
1

Condition Synchronization

2

Beyond Locks

Locks ensure mutual exclusion

Is this sufficient?
! What if you want to synchronize on a condition?
! Example: Producer-consumer problem

Class BoundedBuffer{
 …
 Lock lock;
 int count = 0;
}

BoundedBuffer::Deposit(c){
 lock"acquire();
 while (count == n);
 Add c to the buffer;
 count++;
 lock"release();
}

BoundedBuffer::Remove(c){
 lock"acquire();
 while (count == 0);
 Remove c from buffer;
 count--;
 lock"release();
}

What is wrong
with this?

3

Introducing Condition Variables

Correctness requirements for bounded buffer producer-
consumer problem
! Only one thread manipulates the buffer at any time (mutual

exclusion)
! Consumer must wait for producer when the buffer is empty

(scheduling/synchronization constraint)
! Producer must wait for the consumer when the buffer is full

(scheduling/synchronization constraint)

Solution: condition variables
! An abstraction that supports conditional synchronization
! Key idea:

! Enable threads to wait inside a critical section by atomically
releasing lock at the same time

4

Condition Variables: Operations

Three operations
! Wait()

! Release lock
! Go to sleep
! Reacquire lock upon return

! Signal()
! Wake up a waiter, if any

! Broadcast()
! Wake up all the waiters

Implementation
! Requires a per-condition variable queue to be maintained
! Threads waiting for the condition wait for a signal()

Wait() usually specifies a lock
to be released as a parameter

5

Implementing Wait() and Signal()

Condition::Wait(lock){
 numWaiting++;
 lock"release();
 Put TCB on the waiting queue for the CV;
 switch();
 lock"acquire();
}

Condition::Signal(){
 if (numWaiting > 0) {

Move a TCB from waiting queue to ready queue;
numWaiting--;

 }
}

Does this work?

Condition::Wait(lock){
 numWaiting++;
 Put TCB on the waiting queue for the CV;
 lock"release();
 switch();
 lock"acquire();
}

6

Using Condition Variables: An Example

Coke machine as a shared buffer

Two types of users
! Producer: Restocks the coke machine

! Consumer: Removes coke from the machine

Requirements
! Only a single person can access the machine at any time

! If the machine is out of coke, wait until coke is restocked

! If machine is full, wait for consumers to drink coke prior to restocking

How will we implement this?
! What is the class definition?

! How many lock and condition variables do we need?

7

Coke Machine Example

Class CokeMachine{
 …
 Lock lock;
 int count = 0;
 Condition notFull, notEmpty;
}

CokeMachine::Deposit(){
 lock"acquire();
 while (count == n) {

notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lock"release();
}

CokeMachine::Remove(){
 lock"acquire();
 while (count == 0) {

notEmpty.wait(&lock); }
 Remove coke from to the machine;
 count--;
 notFull.signal();
 lock"release();
}

1

Semaphores and Monitors:
High-level Synchronization Constructs

A Historical Perspective

2

Synchronization Constructs

Synchronization
! Coordinating execution of multiple threads that share data

structures

Past few lectures:
! Locks: provide mutual exclusion
! Condition variables: provide conditional synchronization

Today: Historical perspective
! Semaphores

! Introduced by Dijkstra in 1960s
! Main synchronization primitives in early operating systems

! Monitors
! Alternate high-level language constructs

3

Semaphores

An abstract data type

A non-negative integer variable with two atomic operations

We assume that a semaphore is fair
! No thread t that is blocked on a P() operation remains blocked if the V()

operation on the semaphore is invoked infinitely often
! In practice, FIFO is mostly used, transforming the set into a queue.

Semaphore"P() (Passeren; wait)
Atomically: If sem > 0, then decrement sem by 1
Otherwise “wait” until sem > 0

Semaphore"V() (Vrijgeven; signal)
Atomically: Increment sem by 1

4

Important properties of Semaphores

Semaphores are non-negative integers

The only operations you can use to change the value of a
semaphore are P() and V() (except for the initial setup)
! P() can block, but V() never blocks

Semaphores are used both for
! Mutual exclusion, and
! Conditional synchronization

Two types of semaphores
! Binary semaphores: Can either be 0 or 1
! General/Counting semaphores: Can take any non-negative value
! Binary semaphores are as expressive as general semaphores

(given one can implement the other)

5

Using Semaphores for Mutual Exclusion

Use a binary semaphore for mutual exclusion

Using Semaphores for producer-consumer with bounded
buffer

Semaphore = new Semaphore(1);

Semaphore"P();
 Critical Section;
Semaphore"V();

Semaphore mutex;
Semaphore fullBuffers;
Semaphore emptyBuffers;

Use a separate
semaphore for
each constraint

6

Revisiting Coke Machine Example

Class CokeMachine{
 …
 Semaphore new mutex(1);
 Semaphores new fullBuffers(0);
 Semaphores new emptyBuffers(numBuffers);
}

CokeMachine::Deposit(){
 emptyBuffers"P();
 mutex"P();
 Add coke to the machine;
 mutex"V();
 fullBuffers"V();
}

CokeMachine::Remove(){
 fullBuffers"P();
 mutex"P();
 Remove coke from to the machine;
 mutex"V();
 emptyBuffers"V();
}

7

Comparing code

CokeMachine::Deposit(){
 lock"acquire();
 while (count == n) {

notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lock"release();
}

CokeMachine::Deposit(){
 emptyBuffers"P();
 mutex"P();
 Add coke to the machine;
 mutex"V();
 fullBuffers"V();
}

CokeMachine::Deposit(){
 mutex"P();
 emptyBuffers"P();
 Add coke to the machine;
 fullBuffers"V();

 mutex"V();
}

Does the order of P matter? V?
8

Implementing Semaphores

Semaphore::P() {
 Disable interrupts;
 if (value == 0) {
 Put TCB on wait queue for semaphore;
 Switch(); // dispatch a ready thread
 }
 else {value--;}
 Enable interrupts;
}

Semaphore::V() {
 Disable interrupts;
 if wait queue is not empty {
 Move a waiting thread to ready queue; }
 else {value++;}
 Enable interrupts;
}

9

Implementing Semaphores

Semaphore::P() {
 Disable interrupts;
 while (value == 0) {
 Put TCB on wait queue for semaphore;
 Switch(); // dispatch a ready thread
 }
 value--;
 Enable interrupts;
}

Semaphore::V() {
 Disable interrupts;
 if wait queue is not empty {
 Move a waiting thread to ready queue; }
 value++;
 Enable interrupts;
}

10

The Problem with Semaphores

CokeMachine::Deposit(){
 emptyBuffers"P();
 mutex"P();
 Add coke to the machine;
 mutex"V();
 fullBuffers"V();
}

CokeMachine::Remove(){
 fullBuffers"P();
 mutex"P();
 Remove coke from to the machine;
 mutex"V();
 emptyBuffers"V();
}

Semaphores are used for dual purpose
! Mutual exclusion
! Conditional synchronization

Difficult to read/develop code

Waiting for condition is independent of mutual exclusion
! Programmer needs to be clever about using semaphores

