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Abstract

Floating-point computations introduce several side chan-
nels. This paper describes the first solution that closes
these side channels while preserving the precision of
non-secure executions. Our solution exploits micro-
architectural features of the x86 architecture along with
novel compilation techniques to provide low overhead.

Because of the details of x86 execution, the evaluation
of floating-point side channel defenses is quite involved,
but we show that our solution is secure, precise, and fast.
Our solution closes more side channels than any prior so-
lution. Despite the added security, our solution does not
compromise on the precision of the floating-point oper-
ations. Finally, for a set of microkernels, our solution is
an order of magnitude more efficient than the previous
solution.

1 Introduction

To secure our computer systems, considerable effort has
been devoted to techniques such as encryption, access
control, and information flow analysis. Unfortunately,
these mechanisms can often be subverted through the use
of side channels, in which an adversary, with the knowl-
edge of the program, monitors the program’s execution
to infer secret values. These side channels are signifi-
cant because they have been used to discover encryption
keys in AES [26], RSA [27], and the Diffie-Hellman key
exchange protocol [14], thereby rendering these sophis-
ticated schemes useless.

Numerous side channels exist, including instruction
and data caches [27, 26], branch predictors [2], mem-
ory usage [12, 35], execution time [31, 4], heat [22],
power [15], and electromagnetic radiation [9], but one
particularly insidious side channel arises from the exe-
cution of variable-latency floating-point instructions [3,
10], in which an instruction’s latency varies widely de-
pending on its operands, as shown in Table 1.

Zero Normal Subnormal Infinity NaN
7 11 153 7 7

Table 1: Latency (in cycles) of the SQRTSS instruction for
various operands.

Both x861 and ARM2 provide variable-latency
floating-point instructions. This variable latency stems
from the desire to have graceful floating-point arithmetic
behavior, which, as we explain in Section 3, requires the
use of so-called subnormal values [8], which are pro-
cessed using special algorithms. Since subnormal values
are rare, hardware vendors typically support such values
in microcode, so as not to slow down the common case.
The resulting difference in instruction latency creates a
timing side channel, which has been used to infer cross-
origin data in browsers and to break differential privacy
guarantees of a remote database [3].

However, variable latency floating-point instructions
represent only a part of the problem, since higher level
floating-point operations, such as sine and cosine, are
typically implemented in software. Thus, the implemen-
tation of these floating-point operations can leak secret
information through other side channels as well. De-
pending on the secret values, programs can throw excep-
tions, thereby leaking the presence of abnormal inputs
through termination. Programs can also contain condi-
tional branches, which can leak secrets through the in-
struction pointer, branch predictor, or memory access
count. Finally, programs that index into lookup tables
can leak secrets through the memory address trace.

To prevent information leaks in both floating-point in-
structions and floating-point software, a strong solution
should ensure at least four key properties, which cor-
respond to the side channels that we discussed above:

1http://www.agner.org/optimize/instruction tables.pdf
2http://infocenter.arm.com/help/index.jsp?topic=/com.

arm.doc.ddi0344k/ch16s07s01.html

http://www.agner.org/optimize/instruction_tables.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344k/ch16s07s01.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344k/ch16s07s01.html


(1) fixed-time operations that are independent of secret
values, (2) disabled exceptions, (3) sequential control
flow, and (4) uniform data accesses that are independent
of the value of secret variables. Previous solutions [3, 5]
are inadequate because they do not ensure all four prop-
erties, are slow, are orders of magnitude less precise, or
are difficult to implement.

This paper presents a novel solution that closes side
channels arising from both hardware and software im-
plementations of floating point operations, providing all
four properties mentioned above. Our compiler-based
solution has two components.

The first component creates building blocks of ele-
mentary floating-point operations for instructions that are
natively supported by the hardware (addition, subtrac-
tion, multiplication, division, square root, and type con-
version). Our solution leverages unused SIMD lanes so
that fast operations on normal operands are accompanied
by slower dummy computations on subnormal operands,
yielding a consistent yet low instruction latency for all
types of operands.

The second component is a software library of higher-
level floating-point operations like sine and cosine.
The key to creating this second component is a new
code transformation that produces fixed-latency func-
tions through normalized control flows and data access
patterns. Code generated by our compiler closes digital
side-channels, which have been defined to be those side
channels that carry information over discrete bits [28].
Whereas previous work in closing digital side channels
employs a runtime system [28], our solution shifts much
of the work to compile time, yielding a significantly
smaller runtime overhead.

This paper makes the following contributions:

1. We present a novel compiler-based system, called
Escort, for closing digital side channels that arise
from the processing of floating-point instructions.

2. Secure: We demonstrate that our solution is secure
not just against timing but also against digital side
channels. We demonstrate Escort’s capabilities by
defeating a machine-learning side-channel attack,
by defending against a timing attack on the Firefox
web browser, by conducting extensive performance
measurements on an x86 processor, and by verify-
ing our solution’s code using typing rules.

3. Precise: We show that Escort provides precision
that is identical to that of the standard C math li-
brary. By contrast, the previous solution’s precision
is off by several million floating-point values.

4. Fast: We show that our solution is fast. On a
set of micro-benchmarks that exercise elementary

floating-point operations, Escort is 16× faster than
the previous solution [3].

5. As an ancillary contribution, we introduce a
methodology for evaluating the precision and se-
curity of floating-point operations, which is fraught
with subtleties.

The rest of this paper is organized as follows. Sec-
tion 2 describes our threat model, related work, and sys-
tem guarantees. We provide background in Section 3 be-
fore presenting our solution in Section 4. We evaluate
our solution in Sections 5–7 . Finally, we conclude in
Section 8.

2 Threat Model and Related Work

This section begins by describing our threat model,
which shapes our subsequent discussion of related work
and of Escort’s security guarantees.

Threat Model. Our goal is to prevent secret floating-
point operands from leaking to untrusted principals that
either read digital signals from the processor’s pins or
that are co-resident processes.

We assume that the adversary is either an external en-
tity that monitors observation-based side channels (e.g.
time [14], memory address trace [11], or the /proc
pseudo-filesystem [12]) or a co-resident process/VM that
monitors contention-based side channels (e.g. cache [27]
or branch predictor state [2]).

For off-chip observation-based channels, we assume
that the processor resides in a sealed and tamper-proof
chip that prevents the adversary from measuring physi-
cal side channels like heat, power, electromagnetic radi-
ation, etc. We assume that the CPU encrypts data trans-
ferred to and from DRAM. All components other than
the processor are untrusted, and we assume that the ad-
versary can observe and tamper with any digital signal.
For on-chip contention-based channels, we assume that
the OS is trusted and does not leak the victim process’s
secret information. We also assume that the adversary
cannot observe or change the victim process’s register
contents. Our trusted computing base includes the com-
pilation toolchain.

Side-Channel Defenses. Decades of prior research
have produced numerous defenses against side channels,
the vast majority of which close only a limited number
of side channels with a single solution. For instance,
numerous solutions exist that close only the cache side
channel [6, 36, 39, 37, 16] or only the address-trace
side channel [33, 20, 32, 29]. Raccoon [28] is the first
solution that closes a broad class of side channels—in



particular, the set of digital side channels—with a sin-
gle solution. Similar to Raccoon, Escort also closes
digital side channels with a single solution, but unlike
Raccoon, Escort focuses on closing floating-point digi-
tal side channels, which can arise from variable latency
floating-point instructions and from software implemen-
tations of floating-point libraries, in which points-to set
sizes are typically small. Given Escort’s narrower focus
on floating-point computations, Escort is faster than Rac-
coon by an order of magnitude.

Timing Side-Channel Defenses. Prior defenses
against timing side-channel attacks utilize new algo-
rithms [30], compilers [23], runtime systems [21], or
secure processors [18]. However, these solutions only
address one source of timing variations—either those
stem from the choice of the algorithm [31] or those
that stem from the microarchitectural design [10]. By
contrast, Escort closes timing variations from both
sources.

Floating-Point Side-Channel Defenses. Andrysco et
al. [3] present libfixedtimefixedpoint (FTFP), the
first software solution for closing the floating-point tim-
ing channel. FTFP has some weaknesses, as we now
discuss, but the main contribution of their paper is the
demonstration of the significance of this side channel,
as they use variable-latency floating-point operations to
break a browser’s same-origin policy and to break dif-
ferential privacy guarantees of remote databases. FTFP
is a fixed-point library that consists of 19 hand-written
functions that each operates in fixed time, independent
of its inputs. FTFP is slow, it is imprecise, and it ex-
poses secrets through other side channels, such as the
cache side channel or the address trace side channel.
Cleemput et al. [5] introduce compiler transformations
that convert variable-timing code into fixed-timing code.
Their technique requires extensive manual intervention,
applies only to the division operation, and provides weak
security guarantees. Both solutions require manual con-
struction of fixed-time code—a cumbersome process that
makes it difficult to support a large number of operations.
By contrast, Escort implements a fixed-time floating-
point library, while preventing information leaks through
timing as well as digital side channels. Escort includes a
compiler that we have used to automate the transforma-
tion of 112 floating-point functions in the Musl standard
C library, a POSIX-compliant C library. Escort also pro-
vides precision identical to the standard C library.

Escort’s Guarantees. Escort rejects programs that
contain unsupported features—I/O operations and recur-
sive function calls. Unlike prior work [18, 28], Escort

does transform loops that leak information through trip
counts. Escort is unable to handle programs contain-
ing irreducible control flow graphs (CFGs), but standard
compiler transformations [24] can transform irreducible
CFGs into reducible CFGs. Escort assumes that the in-
put program does not use vector instructions, does not
exhibit undefined behavior, does not terminate abnor-
mally through exceptions, and is free of race conditions.
Given a program that abides by these limitations, Es-
cort guarantees that the transformed code produces iden-
tical results as the original program, does not leak se-
crets through timing or digital side channels, and that the
transformed code does not terminate abnormally.

3 Background

The variable latency of floating-point instructions creates
security vulnerabilities. In this section, we explain sub-
normal numbers, which are the cause of the variable la-
tency, and we explain the difficulty of fixing the resulting
vulnerability. We also explain how the Unit of Least Pre-
cision (ULP) can be used to quantify the precision of our
and competing solutions.
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Figure 1: Impact of allowing subnormal numbers. With-
out subnormal values, there exists a much larger gap be-
tween zero and the smallest positive number than be-
tween the first two smallest positive numbers. With sub-
normal numbers, the values are more equally spaced.
(The figure is not drawn to scale.)

3.1 Subnormal Numbers
Subnormal numbers have tiny exponents, which result
in floating-point values that are extremely close to zero:
10−45 < |x| < 10−38 for single-precision numbers and
10−324 < |x| < 10−308 for double-precision numbers.
Subnormal values extend the range of floating-point
numbers that can be represented, but more importantly,
they enable gradual underflow—the property that as
floating-point numbers approach zero along the number
scale, the difference between successive floating-point
numbers does not increase3. Figures 1a and 1b show the

3https://www.cs.berkeley.edu/∼wkahan/ARITH 17U.pdf

https://www.cs.berkeley.edu/~wkahan/ARITH_17U.pdf


differences between zero and the two smallest positive
floating-point numbers. With subnormal numbers, the
gap between any two consecutive floating-point values is
never larger than the values themselves, thus exhibiting
Gradual Underflow. Subnormal numbers are indispens-
able because gradual underflow is required for reliable
equation solving and convergence acceleration [8, 13].

To avoid the added hardware complexity of supporting
subnormal numbers, which occur infrequently, vendors
typically process subnormal values in microcode, which
is orders of magnitude slower than hardwired logic.

The resulting difference in latencies creates a security
vulnerability. An adversary that can measure the latency
of a floating-point instruction can make reasonable esti-
mates about the operand type, potentially inferring secret
values using the timing channel. While subnormal values
occur infrequently in typical program execution, an ad-
versary can deliberately induce subnormal values in the
application’s inputs to enable subnormal operand timing
attacks.

3.2 Floating-Point Error Measurement
Unlike real (infinite precision) numbers, floating-point
numbers use a limited number of bits to store values,
thus making them prone to rounding errors. Rounding
errors in floating-point numbers are typically measured
in terms of the Unit of Least Precision (ULP) [25]. The
ULP distance between two floating-point numbers is the
number of distinct representable floating-point numbers
between them, which is simply the result of subtracting
their integer representations. If the result of the subtrac-
tion is zero, the floating-point numbers must be exactly
the same.

4 Our Solution: Escort

Escort offers secure counterparts of ordinary non-secure
floating-point operations, including both elementary op-
erations and higher-level math operations. The elemen-
tary operations include the six basic floating-point op-
erations that are natively supported by the ISA—type
conversion, addition, subtraction, multiplication, divi-
sion, and square root—and a conditional data copy op-
eration. The 112 higher-level math operations are those
that are implemented using a combination of native in-
structions. Examples of higher-level functions include
sine, cosine, tangent, power, logarithm, exponentiation,
absolute value, floor, and ceiling.

The next subsections describe Escort’s design in three
parts. First, we describe the design of Escort’s secure el-
ementary operations. These operations collectively form
the foundation of Escort’s security guarantees. Second,
we describe Escort’s compiler, which accepts non-secure

code for higher-level operations and converts it into se-
cure code. This compiler combines a code transforma-
tion technique with Escort’s secure elementary opera-
tions. Third, we present an example that shows the syn-
ergy among Escort’s components.

4.1 Elementary Operations
The key insight behind Escort’s secure elementary opera-
tions is that the latencies of SIMD instructions are deter-
mined by the slowest operation among the SIMD lanes
(see Figure 2), so the Escort compiler ensures that each
elementary instruction runs along side a dummy instruc-
tion whose operand will produce the longest possible la-
tency. Our analysis of 94 x86 SSE and SSE2 instruc-
tions (which includes single- and double-precision arith-
metic, comparison, logical, and conversion instructions)
reveals: (1) that only the multiplication, division, square
root, and single-precision to double-precision conver-
sion (upcast) instructions exhibit latencies that depend
on their operands and (2) that subnormal operands in-
duce the longest latency.

In particular, Escort’s fixed-time floating-point opera-
tions utilize SIMD lanes in x86 SSE and SSE2 instruc-
tions. Our solution (1) loads genuine and dummy (sub-
normal) inputs in spare SIMD lanes of the same input
register, (2) invokes the desired SIMD instruction, and
(3) retains only the result of the operation on the genuine
inputs. Our tests confirm that the resulting SIMD instruc-
tion exhibits the worst-case latency, with negligible vari-
ation in running time (standard deviation is at most 1.5%
of the mean). Figure 3 shows Escort’s implementation of
one such operation.

Escort includes Raccoon’s conditional data copy op-
eration (see Figure 4) which does not leak information
through digital side channels. This operation copies the
contents of one register to another register if the given
condition is true. However, regardless of the condition,
this operation consumes a fixed amount of time, executes
the same set of instructions, and does not access applica-
tion memory.

4.2 Compiling Higher-Level Operations
Escort’s compiler converts existing non-secure code into
secure code that prevents information leakage through
digital side channels. First, our compiler replaces all ele-
mentary floating-point operations with their secure coun-
terparts. Next, our compiler produces straight-line code
that preserves control dependences among basic blocks
while preventing instruction side effects from leaking se-
crets. Our compiler then transforms array access state-
ments so that they do not leak information through mem-
ory address traces. Finally, our compiler transforms
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Figure 2: The key idea behind Escort’s secure elementary operations. The operation is forced to exhibit a fixed latency
by executing a fixed-latency long-running operation in a spare SIMD lane.

double escort_mul_dp(double x, double y) {
const double k_normal_dp = 1.4;
const double k_subnormal_dp = 2.225e-322;

double result;
__asm__ volatile(

"movdqa %1, %%xmm14;"
"movdqa %2, %%xmm15;"
"pslldq $8, %1;"
"pslldq $8, %2;"
"por %3, %1;"
"por %4, %2;"
"movdqa %2, %0;"
"mulpd %1, %0;"
"psrldq $8, %0;"
"movdqa %%xmm14, %1;"
"movdqa %%xmm15, %2;"
: "=x" (result), "+x" (x), "+x" (y)
: "x" (k_subnormal_dp), "x" (k_normal_dp)
: "xmm15", "xmm14");

return result;
}

Figure 3: Escort’s implementation of double-precision
multiplication, using the AT&T syntax.

loops whose trip count reveals secrets over digital side
channels. We now describe each step in turn.

4.2.1 Step 1: Using Secure Elementary Operations

The Escort compiler replaces x86 floating-point type-
conversion, multiplication, division, and square root as-
sembly instructions with their Escort counterparts. How-
ever, Escort’s secure elementary operations can be up
to two orders of magnitude slower than their non-secure
counterparts. Hence, our compiler minimizes their usage
by using taint tracking and by employing the quantifier-
free bit-vector logic in the Z3 SMT solver [7], which is
equipped with floating-point number theory. If the solver
can prove that the operands can never be subnormal val-
ues, then Escort refrains from replacing that instruction.

In effect, the Escort compiler constructs path-sensitive
Z3 expressions for each arithmetic statement in the

01: copy(uint8_t pred, uint32_t t_val, uint32_t f_val) {
02: uint32_t result;
03: __asm__ volatile (
04: "mov %2, %0;"
05: "test %1, %1;"
06: "cmovz %3, %0;"
07: "test %2, %2;"
08: : "=r" (result)
09: : "r" (pred), "r" (t_val), "r" (f_val)
10: : "cc"
11: );
12: return result;
13: }

Figure 4: Code for conditional data copy operation that
does not leak information over digital side channels. This
function returns t val if pred is true; otherwise it re-
turns f val. The assembly code uses AT&T syntax.

LLVM IR. For every Φ-node that produces an operand
for an arithmetic expression, Escort creates one copy of
the expression for each input to the Φ-node. If the solver
reports that no operand can have a subnormal value, then
Escort skips instrumentation of that floating-point opera-
tion.

We set a timeout of 40 seconds for each invocation of
the SMT solver. If the solver can prove that the instruc-
tion never uses subnormal operands, then Escort skips
replacing that floating-point instruction with its secure
counterpart. Figure 5 shows the percentage of floating-
point instructions in commonly used math functions that
are left untransformed by Escort.

This optimization is conservative because it assumes
that all floating-point instructions in the program have
subnormal operands unless proven otherwise. The cor-
rectness of the optimization is independent of the code’s
use of pointers, library calls, system calls, or dynamic
values. The static analysis used in this optimization is
flow-sensitive, path-sensitive, and intra-procedural.
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Figure 5: Percentage of instructions that are left uninstru-
mented (without sacrificing security) after consulting the
SMT solver.

4.2.2 Step 2: Predicating Basic Blocks

Basic block predicates represent the conditions that dic-
tate whether an instruction should execute. These pred-
icates are derived by analyzing conditional branch in-
structions. For each conditional branch instruction that
evaluates a predicate p, the Escort compiler associates
the predicate p with all basic blocks that execute if the
predicate is true, and it associates the predicate ¬p with
all basic blocks that execute if the predicate is false. For
unconditional branches, the compiler copies the predi-
cate of the previous block into the next block. Finally,
if the Escort compiler comes across a block that already
has a predicate, then the compiler sets the block’s new
predicate to the logical OR of the input predicates. At
each step, the Escort compiler uses Z3 as a SAT solver to
simplify predicates by eliminating unnecessary variables
in predicate formulas. Figure 6 shows the algorithm for
basic block predication.

4.2.3 Step 3: Linearizing Basic Blocks

The Escort compiler converts the given code into
straight-line code so that every invocation of the code
executes the same instructions. To preserve control de-
pendences, the basic blocks are topologically sorted, and
then the code is assembled into a single basic block with
branch instructions removed.

4.2.4 Step 4: Controlling Side Effects

We now explain how Escort prevents side effects from
leaking secrets. Here, side effects are modifications to
the program state or any observable interaction, includ-
ing memory accesses, exceptions, function calls, or I/O.
Escort controls all side effects except for I/O statements.

1: for each basic block bb in function do
2: if entry block(bb) then
3: pred[bb]← true
4: else
5: pred[bb]← false
6: end if
7: end for
8:
9: for each basic block bb in function do

10: br← branch(bb)
11: if unconditional branch(br) then
12: {s}← successors(bb)
13: pred[s]← pred[s]∨ pred[bb]
14: pred[s]← simpli f y(pred[s])
15: else . Conditional Branch.
16: {s1,s2}← successors(bb)
17: if loop condition branch(br) then
18: . Skip branches that represent loops.
19: pred[s1]← pred[s1]∨ pred[bb]
20: pred[s2]← pred[s2]∨ pred[bb]
21: else
22: p← condition(br)
23: pred[s1]← pred[s1]∨ (pred[bb]∧ p)
24: pred[s2]← pred[s2]∨ (pred[bb]∧¬p)
25: end if
26: pred[s1]← simpli f y(pred[s1])
27: pred[s2]← simpli f y(pred[s2])
28: end if
29: end for

Figure 6: Algorithm for predicating basic blocks.

Memory Access Side Effects. To ensure proper mem-
ory access side effects, the Escort compiler replaces store
instructions with conditional data-copy operations that
are guarded by the basic block’s predicate, so memory
is only updated by instructions whose predicate is true.

Unfortunately, this naı̈ve approach can leak secret in-
formation when the program uses pointers. Figure 7
illustrates the problem: If store instructions are not al-
lowed to update a pointer variable when the basic block
predicate is false, then the address trace from subsequent
load instructions on the pointer variable will expose the
fact that the pointer variable was not updated.

The Escort compiler prevents such information leaks
by statically replacing pointer dereferences with loads or
stores to each element of the points-to set4. Thus Escort
replaces the statement in line 8 (Figure 7) with a store
operation on b. When the points-to set is larger than a

4Escort uses a flow-sensitive, context-insensitive pointer analysis:
https://github.com/grievejia/tpa. Replacing a pointer derefer-
ence with a store operation on all elements of the points-to set is feasi-
ble for Escort because points-to set sizes in the Musl C library are very
small.

https://github.com/grievejia/tpa


1: p←&a
2: secret← input() . Assume input() returns true.
3: if secret = true then
4: ...
5: else
6: ...
7: p←&b . Instruction does not update pointer p,

since basic block’s execution-time predicate is false.
8: ∗p← 10 . Accesses a instead of b!
9: end if

Figure 7: The use of pointers can leak information. If
store instructions are not allowed to access memory
when the basic block’s predicate is false, then pointer
p will dereference the address for a instead of b, thus
revealing that secret is true.

singleton set, Escort uses the conditional data copy op-
eration on all potential pointees i.e. the elements of the
points-to set. The predicate of the conditional copy oper-
ation checks whether the pointer points to the candidate
pointee. If the predicate is false, the pointee’s existing
value is overwritten, whereas if the predicate is true, the
new value is written to the pointee.

Function Call Side Effects. Adversaries can observe
the invocation of functions (or lack thereof) using side
channels like the Instruction Pointer. Thus, a solution in-
capable of handling function calls will leak information
to the adversary. While inlining functions is a potential
solution, inlining is impractical for large applications.

Escort handles side effects from function calls by
propagating the predicate from the calling function to the
callee. Thus, each user-defined function is given an ad-
ditional argument that represents the predicate of the call
site’s basic block. The callee ensures correct handling of
side effects by ANDing its own predicates with the caller’s
predicate.

Side Effects from Exceptions. Program termination
caused by exceptions will leak the presence or absence
of abnormal operands. To prevent such information leak-
age, Escort requires that exceptions not occur during pro-
gram execution5.

Escort manages floating-point and integer exceptions
differently. Escort requires that the programmer disable
floating-point exceptions (e.g. using feclearexcept()).
For integer exceptions, Escort borrows ideas from
Raccoon by replacing abnormal operands with benign
operands (e.g. Escort prevents integer division-by-zero
by replacing a zero divisor with a non-zero divisor).

5Escort assumes that the input program does not throw exceptions,
so masking exceptions does not change the semantics of the program.

4.2.5 Step 5: Transforming Array Accesses

Array index values reveal secrets as well. For instance,
if the adversary observes that accesses to array[0] and
array[secret index] result in accesses to locations 10
and 50, then the adversary knows that secret index =
40. To eliminate such information leaks, the Escort com-
piler transforms each array access into a linear sweep
over the entire array, which hides from the adversary the
address of the program’s actual array index.

Of course, the transformed code is expensive, but this
approach is feasible because (1) math library functions
typically use only a few small lookup tables, thus requir-
ing relatively few memory accesses and (2) the proces-
sor’s caches and prefetchers dramatically reduce the cost
of sweeping over the arrays.

4.2.6 Step 6: Transforming Loops

Some loops introduce timing channels because their trip
counts depend on secret values. The Escort compiler
transforms such loops using predictive mitigation [38].
The loop body executes as many times as the smallest
power of 2 that is greater than or equal to the loop trip
count. For instance, if the actual loop trip count is 10,
then the loop body is executed 16 times. The basic block
predicate ensures that dummy iterations do not cause side
effects. With this transformed code, an adversary that ob-
serves a loop trip count of l can infer that the actual loop
trip count l′ is between l and 0.5× l. However, the exact
value of l′ is not revealed to the adversary.

Unfortunately, this naive approach can still leak infor-
mation. For instance, if two distinct inputs cause the loop
to iterate 10 and 1000 times respectively, the transformed
codes will iterate 16 and 1024 times respectively—a
large difference that may create timing variations. To
mitigate this problem, Escort allows the programmer to
manually specify the minimum and maximum loop trip
counts using programmer annotations. These annota-
tions override the default settings used by the Escort
compiler.

4.3 Example Transformation: exp10f
We now explain how Escort transforms an exam-

ple non-secure function (Figure 8a) into a secure func-
tion (Figure 8c). To simplify subsequent analyses and
transformations, the Escort compiler applies LLVM’s
mergereturn transformation pass, which unifies all exit
nodes in the input function (see Figure 8b).

First, the Escort compiler replaces elementary
floating-point operations in lines 8 and 10 with their se-
cure counterpart function shown in lines 21 and 22 of the
transformed code. Second, using the algorithm shown in
Figure 6, the Escort compiler associates predicates with



float e10(float x) {
float n, y = mf(x, &n);
if (int(n) >> 23 & 0xff < 0x82) {

float p = p10[(int) n + 7];
if (y == 0.0f) {
return p;

}
return exp2f(3.322f * y) * p;

}
return exp2(3.322 * x);

}

(a) Original code for exp10f().

01: float e10(float x) {
02: float n, y = mf(x, &n);
03: if (int(n) >> 23 & 0xff < 0x82) {
04: float p = p10[(int) n + 7];
05: if (y == 0.0f)
06: result = p;
07: else
08: result =

exp2f(3.322f * y) * p;
09: } else
10: result = exp2(3.322 * x);
11: return result;
12: }

(b) Result after applying LLVM’s mergereturn pass. This
code becomes the input for the Escort compiler.

12: float e10(float x) {
13: return e10_cloned(x, true);
14: }
15:
16: float e10_cloned(float x, uint pred) {
17: float n, y = mf_cloned(x, &n, pred);
18: float p = write(int(n) >> 23 & 0xff

< 0x82, stream_load(p10, (int) n + 7]));
19: bool p2 = y == 0.0f;
20: write(pred & p1 & p2, p, &result);
21: write(pred & p1 & !p2,

escort_mul(
escort_mul(

exp2f_cloned(3.322f,
pred & p1 & !p2),

y),
p),

&result);

22: write(!p1,
escort_mul(

exp2_cloned(3.322, pred & !p1),
escort_upcast(x))),

result);

23: return result;
24: }

(c) Result of the Escort compiler’s transformation.

Figure 8: Escort’s transformation of exp10f().

A: y = mf(x, &n)

(n >> 23 
& 0xff) 
< 0x82?

B: p = p10[n + 7]

y = 0?C: result = exp2
(3.332 * x)

D: result = p

E: result = exp2f
(3.332f * y) * p

F: return result

Yes

Yes

No

No

Figure 9: Control flow graph with labeled statements for
the code in Figure 8b. A, B, D, E, C, F is one possible
sequence of basic blocks when linearized by the Escort
compiler.

Line # Predicate
2, 3, 11 TRUE

4, 5 (n >> 23 & 0xff) < 0x82
6 (n >> 23 & 0xff) < 0x82 ∧ y = 0
8 (n >> 23 & 0xff) < 0x82 ∧ y 6= 0

10 ¬((n >> 23 & 0xff) < 0x82)

Table 2: Predicates per line for function in Figure 8b.

each basic block, which we list in Table 2. Third, the Es-
cort compiler linearizes basic blocks by applying a topo-
logical sort on the control flow graph (see Figure 9) and
fuses the basic blocks together. Finally, the Escort com-
piler replaces the array access statement in line 4 with a
function that sweeps over the entire array. The resulting
code, shown in Figure 8c, eliminates control flows and
data flows that depend on secret values. In addition to
closing digital side channels, the code also uses secure
floating-point operations.



5 Security Evaluation

This section demonstrates that Escort’s floating-point op-
erations run in fixed time and do not leak information
through digital side channels. Since precise timing mea-
surement on x86 processors is tricky due to complex
processor and OS design, we take special measures to
ensure that our measurements are accurate. In addi-
tion to Escort’s timing and digital side channel defense,
we also demonstrate Escort’s defense against a floating-
point timing channel attack on the Firefox web browser.

5.1 Experimental Setup

We run all experiments on a 4-core Intel Core i7-2600
(Sandy Bridge) processor. The processor is clocked at
3.4 GHz. Each core on this processor has a 32 KB pri-
vate L1 instruction cache, a 32 KB private L1 data cache,
and a 256 KB private L2 cache. A single 8 MB L3 cache
is shared among all four cores. The host operating sys-
tem is Ubuntu 14.04 running kernel version 3.13. We im-
plement compiler transformations using the LLVM com-
piler framework [17] version 3.8.

We measure instruction latencies using the RDTSC in-
struction that returns the number of elapsed cycles since
resetting the processor. Since the latency of executing
the RDTSC instruction is usually higher than the latency
of executing operations, our setup measures the latency
of executing 1024 consecutive operations and divides the
measured latency by 1024. Our setup uses the CPUID in-
struction and volatile variables for preventing the pro-
cessor and the compiler from reordering critical instruc-
tions. Finally, our setup measures overhead by execut-
ing an empty loop body—a loop body that contains no
instructions other than those in the test harness. By plac-
ing an empty volatile asm block in the empty loop
body, our setup prevents the compiler from deleting the
empty loop body.

5.1.1 Outlier Elimination

Many factors outside of the experiment’s control, like in-
terrupts, scheduling policies, etc., may result in outliers
in performance measurements. We now explain our pro-
cedure for eliminating outliers, before demonstrating that
the elimination of these outliers does not bias the conclu-
sions.

We use Tukey’s method [34] for identifying outliers,
but we adapt it to conservatively classify fewer values as
outliers (thus including more values as valid data points).
The original Tukey’s method first finds the minimum
(Mn), median (Md), and maximum (Mx) of a set of values.
The first quartile, Q1, is the median of values between Mn
and Md . The third quartile, Q3, is the median of values

between Mx and Md . The difference between the first and
the third quartiles (Q3−Q1) is called the Inter-Quartile
Range, RIQ. Tukey’s method states that any value v, such
that v > Q3 + 3×RIQ or v < Q1− 3×RIQ is a probable
outlier. In our evaluation, we weaken our outlier elim-
ination process (i.e. we count fewer values as outliers),
by (1) setting the RIQ to be at least equal to 1.0, and
(2) classifying v as an outlier when v > Q3 + 20×RIQ
or v < Q1−20×RIQ. Results presented in the following
sections use the relaxed Tukey method described above.

Mean Median Std. Dev.
Different
Operands

847,323
(0.81%)

1,066,270
(1.02%) 381,467

Same
Operands

929,703
(0.89%)

1,139,961
(1.09%) 364,192

Table 3: Number of discarded outliers from 100 million
double-precision square-root operations. The results in-
dicate that our outlier elimination process is statistically
independent of the input operand values.

To demonstrate that our outlier elimination process
does not bias conclusions, we compare the distribution
of outliers between (a) 100 million operations using
randomly-generated operands, and (b) 100 million op-
erations using one fixed operand. The two experiments
do not differ in any way other than the difference in their
input operands. Table 3 shows the mean, median, and
standard deviation of outliers for the double-precision
square-root operation. Results for other floating-point
operations are similar and are elided for space reasons.
Since the difference in mean values as well as the dif-
ference in median values is within a quarter of the stan-
dard deviation from the mean, we conclude that the dis-
carded outlier count is statistically independent of the in-
put operand values.

5.2 Timing Assurance of Elementary Op-
erations

Since exhaustively testing all possible inputs for each op-
eration is infeasible, we instead take the following three-
step approach for demonstrating the timing channel de-
fense for Escort’s elementary operations: (1) We char-
acterize the performance of Escort’s elementary opera-
tions using a specific, fixed floating-point value (e.g. 1.0),
(2) using one value from each of the six different types
of values (zero, normal, subnormal, +∞, -∞, and not-
a-number), we show that our solution exhibits negligi-
ble variance in running time, and (3) to demonstrate that
each of the six values in the previous experiment is rep-
resentative of the class to which it belongs, we generate
10 million normal, subnormal, and not-a-number (NaN)



values, and show that the variance in running time among
each set of 10 million values is negligible. Our key find-
ings are that Escort’s operations run in fixed time, are
fast, and that their performance is closely tied to the per-
formance of the hardware’s subnormal operations.

Figure 10: Comparison of running times of elementary
operations. sp identifies Escort’s single-precision opera-
tions, dp identifies Escort’s double-precision operations,
and fix identifies FTFP’s fixed-point operations. Num-
bers at the top of the bars show the total cycle count. We
see that Escort’s execution times are dominated by the
cost of subnormal operations, and we see that FTFP’s
overheads are significantly greater than Escort’s.

Figure 10 compares the running times of elementary
operations of Escort and of previous solutions (FTFP).
First, we observe that the running times of Escort’s
single- and double-precision operations are an order-of-
magnitude lower than those of FTFP’s fixed-precision
operations. Second, Escort’s running time is almost en-
tirely dominated by the processor’s operation on subnor-
mal numbers. Third, conversion between fixed-point and
floating-point takes a non-trivial amount of time, further
increasing the overhead of FTFP’s operations. Overall,
Escort elementary operations are about 16× faster than
FTFP’s.

Table 4 shows the variation in running time of ele-
mentary operations across six different types of inputs
(zero, normal value, subnormal value, +∞, −∞, and not-
a-number value) and compares it with the variation of
SSE (native) operations. While SSE operations exhibit
high variation (the maximum observed standard devia-
tion is 176% of the mean), Escort’s operations show neg-
ligible variation across different input types.

Finally, we measure Escort’s running time for 10 mil-
lion random normal, subnormal, and not-a-number val-
ues. We observe that the standard deviation of these mea-
surements, shown in Table 5, is extremely low (at most

Function Escort Native
(SSE)

add-sp 0 0
add-dp 0 0
sub-sp 0 0
sub-dp 0 0
mul-sp 0 49.2 (175%)
mul-dp 0 49.2 (175%)
div-sp 0.66 (0.4%) 65.67 (163%)
div-dp 1.66 (0.8%) 69.08 (164%)
sqrt-sp 1.49 (0.8%) 62.7 (170%)
sqrt-dp 2.98 (1.5%) 66.87 (169%)
upcast 0 40.99 (178%)

Table 4: Comparison of standard deviation of running
times of elementary operations across six types of values
(zero, normal, subnormal, +∞, −∞, and not-a-number).
Numbers in parenthesis show the standard deviation as
a percentage of the mean. The -sp suffix identifies
single-precision operations while the -dp suffix identi-
fies double-precision operations. Compared to SSE op-
erations, Escort exhibits negligible variation in running
times.

3.1% of the mean). We thus conclude that our chosen
values for each of the six classes faithfully represent their
class.
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Figure 11: Comparison of running times of commonly
used higher-level functions. Error bars (visible for only
a few functions) show the maximum variation in running
time for different kinds of input values.

5.3 Timing Assurance of Higher-Level Op-
erations

Using different types of floating-point values (zero, nor-
mal, subnormal, +∞, −∞, and not-a-number), Figure 11
compares the performance of most of the commonly used



Fn. NaN Normal Subnormal
add-sp 0.21 (3.1%) 0.21 (2.9%) 0.19 (2.7%)
add-dp 0.21 (3.0%) 0.20 (2.9%) 0.21 (3.0%)
sub-sp 0.18 (2.6%) 0.19 (2.7%) 0.20 (2.9%)
sub-dp 0.19 (2.7%) 0.19 (2.7%) 0.19 (2.7%)
mul-sp 0.98 (0.7%) 0.94 (0.7%) 1.05 (0.7%)
mul-dp 0.90 (0.6%) 1.04 (0.7%) 1.02 (0.7%)
div-sp 1.22 (0.6%) 1.27 (0.7%) 1.23 (0.6%)
div-dp 1.39 (0.7%) 1.37 (0.6%) 1.17 (0.6%)
sqrt-sp 1.15 (0.6%) 1.13 (0.6%) 1.14 (0.6%)
sqrt-dp 1.29 (0.7%) 1.41 (0.7%) 1.33 (0.7%)
upcast 1.03 (0.9%) 0.89 (0.8%) 0.95 (0.8%)

Table 5: Standard deviation of 10 million measurements
for each type of value (normal, subnormal, and not-a-
number). All standard deviation values are within 3.1%
of the mean. Furthermore, the mean of these 10,000,000
measurements is always within 2.7% of the representa-
tive measurement.

single- and double-precision higher-level operations6.
Overall Escort’s higher-level operations are about 2×
slower than their corresponding FTFP operation, which
is the price for closing side channels that FTFP does not
close.
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Figure 12: Performance breakdown of Escort’s com-
monly used higher-level functions. The baseline (non-
secure) execution and exception handling together cost
less than 250 cycles for each function, making them too
small to be clearly visible in the above plot.

Figure 12 shows the breakdown of the performance
of commonly used higher-level functions. We observe
that the performance of most higher-level functions is
dominated by the latency of operations on subnormal
operands, which is closely tied to the performance of the
underlying hardware. A handful of routines (exp10(),

6We exclude the exp2() (6,617 cycles), exp10() (14,910 cycles),
exp2f() (1,693 cycles), and exp10f() (9,134 cycles) from Figure 11
because FTFP does not implement these operations.

exp10f(), exp2(), and exp2f()) use lookup tables
that are susceptible to address-trace-based side-channel
information leaks, so the code transformed by Escort
sweeps over these lookup tables for each access to the
table. Finally, we see that the cost of control flow ob-
fuscation (i.e. the cost of executing all instructions in the
program) contributes the least to the total overhead.

5.4 Side-Channel Defense in Firefox
We now evaluate Escort’s defense against the timing
channel attack by Andrysco et al. [3] on the Firefox web
browser. The attack reconstructs a two-color image in-
side a victim web page using only the timing side chan-
nel in floating-point operations. The attack convolves the
given secret image with a matrix of subnormal values.
The convolution step for each pixel is timed using high
resolution Javascript timers. By comparing the measured
time to a threshold, each pixel is classified as either black
or white, effectively reconstructing the secret image.

We integrate Escort into Firefox’s convolution code7

and re-run the timing attack. The results (see Figure 13c)
show that Escort successfully disables the timing attack.

5.5 Control- and Data-Flow Assurance
We now show that Escort’s operations do not leak infor-
mation through control flow or data flow. We first use
inference rules over the LLVM IR to demonstrate non-
interference between secret inputs and digital side chan-
nels. We run a machine-learning attack on Escort and
demonstrate that Escort successfully disables the attack.

5.5.1 Non-Interference Using Inference Rules

Since Escort’s elementary operations are small and
simple—they are implemented using fewer than 15 lines
of assembly code, they do not access memory, and they
do not contain branch instructions—they are easily veri-
fied for non-interference between secret inputs and digi-
tal side channels. Using an LLVM pass that applies the
inference rules from Table 6, tracking labels that can be
either L (for low-context i.e. public information) or H (for
high-context i.e. private information), we verify that Es-
cort’s higher-level operations close digital side channels.
This compiler pass initializes all function arguments with
the label H, since arguments represent secret inputs.

Inference rules for various instructions dictate updates
to the labels. The environment Γ tracks the label of each
pointer and each address. The Escort compiler tags load

7Specifically, we replace three single-precision multiplication oper-
ations with invocations to the equivalent Escort function. All source
code changes are limited to the code in the ConvolvePixel() function
in SVGFEConvolveMatrixElement.cpp.



(a) Original image. (b) Reconstructed image
using timing attack.

(c) Reconstructed images in 3 independent, consec-
utive experiments after patching Firefox with Escort.

Figure 13: Results of attack and defense on a vulnerable Firefox browser using timing-channel information leaks
arising from the use of subnormal floating-point numbers.

and store instructions as secret if the pointer is tainted,
or public otherwise. Unlike a public load or store in-
struction, a secret load or store instruction is allowed to
use a tainted pointer since Escort generates correspond-
ing loads and stores to all statically-determined candi-
date values in the points-to set. The sanitization rule re-
sets the value’s label to L and is required to suppress false
alarms from Escort’s loop condition transformation. Es-
cort’s transformed code includes instructions with spe-
cial LLVM metadata that trigger the sanitization rule.

During verification, the compiler pass iterates over
each instruction and checks whether a rule is applica-
ble using the rule’s antecedents (the statement above the
horizontal line); if so, it updates its local state as per
the rule’s consequent (the statement below the horizon-
tal line). If no applicable rule is found, then the com-
piler pass throws an error. The compiler pass processes
the code for Escort’s 112 higher-level operations without
throwing errors.

5.5.2 Defense Against Machine-Learning Attack

We use the TensorFlow [1] library to design a machine-
learning classifier, which we use to launch a side-channel
attack on the execution of the expf() function, where
the input to the expf() function is assumed to be secret.
Using three distinct inputs, we run this attack on the im-
plementations in the (non-secure) Musl C library and in
the (secure) Escort library. We first use the Pin dynamic
binary instrumentation tool [19] to gather the full instruc-
tion address traces of both expf() implementations8. We
train the TensorFlow machine-learning classifier by feed-
ing the instruction address traces to the classifier, asso-
ciating each trace with the secret input to expf(). We
use cross entropy as the cost function for TensorFlow’s
training phase. In the subsequent testing phase, we ran-
domly select one of the collected address traces and ask
the classifier to predict the secret input value.

We find that for the Musl implementation, the classi-
fier is accurately able to predict the correct secret value
from the address trace. On the other hand, for the Escort

8Using the md5sum program, we observe that Escort’s address traces
for all three inputs are identical.

implementation, the classifier’s accuracy drops to 33%,
which is no better than randomly guessing one of the
three secret input values.

6 Precision Evaluation

We examine the precision of Escort and FTFP by com-
paring Escort’s and FTFP’s results with those produced
by a standard C library.

6.1 Comparison Using Unit of Least Preci-
sion

Methodology. We adopt an empirical approach to esti-
mate precision in terms of Unit of Least Precision (ULP),
since formal derivation of maximum ULP difference re-
quires an intricate understanding of theorem provers and
floating-point algorithms. We run various floating-point
operations on 10,000 randomly generated pairs (using
drand48()) of floating-point numbers between zero and
one. For elementary operations, we compare the outputs
of Escort and FTFP with the outputs of native x86 in-
structions. For all other operations, we compare the out-
puts of Escort and FTFP with the outputs produced by
corresponding function from the Musl C library.

Results. We observe that Escort’s results are identi-
cal to the results produced by the reference implemen-
tations, i.e. the native (x86) instructions and the Musl
C library. More precisely, the ULP difference between
Escort’s results and reference implementation’s results
is zero. On the other hand, FTFP, which computes
arithmetic in fixed-point precision, produces output that
differs substantially from the output of Musl’s double-
precision functions (see Table 7). The IEEE 754 standard
requires that addition, subtraction, multiplication, divi-
sion, and square root operations are computed with ULP
difference of at most 0.5. Well-known libraries compute
results for most higher-level operations within 1 ULP.



T-PUBLIC-LOAD
Γ(ptr) = L

P = ptset(ptr)
m= max

addr∈P
Γ(addr)

Γ′ = Γ[val 7→ m]

Γ ` val := public-load ptr : Γ′

T-PUBLIC-STORE
Γ(ptr) = L

∀ addr ∈ ptset(p)
m = max(Γ(val),Γ(addr))
Γ′ = Γ[addr 7→ m]

Γ ` public-store ptr, val : Γ′

T-SECRET-LOAD
Γ′ = Γ[val 7→ H]

Γ ` val := secret-load ptr : Γ′

T-SECRET-STORE
∀ addr ∈ ptset(p)
Γ′ = Γ[addr 7→ H]

Γ ` secret-store ptr, val : Γ′

T-BRANCH
Γ(cond) = L

Γ ` br cond,block1,block2 : Γ

T-OTHER
Γ′ = Γ[x 7→ Γ(y)]

Γ ` x:=y : Γ′

T-COMPOSITION
Γ ` S1 : Γ′, Γ′ ` S2 : Γ′′

Γ ` S1;S2 : Γ′′

T-SANITIZER
Γ′ = Γ[x 7→ L]

Γ ` S(x) : Γ′

Table 6: Inference rules for verifying the security of Es-
cort’s higher-level operations.

6.2 Comparison of Program Output
Methodology. Since differences in program outputs
provide an intuitive understanding of the error intro-
duced by approximate arithmetic operations, we com-
pare the output of the test suite of Minpack9, a li-
brary for solving non-linear equations and non-linear
least squares problems. We generate three variants of
Minpack: MINPACK-C uses the standard GNU C li-
brary, MINPACK-ESCORT uses the Escort library, and
MINPACK-FTFP uses the FTFP library. We run the 29
programs in Minpack’s test suite and compare the out-
puts produced by the three program variants.

Results. We observe that MINPACK-ESCORT produces
output that is identical to MINPACK-C’s output. We also
observe that all outputs of MINPACK-FTFP differ from
MINPACK-C. Specifically, 321 values differ between the
outputs of MINPACK-FTFP and MINPACK-C. We ana-

9https://github.com/devernay/cminpack

Function Min. Median Max.
add 16 1,743,272 210,125,824
sub 1,312 6,026,976 84,089,503,744
mul 317 8,587,410 112,134,679,849
div 829 5,834,095 30,899,033,427
sqrt 562 2,815,331 21,257,836,468
floor 0 0 0
ceil 0 0 0
log 1,698 5,908,547 2,705,277,8104
log2 262 5,812,840 13,890,632,367

log10 981 10,105,199 40,631,590,323
exp 132 1,409,624 6,066,894
sin 1,316 4,173,786 40,138,955,131
cos 2,166 2,241,360 10,127,702
tan 717 5,576,540 40,126,401,802
pow 522 3,425,870 26,876,068,127
fabs 352 3,129,984 40,134,770,688

Table 7: Floating-point difference for 10,000 operations
on random inputs in terms of Unit of Least Precision
(ULP) in FTFP versus Musl C library. Since we ob-
serve zero ULP distance between Escort’s results and
Musl’s results, this table omits Escort’s results.

<
10−5

10−5 to
10−3

10−3 to
100

100 to
103

>
103

49% 9% 21% 10% 11%

Table 8: Distribution of differences in answers produced
by MINPACK-FTFP and MINPACK-C. In all, 321 values
differ between the outputs of the two programs.

lyze all 321 differences between MINPACK-FTFP and
MINPACK-C by classifying them into the following five
categories: (1) smaller than 10−5, (2) between 10−5 and
10−3, (3) between 10−3 and 100, (4) between 100 and
103, and (5) larger than 103. As seen in Table 8, almost
half of the differences (49%) are extremely small (less
than 10−5), possibly arising from relatively small dif-
ferences between fixed-point and floating-point calcula-
tions. However, we hypothesize that differences amplify
from propagation, since nearly 42% of the differences
are larger than 10−3.

7 Performance Evaluation

We now evaluate the end-to-end application performance
impact of Escort’s floating-point library and Escort’s
control flow obfuscation.

https://github.com/devernay/cminpack


Application Escort
Overhead

Static (LLVM)
Floating-Point

Instruction
Count

433.milc 29.33× 2,791
444.namd 57.32× 9,647
447.dealII 20.31× 21,963
450.soplex 4.74× 4,177
453.povray 82.53× 25,671

470.lbm 56.19× 711
480.sphinx3 52.46× 629

MEAN 32.63×
(geo. mean)

9,370
(arith. mean)

Table 9: Overhead of SPEC-ESCORT (SPECfp2006
using Escort operations) relative to SPEC-LIBC
(SPECfp2006 using libc).

7.1 Impact of Floating-Point Library
This section evaluates the performance impact of Escort
on the SPEC floating point benchmarks, as well as on a
security-sensitive program SVMlight , a machine-learning
classifier.

Evaluation Using SPEC Benchmarks. We use the C
and C++ floating-point applications in the SPEC CPU
2006 benchmark suite with reference inputs. We gen-
erate two versions of each program—the first version
(SPEC-LIBC) uses the standard C library functions, and
the second version (SPEC-ESCORT) uses functions from
the Escort library10. We compile the SPEC-LIBC pro-
gram using the Clang/LLVM 3.8 compiler with the -O3
flag, and we disable auto-vectorization while compil-
ing the SPEC-ESCORT program. The following results
demonstrate the worst case performance overhead of Es-
cort for these programs, since we transform all floating-
point operations in SPEC-ESCORT to use the Escort li-
brary. More precisely, we do not reduce the number of
transformations either using taint tracking or using SMT
solvers.

Table 9 shows that Escort’s overhead is substantial,
with a geometric mean of 32.6×. We expect a lower av-
erage overhead for applications that use secret data, since
taint tracking would reduce the number of floating-point
operations that would need to be transformed.

Evaluation Using SVMlight . To evaluate Escort’s
overhead on a security-sensitive benchmark, we mea-
sure Escort’s performance on SVMlight , an implemen-

10We also ran the same programs using the FTFP library, but the
programs either crashed due to errors or ran for longer than two hours,
after which they were manually terminated.

Test Case Overhead for
Training

Overhead for
Classification

#1 8.66× 1.34×
#2 30.24× 0.96×
#3 1.41× 1.11×
#4 12.75× 0.92×

GEO
MEAN 8.28× 1.07×

Table 10: Overhead of Escort on SVMlight program.

tation of Support Vector Machines in C, using the four
example test cases documented on the SVMlight web-
site11. We mark the training data and the classification
data as secret. Before replacing floating-point computa-
tions, Escort’s taint analysis discovers all floating-point
computations that depend on the secret data, thus re-
ducing the list of replacements. We also instruct Es-
cort to query the Z3 SMT solver to determine whether
candidate floating-point computations could use subnor-
mal operands. Escort then replaces these computations
with secure operations from its library. We compile the
baseline (non-secure) program using the Clang/LLVM
3.8 compiler with the -O3 flag, and we disable auto-
vectorization while compiling SVMlight with Escort. We
measure the total execution time using the RDTSC instruc-
tion. Table 10 shows that Escort’s overhead on SVMlight .
We observe that Escort’s overhead on SVMlight is sub-
stantially lower than that on SPEC benchmarks. Using
the md5sum program, we verify that the output files be-
fore and after transformation of SVMlight are identical.

7.2 Impact of Control Flow Obfuscation
To compare the performance impact of Escort’s con-
trol flow obfuscation technique with that of Raccoon,
we use the same benchmarks that were used to eval-
uate Raccoon [28], while compiling the baseline (non-
transformed) application with the -O3 optimization flag.
Although both Escort and Raccoon obfuscate control
flow and data accesses, we compare the cost of control
flow obfuscation only, since both Escort and Raccoon ob-
fuscate data accesses using the identical technique. Ta-
ble 11 shows the results.

We find that programs compiled with Escort have a
significantly lower overhead than those compiled with
Raccoon. Escort’s geometric mean overhead is 32%,
while that of Raccoon is 5.32×. The worst-case over-
head for Escort is 2.4× (for ip-tree).

The main reason for the vast difference in overhead
is that Raccoon obfuscates branch instructions at execu-
tion time, which requires the copying and restoring of

11http://svmlight.joachims.org/

http://svmlight.joachims.org/


Benchmark Raccoon
Overhead

Escort
Overhead

ip-tree 1.01× 2.40×
matrix-mul 1.01× 1.01×
radix-sort 1.01× 1.06×
findmax 1.01× 1.27×

crc32 1.02× 1.00×
genetic-algo 1.03× 1.03×

heap-add 1.03× 1.27×
med-risks 1.76× 1.99×
histogram 1.76× 2.26×

map 2.04× 1.01×
bin-search 11.85× 1.01×
heap-pop 45.40× 1.44×
classifier 53.29× 1.24×

tax 444.36× 1.67×
dijkstra 859.65× 1.10×

GEO MEAN 5.32× 1.32×

Table 11: Performance comparison of benchmarks com-
piled using Raccoon and Escort. We only compare the
control flow obfuscation overhead, since both Raccoon
and Escort use the same technique for data access obfus-
cation.

the stack for each branch instruction. Since the stack
can be arbitrarily large, such copying and restoring adds
substantial overhead to the running time of the program.
On the other hand, Escort’s code rewriting technique ob-
fuscates code at compile time using basic block predi-
cates, which enables significant performance boosts on
the above benchmarks.

8 Conclusions

In this paper, we have presented Escort, a compiler-based
tool that closes side channels that stem from floating-
point operations. Escort prevents an attacker from in-
ferring secret floating-point operands through the tim-
ing channel, though micro-architectural state, and also
through off-chip digital side channels, such as memory
address trace.

Escort uses native SSE instructions to provide speed
and precision. Escort’s compiler-based approach enables
it to support a significantly larger number of floating-
point operations (112) than FTFP (19).

Escort’s design motivates further research into hard-
ware support for side-channel resistant systems. For ex-
ample, by allowing software to control the timing of in-
teger instruction latencies and their pipelined execution,
Escort’s guarantees could be extended to instructions be-
yond floating-point instructions.
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