
1

Separate the concerns of mutual exclusion and conditional
synchronization

What is a monitor?
" One lock, and
" Zero or more condition variables for managing concurrent access to

shared data

General approach:
" Collect related shared data into an object/module
" Define methods for accessing the shared data

Monitors were first introduced as a programming language construct
" Calling a method defined in the monitor automatically acquires the lock
" Examples: Mesa, Java (synchronized methods)

Monitors also define a programming convention
" Can be used in any language (C, C++, …)

Introducing Monitors

2

Locks and Condition Variables – Recap

Locks
" Provide mutual exclusion
" Support two methods

! Lock::Acquire() – wait until lock is free, then grab it
! Lock::Release() – release the lock, waking up a waiter, if any

Condition variables
" Support conditional synchronization
" Three operations

! Wait(): Release lock; wait for the condition to become true;
reacquire lock upon return

! Signal(): Wake up a waiter, if any
! Broadcast(): Wake up all the waiters

" Two semantics for the implementation of wait() and signal()
! Hoare monitor semantics
! Hansen monitor semantics

3

Coke Machine Example

Class CokeMachine{
 …
 Lock lock;
 int count = 0;
 Condition notFull, notEmpty;
}

CokeMachine::Deposit(){
 lock!acquire();
 while (count == n) {

notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lock!release();
}

CokeMachine::Remove(){
 lock!acquire();
 while (count == 0) {

notEmpty.wait(&lock); }
 Remove coke from to the machine;
 count--;
 notFull.signal();
 lock!release();
}

4

Hoare Monitors: Semantics

Hoare monitor semantics:
" Assume thread T1 is waiting on condition x
" Assume thread T2 is in the monitor
" Assume thread T2 calls x.signal
" T2 gives up monitor, T2 blocks!
" T1 takes over monitor, runs
" T1 gives up monitor
" T2 takes over monitor, resumes

Example

fn1(…)
…
x.wait // T1 blocks

// T1 resumes
Lock!release();

fn4(…)
…

x.signal // T2 blocks

T2 resumes

5

Hansen Monitors: Semantics

Hansen monitor semantics:
" Assume thread T1 waiting on condition x

" Assume thread T2 is in the monitor

" Assume thread T2 calls x.signal; wake up T1

" T2 continues, finishes

" When T1 get a chance to run,T1 takes over monitor, runs

" T1 finishes, gives up monitor

Example:

fn1(…)
…
x.wait // T1 blocks

// T1 resumes

// T1 finishes

fn4(…)
…

x.signal // T2 continues
// T2 finishes

6

Tradeoff

Hoare

Claims:
" Cleaner, good for proofs
" When a condition variable is

signaled, it does not change
" Used in most textbooks

…but
" Inefficient implementation

Hansen

Signal is only a “hint” that the
condition may be true
" Need to check condition again

before proceeding
" Can lead to synchronization bugs

Used by most systems

Benefits:
" Efficient implementation
" Condition guaranteed to be true

once you are out of while !

CokeMachine::Deposit(){
 lock!acquire();
 if (count == n) {

notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lock!release();
}

CokeMachine::Deposit(){
 lock!acquire();
 while (count == n) {

notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lock!release();
}

7

Summary

Synchronization
" Coordinating execution of multiple threads that share data

structures

Past lectures:
" Locks ! provide mutual exclusion
" Condition variables ! provide conditional synchronization

Today: Historical perspective
" Semaphores

! Introduced by Dijkstra in 1960s
! Two types: binary semaphores and counting semaphores
! Supports both mutual exclusion and conditional synchronization

" Monitors
! Separate mutual exclusion and conditional synchronization

1

Concurrent Programming Issues:
Summary

2

Summary of Our Discussions

Developing and debugging concurrent programs is hard
! Non-deterministic interleaving of instructions

Synchronization constructs
! Locks: mutual exclusion
! Condition variables: conditional synchronization
! Other primitives:

! Semaphores
" Binary vs. counting
" Can be used for mutual exclusion and conditional synchronization

How can you use these constructs effectively?
! Develop and follow strict programming style/strategy

3

Programming Strategy

Decompose the problem into objects

Object-oriented style of programming
! Identify shared chunk of state

! Encapsulate shared state and synchronization variables inside
objects

4

General Programming Strategy

Two step process

Threads:
! Identify units of concurrency – these are your threads
! Identify chunks of shared state – make each shared “thing” an

object; identify methods for these objects (how will the thread
access the objects?)

! Write down the main loop for the thread

Shared objects:
! Identify synchronization constructs

! Mutual exclusion vs. conditional synchronization
! Create a lock/condition variable for each constraint
! Develop the methods –using locks and condition variables – for

coordination

5

Coding Style and Standards

Always do things the same way

Always use locks and condition variables

Always hold locks while operating on condition variables

Always acquire lock at the beginning of a procedure and release it
at the end
! If it does not make sense to do this " split your procedures further

Always use while to check conditions, not if

(Almost) never sleep() in your code
! Use condition variables to synchronize

while (predicate on state variable) {
 conditionVariable"wait(&lock);
 };

6

Readers/Writers: A Complete Example

Motivation
! Shared databases accesses

! Examples: bank accounts, airline seats, …

Two types of users
! Readers: Never modify data
! Writers: read and modify data

Problem constraints
! Using a single lock is too restrictive

! Allow multiple readers at the same time
! …but only one writer at any time

! Specific constraints
! Readers can access database when there are no writers
! Writers can access database when there are no readers/writers
! Only one thread can manipulate shared variables at any time

7

Readers/Writer: Solution Structure

Basic structure: two methods

State variables

Database::Read() {
 Wait until no writers;
 Access database;
 check out – wake up waiting writers;
}

Database::Write() {
 Wait until no readers/writers;
 Access database;
 check out – wake up waiting readers/writers;
}

AR = 0; // # of active readers
AW = 0; // # of active writers
WR = 0; // # of waiting readers
WW = 0; // # of waiting writers
Condition okToRead;
Condition okToWrite;
Lock lock;

8

Solution Details: Readers

Public Database::Read() {
 StartRead();
 Access database;
 DoneRead();
}

Provate Database::StartRead() {
 lock.Acquire();
 while ((AW+WW) > 0) {

WR++;
okToRead.wait(&lock);
WR--;

 }
 AR++;
 lock.Release();
}

Provate Database::DoneRead() {
 lock.Acquire();
 AR--;
 if (AR ==0 && WW > 0) {

okToWrite.signal();
 }
 lock.Release();
}

9

Solution Details: Writers

Database::Write() {
 StartWrite();
 Access database;
 DoneWrite();
}

Provate Database::StartWrite() {
 lock.Acquire();
 while ((AW+AR) > 0) {

WW++;
okToWrite.wait(&lock);
WW--;

 }
 AW++;
 lock.Release();
}

Provate Database::DoneWrite() {
 lock.Acquire();
 AW--;
 if (WW > 0) {

okToWrite.signal();
 }
 else if (WR > 0) {

okToRead.broadcast();
 }
 lock.Release();
}

