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Abstract
The goal of producing architecture-independent parallel programs is complicated by the

competing need for high performance. The ZPL programming language achieves both goals by
building upon an abstract parallel machine and by providingprogramming constructs that al-
low the programmer to “see” this underlying machine. This paper describes ZPL and provides
a comprehensive evaluation of the language with respect to its goals of performance, porta-
bility, and programming convenience. In particular, we describe ZPL’s machine-independent
performance model, describe the programming benefits of ZPL’s region-based constructs, sum-
marize the compilation benefits of the language’s high-level semantics, and summarize empiri-
cal evidence that ZPL has achieved both high performance andportability on diverse machines
such as the IBM SP-2, Cray T3E, and SGI Power Challenge.

Index Terms: portable, efficient, parallel programming language.�This research was supported by DARPA Grant F30602-97-1-0152, a grant of HPC time from the Arctic Region
Supercomputing Center, NSF Grant CCR–9707056, and ONR grant N00014-99-1-0402.
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1 Introduction

Tools and languages for parallel programming are faced withthree goals:� High performance, because the need for parallelism impliesthat performance is critical.� Machine independence across all parallel and sequential platforms, because complex scien-

tific computations must survive many generations of computers.� Programming convenience, because scientists and engineers have problems that are complex

enough without having to overcome language inadequacies.

These goals create a problem because they often conflict. Forexample, it would be convenient

to ignore low level machine specifics, but attention to such details is typically required to achieve

good performance. Moreover, high performance and machine-independence are also often at odds.

High performance can be achieved by programming close to thehardware to exploit specific ma-

chine features, but this sacrifices portability as other machines may provide a different set of fea-

tures. On the other hand, portability can be achieved by programming far from the hardware at

a high-level of abstraction that ignores the specifics of anyparticular machine, but this sacrifices

performance on all machines.

This paper describes one approach to resolving these seemingly conflicting goals. The ap-

proach is based on the following conjecture: an effective (high performance, machine indepen-

dent) parallel programming language cannot be founded on the standard von Neumann model of

sequential computation, but rather must be founded on an abstract parallel machine that reflects

characteristics of real parallel architectures [43]. Thus, the ZPL programming language was built

on the CTA abstract parallel machine model [43], and a scientific goal of ZPL, beyond the three

language goals mentioned above, was to test the second half of this conjecture [34, 45].

Several core concepts of ZPL were developed and announced in1993 [35]. The first portabil-

ity and performance measurements for the base language werereported in 1994 [36], and these

were followed by additional comparisons in 1995 [33]. The language was substantially enhanced

over the next two years, and in July 1997, ZPL was packaged with appropriate support software

and documentation and released to the public.1 This paper presents for the first time a compre-

hensive evaluation of the ZPL language, its compiler, and its scientific approach to achieving high

performance, machine-independence, and programming convenience.

1Available athttp://www.cs.washington.edu/research/zpl .
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This paper is structured as follows. Section 2 connects the ZPL design with its scientific foun-

dations, and Section 3 describes the primary features and concepts of the language. Section 4

discusses the language’s unique WYSIWYG performance modeland evaluates ZPL with respect

to its design goals. Generalizations and advanced featuresof ZPL are then covered in Section 5.

Section 6 covers related work, and Section 7 presents conclusions.

2 Foundations of ZPL

The problem of designing a successful parallel programminglanguage can be divided into three

cases: (1) Use an existing sequential language, (2) augmentan existing sequential language, or

(3) create a new language. The first approach preserves the value of legacy codes, but forces all

concurrency to be discovered by the compiler, a very difficult task for which discouragingly little

progress has been made in a decade and a half. Both the second and third approaches devalue the

existing software legacy, either requiring that existing programs be revised to incorporate the paral-

lel constructs, perhaps at considerable intellectual effort, or requiring that programs be completely

rewritten. There is no effortless solution, and since the second approach may introduce constructs

that conflict with sequential semantics, the third approachemerges as the alternative that is most

likely to be fully successful. Given the goal of creating a practical portable2 language, the greatest

challenge is in enabling programmers to write machine independent programs despite the wide

variability of parallel platforms. Clearly, abstractionsare needed to raise the level of expression

away from the hardware, but abstractions that prevent compilers from exploiting the best hardware

features and avoiding the worst, will greatly degrade performance. Thus, it’s important to choose

theright abstractions, those that map well to the hardware.

A further observation is that to write fast programs, programmers must be able to judge accu-

rately which of various competing solutions expressed in the language is the fastest. The estimate

need not be exact, but it must be good enough to select solutions that are dramatically better than

the alternatives. In sequential languages such as Fortran and C, programmers estimate performance

by imagining how a von Neumann machine would execute the compiled code. The von Neumann

machine is not completely accurate, of course, nor does every programmer have a perfect under-

standing of how the compiler translates the source code intoobject code, but this crude mechanism

is good enough to produce quality machine independent programs.

2“Portable” as used here is often expressed as “portable withperformance,” but this should be considered redun-
dant: All languages seriously proposed for parallel programming are “universal,” making their programs portable in a
Turing sense,i.e., it is possible for them to run on any platform ignoring performance. Thus, if “portable” is to mean
anything nontrivial, it must mean that programs that run well on one platform can run well on any platform.
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CTA Parallel Computer

Sparse Communication Network

Controller von Neumann Processors

• • •

Figure 1: The CTA abstract parallel machine model.

These considerations guided the development of ZPL. Specifically, we adopted analogs to the

sequential programming concepts [45]:

Sequential Parallel
Machine model von Neumann CTA
Programming model Imperative Procedural Phase Abstractions
Language C, Fortran, Pascal, ... ZPL

The analog to the von Neumann model of computation is the CTA3 [43] shown in Figure 1. This

idealized machine provides the foundation of the ZPL designand implementation, and is visible

within the language. Programmers use the CTA to make performance estimates of alternative

programming solutions, allowing them to write high qualityportable programs [34, 43, 6, 44, 45].

Though the machine model is perhaps the most critical foundational element, the program-

ming model is also crucial. In sequential programming the programming model provides useful

abstractions not directly available in the machine. The imperative-procedural model, typified by

Fortran, C, Pascal,etc., has symbolic naming, data structures, procedures, parameters, recursion,

control structures,etc. For ZPL, the parallel analog to the imperative-proceduralmodel is the Phase

Abstractions programming model [4, 34]. Phase Abstractions provide equivalent features to the

imperative procedural model as well as data allocation and processor assignment information [4].

In a nutshell, the programming model defines a scalable unit of parallelism that encapsulates three

aspects of parallel computations—code, data and communication—so that performance-critical

characteristics of a parallel program can be adjusted for different target machines. For example,

the model allows the granularity of parallelism to be easilyadjusted. By expressing the code, data

and communication topology of parallel programs as independent units, the model encourages

component reuse and simplifies the tuning process. Most significantly, the model does not obscure

the underlying abstract parallel machine [44].

3Acronym for Candidate Type Architecture.
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The language binds to the abstractions of the programming model a specific syntax and seman-

tics. Though the remainder of the paper presents ZPL in detail, some of its notable properties are

worth highlighting in the context of this foundational discussion:� ZPL is implicitly parallel, though this is not stipulated bythe programming model.� ZPL has a global view of data, but this should not be confused with a shared memory view,

as the Phase Abstractions are a non-shared memory programming model.� The WYSIWYG feature of ZPL, which indicates to the programmer where and when com-

munication is necessary, is included to ensure the transparency required of the programming

model.

Thus, ZPL has interpreted the requirements of the Phase Abstractions programming model in a

specific way. Other language designs could interpret it differently. Finally, it should be noted that

ZPL is the array subset of a larger language, dubbed AdvancedZPL, which will provide support

for general data structures and more general forms of parallelism, such as task parallelism [35].

3 A Slice of ZPL

This section introduces some basic concepts of the ZPL language and explains how these are

executed on an abstract parallel machine.

As evident in the simple ZPL program shown in Figure 2, ZPL hasmany of the same data

types and control structures found in standard imperative languages such as C and Pascal. These

include boolean, integer, floating point, record, and arraydata types, and control flow constructs

such asif , for , while andrepeat statements, as well as a typical assortment of arithmetic

and logical operators.

Regions

The fundamental concept of the language is the region, whichencapsulates parallelism, describes

data distribution, and provides concise and readable syntax [16]. A region is an index set. For

example, the following declaration

region R = [1..n,1..n];

defines a regionR that includes the indices in the setf(1,1), (1,2),: : : (1,n): : : (n,1), (n,2), : : :
(n,n) g. As shown on line 4 of Figure 2, the region bounds can be more involved. Regions may
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1 program thinner;

2 config var m: integer = 10; -- runtime constants
3 n: integer = 20;

4 region R = [-m/2..+m/2,-n/2..+n/2]; -- declarations

5 direction north = [-1, 0]; east = [ 0,+1];
6 south = [+1, 0]; west = [ 0,-1];

7 procedure skeletonize(var S: [R] integer);
8 var Obj, T, Temp: [R] integer;
9 err: integer;

10 [R] begin
11 [east of R] S := 0; -- initialize boundary conditions
12 [west of R] S := 0;
13 [north of R] S := 0;
14 [south of R] S := 0;

15 Obj := S; -- copy input image
16 repeat -- iterate over the thinning algorithm
17 Temp := min(min(S@north,S@east),min(S@south,S@west) );
18 T := Obj + Temp;
19 err := max<< abs(S-T);
20 S := T;
21 until err = 0;

22 S := (S>=S@north) & (S>=S@east) & (S>=S@south) & (S>=S@we st) & (S!=0);
23 end;

24 procedure thinner(); -- entry procedure
25 var S: [R] integer;
26 objfile: file;
27 [R] begin
28 objfile := open("object.dat", "r");
29 read(objfile, S);
30 close(objfile);
31 skeletonize(S);
32 writeln("%d ":S);
33 end;

Figure 2: Sample ZPL program. This program computes the shape skeleton (medial axis) of a
two dimensional object that is represented as non-zero pixels. The algorithm takes as input a
discretized representation of an object and iteratively performs volume thinning[7] by nearest
neighbor minimization until only the skeleton remains.
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have any static rank, and the upper and lower bounds of each dimension must be integral values.

Mechanisms for specifying strided and hierarchical regions are given in Section 5. Once defined,

regions can be used to declare arrays, specifying the size and shape of these arrays. Line 8 of

Figure 2

var Obj, T, Temp: [R] integer;

declaresObj , T, andTemp to be 2-dimensional integer-valued arrays with memory allocated for

each index in regionR.

Regions are also used to specify indices for array operations. Line 15 of the figure

[R] Obj := S;

shows how the assignment statement extends scalar assignment: Elements of the right-hand side,

whose indices are given by the regionR, are assigned to their corresponding elements on the left-

hand side, whose indices are again given by the regionR. Here, we say that Line 15 is in thescope

of regionR becauseR is attached directly to the statement, and hence both theObj andS arrays

use the same region. In general, ann-dimensional region defines indices for alln-dimensional

array expressions in its scope. Regions also apply to compound statements, so Line 16 defines a

scope that applies to the entire body of therepeat statement. Finally, regions are dynamically

scoped, so procedures can inherit regions from the scope of their call site. As described below,

other constructs, such as the reduction operator, require two regions, while expressions involving

only scalar variables require none.

Regions are often named for convenience and clarity, but this is not required. For example, the

following lines might be used to assign zeroes to the upper triangular portions of ann�n array:

for i := 1 to n do
[i,i..n] A := 0;

A slightly more complicated array statement is given on Line18,

T := Obj + Temp;

which performs an array addition and then assigns the corresponding sums to elements ofT. Array

addition extends the scalar+ operator by summing corresponding elements of its array operands,

so the result of evaluatingObj + Temp is an array of sums. When scalars and arrays both

appear as operands in an element-wise operation, the scalars are said to bepromotedto the rank

of the arrays. Other scalar arithmetic and logical operators are similarly extended to operate on

arrays. In addition, programmer defined scalar functions may be promoted to perform element-

wise computation over arrays, as seen in Line 17’s application of the scalarmin function to array

operands (explained below).
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north = [-1, 0];

ne    = [-1, 1];

east2 = [ 0, 2];

east  = [ 0, 1];

[north of R] [east of R] [ne of R] [east2 of R]

Figure 3: Examples of theof region operator. Shading represents regionR, and the outlined area
represents the region beneath each example.

[R]

east  = [ 0, 1];

north = [-1, 0];

ne    = [-1, 1];

[R at north] [R at east] [R at ne]

Figure 4: Examples of theat region operator. Shading represents regionR, and the outlined area
represents the region beneath each example.

Region Operators

To simplify the specification of regions, ZPL provides a number of operators that describe new

regions relative to existing ones. To use these operators wefirst definedirections, which are user-

defined vectors that are used with the various region operators. Line 5 shows the definition of two

directions,

direction north = [-1, 0]; east = [ 0,+1];

which are used to describe the geometric relationships usedin this program.

Once defined, directions can be used with the various region operators such as theof , in , and

at operators, which we now describe informally. Theof operator applies a vector to a region of

the same rank and produces a new region that is adjacent to theoriginal region in the direction

of the vector. For example in Figure 2,[north of R] refers to the row of indices aboveR.

Figure 3 shows examples of how the magnitude and signs of the direction vector determine the

size and placement of the resulting region.

Lines 11-14 of the example show how boundary conditions are defined. Two points are note-

worthy. First, ZPL simplifies memory allocation by implicitly defining storage for boundary val-

ues, which are defined to be any portion of an array that is initialized in the scope of a region that

uses anof operator. Thus, arrayS is allocated sufficient memory to store elements in[east of

R] , [west of R] , [north of R] , and[south of R] . The second point is that bound-
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ary conditions are typically difficult to deal with in scientific computations because they make it

impossible to treat the entire computational space uniformly. ZPL provides support for bound-

ary conditions through the use of thewrap and reflect statements, which can be used to

initialize periodic and mirrored boundary conditions. (Wrap and reflect are are described

elsewhere [46].) Furthermore, the use of regions allows boundary condition code to be clearly

separated and identified, as evident in Figure 2.

The in operator is the dual of theof operator, producing a region that isinsidethe original

region and adjacent to the border in the direction of the vector. For example,[north in R]

refers to the first row of indices inside of regionR.

Finally, theat operator translates an index set by some specified vector without changing the

size or shape of the original region. For example, the region

[R at north]

refers to the translation of theR region by one in thenorth direction. In general, theat operator

produces a new region by adding the specified direction to each element of the specified region.

Examples are given in Figure 4.

Because computations must often refer to different portions of an array, theat operator has an

alternate form that can be applied to individual arrays—theonly region operator for which this is

true. For example, the statement on line 17

[R] Temp := min(min(S@north,S@east),min(S@south,S@west ));

computes, for each point, the minimum of its four neighboring elements. The right-hand side of

this statement first uses the built-inmin function to compare corresponding elements ofS’s north

and east neighbors. Here, correspondence is natural; for example, the upper left-hand elements of

arraysS@north andS@east correspond. The result of this function evaluation is an array whose

values are the minimum betweenS’s north andeast neighbors. The remainder of the right-

hand side operates analogously, minimizing over thesouth andwest arrays, and then combining

these results into a single array of minimum values.4 As mentioned earlier, themin function is a

scalar C function that is promoted to operate on each elementof an array expression.

Array Operators

In addition to providing mechanisms for simplifying the specification of array indices, ZPL pro-

vides a number of operators, such as reduce and scan operators, that simplify the manipulation of

4Lines 17 and 18 would more naturally be combined into a singlestatement, removing the need to explicitly
declare theTemp array, but the statement was split for pedagogical reasons.Nevertheless the compiler eliminates
such temporaries as described in Section 4.3.1.
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arrays. The reduce operators perform an associative, commutative operation, such as + ormax, on

all elements of an array, producing a single scalar. Line 19 shows an example of the max-reduce

operator

err := max<< abs(S-T);

which takes the largest element of the absolute values ofS-T , and assigns the result to the scalar

variableerr .

The scan operators apply an associative, commutative operator to an array of values. The

resulting value is an array in which each element is the reduction of all preceding elements of the

array. Scan operations are also known in the literature as the parallel prefix [29, 9]. The syntax of

a scan operator is shown below,

A := max|| B;

where we assume thatA and B have been declared to be of the same rank. The syntax of the

reduce, scan and flood operators (defined in Section 5) are chosen to remind users that reduce (<<)

produces a smaller result, scan (|| ) produces a result of the same size and shape, and floods (>>)

produce a larger result.

Reductions collapse all dimensions of an array to a single scalar, while scans perform the paral-

lel prefix operation across all dimensions of an array. ZPL provides variations of these operations,

known as partial reductions and partial scans, which operate over a subset of the dimensions. For

example, the following declarations and statement

region IK = [1..n,1, 1..n];
IJK = [1..n,1..n,1..n];

[IK] A := +<<[IJK] B;

perform a partial reduction of theB array and assign the result to the arrayA. The source region,

IJK , applies to theB array, and the destination regionIK applies to theA array. Here, the region

names are chosen to indicate that the regionIJK includes all indices in a 3-dimensional region,

while the regionIK includes a single plane of the same region. Thus, the source and destination

regions combine to indicate that the second dimension is thecollapsed dimension.

The most general of ZPL’s array operators is the remap operator (#), which permits arbitrary

array-level indexing of array data. For example, consider the following statement, whereA, B, I ,

andJ are 2-dimensional arrays.

[R] A := B#[I,J];

The right operand ([i,J] in this case) is a sequence of integer arrays that are used to index into

the left operand (B). In this case, arraysI andJ define the source indices for the first and second
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dimensions, respectively,gatheringelements from arrayB to arrayA. When a remap operator

appears on the left-hand side of an assignment, ascatteris performed. Assignment operators such

as+= or *= are used to accumulate multiple values that scatter to the same index. Otherwise, an

arbitrary value persists when there is a conflict.

The remap operator can be used to perform a matrix transpose as follows:

[R] A := B#[Index2,Index1];

Here,Index1 andIndex2 are built-in ZPL arrays whose elements contain their row index and

column index, respectively. These arrays are defined to be conformable with any array, and are

generalized to all dimensions that appear in a program.

Overall Program Structure

The overall structure of a ZPL program can be seen in Figure 2.The name of the program is given

on the first line. This name is used to define the main procedure, where program execution will

begin. The top of the program contains various declarations, and this is followed by a series of

procedure definitions.

The first set of declarations specify configuration variables, which are variables whose value

is bound once at load time and remain constant thereafter. Configuration variables are useful for

specifying values of parameters that are likely to be specific to a given instantiation of a program.

These variables can be assigned default values as shown on Lines 2-3, can be assigned values on the

command line, or can be initialized through configuration files that are specified on the command

line. The next declarations define regions in terms of the configuration variables, and these are

followed by the declaration of directions. This program hasno global variables, but globals can be

defined if necessary.

The main procedure,thinner() , declares some local variables, performs I/O to initialize

data, and then performs the actual thinning by invoking theskeletonize() procedure. The

skeletonize() procedure illustrates how array parameters may be declaredwith specific re-

gions defining their size and shape. By contrast, theread() and writeln() routines can

operate on arrays of arbitrary size and shape because they were defined without providing specific

regions for their array parameters. Thus, line 27 attaches regions to the call sites of lines 29 and

32, and the dynamic scoping of regions propagates these regions to the bodies of the I/O routines.
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Runtime Execution Model

To complete this description of ZPL, we describe its array language semantics and parallel runtime

execution model.

As with most array languages, the semantics of array assignment are that the right-hand side is

evaluated before it is assigned to the left-hand side, and one array statement is logically completed

before the subsequent statement is executed. Each array statement specifies a collection of opera-

tions on the elements of the statement’s arrays. This collection can logically be performed in any

order, which allows the implementation to execute the operations in parallel. Thus, the amount of

parallelism in a ZPL program is described by the region attached to each statement. At the same

time, these array language semantics allow programmers to reason about ZPL programs as if they

were sequential programs.

To achieve parallelism, arrays are distributed across processors based on the distribution of

their defining regions. The distribution of regions is restricted to obey the invariant thatinteracting

regionsare distributed in agrid-alignedfashion.

Two regions are considered to be interacting when they are both explicitly or implicitly refer-

enced in a single statement. Explicit region references arethose encoded in array operators (e.g.,

partial scans and reductions) and those that specify the indices of an array statement. Implicit

region references are those that are used to declare the arrays appearing in the statement. For ex-

ample, the following statement (Figure 2 line 14) implicitly references regionRbecause arrayS is

declared overRand explicitly references regionsouth of R , so they are interacting regions.

[south of R] S := 0;

Grid-aligned means that if twon-dimensional regions are partitioned across a logicaln-

dimensional processor grid, both regions’ slices with index i in dimensiond will be mapped to

the same processor grid slicep in dimensiond. For example, sinceR andnorth of R are in-

teracting, they must be grid-aligned, and therefore columni of north of R must be distributed

across the same processor column as columni of R. Moreover, grid-alignment implies that element(i; j) of two interacting regions will be located on the same processor. This is a key property of

our distribution scheme. Note that using a blocked, cyclic,or block-cyclic partitioning scheme for

the indices of a set of interacting regions causes the regions to be grid-aligned. Our ZPL compiler

uses a blocked partitioning scheme by default, and for simplicity we will assume this scheme for

the remainder of this paper.

Once regions are partitioned among the processors, each array is allocated using the same

distribution as its defining region. Array operations are computed on the processors containing the

elements in the relevant region scopes.
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Grid-alignment allows ZPL to provide syntactic cues to indicate where the compiler will gen-

erate various forms of communication. In particular, @’s reductions and scans may involve indices

that are distributed to different processors. For example,the statement

T := Obj + min(min(S@north,S@east),min(S@south,S@west)) ;

refers to bothT andS@north , and the indices that are not common to both regions may belong

to different processors.

One final characteristic of ZPL’s data distribution scheme is that sequential variables are repli-

cated across processors. Coherency is maintained through redundant computation when possible,

or interprocessor communication when not. This coherency-related communication can only be

induced by a small number of operations, such as reductions and scalarread operations, so this

type of communication, as with all communication in ZPL, is visible to the programmer.

4 Evaluation

Section 2 explained ZPL’s approach to language design. Thissection argues that this approach is

successful for several reasons. First, it allows programmers to “see” the underlying machine: We

will illustrate this by describing ZPL’s WYSIWYG performance model and explaining how it al-

lows programmers to reason about performance. Second, it conveniently describes parallelism: We

explain the programming benefits of ZPL’s region construct.Third, the language’s high-level array

constructs facilitate the compilation process: We describe various compiler optimizations, includ-

ing a machine-independent abstraction for specifying communication that can be easily tailored to

individual machines. This section also summarizes earlierperformance results that indicate that

ZPL has achieved its goals of performance and portability, and we explain how the language, com-

piler and their underlying models combine to achieve this success. We conclude this section by

discussing issues of usability, including debugging support for ZPL.

4.1 WYSIWYG Performance Model

The performance of ZPL programs depends both on the mapping of ZPL constructs to the CTA

parallel machine model and on the CTA’s ability to model realparallel computers. If both of

these mappings are straightforward, programmers will be able to reason accurately about the per-

formance of ZPL programs. In this regard, the two significantfeatures of the CTA are that it

emphasizes data locality and that it neither specifies nor places importance on the processor inter-

connection topology. ZPL reflects the CTA’s emphasis on locality by its syntactic identification of

13



operators that induce communication. By not including any specification of interconnection topol-

ogy, ZPL programs can execute using a virtual hypergrid of processors, which is perfectly suited

for array computations.

ZPL’s data distribution invariant and syntactically-evident communication are also crucial. Pre-

vious work [14] showed how they can be used to estimate the relative performance of the various

ZPL operators. We now explain how ZPL’s syntax and data distribution invariant allow program-

mers to reason about parallel performance by exposing rather than hiding communication costs.

For example, the statement

A := B;

is guaranteed never to incur communication because the region that definesA’s distribution inter-

acts with the region that definesB’s distribution. Thus,A andB are aligned so that corresponding

elements will be located on the same processor, and no communication is needed. In contrast, the

statement

A := B@east;

may require communication at some point in the program, because the left-hand side and right-

hand side refer to different sets of indices. In a blocked decomposition, grid alignment implies that

point-to-point communication along the processor rows will be needed.

Moreover, the language’s semantics maintain a clean distinction between parallel and sequen-

tial constructs. In contrast with most array languages, elements of parallel arrays cannot be manip-

ulated as scalars, which is significant because it disallowsstatements such as the following

X[i] = Y[j]; /* Not ZPL syntax */

which might require communication even though such communication is not syntactically evident.

The equivalent statement in ZPL would either use the permutation operator or apply a single region

to the entire statement and translate the right-hand side (or the left-hand side) using an @ operator

with a direction that represents the difference ofi andj .

It might appear that ZPL’s data distribution scheme is too restrictive, forcing programmers to

formulate solutions that are amenable to the grid-alignment property. Alternatively, ZPL could

allow arbitrary array alignment and indexing, as many languages do [26], but in such a scenario

the communication cost of a statement would be a function of both its data access pattern and the

alignment of its arrays. This model would be complicated by the fact that a single source-level

array (e.g., a formal parameter) might refer to multiple arrays during execution, each with its own

alignment scheme. Estimating performance in such a scheme is complex because communication

is not manifest in the source code, and the analysis requiredto locate and evaluate communication

requires a global analysis of the source code. This situation has given rise to a number of analysis
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and interactive parallelization tools [3]. In contrast, ZPL’s communication costs are dependent

only on the operations within a statement and can therefore be trivially identified.

4.2 Programming Benefits of Regions

Regions in ZPL replace the array subscripting notation found in most other languages [16]. Scalar

languages use subscripts to identify individual elements of an array, while array languages such as

Fortran 90 [2] and MATLAB [25] extend subscripting to include slices, which represent regular

subsets of array indices. For example, the following ZPL statement (line 15, Figure 2)

[R] Obj := S;

could be expressed in Fortran 90 as follows5

Obj(1:m+1,1:n+1) := S(1:m+1,1:n+1)

Regions might seem to be equivalent to slices, but in fact regions provide a powerful abstraction

with many programming benefits. We now describe how regions provide notational advantages

and support code reuse.

Regions eliminate redundancy. Factoring the common portions of a statement’s references (or

a compound statement’s references) into a single region eliminates the redundancy of subscript

specification. As a result, a region-based representation is more concise, easier to read, and less

error prone.

Regions can be named. Naming regions becomes practical because they have a broader scope

(potentially including multiple statements) than a subscript on a single array reference. By naming

regions, programmers can give meaning to index sets. For example, the nameTopFace is far

more illustrative than(0,0:n-1,0:n-1) . This same benefit cannot be achieved by providing

the ability to name slices (as in APL), because a programmer would potentially have to name a

great many slices.

Regions accentuate commonalities and differences.Because the common portions of refer-

ences are described by the region, all that is left on the array references is an indication of how

they differ. This is consistent with the well-known language design principle that similar things

should look similar and different things should look different [37]. For example, the following

ZPL statement uses four references to arrayA, each shifted in one of the cardinal directions. It is

clear exactly how arrayA is being referenced in each operand.

5We have adjusted the array bounds to reflect the fact that the indices of Fortran arrays begin at 1.
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[1..n,1..n] B := A@north + A@south + A@east + A@west;

A subscripted equivalent of this code requires closer scrutiny to discover the same relationship

among the operands, let alone verify correctness:

B(2:n+1,2:n+1) = A(1:n,2:n+1)+A(3:n+2,2:n+1)+A(2:n+1, 3:n+2)+A(2:n+1,1:n);

Regions encode high-level information that can be manipulated by operators. While most

languages allow arithmetic operators to be applied to individual dimensions of a subscript, ZPL’s

region operators are applied to the index set as a whole. The operators encapsulate common forms

of reference (shifting, striding,etc.), resulting in clearer code. These operators allow regions to

be defined in terms of other regions, which is conceptually simpler than repeatedly constructing

similar but different index sets. For example, theof operator assists in defining and understanding

the definition ofTopFace astop of cube . Furthermore, a change to one region is reflected

in all regions that are defined in terms of it, thus localizingthe changes in the code.

Regions support code reuse. By separating the specification of computation from the specifica-

tion of array indices, regions produce code that is more general and reusable. For example, regions

make it trivial to write statements or procedures that operate on arrays of arbitrary size, while sub-

scripted languages require the programmer to pass around and manipulate array bound information

in order to achieve the same generality. Moreover, changinga region-based program to operate on

higher dimensional arrays can be a simple matter of changingthe region declarations. The array

computations themselves may not need to change, or they may need to change in minor and ob-

vious ways, depending on the properties of the computation.In contrast, the use of subscripts or

slices would require modifications to every array reference.

4.3 Compilation Benefits

ZPL provides high level semantics that explicitly represent parallel operations. There are many

benefits to performing analyses and transformations at thisarray language level [42, 12]. Some

optimizations, such as message vectorization, become trivial [19], and others, such as array con-

traction, become more effective [31]. Another advantage isthe easy identification of communica-

tion operations, which facilitates the Factor-Join compilation strategy [12]. This strategy normal-

izes a program by decomposing it intofactors, where each factor represents a class of operations

that share a common communication pattern. For ZPL the various factors represent pure compu-

tation, point-to-point communication, broadcast, globalreduce, and global scan. Once factored, a
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program can be rescheduled, orjoined, to improve the overall performance of the program. The

remainder of this section describes various optimizationsin more detail.

4.3.1 Array Contraction

Array temporaries can be a large source of inefficiency because they pollute the cache and in-

crease memory requirements. These temporaries can often beremoved through the combination

of statement fusion—an analog of loop fusion [51] that is performed at the array statement level—

and array contraction. The ZPL compiler uses an algorithm that performs such fusion while array

statement semantics are still explicit in the internal representation [31]. This approach is advanta-

geous because it is less constrained than traditional loop fusion, and it supports the integration of

fusion and communication optimization.

ZPL also facilitates other types of locality-improving transformations such as tiling [50] and

padding [41], although such transformations are not currently implemented by our ZPL compiler.

Tiling reduces cache misses by iterating over blocks of datathat are small enough to fit in the cache,

and array padding reduces cache conflict misses by adjustingthe layout of arrays so that tiles do

not map to the same lines of the cache. As with array contraction, ZPL’s region construct helps

by providing an unconstrained context in which to perform tiling and padding. Furthermore, ZPL

does not allow programmers to access arrays directly through pointers, so such transformations are

safe in ZPL, which is not true for languages such as C and C++.

4.3.2 Machine-Independent Communication Interface

The performance-portability tradeoff is particularly troublesome when performing communication

optimizations, as different machines have different low-level mechanisms for achieving the best

performance. The ZPL compiler uses the Ironman machine-independent communication interface

to provide a separation of concerns [15]. The compiler determines what data to send and when it

can legally be sent. Machine-specific libraries then specify howto send the data, which allows each

machine to use the low-level mechanism that is most suitable. For example, this approach allows

the use of shared memoryput operations on the Cray T3E and non-blocking sends and receives on

the IBM SP-2.

4.3.3 Reduce and Scan Optimizations

Reduce and scan are convenient but expensive operators, requiringO(log(P)) communication costs

and N
P computation costs forP processors operating on an array of sizeN. Because reduce and
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Figure 5: SIMPLE performance results on the Cray T3E and the IBM SP-2.

scan are explicit operators in ZPL, compilers can easily identify and optimize them in machine-

independent ways. In keeping with the Factor-Join compilation strategy, the ZPL compiler sepa-

rates the communication and computation components of reduce and scan operations, allowing the

communication components of nearby reduce operations to becombined as long as data depen-

dences are obeyed. For example, consider a program that performs a min-reduce and max-reduce

on an arrayA over regionR:

[R] lo := min$<<$ A;
[R] hi := max$<<$ A;

The only difference in the two reductions is the binary operator applied to the elements. The

compiler can combine the communication for the two statements, appropriately applying the min

and max operators for the respective statements. This essentially halves the communication cost

but leaves the computational cost and data volume unchanged. The compiler also performs other

optimizations such as overlapping, to hide the latency of the communication, and hoisting, to move

invariant components outside of loop nests.

4.4 Empirical Evidence of Success

The performance and portability of the ZPL language have been carefully documented. The first

step towards achieving good parallel performance is to achieve good performance on a single node.

Experiments on sequential computers have shown that ZPL is competitive—typically within a few

percent—with languages such as C and Fortran [36, 32, 20]. Comparisons against hand-coded

message passing programs [13, 36] show similar success. Forexample, Figure 5 shows that for 64
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Figure 6: (b) NAS Class A MG (Multigrid) performance on the Cray T3E, (a) Hierarchical N-body
performance on the Intel Paragon for various numbers of particles.

processors on the IBM SP-2, a ZPL implementation of the SIMPLE fluid dynamics benchmark [21]

is about 16% slower than the same program written using C and MPI. On the Cray T3E the ZPL

program’s performance is almost identical to the MPI version. Similarly, Figure 6(a) show that

on the T3E, ZPL performs nearly the same as a Fortran 77 MPI implementation of the NAS MG

(Multigrid) parallel benchmark.

Comparisons against other languages are more difficult to characterize. Ngo’s thesis [38] uses

a subset of the NAS benchmarks to perform an in-depth study ofthe ZPL and HPF languages and

their compilers, in this case our ZPL compiler and three commercial HPF compilers. Ngo draws

two conclusions. First, ZPL is more consistent in giving thebest performance, while HPF’s per-

formance fluctuates from one compiler to another and from onebenchmark to another. Second,

ZPL’s absolute performance and scaling are generally good.These results are consistent with ex-

periments from 1994 where an early version of ZPL was compared against an early HPF compiler

on a set of eight small benchmark programs [33], indicating an overall performance advantage to

ZPL.

ZPL has also been used by researchers to produce parallel programs for which parallel coun-

terparts in other languages do not exist. In these cases, performance is studied in two steps. First,

the ZPL programs are compared on a single processor against sequential implementations, writ-

ten in either C or Fortran. Then, speedups are computed to show that the programs’ performance

scaled well as the number of processors grew. For example, Figure 6(b) shows the relative speedup

of a ZPL implementation of a hierarchical N-body program that uses Anderson’s fast multipole

method [5]. This ZPL program [32], written by a civil engineering student as part of a wind engi-
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neering simulation, scales well, relative to a ZPL program running on one processor, as the number

of particles increases. As a measure of absolute performance, the ZPL program on one processor

is about 25% slower than a sequential C implementation for 6000 particles, with the overhead

decreasing as the number of particles increased.

Similar studies have been performed for two mathematical biology codes [20]. Both applica-

tions scale well, with one, a fibroblast simulation, exhibiting an overhead of roughly 38% over

sequential Fortran and the other, a bacteria model, exhibiting a speedup of 6.5% over sequential

Fortran. In addition, scientists have used ZPL to implementa parallel version of the CLAWPACK

library for solving hyperbolic systems of conservation laws [30], to parallelize a large (10,000 lines

of ZPL) synchronous circuit simulator [40], and to perform Lattice Boltzmann simulations to study

multiphase flow problems for polymer processing applications [49]. In all of these cases, the ZPL

programs were written by scientists and engineers outside of the ZPL group.

In all of these studies, portability has been demonstrated by showing good performance across

different machines. The machines have exhibited generational differences as newer machines have

replaced older ones, and have exhibited architectural differences in their communication structure

and balance of computation and communication speeds. For example, we have shown results for

the now-extinct Kendall Square KSR-2, Intel Paragon, the SGI Power Challenge, and Cray T3D,

as well as current machines such as the Cray T3E and IBM SP-2. The KSR-2 was a ring-of-rings

machine with a cache-only memory structure that provided a single coherent address space. The

Intel Paragon was a non-shared memory machine consisting ofa 2-dimensional mesh of proces-

sors. The Cray T3D and T3E are 3-dimensional tori that provide high bandwidth, low latency and

relatively slow processors, while the IBM SP-2 provides much lower bandwidth, higher latency,

and fast processors. Finally, the SGI Power Challenge is a cache-coherent non-uniform memory

access (CC-NUMA) machine that provides hardware support for accesses to remote data at a fine

granularity.

The Role of the Underlying Models. We have explained how various aspects of ZPL provide

benefits to the programmer and compiler. We now explain how the CTA abstract machine and the

Phase Abstractions programming model contribute to ZPL’s overall success. The CTA provides

guidance in three ways. First, constructs are only includedif they map well to the abstract ma-

chine. This is effective because all current and proposed parallel machines can be described by

the CTA. Second, the language borrows the CTA’s principle ofexposing costs. Thus, it is critical

that ZPL’s communication constructs be syntactically exposed, much as the CTA exposes costs in

ways that the PRAM [22] does not. Third, the implementation of the language is phrased in terms
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of the Phase Abstractions model, so as language features areconsidered, their benefits can be

weighed against their implementation costs and execution costs. The Phase Abstraction program-

ming model is most evident in the design of the compiler, where the model’s notion of a distributed

data structure, orensemble, has a direct correlation to ZPL’s region construct. Together, this inte-

grated approach to language and compiler design leads to constructs that can be efficiently imple-

mented across diverse parallel computers, leads to a language and execution model that supports

the WYSIWYG performance model, and, most importantly, leads to the exclusion of numerous

constructs that would hinder the goal of portable performance.

4.5 Tools and Debuggers

ZPL’s sequential semantics allow programmers to develop and debug their programs on familiar

workstation environments before compiling them for production runs on parallel computers. De-

bugging on sequential platforms is supported by Monash University’s zgdb, an extension of the gdb

debugger that supports ZPL.6 Debugging on parallel platforms is supported by GUARD [1, 47], a

tool that allows the behavior of a parallel program to be compared against that of a known correct

program (which may be a sequential C or Fortran program).

ZPL is not directly supported by any performance analysis tools (the resulting C code can, of

course, be analyzed). However, ZPL’s transparent performance model reduces the need for such

tools; this contrasts with other languages, such as HPF, which increasethe need for performance

analysis tools, as discussed in Section 6.

5 Other Features of ZPL

To paint a more complete picture of ZPL, this section describes generalizations of regions, addi-

tional region operators, and a generalization of sequential control flow.

Generalizations of Regions

The notion of regions described in Section 3 have been generalized in several ways. Regions can

be regularly sparse (strided regions), have parameterizedbounds and strides (multi-regions), and

even have replicated dimensions (flood regions).

6For more information on zgdb, or to download zgdb, seehttp://www.dgs.monash.edu.au/research/
guard/gdb/
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Strided Regions. The regions presented in the Section 3 are dense; every element in the index

set is present. Regularly sparse regions can be declared by usingstriding. Striding is applied to

one or more dimensions in a region declaration using theby operator. For example, the statement

region sR = [1..n,1..n] by [2,2];

declares a 2-dimensional region with indicesf(1,1), (1,3), ... (1,n), (3,1),

(3,3), ... (n,n-2), (n,n) g (for n odd). Arrays declared using strided regions only

have values and memory allocated for the defined indices. Standard operations (arithmetic, reduc-

tions,etc.) can be applied to strided arrays. As with dense arrays, an appropriate region must be

applied to strided arrays,i.e., elements present in the region must be present in the array.

Multi-Regions. Regions with similar structure can be parameterized and grouped together to

form a multi-region, which is a collection of indexable regions with bounds and/or strides that are

expressions of the index value. For example, the statement

region mR f0..3 g = [ fg..n+ fg];

declares a multi-region that is a collection of four regions, [0..n] , [1..n+1] , [2..n+2] , and

[3..n+3] . When usingmR, an index is enclosed in curly braces to indicate which region in the

collection is to be applied. For example, the following statement uses the region[1..n+1] to

assignA.

[mRf1g] A := 1.0;

Multi-regions are often coupled with strided regions to createhierarchical regions. Hierarchical

regions are extremely useful formultigrid andmulti-resolutioncodes where the granularity of the

grid is selectively varied to focus computational effort where it is most needed. The following

statements combine to declare a multi-region that becomes more sparse as the index increases.

region R = [1..8,1..8];
hR{0..3} = R by [2ˆ{},2ˆ{}];

hRf0g is dense because it is strided by 1,hRf1g is strided by 2,etc. hRf3g includes only one in-

dex, (1,1). Arrays declared using multi-regions are calledmulti-arrays. Similarly,multi-directions

are parameterized directions designed to be used with multi-regions and multi-arrays. The fol-

lowing statement performs the restriction step to move betweenlevelsin a multigrid computation

using multi-regions, multi-arrays, and multi-directions.

[hR{i+1}] A{i+1} := A{i}/2 + (A{i}@north{i}+A{i}@east{i} +
A{i}@south{i}+A{i}@west{i})/8;

Multi-regions increase code reuse in multigrid computations. The statement above can be used

for restriction at any level of the grid, so no level-specificcode is necessary.
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Flood Regions. Flood regions omit the indices of certain dimensions to indicate that arrays de-

fined on these regions have replicated data. For example, thefollowing declaration

region fR = [1..n,*];

defines a flood region,fR , in which the second dimension is omitted. Subsequent arrays declared

with such regions are referred to asflood arrays.The following declaration

var fA: [fR] integer;

defines a 2-dimensional flood array,fA , that hasn rows and an infinite number of columns. The

data in the omitted dimensions of the flood region are logically replicated across all indices. In the

implementation, only the defining values of each element in the flood dimension exist on any pro-

cessor. The associated flood operator (>>) is used to spread data across the unspecified dimension.

The following statementfloodscolumnn of A, a dense array, intofA , a flood array.

[fR] fA := >>[1..n,n] A;

Flood arrays can be used to compute the outer product of two vectors. The following example

computes the outer product of the first row and the first columnof the matrixA.

region R = [1..n,1..n];
Row = [*,1..n];
Col = [1..n,*];

var A, OP: [R] integer; -- n x n matrices
Vr: [Row] integer; -- flooded row
Vc: [Col] integer; -- flooded column

[Row] Vr := >>[1,1..n] A; -- flood the first row into Vr
[Col] Vc := >>[1..n,1] A; -- flood the first column into Vc

[R] OP := Vr*Vc; -- compute the outer product

Other Region Operators

In previous sections, we introduced theof , at , in , andby operators. We now describe the two

remaining region operators:with andwithout .

The with andwithout operators are use to performmaskedcomputations. A mask is a

boolean array used to turn off computation for certain arrayelements. The following statements

performred-blacksuccessive over relaxation (SOR) of a 3-dimensional body (we assume thatRed

is a mask that has been initialized to describe a 3-dimensional checkerboard pattern).

[R with Red] U := f*(hsq*F+U@top+U@bot+U@left+U@right+U@ front+U@back);
[R without Red] U := f*(hsq*F+U@top+U@bot+U@left+U@right +U@front+U@back);
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Masking restricts the elements over which computation takes place, but it does not change

the indices represented by the region. As a result, masking is used only to specify the extent of

computation, not to declare arrays.

Generalizations of Control Flow Constructs

Masking is convenient but requires extra memory for storingthe mask itself. An alternative is

to use generalized control flow constructs. Their use is morerestrictive, but their performance is

typically better. When a control expression contains an array, the computation isshatteredsuch

that, conceptually, an independent thread is spawned to perform the computation for each element

in the array. All threads implicitlyjoin at the end of the control structure. The following statements

perform the factorial operation on every element in the array.

F := 1; -- initialize factorial with identity
while A != 1 do

F *= A; -- accumulate product
A -= 1;

end;

To prevent deadlock and non-deterministic behavior, the body of shattered control is constrained

in various ways. For example, scalars cannot be assigned inside shattered control flow. Details are

provided elsewhere [46].

6 Related Work

Apart from ZPL, many other parallel programming languages have been proposed and developed,

with similar goals of providing architecture-independentprogramming. Here we consider some of

the main languages and contrast their approaches with that taken by ZPL.

Perhaps the best known language effort for parallel computing is High Performance Fortran

(HPF) [26]. HPF was designed by extending the sequential Fortran 90 language to support the

distribution of arrays across multiple processors, resulting in parallel computation. Programmers

may give suggestions for array alignment and distribution in the form of directives, though their

use is optional and they may be ignored by the compiler. This flexibility in implementation has

two drastic effects: (1) programmers have no direct means for determining the communication

overheads associated with their programs since communication is dependent on data distribution

and alignment, and (2) compilers are free to distribute dataas they see fit, implying that a program

which has been tuned to work well on one platform may perform terribly when compiled on another
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system. This lack of a performance model in the language is completely antithetical to the notion

of portable performance.

Ngo et al.demonstrate that HPF’s failure to specify a data distribution model results in erratic

execution times when compiling HPF programs with differentcompilers on the IBM SP-2 [39].

To alleviate this problem, tools such as the dPablo toolkit [3] have been designed which give

source-level feedback about compilation decisions and program execution. However, these tools

are tightly coupled to a compiler’s individual compilationmodel and therefore do not directly aid

in the development of portable programs.

NESL [10] is a parallel functional programming language. Its designers recognized that in the

parallel realm the ability to reason about a program’s execution is crucial, so a work/depth-based

performance model was designed to support this task [11]. Although this model matches NESL’s

functional style well and allows for coarse-grained implementation decisions, it uses a very abstract

machine model that reveals little about the mapping of NESL constructs to actual architectures. For

example, the cost of interprocessor communication is considered negligible in the NESL model and

is therefore ignored entirely.

C� [48] is an extension to the C programming language that was developed for programming

the Connection Machine (CM). Several aspects of its design do an excellent job of making the

mapping of C� programs to the hardware transparent. For example, the CM architecture supports

two general types of interprocessor communication with significantly different overheads—grid

communicationand the more costlygeneral communication. This disparity is reflected in the

language by its syntactic classification of array references as being either grid or general. Although

this does an excellent service for the CM programmer, its benefits are diminished when C� is

implemented on different architectures since they may support additional forms of communication

with intermediate costs,e.g., broadcasts along subdimensions of a processor grid.

As an alternative to parallel languages, many runtime libraries have been developed to support

the creation of portable parallel codes. As libraries, these approaches do not offer the same syntac-

tic benefits as ZPL, and they cannot benefit from the same compiler optimizations that a language

can.

The most notable libraries those that provide support for message passing, PVM [8] and

MPI [23]. These libraries have been hailed as successes due to their widespread implementation on

numerous parallel and sequential architectures, and for the relative ease with which codes written

on one architecture can be run on another. However, the libraries are not without their drawbacks.

First of all, they put the burden of parallel programming on the users, requiring them to code at

a per-processor level and manage all memory and communication explicitly. This is tedious and
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error prone, and is considered by many to be equivalent to programming sequential computers in

assembly language. In addition, the libraries restrict theuser to a particular paradigm of commu-

nication, which may or may not be optimal for a given architecture [15]. Although extensions to

the libraries [24] seek to alleviate this problem by supporting a richer set of communication styles,

this does not solve the problem because to achieve optimal performance, a program would have to

be rewritten for each machine to use the interface that is most appropriate.

LPARX [28] is a library that supports the parallel implementation of non-uniform problems.

LPARX provides user-controlled index sets and a more general version of ZPL’s regions that sup-

port set theoretic operations, such as union, intersection, and difference. LPARX programmers

can specify the distribution of index sets to processors, relying on the runtime system to imple-

ment transparent interprocessor communication for non-local array references. LPARX does not

provide a WYSIWYG performance model.

HPC++ [27] extends C++ by providing class libraries to support both task and data parallelism.

HPC++ uses a parallel implementation of the C++ Standard Template Library to provide parallel

container classes and parallel iterators, and HPC++ uses pragmas to identify parallel loops. HPC++

also provides support for multithreaded programming. In short, HPC++ supports task parallelism

and a wider range of data structures via lower-level mechanisms than those in ZPL.

7 Conclusion

This paper has explained how the ZPL programming language provides architecture-independence,

high performance, and programming convenience for data parallel applications. We have explained

how this language was founded on an abstract parallel machine, and we have argued that the

relationships between the language, its compiler, and their underlying programming model were

central to this success. Finally, we have shown how the notion of regions plays an important role in

the ZPL language, both in providing programming convenience and in developing the language’s

WYSIWYG performance model.

One enabling factor in ZPL’s success is its focus on data parallelism. ZPL was designed as a

sub-language of the more powerful Advanced-ZPL (A-ZPL) language [35], so ZPL could afford to

provide support for arrays at the exclusion of other data structures. As a consequence, ZPL is not

ideally suited for solving certain types of dynamic and irregular problems. (Of course, as a Turing

complete language, ZPL is not restrictive in any fundamental sense.) We are using the lessons

learned from ZPL to guide the design of A-ZPL. For example, wehave already demonstrated ways

by which A-ZPL can extend the notion of regions to support sparse computation [17] and pipelined
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wavefront codes [18]. Furthermore, we envision that A-ZPL will support richer data structures, as

well as task parallelism and irregular parallelism.
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