's machine-independent
performance model, describe the programming benefits osZBgion-based constructs, sum-
marize the compilation benefits of the language’s highlisgmantics, and summarize empiri-
cal evidence that ZPL has achieved both high performancgantability on diverse machines
such as the IBM SP-2, Cray T3E, and SGI Power Challenge.

Index Terms: portable, efficient, parallel programming language.

*This research was supported by DARPA Grant F30602-97-P(d §rant of HPC time from the Arctic Region
Supercomputing Center, NSF Grant CCR-9707056, and ONR N014-99-1-0402.

1

1 Introduction
Tools and languages for parallel programming are faced thitte goals:

e High performance, because the need for parallelism impigisperformance is critical.

e Machine independence across all parallel and sequenditibphs, because complex scien-
tific computations must survive many generations of compute

e Programming convenience, because scientists and englimaex problems that are complex
enough without having to overcome language inadequacies.

These goals create a problem because they often conflicteXaonple, it would be convenient
to ignore low level machine specifics, but attention to suetaids is typically required to achieve
good performance. Moreover, high performance and madhiohependence are also often at odds.
High performance can be achieved by programming close thdhdware to exploit specific ma-
chine features, but this sacrifices portability as otherhirees may provide a different set of fea-
tures. On the other hand, portability can be achieved byrproming far from the hardware at
a high-level of abstraction that ignores the specifics of ganyicular machine, but this sacrifices
performance on all machines.

This paper describes one approach to resolving these sgignsionflicting goals. The ap-
proach is based on the following conjecture: an effectivgh(lperformance, machine indepen-
dent) parallel programming language cannot be founded @stdndard von Neumann model of
sequential computation, but rather must be founded on amaabgarallel machine that reflects
characteristics of real parallel architectures [43]. Thhe ZPL programming language was built
on the CTA abstract parallel machine model [43], and a sifiegoal of ZPL, beyond the three
language goals mentioned above, was to test the second liai oonjecture [34, 45].

Several core concepts of ZPL were developed and annound&®®[35]. The first portabil-
ity and performance measurements for the base languageremoeed in 1994 [36], and these
were followed by additional comparisons in 1995 [33]. Thegaage was substantially enhanced
over the next two years, and in July 1997, ZPL was packagdd apipropriate support software
and documentation and released to the publithis paper presents for the first time a compre-
hensive evaluation of the ZPL language, its compiler, amddtentific approach to achieving high
performance, machine-independence, and programmingn@Ence.

Lavailable athttp://www.cs.washington.edu/research/zpl

This paper is structured as follows. Section 2 connects Bledesign with its scientific foun-
dations, and Section 3 describes the primary features amcepts of the language. Section 4
discusses the language’s unique WYSIWYG performance natkevaluates ZPL with respect
to its design goals. Generalizations and advanced feabfii&BL are then covered in Section 5.
Section 6 covers related work, and Section 7 presents csinokt

2 Foundations of ZPL

The problem of designing a successful parallel programr@anguage can be divided into three
cases: (1) Use an existing sequential language, (2) augameaxisting sequential language, or
(3) create a new language. The first approach preserves lilne efalegacy codes, but forces all
concurrency to be discovered by the compiler, a very diffiagk for which discouragingly little
progress has been made in a decade and a half. Both the sewbtidrd approaches devalue the
existing software legacy, either requiring that existinggrams be revised to incorporate the paral-
lel constructs, perhaps at considerable intellectuatieio requiring that programs be completely
rewritten. There is no effortless solution, and since tlwwsd approach may introduce constructs
that conflict with sequential semantics, the third approaderges as the alternative that is most
likely to be fully successful. Given the goal of creating agiical portablélanguage, the greatest
challenge is in enabling programmers to write machine ieddpnt programs despite the wide
variability of parallel platforms. Clearly, abstractioase needed to raise the level of expression
away from the hardware, but abstractions that prevent densgrom exploiting the best hardware
features and avoiding the worst, will greatly degrade pertonce. Thus, it's important to choose
theright abstractions, those that map well to the hardware.

A further observation is that to write fast programs, progmaers must be able to judge accu-
rately which of various competing solutions expressed enléimguage is the fastest. The estimate
need not be exact, but it must be good enough to select sodutiat are dramatically better than
the alternatives. In sequential languages such as Fortth@ gorogrammers estimate performance
by imagining how a von Neumann machine would execute the @dethpode. The von Neumann
machine is not completely accurate, of course, nor doey g@regrammer have a perfect under-
standing of how the compiler translates the source codeinjext code, but this crude mechanism
is good enough to produce quality machine independent anogjr

2“Portable” as used here is often expressed as “portablepeittormance,” but this should be considered redun-
dant: All languages seriously proposed for parallel prograng are “universal,” making their programs portable in a
Turing sensei.e,, it is possible for them to run on any platform ignoring penf@nce. Thus, if “portable” is to mean
anything nontrivial, it must mean that programs that runwelone platform can run well on any platform.

CTA Parallel Computer

D<— Controller von Neumann Processors ‘*

EEEEET:

Sparse Communication Network

Figure 1: The CTA abstract parallel machine model.

These considerations guided the development of ZPL. Spaityfiwe adopted analogs to the
sequential programming concepts [45]:

Sequential Parallel
Machine model von Neumann CTA
Programming model Imperative Procedurgl Phase Abstractions
Language C, Fortran, Pascal, ...| ZPL

The analog to the von Neumann model of computation is the’{43] shown in Figure 1. This
idealized machine provides the foundation of the ZPL deaigphimplementation, and is visible
within the language. Programmers use the CTA to make pedioce estimates of alternative
programming solutions, allowing them to write high quapiyrtable programs [34, 43, 6, 44, 45].

Though the machine model is perhaps the most critical foumnk element, the program-
ming model is also crucial. In sequential programming thegpmmming model provides useful
abstractions not directly available in the machine. Thedrapve-procedural model, typified by
Fortran, C, Pascagtc, has symbolic naming, data structures, procedures, [@heas) recursion,
control structurestc For ZPL, the parallel analog to the imperative-procedonadiel is the Phase
Abstractions programming model [4, 34]. Phase Abstrastimovide equivalent features to the
imperative procedural model as well as data allocation andgssor assignment information [4].
In a nutshell, the programming model defines a scalable @ipa@llelism that encapsulates three
aspects of parallel computations—code, data and commntioneaso that performance-critical
characteristics of a parallel program can be adjusted féerdnt target machines. For example,
the model allows the granularity of parallelism to be eaadjusted. By expressing the code, data
and communication topology of parallel programs as inddpahunits, the model encourages
component reuse and simplifies the tuning process. Mosdfisigmtly, the model does not obscure
the underlying abstract parallel machine [44].

3Acronym for Candidate Type Architecture.

The language binds to the abstractions of the programmirdgh@ospecific syntax and seman-
tics. Though the remainder of the paper presents ZPL inldetane of its notable properties are
worth highlighting in the context of this foundational dission:

e ZPL is implicitly parallel, though this is not stipulated bye programming model.

e ZPL has a global view of data, but this should not be confusigl arsshared memory view,
as the Phase Abstractions are a non-shared memory progngmmoidel.

e The WYSIWYG feature of ZPL, which indicates to the programnvleere and when com-
munication is necessatry, is included to ensure the traespgrequired of the programming
model.

Thus, ZPL has interpreted the requirements of the Phaseaa&hisins programming model in a
specific way. Other language designs could interpret ieckffitly. Finally, it should be noted that
ZPL is the array subset of a larger language, dubbed Advadeédwhich will provide support
for general data structures and more general forms of péisafl, such as task parallelism [35].

3 A Slice of ZPL

This section introduces some basic concepts of the ZPL Bgwg@and explains how these are
executed on an abstract parallel machine.

As evident in the simple ZPL program shown in Figure 2, ZPL sy of the same data
types and control structures found in standard imperatimguages such as C and Pascal. These
include boolean, integer, floating point, record, and adata types, and control flow constructs
such agf , for , while andrepeat statements, as well as a typical assortment of arithmetic
and logical operators.

Regions

The fundamental concept of the language is the region, wdniclapsulates parallelism, describes
data distribution, and provides concise and readable s\fi6. A regionis an index set. For
example, the following declaration

region R = [1..n,1..n];
defines a regiomR that includes the indices in the sfl,1), (1,2),... (1,n)... (n,1), (n,2), ...
(n,n) }. As shown on line 4 of Figure 2, the region bounds can be ma@hiad. Regions may

1 program thinner;

2 config var m: integer = 10; -- runtime constants

3 n: integer = 20;

4 region R = [-m/2..+m/2,-n/2..+n/2]; -- declarations

5 direction north = [-1, O]; east = [0,+1];

6 south = [+1, O]; west = [0,-1];

7 procedure skeletonize(var S: [R] integer);

8 var Obj, T, Temp: [R] integer;

9 err: integer;

10 [R] begin

11 [east of R] S := 0; -- initialize boundary conditions
12 [west of R] S := 0;

13 [north of R] S := 0;

14 [south of R] S = 0;

15 Obj = S; -- copy input image

16 repeat -- iterate over the thinning algorithm
17 Temp := min(min(S@north,S@east),min(S@south,S@west));
18 T := Obj + Temp;

19 err ;= max<< abs(S-T);

20 S =T,

21 until err = 0;

22 S = (S>=S@north) & (S>=S@east) & (S>=S@south) & (S>=S@we st) & (S!=0);
23 end;

24 procedure thinner(); -- entry procedure

25 var S: [R] integer;

26 obffile: file;

27 [R] begin

28 objfile := open("object.dat", "r");

29 read(objfile, S);

30 close(obffile);

31 skeletonize(S);

32 writeln("%d ":S);

33 end;

Figure 2: Sample ZPL program. This program computes theesbipleton (medial axis) of a
two dimensional object that is represented as non-zerdspiXEhe algorithm takes as input a
discretized representation of an object and iterativelfgoms volume thinning7] by nearest
neighbor minimization until only the skeleton remains.

have any static rank, and the upper and lower bounds of eaobndion must be integral values.
Mechanisms for specifying strided and hierarchical regiare given in Section 5. Once defined,
regions can be used to declare arrays, specifying the sieslaape of these arrays. Line 8 of
Figure 2
var Obj, T, Temp: [R] integer;

declareObj, T, andTempto be 2-dimensional integer-valued arrays with memorycalled for
each index in regioR.

Regions are also used to specify indices for array opemtione 15 of the figure

[R] Obj = S;

shows how the assignment statement extends scalar assigriblements of the right-hand side,
whose indices are given by the regiBnare assigned to their corresponding elements on the left-
hand side, whose indices are again given by the regidtere, we say that Line 15 is in tlsgope
of regionR becauser is attached directly to the statement, and hence botltheandS arrays
use the same region. In general, idimensional region defines indices for aldimensional
array expressions in its scope. Regions also apply to conthstatements, so Line 16 defines a
scope that applies to the entire body of theeat statement. Finally, regions are dynamically
scoped, so procedures can inherit regions from the scopgeeofdall site. As described below,
other constructs, such as the reduction operator, requoreggions, while expressions involving
only scalar variables require none.

Regions are often named for convenience and clarity, bsiigsmot required. For example, the
following lines might be used to assign zeroes to the uppanrdular portions of an x n array:

for i := 1 to n do
[i,i..n] A = 0;

A slightly more complicated array statement is given on Li8¢
T := Obj + Temp;

which performs an array addition and then assigns the qoreing sums to elements ©f Array
addition extends the scal&roperator by summing corresponding elements of its arrayanjois,
so the result of evaluatin@bj + Temp is an array of sums. When scalars and arrays both
appear as operands in an element-wise operation, the seatasaid to beromotedto the rank
of the arrays. Other scalar arithmetic and logical opesatwe similarly extended to operate on
arrays. In addition, programmer defined scalar functiong bepromoted to perform element-
wise computation over arrays, as seen in Line 17’s apptioaif the scalamin function to array
operands (explained below).

east =[0, 1];
north = [-1, 0];
ne =[-1,1];

east2=[0, 2];

[north of R] [east of R] [ne of R] [east2 of R]

Figure 3: Examples of thef region operator. Shading represents redg®pand the outlined area
represents the region beneath each example.

east =[0, 1];
north = [-1, 0];
ne =[-1,1];

[R] [R at north] [R at east] [R at ne]

Figure 4: Examples of that region operator. Shading represents redrpand the outlined area
represents the region beneath each example.

Region Operators

To simplify the specification of regions, ZPL provides a na@nbf operators that describe new
regions relative to existing ones. To use these operatofgstelefinedirections which are user-
defined vectors that are used with the various region opstdtne 5 shows the definition of two
directions,

direction north = [-1, O]; east = [0,+1];
which are used to describe the geometric relationshipsingbds program.

Once defined, directions can be used with the various regierators such as tteé , in , and
at operators, which we now describe informally. Tdfe operator applies a vector to a region of
the same rank and produces a new region that is adjacent trigheal region in the direction
of the vector. For example in Figure phorth of R] refers to the row of indices abo
Figure 3 shows examples of how the magnitude and signs ofitaetion vector determine the
size and placement of the resulting region.

Lines 11-14 of the example show how boundary conditions afmeld. Two points are note-
worthy. First, ZPL simplifies memory allocation by impligitdefining storage for boundary val-
ues, which are defined to be any portion of an array that igliziéd in the scope of a region that
uses arof operator. Thus, arra$is allocated sufficient memory to store elementgeimst of
R], [west of R] ,[north of R] ,and[south of R] . The second point is that bound-

ary conditions are typically difficult to deal with in scidit computations because they make it
impossible to treat the entire computational space unifprrdPL provides support for bound-
ary conditions through the use of th@ap and reflect statements, which can be used to
initialize periodic and mirrored boundary conditionsWrgp and reflect are are described
elsewhere [46].) Furthermore, the use of regions allowswaty condition code to be clearly
separated and identified, as evident in Figure 2.

Thein operator is the dual of thef operator, producing a region thatirssidethe original
region and adjacent to the border in the direction of thearedtor example[north in R]
refers to the first row of indices inside of regiBn

Finally, theat operator translates an index set by some specified vectbowithanging the
size or shape of the original region. For example, the region

[R at north]
refers to the translation of tHeregion by one in th@orth direction. In general, that operator
produces a new region by adding the specified direction th ebmment of the specified region.
Examples are given in Figure 4.

Because computations must often refer to different postafran array, that operator has an
alternate form that can be applied to individual arrays—ethly region operator for which this is
true. For example, the statement on line 17

[R] Temp := min(min(S@north,S@east),min(S@south,S@west);
computes, for each point, the minimum of its four neighbgrhements. The right-hand side of
this statement first uses the builtnmn function to compare corresponding element§sfnorth
and east neighbors. Here, correspondence is natural; #&on@e, the upper left-hand elements of
arraysS@north andS@east correspond. The result of this function evaluation is aayawhose
values are the minimum betwe&s north andeast neighbors. The remainder of the right-
hand side operates analogously, minimizing ovestigh andwest arrays, and then combining
these results into a single array of minimum valtiess mentioned earlier, thein function is a
scalar C function that is promoted to operate on each eleaiemt array expression.

Array Operators

In addition to providing mechanisms for simplifying the siieation of array indices, ZPL pro-
vides a number of operators, such as reduce and scan ogethtirsimplify the manipulation of

4Lines 17 and 18 would more naturally be combined into a sistaéement, removing the need to explicitly
declare theTemp array, but the statement was split for pedagogical reashiesertheless the compiler eliminates
such temporaries as described in Section 4.3.1.

arrays. The reduce operators perform an associative, ctatirgioperation, such as + orax on
all elements of an array, producing a single scalar. LineHfvs an example of the max-reduce
operator

err ;= max<< abs(S-T);
which takes the largest element of the absolute valu& Df and assigns the result to the scalar
variableerr .

The scan operators apply an associative, commutative topdmaan array of values. The
resulting value is an array in which each element is the rigaluof all preceding elements of the
array. Scan operations are also known in the literatureeapdhallel prefix [29, 9]. The syntax of
a scan operator is shown below,

A = max|| B;
where we assume thét and B have been declared to be of the same rank. The syntax of the
reduce, scan and flood operators (defined in Section 5) asepho remind users that redus&j
produces a smaller result, scgh { produces a result of the same size and shape, and floogls (
produce a larger result.

Reductions collapse all dimensions of an array to a singlasavhile scans perform the paral-
lel prefix operation across all dimensions of an array. ZRlvjgles variations of these operations,
known as partial reductions and partial scans, which operatr a subset of the dimensions. For
example, the following declarations and statement

region IK = [1..n,1, 1..n];
IJK = [1..n,1..n,1..n];

[IK] A = +<<[IJK] B;

perform a partial reduction of th® array and assign the result to the arfayThe source region,
IJK , applies to thaéB array, and the destination regitid applies to theA array. Here, the region
names are chosen to indicate that the regd#h includes all indices in a 3-dimensional region,
while the regionK includes a single plane of the same region. Thus, the somte@stination
regions combine to indicate that the second dimension isdha&psed dimension.

The most general of ZPL's array operators is the remap opegd), which permits arbitrary
array-level indexing of array data. For example, consiterfollowing statement, whei® B, | ,
andJ are 2-dimensional arrays.

[R] A := B#[J];
The right operand[i{J] in this case) is a sequence of integer arrays that are usadd® into
the left operandE). In this case, arrays andJ define the source indices for the first and second

10

dimensions, respectivelgatheringelements from arrap to array A. When a remap operator
appears on the left-hand side of an assignmestatteris performed. Assignment operators such
as+= or *= are used to accumulate multiple values that scatter to tne gadex. Otherwise, an
arbitrary value persists when there is a conflict.

The remap operator can be used to perform a matrix transgdsé@vs:

[R] A := B#[Index2,Index1];

Here,Indexl andindex2 are built-in ZPL arrays whose elements contain their roveinand
column index, respectively. These arrays are defined to boooable with any array, and are
generalized to all dimensions that appear in a program.

Overall Program Structure

The overall structure of a ZPL program can be seen in Figuid&.name of the program is given
on the first line. This name is used to define the main procedunere program execution will
begin. The top of the program contains various declaratiand this is followed by a series of
procedure definitions.

The first set of declarations specify configuration variapighich are variables whose value
is bound once at load time and remain constant thereaftarfigimation variables are useful for
specifying values of parameters that are likely to be spetfa given instantiation of a program.
These variables can be assigned default values as shownes243, can be assigned values on the
command line, or can be initialized through configuratioesfilhat are specified on the command
line. The next declarations define regions in terms of thdigoration variables, and these are
followed by the declaration of directions. This program haglobal variables, but globals can be
defined if necessary.

The main procedurghinner() , declares some local variables, performs 1/O to initialize
data, and then performs the actual thinning by invokingskeletonize() procedure. The
skeletonize() procedure illustrates how array parameters may be decleitadspecific re-
gions defining their size and shape. By contrast,rded() andwriteln() routines can
operate on arrays of arbitrary size and shape because theydened without providing specific
regions for their array parameters. Thus, line 27 attachgi®ns to the call sites of lines 29 and
32, and the dynamic scoping of regions propagates thesansetp the bodies of the I/O routines.

11

Runtime Execution Model

To complete this description of ZPL, we describe its arraglaage semantics and parallel runtime
execution model.

As with most array languages, the semantics of array assighane that the right-hand side is
evaluated before it is assigned to the left-hand side, archaray statement is logically completed
before the subsequent statement is executed. Each artayetd specifies a collection of opera-
tions on the elements of the statement’s arrays. This dallecan logically be performed in any
order, which allows the implementation to execute the dpera in parallel. Thus, the amount of
parallelism in a ZPL program is described by the region dtddo each statement. At the same
time, these array language semantics allow programmeesaton about ZPL programs as if they
were sequential programs.

To achieve parallelism, arrays are distributed acrossgssmrs based on the distribution of
their defining regions. The distribution of regions is rieséd to obey the invariant thatteracting
regionsare distributed in grid-alignedfashion.

Two regions are considered to be interacting when they atedalicitly or implicitly refer-
enced in a single statement. Explicit region referencesherge encoded in array operatoesy,
partial scans and reductions) and those that specify theegaf an array statement. Implicit
region references are those that are used to declare tlys appearing in the statement. For ex-
ample, the following statement (Figure 2 line 14) impligittferences regioR because arra$ is
declared oveR and explicitly references regimouth of R , so they are interacting regions.

[south of R] S = 0;

Grid-aligned means that if two-dimensional regions are partitioned across a logieal
dimensional processor grid, both regions’ slices with xnden dimensiond will be mapped to
the same processor grid slipan dimensiond. For example, sincR andnorth of R are in-
teracting, they must be grid-aligned, and therefore coluofmorth of R must be distributed
across the same processor column as coluofiR. Moreover, grid-alignment implies that element
(i, j) of two interacting regions will be located on the same precesThis is a key property of
our distribution scheme. Note that using a blocked, cyolidlock-cyclic partitioning scheme for
the indices of a set of interacting regions causes the redmhe grid-aligned. Our ZPL compiler
uses a blocked partitioning scheme by default, and for saityplwe will assume this scheme for
the remainder of this paper.

Once regions are partitioned among the processors, eaa iarallocated using the same
distribution as its defining region. Array operations armpated on the processors containing the
elements in the relevant region scopes.

12

Grid-alignment allows ZPL to provide syntactic cues to aade where the compiler will gen-
erate various forms of communication. In particular, @&uetions and scans may involve indices
that are distributed to different processors. For exanpestatement

T := Obj + min(min(S@north,S@east),min(S@south,S@west))
refers to bothT andS@north , and the indices that are not common to both regions may gelon
to different processors.

One final characteristic of ZPL's data distribution schem#hat sequential variables are repli-
cated across processors. Coherency is maintained thredghdaant computation when possible,
or interprocessor communication when not. This cohereatated communication can only be
induced by a small number of operations, such as reductiothsealaread operations, so this
type of communication, as with all communication in ZPL, isible to the programmer.

4 Evaluation

Section 2 explained ZPL's approach to language design. Seuson argues that this approach is
successful for several reasons. First, it allows programarme‘see” the underlying machine: We
will illustrate this by describing ZPL's WYSIWYG performaa model and explaining how it al-
lows programmers to reason about performance. Seconayiéncently describes parallelism: We
explain the programming benefits of ZPL's region constriibird, the language’s high-level array
constructs facilitate the compilation process: We descvidrious compiler optimizations, includ-
ing a machine-independent abstraction for specifying camoation that can be easily tailored to
individual machines. This section also summarizes egpkeformance results that indicate that
ZPL has achieved its goals of performance and portability,\v@e explain how the language, com-
piler and their underlying models combine to achieve thiscegs. We conclude this section by
discussing issues of usability, including debugging suiijoo ZPL.

4.1 WYSIWYG Performance Model

The performance of ZPL programs depends both on the mappidglo constructs to the CTA
parallel machine model and on the CTA's ability to model neatallel computers. If both of
these mappings are straightforward, programmers will be takreason accurately about the per-
formance of ZPL programs. In this regard, the two signifid@attures of the CTA are that it
emphasizes data locality and that it neither specifies ramrgslimportance on the processor inter-
connection topology. ZPL reflects the CTA's emphasis onlitychy its syntactic identification of

13

operators that induce communication. By not including gegctfication of interconnection topol-
ogy, ZPL programs can execute using a virtual hypergrid ot@ssors, which is perfectly suited
for array computations.

ZPL's data distribution invariant and syntactically-estd communication are also crucial. Pre-
vious work [14] showed how they can be used to estimate tlagivelperformance of the various
ZPL operators. We now explain how ZPL's syntax and dataibigion invariant allow program-
mers to reason about parallel performance by exposingrritha hiding communication costs.
For example, the statement

A = B;
is guaranteed never to incur communication because therréigat defineg\'s distribution inter-
acts with the region that defin®&s distribution. ThusA andB are aligned so that corresponding
elements will be located on the same processor, and no coroatiam is needed. In contrast, the
statement

A = B@east;
may require communication at some point in the program, usee#he left-hand side and right-
hand side refer to different sets of indices. In a blockeadegmosition, grid alignment implies that
point-to-point communication along the processor rows balneeded.

Moreover, the language’s semantics maintain a clean digimbetween parallel and sequen-
tial constructs. In contrast with most array languagesnelds of parallel arrays cannot be manip-
ulated as scalars, which is significant because it disal&tatements such as the following

X[il = Y[j]; /* Not ZPL syntax */
which might require communication even though such compaiitn is not syntactically evident.
The equivalent statement in ZPL would either use the pertioutaperator or apply a single region
to the entire statement and translate the right-hand sidd€deft-hand side) using an @ operator
with a direction that represents the difference @ndj .

It might appear that ZPL's data distribution scheme is t@trietive, forcing programmers to
formulate solutions that are amenable to the grid-aligrinpeoperty. Alternatively, ZPL could
allow arbitrary array alignment and indexing, as many laggs do [26], but in such a scenario
the communication cost of a statement would be a functiorott lis data access pattern and the
alignment of its arrays. This model would be complicated lty flact that a single source-level
array €.g, a formal parameter) might refer to multiple arrays durirgaition, each with its own
alignment scheme. Estimating performance in such a scheowriplex because communication
is not manifest in the source code, and the analysis reqtorledate and evaluate communication
requires a global analysis of the source code. This sitadias given rise to a number of analysis

14

and interactive parallelization tools [3]. In contrast,lZZPcommunication costs are dependent
only on the operations within a statement and can thereftenally identified.

4.2 Programming Benefits of Regions

Regions in ZPL replace the array subscripting notation danrmost other languages [16]. Scalar
languages use subscripts to identify individual elemehémarray, while array languages such as
Fortran 90 [2] and MATLAB [25] extend subscripting to inckidlices which represent regular
subsets of array indices. For example, the following ZPLestent (line 15, Figure 2)

[R] Obj = S;
could be expressed in Fortran 90 as folléws

Obj(1:m+1,1:n+1) := S(1:m+1,1:n+1)
Regions might seem to be equivalent to slices, but in fadonsgprovide a powerful abstraction
with many programming benefits. We now describe how regioosige notational advantages
and support code reuse.

Regions eliminate redundancy. Factoring the common portions of a statement’s referermes (

a compound statement’s references) into a single regiomredies the redundancy of subscript

specification. As a result, a region-based representagiomore concise, easier to read, and less
error prone.

Regions can be named. Naming regions becomes practical because they have a brecujse
(potentially including multiple statements) than a sulpgan a single array reference. By naming
regions, programmers can give meaning to index sets. Fon@eathe nam&opFace is far
more illustrative thar{0,0:n-1,0:n-1) . This same benefit cannot be achieved by providing
the ability to name slices (as in APL), because a programnoeidypotentially have to name a
great many slices.

Regions accentuate commonalities and differences.Because the common portions of refer-
ences are described by the region, all that is left on theyaaferences is an indication of how
they differ. This is consistent with the well-known langeagdesign principle that similar things
should look similar and different things should look di#fat [37]. For example, the following
ZPL statement uses four references to akagach shifted in one of the cardinal directions. It is
clear exactly how arrag is being referenced in each operand.

5We have adjusted the array bounds to reflect the fact thantheds of Fortran arrays begin at 1.

15

[1..n,2..n] B := A@north + A@south + A@east + A@west;
A subscripted equivalent of this code requires closer Borub discover the same relationship
among the operands, let alone verify correctness:

B(2:n+1,2:n+1) = A(1:n,2:n+1)+A(3:n+2,2:n+1)+A(2:n+1, 3:n+2)+A(2:n+1,1:n);

Regions encode high-level information that can be maniputad by operators. While most
languages allow arithmetic operators to be applied to idda dimensions of a subscript, ZPL's
region operators are applied to the index set as a whole. pé&ators encapsulate common forms
of reference (shifting, stridinggtc), resulting in clearer code. These operators allow regyton
be defined in terms of other regions, which is conceptuatiypser than repeatedly constructing
similar but different index sets. For example, tifeoperator assists in defining and understanding
the definition ofTopFace astop of cube . Furthermore, a change to one region is reflected
in all regions that are defined in terms of it, thus localizing changes in the code.

Regions support code reuse. By separating the specification of computation from the sjpee
tion of array indices, regions produce code that is moreigéaad reusable. For example, regions
make it trivial to write statements or procedures that ojgeva arrays of arbitrary size, while sub-
scripted languages require the programmer to pass aroundanipulate array bound information
in order to achieve the same generality. Moreover, changiregion-based program to operate on
higher dimensional arrays can be a simple matter of charthmgegion declarations. The array
computations themselves may not need to change, or they e&/to change in minor and ob-
vious ways, depending on the properties of the computatiooontrast, the use of subscripts or
slices would require modifications to every array reference

4.3 Compilation Benefits

ZPL provides high level semantics that explicitly repregesrallel operations. There are many
benefits to performing analyses and transformations atatinég/ language level [42, 12]. Some
optimizations, such as message vectorization, beconmialfi8], and others, such as array con-
traction, become more effective [31]. Another advantagheseasy identification of communica-
tion operations, which facilitates the Factor-Join colmpiin strategy [12]. This strategy normal-
izes a program by decomposing it irfectors where each factor represents a class of operations
that share a common communication pattern. For ZPL the waifectors represent pure compu-
tation, point-to-point communication, broadcast, glatealuce, and global scan. Once factored, a

16

program can be rescheduled,joined to improve the overall performance of the program. The
remainder of this section describes various optimizatiomsore detail.

4.3.1 Array Contraction

Array temporaries can be a large source of inefficiency beedley pollute the cache and in-
crease memory requirements. These temporaries can oftenmuved through the combination
of statement fusier-an analog of loop fusion [51] that is performed at the artayesnent level—
and array contraction. The ZPL compiler uses an algoritrahplkrforms such fusion while array
statement semantics are still explicit in the internal @spntation [31]. This approach is advanta-
geous because it is less constrained than traditional lagipr, and it supports the integration of
fusion and communication optimization.

ZPL also facilitates other types of locality-improvingrnisiormations such as tiling [50] and
padding [41], although such transformations are not ctigré@mplemented by our ZPL compiler.
Tiling reduces cache misses by iterating over blocks of thetare small enough to fitin the cache,
and array padding reduces cache conflict misses by adjustnigyout of arrays so that tiles do
not map to the same lines of the cache. As with array contnaclPL's region construct helps
by providing an unconstrained context in which to perforingi and padding. Furthermore, ZPL
does not allow programmers to access arrays directly thtrpomters, so such transformations are
safe in ZPL, which is not true for languages such as C and C++.

4.3.2 Machine-Independent Communication Interface

The performance-portability tradeoff is particularlydtdesome when performing communication
optimizations, as different machines have different lewel mechanisms for achieving the best
performance. The ZPL compiler uses the Ironman machinep@ddent communication interface
to provide a separation of concerns [15]. The compiler deitezs what data to send and when it
can legally be sent. Machine-specific libraries then sgédwfvto send the data, which allows each
machine to use the low-level mechanism that is most suit&e example, this approach allows
the use of shared memopyt operations on the Cray T3E and non-blocking sends and eseiv
the IBM SP-2.

4.3.3 Reduce and Scan Optimizations

Reduce and scan are convenient but expensive operatarsjmg@(log(P)) communication costs
and% computation costs foP processors operating on an array of dfeBecause reduce and

17

Simple speedup on Cray T3E Simple speedup on IBM SP2
I T T T T 1 I T T T T 1

60 H - -e--C+mMPI 60 H - -e--C+mMPI
2 H--x-- zZPL 2 H--x-- zZPL
S 50 y S 50 3
ks s T
= 7 = .
o 40 > o 40 ~ <
(g .z : (g s |-
£ 30 £ 30 -
g 2z 5 -
o g o 1
22 22
o 5 o g
& 10 1< 2 10 z

d 7
"l o b
14 16 64 14 16 64
number of processors number of processors
(a) (b)

Figure 5: SIMPLE performance results on the Cray T3E andBié $P-2.

scan are explicit operators in ZPL, compilers can easilntifleand optimize them in machine-
independent ways. In keeping with the Factor-Join comipitestrategy, the ZPL compiler sepa-
rates the communication and computation components otecalud scan operations, allowing the
communication components of nearby reduce operations tmbined as long as data depen-
dences are obeyed. For example, consider a program thatmper& min-reduce and max-reduce
on an arrayA over regionR:

[R] lo
[R] hi

min$<<$ A;
max3$<<$ A;

The only difference in the two reductions is the binary opmrapplied to the elements. The
compiler can combine the communication for the two statemeppropriately applying the min

and max operators for the respective statements. Thistesdlehalves the communication cost
but leaves the computational cost and data volume uncharfdgedcompiler also performs other
optimizations such as overlapping, to hide the latency@®tthmmunication, and hoisting, to move
invariant components outside of loop nests.

4.4 Empirical Evidence of Success

The performance and portability of the ZPL language have loaeefully documented. The first
step towards achieving good parallel performance is teeaelgood performance on a single node.
Experiments on sequential computers have shown that ZRingetitive—typically within a few
percent—with languages such as C and Fortran [36, 32, 20imp@dsons against hand-coded
message passing programs [13, 36] show similar successex&omle, Figure 5 shows that for 64

18

N-body speedup on Intel Paragon
NAS MG (class A) speedup on Cray T3E ysp P 9

[T T T TTT 16 T T T
60 - - F77+MPI — -®—- 50000
T --x-- ZPL [l — =.— - 20000 ®
2 50 1o |- 12000 i
3 a — -A— - 6000 2K)
S 40 3 z
2 A2 g P //,0
£ 30 SEA o 8 — =
S 20 2 R e -
el . [} , -
@ I =, s
8_)l . 7
o 10 4 A e
i 4=
[g
0
416 64 256 0
1 4 8 16
number of processors
number of processors
a

Figure 6: (b) NAS Class A MG (Multigrid) performance on thea@ T 3E, (a) Hierarchical N-body
performance on the Intel Paragon for various numbers oigbest

processors on the IBM SP-2, a ZPL implementation of the SIERWLid dynamics benchmark [21]
is about 16% slower than the same program written using C aAl ®n the Cray T3E the ZPL
program’s performance is almost identical to the MPI varsi&imilarly, Figure 6(a) show that
on the T3E, ZPL performs nearly the same as a Fortran 77 MAEmgntation of the NAS MG
(Multigrid) parallel benchmark.

Comparisons against other languages are more difficultacackerize. Ngo’s thesis [38] uses
a subset of the NAS benchmarks to perform an in-depth stuthyeaZ PL and HPF languages and
their compilers, in this case our ZPL compiler and three cemoml HPF compilers. Ngo draws
two conclusions. First, ZPL is more consistent in giving biest performance, while HPF's per-
formance fluctuates from one compiler to another and frombmrmehmark to another. Second,
ZPL'’s absolute performance and scaling are generally gbbdse results are consistent with ex-
periments from 1994 where an early version of ZPL was contpagainst an early HPF compiler
on a set of eight small benchmark programs [33], indicatmgwerall performance advantage to
ZPL.

ZPL has also been used by researchers to produce paradgbprs for which parallel coun-
terparts in other languages do not exist. In these casdsyp@nce is studied in two steps. First,
the ZPL programs are compared on a single processor agamstrstial implementations, writ-
ten in either C or Fortran. Then, speedups are computed to 8tad the programs’ performance
scaled well as the number of processors grew. For examlerd-6(b) shows the relative speedup
of a ZPL implementation of a hierarchical N-body programt thees Anderson’s fast multipole
method [5]. This ZPL program [32], written by a civil engimagy student as part of a wind engi-

19

neering simulation, scales well, relative to a ZPL progranming on one processor, as the number
of particles increases. As a measure of absolute performame ZPL program on one processor
is about 25% slower than a sequential C implementation f@06garticles, with the overhead
decreasing as the number of particles increased.

Similar studies have been performed for two mathematiadbly codes [20]. Both applica-
tions scale well, with one, a fibroblast simulation, exhitgtan overhead of roughly 38% over
sequential Fortran and the other, a bacteria model, exigbét speedup of 6.5% over sequential
Fortran. In addition, scientists have used ZPL to implenagoarallel version of the CLAWPACK
library for solving hyperbolic systems of conservation$40], to parallelize a large (10,000 lines
of ZPL) synchronous circuit simulator [40], and to perfor@aitiice Boltzmann simulations to study
multiphase flow problems for polymer processing applicei@l9]. In all of these cases, the ZPL
programs were written by scientists and engineers outditteePL group.

In all of these studies, portability has been demonstrageshbwing good performance across
different machines. The machines have exhibited gena@tfferences as newer machines have
replaced older ones, and have exhibited architecturareifices in their communication structure
and balance of computation and communication speeds. Ronme, we have shown results for
the now-extinct Kendall Square KSR-2, Intel Paragon, thé B@ver Challenge, and Cray T3D,
as well as current machines such as the Cray T3E and IBM SP&@KEBR-2 was a ring-of-rings
machine with a cache-only memory structure that provideishgles coherent address space. The
Intel Paragon was a non-shared memory machine consistia@afimensional mesh of proces-
sors. The Cray T3D and T3E are 3-dimensional tori that pehidh bandwidth, low latency and
relatively slow processors, while the IBM SP-2 provides miewer bandwidth, higher latency,
and fast processors. Finally, the SGI Power Challenge islaecaoherent non-uniform memory
access (CC-NUMA) machine that provides hardware suppodadoesses to remote data at a fine
granularity.

The Role of the Underlying Models. We have explained how various aspects of ZPL provide
benefits to the programmer and compiler. We now explain h@hA abstract machine and the
Phase Abstractions programming model contribute to ZPiésall success. The CTA provides
guidance in three ways. First, constructs are only inclutiéfiey map well to the abstract ma-
chine. This is effective because all current and proposeallphmachines can be described by
the CTA. Second, the language borrows the CTA's principlexgfosing costs. Thus, it is critical
that ZPL's communication constructs be syntactically esqah) much as the CTA exposes costs in
ways that the PRAM [22] does not. Third, the implementatibthe language is phrased in terms

20

of the Phase Abstractions model, so as language featuresoasédered, their benefits can be
weighed against their implementation costs and executistsc The Phase Abstraction program-
ming model is most evident in the design of the compiler, wtike model’s notion of a distributed
data structure, oensemblghas a direct correlation to ZPL's region construct. Toggetthis inte-
grated approach to language and compiler design leads sbraots that can be efficiently imple-
mented across diverse parallel computers, leads to a lgeguad execution model that supports
the WYSIWYG performance model, and, most importantly, etmlthe exclusion of numerous
constructs that would hinder the goal of portable perforcean

4.5 Tools and Debuggers

ZPL's sequential semantics allow programmers to develapdaibug their programs on familiar
workstation environments before compiling them for prdeurcruns on parallel computers. De-
bugging on sequential platforms is supported by Monashéfsity’s zgdb, an extension of the gdb
debugger that supports ZPLDebugging on parallel platforms is supported by GUARD [1], 47
tool that allows the behavior of a parallel program to be carag against that of a known correct
program (which may be a sequential C or Fortran program).

ZPL is not directly supported by any performance analysistéthe resulting C code can, of
course, be analyzed). However, ZPL’s transparent perfocenanodel reduces the need for such
tools; this contrasts with other languages, such as HPEhwhcreasethe need for performance
analysis tools, as discussed in Section 6.

5 Other Features of ZPL

To paint a more complete picture of ZPL, this section degsrigpeneralizations of regions, addi-
tional region operators, and a generalization of sequertigrol flow.

Generalizations of Regions

The notion of regions described in Section 3 have been girertan several ways. Regions can
be regularly sparse (strided regions), have parametebaadds and strides (multi-regions), and
even have replicated dimensions (flood regions).

8For more information on zgdb, or to download zgdb, Istse://www.dgs.monash.edu.au/research/
guard/gdb/

21

Strided Regions. The regions presented in the Section 3 are dense; every l@miie index

set is present. Regularly sparse regions can be declaredimyairiding. Striding is applied to

one or more dimensions in a region declaration usindtheperator. For example, the statement
region sR = [1..n,1..n] by [2,2];

declares a 2-dimensional region with indicgd,1), (1,3), ... (1,n), (3,1),

3,3), ... (n,n-2), (n,n) } (for n odd). Arrays declared using strided regions only

have values and memory allocated for the defined indicead&td operations (arithmetic, reduc-

tions, etc) can be applied to strided arrays. As with dense arrayspprogriate region must be

applied to strided arraysge., elements present in the region must be present in the array.

Multi-Regions. Regions with similar structure can be parameterized andpgo together to
form a multi-region, which is a collection of indexable regs with bounds and/or strides that are
expressions of the index value. For example, the statement
region mR {0..3 } = [{}..n+ {}];
declares a multi-region that is a collection of four regid@sn] ,[1..n+1] ,[2..n+2] ,and
[3..n+3] . When usingnR an index is enclosed in curly braces to indicate which regiche
collection is to be applied. For example, the following staént uses the regidt..n+1] to
assignA.
[mR{1}] A = 1.0;
Multi-regions are often coupled with strided regions toatedierarchical regions Hierarchical
regions are extremely useful forultigrid andmulti-resolutioncodes where the granularity of the
grid is selectively varied to focus computational effortesh it is most needed. The following
statements combine to declare a multi-region that beconoes sparse as the index increases.
region R = [1..8,1..8];
hR{0..3} = R by [2°{},27{}];
hR{0} is dense because it is strided byhR{1} is strided by 2etc hR{3} includes only one in-
dex, (1,1). Arrays declared using multi-regions are cafttedti-arrays. Similarlymulti-directions
are parameterized directions designed to be used with-meglitons and multi-arrays. The fol-
lowing statement performs the restriction step to move bethevelsin a multigrid computation
using multi-regions, multi-arrays, and multi-directions

[hR{i+1}] A{i+1} = A{i}2 + (A{i}@north{i}+Af{i}@east{i} +
A{il@south{i}+A{i}@west{i})/8;

Multi-regions increase code reuse in multigrid computagior he statement above can be used
for restriction at any level of the grid, so no level-specificie is necessary.

22

Flood Regions. Flood regions omit the indices of certain dimensions todath that arrays de-
fined on these regions have replicated data. For exampl<being declaration

region fR = [1..n,*];

defines a flood regiorR , in which the second dimension is omitted. Subsequent saudaglared
with such regions are referred tofé®od arrays.The following declaration

var fA: [fR] integer;

defines a 2-dimensional flood arrd®, , that hasn rows and an infinite number of columns. The
data in the omitted dimensions of the flood region are logjicablicated across all indices. In the
implementation, only the defining values of each elemertté@fiood dimension exist on any pro-
cessor. The associated flood operator)(is used to spread data across the unspecified dimension.
The following statemerftoodscolumnn of A, a dense array, intid , a flood array.

[fR] fA := >>[1..n,n] A;
Flood arrays can be used to compute the outer product of tetwnge The following example
computes the outer product of the first row and the first colofrthe matrixA.

region R = [1..n,1..n];

Row = [*1..n];

Col = [1..n,7];
var A, OP: [R] integer; -- n X n matrices

Vr: [Row] integer; -- flooded row

Vc: [Col] integer; -- flooded column
[Row] Vr = >>[1,1..n] A; -- flood the first row into Vr
[Col] Vc = >>[1..n,1] A; -- flood the first column into Vc
[R] OP := Vr*Vc; -- compute the outer product

Other Region Operators

In previous sections, we introduced tbk, at , in , andby operators. We now describe the two
remaining region operatorsiith andwithout

The with andwithout operators are use to performaskedcomputations. A mask is a
boolean array used to turn off computation for certain agi@ynents. The following statements
performred-blacksuccessive over relaxation (SOR) of a 3-dimensional bo&yassume thated
is a mask that has been initialized to describe a 3-dimeabatreckerboard pattern).

[R with Red] U = f*(hsg*F+U@top+U@bot+U@left+U@right+U@ front+U@back);
[R without Red] U := f*(hsg*F+U@top+U@bot+U@left+U@right +U@front+U@back);

23

Masking restricts the elements over which computationggiace, but it does not change
the indices represented by the region. As a result, maskinged only to specify the extent of
computation, not to declare arrays.

Generalizations of Control Flow Constructs

Masking is convenient but requires extra memory for stothng mask itself. An alternative is
to use generalized control flow constructs. Their use is mestictive, but their performance is
typically better. When a control expression contains aayaithe computation ishatteredsuch
that, conceptually, an independent thread is spawned torpethe computation for each element
in the array. All threads implicitlyoin at the end of the control structure. The following stateraent
perform the factorial operation on every element in theyarra

F =1 -- initialize factorial with identity
while A I= 1 do

F *= A -- accumulate product

A =1,
end;

To prevent deadlock and non-deterministic behavior, thaylwd shattered control is constrained
in various ways. For example, scalars cannot be assignel®isisattered control flow. Details are
provided elsewhere [46].

6 Related Work

Apart from ZPL, many other parallel programming languagegethbeen proposed and developed,
with similar goals of providing architecture-independprdgramming. Here we consider some of
the main languages and contrast their approaches withatket by ZPL.

Perhaps the best known language effort for parallel comgus High Performance Fortran
(HPF) [26]. HPF was designed by extending the sequentidtao®©0 language to support the
distribution of arrays across multiple processors, re@syln parallel computation. Programmers
may give suggestions for array alignment and distributiothe form of directives, though their
use is optional and they may be ignored by the compiler. ThigHility in implementation has
two drastic effects: (1) programmers have no direct meansldétermining the communication
overheads associated with their programs since commiomncatdependent on data distribution
and alignment, and (2) compilers are free to distribute datdhey see fit, implying that a program
which has been tuned to work well on one platform may perf@mikly when compiled on another

24

system. This lack of a performance model in the languagerngptetely antithetical to the notion
of portable performance.

Ngo et al.demonstrate that HPF's failure to specify a data distrdsuthodel results in erratic
execution times when compiling HPF programs with differemtnpilers on the IBM SP-2 [39].
To alleviate this problem, tools such as the dPablo tooljitHave been designed which give
source-level feedback about compilation decisions andrpro execution. However, these tools
are tightly coupled to a compiler’s individual compilatiorodel and therefore do not directly aid
in the development of portable programs.

NEsSL [10] is a parallel functional programming language. Itsigiesrs recognized that in the
parallel realm the ability to reason about a program’s ettecus crucial, so a work/depth-based
performance model was designed to support this task [11hoigh this model matchesdSL's
functional style well and allows for coarse-grained impégtation decisions, it uses a very abstract
machine model that reveals little about the mapping e§Nconstructs to actual architectures. For
example, the cost of interprocessor communication is densd negligible in the EsL model and
is therefore ignored entirely.

Cx [48] is an extension to the C programming language that wasldeed for programming
the Connection Machine (CM). Several aspects of its desgardexcellent job of making the
mapping of G programs to the hardware transparent. For example, the CMtecture supports
two general types of interprocessor communication withisicantly different overheadsgfid
communicatiorand the more costlgeneral communication This disparity is reflected in the
language by its syntactic classification of array refersrasebeing either grid or general. Although
this does an excellent service for the CM programmer, itefisnare diminished whensCis
implemented on different architectures since they may su@uditional forms of communication
with intermediate cost®.g, broadcasts along subdimensions of a processor grid.

As an alternative to parallel languages, many runtime fiesehave been developed to support
the creation of portable parallel codes. As libraries, éreggproaches do not offer the same syntac-
tic benefits as ZPL, and they cannot benefit from the same dengutimizations that a language
can.

The most notable libraries those that provide support fosgage passing, PVM [8] and
MPI[23]. These libraries have been hailed as successes dueit widespread implementation on
numerous parallel and sequential architectures, and éoretlative ease with which codes written
on one architecture can be run on another. However, theisrare not without their drawbacks.
First of all, they put the burden of parallel programming ba tisers, requiring them to code at
a per-processor level and manage all memory and commumcatplicitly. This is tedious and

25

error prone, and is considered by many to be equivalent tgranoming sequential computers in
assembly language. In addition, the libraries restrictuger to a particular paradigm of commu-
nication, which may or may not be optimal for a given architee [15]. Although extensions to
the libraries [24] seek to alleviate this problem by supipgra richer set of communication styles,
this does not solve the problem because to achieve optimfarpence, a program would have to
be rewritten for each machine to use the interface that is apg@opriate.

LPARX [28] is a library that supports the parallel implematian of non-uniform problems.
LPARX provides user-controlled index sets and a more géreraion of ZPL's regions that sup-
port set theoretic operations, such as union, intersectind difference. LPARX programmers
can specify the distribution of index sets to processolgimg on the runtime system to imple-
ment transparent interprocessor communication for noatlarray references. LPARX does not
provide a WYSIWYG performance model.

HPC++ [27] extends C++ by providing class libraries to suppoth task and data parallelism.
HPC++ uses a parallel implementation of the C++ Standardplae Library to provide parallel
container classes and parallel iterators, and HPC++ uagsyas to identify parallel loops. HPC++
also provides support for multithreaded programming. lorstHPC++ supports task parallelism
and a wider range of data structures via lower-level medmasthan those in ZPL.

7 Conclusion

This paper has explained how the ZPL programming languamed®s architecture-independence,
high performance, and programming convenience for datdlpbapplications. We have explained
how this language was founded on an abstract parallel machimd we have argued that the
relationships between the language, its compiler, and threlerlying programming model were
central to this success. Finally, we have shown how the natioegions plays an important role in
the ZPL language, both in providing programming convergeaied in developing the language’s
WYSIWYG performance model.

One enabling factor in ZPL’s success is its focus on datalpasm. ZPL was designed as a
sub-language of the more powerful Advanced-ZPL (A-ZPLylaege [35], so ZPL could afford to
provide support for arrays at the exclusion of other dataciires. As a consequence, ZPL is not
ideally suited for solving certain types of dynamic andgukar problems. (Of course, as a Turing
complete language, ZPL is not restrictive in any fundaniesgase.) We are using the lessons
learned from ZPL to guide the design of A-ZPL. For examplehaee already demonstrated ways
by which A-ZPL can extend the notion of regions to supportspaomputation [17] and pipelined

26

wavefront codes [18]. Furthermore, we envision that A-ZRIL support richer data structures, as
well as task parallelism and irregular parallelism.

Acknowledgments. We thank the anonymous referees for their helpful comments.

References

[1] D. A. Abramson, I. Foster, J. Michalakes, and R. Sosiclafke debugging: A new paradigm for debugging
scientific applicationsCommunications of the ACN9(11):67—77, November 1996.

[2] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. MartiignBF. Smith, and Jerrold L. WagenefFortran 90
Handbook McGraw-Hill, New York, NY, 1992.

[3] Vikram S. Adve, Jhy-Chun Wang, John Mellor-Crummey, iBhi. Reed, Mark Anderson, and Ken Kennedy.
An integrated compilation and performance analysis envirent for data parallel programs. Supercomputing
'95, December 1995.

[4] Gail Alverson, William Griswold, Calvin Lin, David Notk, and Lawrence Snyder. Abstractions for portable,
scalable parallel programmingEEE Transactions on Parallel and Distributed Syste®@gl):1-17, January
1998.

[5] Christopher R. Anderson. An implementation of the fasitipole method without multipolesSIAM Journal of
Sci. Stat. Computind.3(4):923-947, July 1992.

[6] Richard J. Anderson and Lawrence Snyder. A comparis@hafed and nonshared memory models of parallel
computation. IrProceedings of the IEERolume 79, 4, pages 480—487, 1991.

[7] D.H. Ballard and C.M. BrownComputer VisionPrentice-Hall, 1982.

[8] Adam Beguelin and Jack DongariVM: Parallel Virtual Machine—A Users’ Guide and TutoriakfNetworked
Parallel Computing The MIT Press, Cambridge, Massachusetts, 1994.

[9] Guy E. Blelloch.Vector Models for Data-Parallel Computing/liT Press, Cambridge, MA, 1990.

[10] Guy E. Blelloch. NESL: A nested data-parallel languagechnical Report CMU-CS-92-103, School of Com-
puter Science, Carnegie Mellon University, January 1992.

[11] Guy E. Blelloch. Programming parallel algorithm@ommunications of the ACN9(3):85-97, March 1996.

[12] Bradford Chamberlain, Sung-Eun Choi, E Christophewisg Calvin Lin, Lawrence Snyder, and W. Derrick
Weathersby. Factor-Join: A unique approach to compilingydanguages for parallel machines. In David Sehr,
Uptal Banerjee, David Gelernter, Alexandru Nicolau, andibd&adua, editord,anguages and Compilers for
Parallel Computingpages 481-500. Springer-Verlag, 1996.

[13] Bradford Chamberlain, Sung-Eun Choi, E Christophewise Calvin Lin, Lawrence Snyder, and W. Derrick
Weathersby. The case for high level parallel programmirzplnlEEE Computational Science and Engineeting
5(3):76-86, July-September 1998.

[14] Bradford L. Chamberlain, Sung-Eun Choi, E Christopbewis, Calvin Lin, Lawrence Snyder, and W. Derrick
Weathershy. ZPL's WYSIWYG performance model. Third International Workshop on High-Level Parallel
Programming Models and Supportive Environmeptges 50-61. IEEE Computer Society Press, March 1998.

[15] Bradford L. Chamberlain, Sung-Eun Choi, and Lawrenogd&r. A compiler abstraction for machine indepen-
dent communication generation. llanguages and Compilers for Parallel Computipgges 261—-76. Springer-
Verlag, August 1997.

27

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

Bradford L. Chamberlain, E Christopher Lewis, CalvimLand Lawrence Snyder. Regions: An abstraction
for expressing array computation. ACM SIGAPL/SIGPLAN International Conference on Array Pasgming
Languagespages 41-9, August 1999.

Bradford L. Chamberlain, E Christopher Lewis, and Laace Snyder. A region-based approach to sparse
parallel computation. Technical Report UW-CSE-98-11Miversity of Washington Department of Computer
Science and Engineering, November 1998.

Bradford L. Chamberlain, E Christopher Lewis, and Laage Snyder. Language support for pipelining wave-
front computations. IrProceedings of the Workshop on Languages and Compilersdmll®l Computing
1999.

Sung-Eun Choi and Lawrence Snyder. Quantifying theafbf communication optimizations. Proceedings
of the International Conference on Parallel Processipgges 218-222, August 1997.

Marios D. Dikaiakos, Calvin Lin, Daphne Manoussakiddbiana E. Woodward. The portable parallel imple-
mentation of two novel mathematical biology algorithms ILZ In 9" International Conference on Supercom-
puting, pages 365-374, 1995.

Kattamuri Ekanadham and Arvind. SIMPLE: Part I, an eis in future scientific programming. Technical
Report 273, MIT CSG, 1987.

Steven Fortune and James Wyllie. Parallelism in randooess machines. Proceedings of the Tenth Annual
ACM Symposium on Theory of Computipgges 114-118, 1978.

Message Passing Interface Forum. MPI: A message ppsgarface standardnternational Journal of Super-
computing Applications3(3/4):169-416, 1994.

MPI Forum. MPI standard 2.0. Technical report, httpwiv.mcs.anl.gov/mpi/ (Current on October 13, 1997).
Duane Hanselman and Bruce Littlefielastering MATLAB Prentice-Hall, 1996.

High Performance Fortran Foruniigh Performance Fortran Language Specification, Versidn November
1994,

E. Johnson, D. Gannon, and P. Beckman. HPC++: Expetsweith the parallel standard template library. In
Proceedings of the 11th International Conference on Supeputing (ICS-97)pages 124-131, New York, July
1997. ACM Press.

Scott R. Kohn and Scott B. Baden. A robust parallel pangming model for dynamic non-uniform scientific
computations. Technical Report CS94-354, University dif@aia, San Diego, Dept. of Computer Science and
Engineering, March 1994.

Richard E. Ladner and Michael J. Fischer. Parallel gredimputationJournal of the Association for Computing
Machinery 27(4):831-838, October 1980.

Randall J. LeVeque and Derek S. Bale. Wave propagatiethaous for conservation laws with source terms. In
Procedings of the 7th International Conference on Hypéddi¥dtoblems February 1998.

E Christopher Lewis, Calvin Lin, and Lawrence SnydemeTimplementation and evaluation of fusion and
contraction in array languages.3GPLAN Conference on Programming Language Design anceimgrhtation
pages 50-59, June 1998.

E Christopher Lewis, Calvin Lin, Lawrence Snyder, angb®e Turkiyyah. A portable parallel n-body solver.
In D. Bailey, P. Bjorstad, J. Gilbert, M. Mascagni, R. Schezi H. Simon, V. Torczon, and L. Watson, editors,
Proceedings of the Seventh SIAM Conference on Paralleld@siog for Scientific Computingages 331-336.
SIAM, 1995.

28

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

C. Lin, L. Snyder, R. Anderson, B. Chamberlain, S. Cii,Forman, E. Lewis, and W. D. Weathersby. ZPL
vs. HPF: A comparison of performance and programming stykechnical Report 95-11-05, Department of
Computer Science and Engineering, University of Washimgi®94.

Calvin Lin. The Portability of Parallel Programs Across MIMD ComputePhD thesis, University of Washing-
ton, Department of Computer Science and Engineering, 1992.

Calvin Lin and Lawrence Snyder. ZPL: An array sublarggialn Uptal Banerjee, David Gelernter, Alexandru
Nicolau, and David Padua, editotsanguages and Compilers for Parallel Computipgges 96—114. Springer-
Verlag, 1993.

Calvin Lin and Lawrence Snyder. SIMPLE performancaitissin ZPL. In Keshav Pingali, Uptal Banerjee,
David Gelernter, Alexandru Nicolau, and David Padua, edjtcanguages and Compilers for Parallel Comput-
ing, pages 361-375. Springer-Verlag, 1994.

Bruce J. MacLennarPrinciples of Programming Languages: Design, Evaluatiod émplementationPrentice
Hall, Holt, Rinehart, and Winston, 1987.

Ton A. Ngo. The Role of Performance Models in Parallel Programming aadduagesPhD thesis, University
of Washington, Department of Computer Science and Engimgper997.

Ton A. Ngo, Lawrence Snyder, and Bradford L. Chambarl&ortable performance of data parallel languages.
In SC97: High Performance Networking and ComputiNgvember 1997.

Wilkey Richardson, Mary Bailey, and William H. Sandetdsing ZPL to develop a parallel Chaos router simu-
lator. IN1996 Winter Simulation Conferengeages 806—16, December 1996.

Gabriel Rivera and Chau-Wen Tseng. Data transformatior eliminating conflict misses. Proceedings of the
ACM SIGPLAN'98 Conference on Programming Language Desighlmplementation (PLD])pages 38-49,
Montreal, Canada, 17—-19 June 1998.

Gerald Roth and Ken Kennedy. Dependence analysis dfdr®0 array syntax. IRProceedings of the Int'l
Conference on Parallel and Distributed Processing Techagjand Applicationgages 1225-35, August 1996.

Lawrence Snyder. Type architecture, shared memontlaadorollary of modest potential. linnual Review of
Computer Scieng@ages 1:289-318, 1986.

Lawrence Snyder. Foundations of practical paralleigpamming languages. IRroceedings of the Second
International Conference of the Austrian Center for Pasb@Computationpages 115-34. Springer-Verlag, 1993.

Lawrence Snyder. Experimental validation of modelspafallel computation. In A. Hofmann and J. van
Leeuwen, editorsl.ecture Notes in Computer Science, Special Volume ,188fes 78-100. Springer-Verlag,
1995.

Lawrence SnyderA Programmer’s Guide to ZRLMIT Press, Cambridge, Massachusetts, 1999.

R. Sosic and D. A. Abramson. Guard: A relative debug@aftware Practice and Experienc7(2):185-206,
February 1997.

C* Programming Guide, Version 6.0.Zhinking Machines Corporation, Cambridge, Massachsisédine 1991.

Alexander J. Wagner and Chris E. Scott. Lattice bolmmaimulations as a tool to examine multiphase flow
problems for polymer processing applications. Society of Plastics Engineers Annual Technical Conference
(ANTEC’99) 1999.

Michael E. Wolf and Monica S. Lam. A data locality optirimg algorithm. InProceedings of the ACM SIG-
PLAN'91 Conference on Programming Language Design anddmphtation (PLDl)pages 30—44, Toronto,
Ontario Canada, 26—28 June 1991.

Michael Wolfe. High Performance Compilers for Parallel Computing\ddison-Wesley, Redwood City, CA,
1996.

29

