
Byzantine Quorum Systems�

Dahlia Malkhi Michael Reiter

AT�T Labs�Research� Florham Park� NJ USA

fdalia�reiterg�research�att�com

October ��� ����

Abstract

Quorum systems are well�known tools for ensuring the consistency and availability of repli�
cated data despite the benign failure of data repositories� In this paper we consider the arbitrary
�Byzantine� failure of data repositories and present the �rst study of quorum system require�
ments and constructions that ensure data availability and consistency despite these failures� We
also consider the load associated with our quorum systems� i�e�� the minimal access probability
of the busiest server� For services subject to arbitrary failures� we demonstrate quorum systems
over n servers with a load of O� �p

n
�� thus meeting the lower bound on load for benignly fault�

tolerant quorum systems� We explore several variations of our quorum systems and extend our
constructions to cope with arbitrary client failures�

� Introduction

A well known way to enhance the availability and e�ciency of replicated data is by using quorums �
A quorum system for a universe of data servers is a collection of subsets of servers� each pair of
which intersect� Intuitively� each quorum can operate on behalf of the system� thus increasing its
availability and performance� while the intersection property guarantees that operations done on
distinct quorums preserve consistency�

In this paper we consider the arbitrary �Byzantine� failure of clients and servers� and initiate the
study of quorum systems in this model� Intuitively� a quorum system tolerant of Byzantine failures
is a collection of subsets of servers� each pair of which intersect in a set containing su�ciently many
correct servers to guarantee consistency of the replicated data as seen by clients� We provide the
following contributions�

�� We de�ne the class of masking quorum systems� with which data can be consistently replicated in
a way that is resilient to the arbitrary failure of data repositories� We show necessary and su��
cient conditions for the existence of masking quorum systems under di�erent failure assumptions�
and present several example constructions of such systems�

	� We explore two variations of masking quorum systems� The �rst� called dissemination quorum

systems� is suited for services that receive and distribute self�verifying information from cor�
rect clients �e�g�� digitally signed values� that faulty servers can fail to redistribute but cannot
undetectably alter� The second variation� called opaque masking quorum systems� is similar to

�preprint of paper to appear in the Journal of Distributed Computing� ������ �����

�



regular masking quorums in that it makes no assumption of self�verifying data� but it di�ers in
that clients do not need to know the failure scenarios for which the service was designed� This
somewhat simpli�es the protocol by which clients access the replicated data and� in the case that
failures are maliciously induced� reveals less information to clients that could guide an attack
attempting to compromise the system�


� We explore the load of each type of quorum system� where the load of a quorum system is
the minimal access probability of the busiest server� minimizing over all strategies for picking
quorums� We present a masking quorum system with the property that its load over a total
of n servers is O� �p

n
�� thereby meeting the lower bound for the load of benignly�fault�tolerant

quorum systems� For opaque masking quorum systems� we prove a lower bound of �
� on the load�

and present a construction that meets this lower bound and proves it tight�

�� For services that use masking quorums �opaque or not�� we show how to deal with faulty clients
in addition to faulty servers� The primary challenge raised by client failures is that there is no
guarantee that clients will update quorums according to any speci�ed protocol� Thus� a faulty
client could leave the replicated data in an inconsistent and irrecoverable state� We develop an
update protocol� by which clients update the replicated data� that prevents clients from leaving
the data in an inconsistent state� The protocol has the desirable property that it involves only
the quorum at which an access is attempted� while providing system�wide consistency properties�

Our quorum systems� if used in conjunction with appropriate protocols and synchronization
mechanisms� can be used to implement a wide range of data semantics� In this paper� however�
we choose to demonstrate a variable supporting read and write operations with relatively weak
semantics� in order to maintain focus on our quorum constructions� These semantics imply a safe

variable �	�
� which a set of correct clients can use to build other abstractions� e�g�� atomic� multi�
writer multi�reader registers �	�� 	�� 	�
� concurrent timestamp systems ��	� ��
� l�exclusion ���� 	
�
and atomic snapshot scan ��� �
�

Our quorum systems can be used for building other protocols in addition to shared read�write
register emulation� For example� in an ongoing e�ort �
�
� we use Byzantine quorum systems
in constructing a large�scale� survivable service supporting persistent data abstractions such as
consensus objects �	�
� locks and �les� In addition� in Section �� we demonstrate how masking
quorum systems can be used to guarantee consistency and completion of updates� even those
executed by faulty clients�

The rest of this paper is structured as follows� We begin in Section 	 with a description of related
work� In Section 
 we present our system model and de�nitions� We present quorum systems for
the replication of arbitrary data subject to arbitrary server failures in Section �� and in Section �
we present two variations of these systems� We then detail an access protocol for replicated services
that tolerate faulty clients in addition to faulty servers in Section �� We conclude in Section ��

� Related work

Our work was in�uenced by the substantial body of literature on quorum systems for benign failures
and applications that make use of them� e�g�� ���� �	� 	�� ��� ��� �
� �� �� 
�
� In particular� our grid
construction of Section � was in�uenced by grid�like constructions for benign failures �e�g�� ��
�� and
we borrow our de�nition of load from �
�
�

Quorum systems have been previously employed in the implementation of security mechanisms�
Naor and Wool �
�
 described methods to construct an access�control service using quorums� Their

	



constructions use cryptographic techniques to ensure that out�of�date �but correct� servers cannot
grant access to unauthorized users� Agrawal and El Abbadi �

 and Mukkamala �
�
 considered
the con�dentiality of replicated data despite the disclosure of the contents of a threshold of the
�otherwise correct� repositories� Their constructions used quorums with increased intersection�
combined with Rabin�s dispersal scheme �
�
� to enhance the con�dentiality and availability of the
data despite some servers crashing or their contents being observed� Our work di�ers from all of
the above by considering arbitrarily faulty servers� and accommodating failure scenarios beyond a
simple threshold of servers�

Herlihy and Tygar ���
 applied quorums with increased intersection to the problem of protecting
the con�dentiality and integrity of replicated data against a threshold of arbitrarily faulty servers�
In their constructions� replicated data is stored encrypted under a key that is shared among the
servers using a threshold secret�sharing scheme ���
� and each client accesses a threshold number of
servers to reconstruct the key prior to performing �encrypted� reads and writes� This construction
exhibits one approach to make replicated data self�verifying via encryption� and thus the quorum
system they develop is a special case of our dissemination quorum systems� i�e�� for a threshold of
faulty servers�

Since the initial conference publication of this work �	�
� several works that build upon its
contributions have appeared� A subsequent paper �
�
 is devoted to constructions of masking
quorum systems for the special case of a threshold of faulty servers� Bazzi ��
 explored a variation
of our quorum systems for synchronous systems� Probabilistic constructions for dissemination and
masking quorum systems are explored in �
	
 and �


� respectively� A practical e�ort for building
a large�scale survivable data repository using Byzantine quorums is described in �	�
� and the
construction of a survivable consensus object in this context is described in �
�
�

� Preliminaries

��� System model

We assume a universe U of servers� jU j � n� and an arbitrary number of clients that are distinct
from the servers� A quorum system Q � 	U is a non�empty set of subsets of U � every pair of which
intersect� Each Q � Q is called a quorum�

Servers �and clients� that obey their speci�cations are correct� A faulty server� however� may
deviate from its speci�cation arbitrarily� A fail�prone system B � 	U is a non�empty set of subsets
of U � none of which is contained in another� such that some B � B contains all the faulty servers�
The fail�prone system represents an assumption characterizing the failure scenarios that can occur�
and could express typical assumptions that up to a threshold of servers fail �e�g�� the sets B�� � � � � Bk

could be all sets of f servers�� but it also generalizes to allow less uniform assumptions� For example�
servers in physical proximity to each other or in the same administrative domain may exhibit
correlated probabilities of being captured� or servers with identical hardware and software platforms
may have correlated probabilities of electronic penetration� By exploiting such correlations �i�e��
knowledge of the collection B�� we can design quorum systems that more e�ectively mask faulty
servers�

In the remainder of this section� and throughout Sections � and �� we assume that clients behave
correctly� In Section � we will relax this assumption �and will be explicit when we do so��

We assume that any two processes �clients or servers� can communicate over a point�to�point
channel� If both endpoints of the channel are correct� then this channel is both authenticated and
reliable� That is� a correct process receives a message from another correct process if and only if the






other correct process sent it� However� we do not assume known bounds on message transmission
times� i�e�� communication is asynchronous�

��� Access protocol

We consider a problem in which the clients perform read and write operations on a variable x that
is replicated at each server in the universe U � A copy of the variable x is stored at each server�
along with a timestamp value t� Timestamps are assigned by a client to each replica of the variable
when the client writes the replica� Our protocols require that di�erent clients choose di�erent times�
tamps� and thus each client c chooses its timestamps from some globally�known set Tc that does not
intersect Tc� for any other client c�� The timestamps in Tc can be formed� e�g�� as integers appended
with the name of c in the low�order bits� The read and write operations are implemented as follows�

Write� For a client c to write the value v� it queries servers to obtain a set of timestamps
A � f�tu�gu�Q for some quorum Q� chooses a timestamp t � Tc greater than the highest timestamp
value in A and greater than any timestamp it has chosen in the past� and sends the update �v� t� to
servers until it has received an acknowledgement for this update from every server in some quorum
Q��

Read� For a client to read x� it queries servers to obtain a set of value�timestamp pairs A �
f�vu� tu�gu�Q for some quorum Q� The client then applies a deterministic function Result�� to A

to obtain the result Result�A� of the read operation�

In the case of a write operation� each server updates its local variable and timestamp to the received
values �v� t� only if t is greater than the timestamp currently associated with the variable� In any
case� it returns an acknowledgement to the client�

Two points about this description deserve further discussion� First� the nature of the quorums
Q and the function Result�� are intentionally left unspeci�ed� further clari�cation of these are the
point of this paper� Second� read and write operations need to exchange messages with a full
quorum of servers� For example� the read operation requires a client to obtain a set A containing
value�timestamp pairs from every server in some quorum Q� This requirement stems from our
lack of synchrony assumptions on the network� in general� the only way that a client can know
that it has accessed every correct server in a quorum is to access every server in the quorum� Our
framework guarantees the availability of a quorum at any moment� and thus by attempting the
operation at multiple quorums� a client can eventually make progress� In some cases� the client
can achieve progress by incrementally accessing servers until it obtains responses from a quorum
of them�

In Sections � and �� we will argue the correctness of the above protocol�instantiated with
quorums and a Result�� function that we will de�ne�according to the following semantics� a more
formal treatment of these concepts can be found in �	�
� We say that a read operation begins when
the client initiates the operation and ends when the client obtains the read value� an operation to
write value v with timestamp t begins when the client initiates it and ends when all correct servers
in some quorum have received the update �v� t�� An operation op� precedes an operation op� if op�
ends before op� begins �in real time�� If op� does not precede op� and op� does not precede op�� then
they are called concurrent� Given a set of operations� a serialization of those operations is a total
ordering on them that extends the precedence ordering among them� Then� for the above protocol
to be correct� we require that any read that is concurrent with no writes returns the last value

�



written in some serialization of the preceding writes� This will immediately imply safe variable
semantics �	�
�

��� Load

A measure of the inherent performance of a quorum system is its load �
�
� de�ned as follows�
Given a quorum system Q� an access strategy w is a probability distribution on the elements of Q�
i�e��

P
Q�Qw�Q� � �� w�Q� is the probability that quorum Q will be chosen when the service is

accessed� Load is then de�ned as follows�

De�nition ��� Let a strategy w be given for a quorum system Q � fQ�� � � � � Qmg over a universe
U � For an element u � U � the load induced by w on u is lw�u� �

P
Qi�uw�Qi�� The load induced

by a strategy w on a quorum system Q is

Lw�Q� � max
u�U

flw�u�g�

The system load �or just load� on a quorum system Q is

L�Q� � min
w
fLw�Q�g�

where the minimum is taken over all strategies� �

We reiterate that the load is a best case de�nition� The load of the quorum system will be
achieved only if an optimal access strategy is used� and only in the case that no failures occur� A
strength of this de�nition is that load is a property of a quorum system� and not of the protocol
using it� A comparison of the de�nition of load to other seemingly plausible de�nitions is given
in �
�
�

� Masking quorum systems

In this section we introduce masking quorum systems� which can be used to mask the arbitrarily
faulty behavior of data repositories� To motivate our de�nition� suppose that the replicated variable
x is written with quorum Q�� and that subsequently x is read using quorum Q�� If B is the set of
arbitrarily faulty servers� then the following is obtained by reading from Q�� the correct value for
x is obtained from each server in �Q��Q�� nB �see Figure ��� out�of�date values are obtained from
Q� n �Q� �B�� and arbitrary values are obtained from Q��B� In order for the client to obtain the
correct value� the client must be able to identify the most up�to�date value�timestamp pair as one
returned by a set of servers that could not all be faulty� This yields requirement M�Consistency
below� In addition� since communication is asynchronous and thus accurate failure detection is
not possible� in order for a client to know it completes an operation with all the correct servers of
some quorum� it must be able to obtain responses from a full quorum� Therefore� for availability
we require that there be no set of faulty servers that intersects all quorums�

De�nition ��� A quorum system Q is a masking quorum system for a fail�prone system B if the
following properties are satis�ed�

M�Consistency� �Q�� Q� � Q �B�� B� � B � �Q� � Q�� nB� �� B�

M�Availability� �B � B �Q � Q � B �Q � �

�



B

Q�

Q�

Figure �� Reading from a masking quorum Q�

�

For example� in the case that at most f servers can fail� M�Consistency guarantees that every
pair of quorums intersect in at least 	f � � elements� and thus in f � � correct ones� If a read
operation accepts only a value returned by at least f � � servers� then any accepted value was
returned by at least one correct server�

More generally� the masking quorum system requirements enable a client to obtain the correct
answer from the service despite the Byzantine failure of any fail�prone set� The write operation
is implemented as described in Section 
� To obtain the correct value of x from a read operation�
the client reads a set of value�timestamp pairs from a quorum Q� discards values that are returned
from any B� � B or subsets thereof� and chooses among the remaining values the one with the
highest timestamp� This guarantees correctness of the returned value�timestamp pair� which was
received from some set B� � Q of servers� where B� is not contained in any B� � B and therefore
must contain at least one correct server� Furthermore� it is easy to see that if the most recent write
has completed in quorum Q�� then all of the servers in Q�Q� nB will return this most up�to�date
value� and since by de�nition Q�Q� nB is not contained in any B� � B� this value will be returned
by the read operation� The read operation is thus as follows�

Read� For a client to read a variable x� it queries servers to obtain a set of value�timestamp pairs
A � f�vu� tu�gu�Q for some quorum Q� The client computes the set

A� � f�v� t� � �B� � Q � �B � B �B� �� B
 �
�u � B� �vu � v � tu � t
 
g�

The client then chooses the pair �v� t� in A� with the highest timestamp� and chooses v as the
result of the read operation� if A� is empty� the client returns 	 �a null value� which indicates that
the read failed��

Lemma ��� A read operation that is concurrent with no write operations returns the value written
by the last preceding write operation in some serialization of all preceding write operations�

Proof� Let W denote the set of write operations preceding the read� The read operation will
return the value written in the write operation in W with the highest timestamp� since� by the
construction of masking quorum systems� this value�timestamp pair will appear in A� and will have
the highest timestamp in A� �any pair with a higher timestamp will be returned only by servers in
some B � B�� So� it su�ces to argue that there is a serialization of the writes in W in which this

�



write operation appears last� or in other words� that this write operation precedes no other write
operation in W � This is immediate� however� as if it did precede another write operation in W �
that write operation would have a higher timestamp� �

This lemma implies that the protocol above implements a multi�writer multi�reader safe vari�
able �	�
� A failure value �	� may be returned when some write overlaps a read operation� Never�
theless� from safe variables multi�writer multi�reader atomic variables can be built using well�known
constructions �	�� 	�� 	�
�

A necessary and su�cient condition for the existence of a masking quorum system �and a
construction for one� if it exists� for any given fail�prone system B is given in the following theorem�

Theorem ��� Let B be a fail�prone system for a universe U � Then there exists a masking quorum
system for B i� Q � fU nB � B � Bg is a masking quorum system for B�

Proof� Obviously� if Q is a masking quorum system for B� then one exists� To show the converse�
assume that Q is not a masking quorum� Since M�Availability holds in Q by construction� there
exist Q�� Q� � Q and B�� B�� � B� such that �Q��Q��nB� � B��� Let B� � U nQ� and B� � U nQ��
By the construction ofQ� we know thatB�� B� � B� By M�Availability� any masking quorum system
for B must contain quorums Q�

� � Q�� Q
�
� � Q�� However� for any such Q�

�� Q
�
�� it is the case that

�Q�
� �Q�

�� nB� � �Q� �Q�� nB� � B��� violating M�Consistency� Therefore� there does not exist a
masking quorum system for B under the assumption that Q is not a masking quorum system for
B� �

Corollary ��� Let B be a fail�prone system for a universe U � Then there exists a masking quorum
system for B i� for all B�� B�� B�� B� � B� U �� B� � B� � B� � B�� In particular� suppose that
B � fB � U � jBj � fg� Then� there exists a masking quorum system for B i� n � �f �

Proof� By Theorem ��
� there is a masking quorum for B i� Q � fU n B � B � Bg is a masking
quorum for B� By construction� Q is a masking quorum i� M�Consistency holds for Q� i�e�� i� for
all B�� B�� B�� B� � B�

��U nB�� � �U nB��� nB� �� B�


� U n �B� �B�� �� B� �B�


� U �� B� �B� � B� � B��

�

The existence criterion for masking quorum systems identi�ed by Theorem ��
 characterizes
all possible masking systems for the fail�prone system B� In particular� the system Q in Theorem
��
 is dominated �in the sense of ���
� by any other masking quorum system Q� for B� in that for
every Q � Q there must exist Q� � Q� such that Q� � Q� While this provides a characterization of
masking quorum systems for any fail�prone system B� it does not help in constructing ones to meet
any speci�c requirements� Garcia�Molina and Barbara ���
 present techniques for enumerating a
certain class of �non�Byzantine� quorum systems� Their methods are not directly applicable for
enumerating masking quorum systems� and we leave as an open research topic the question of
e�ciently mechanizing masking quorum generation� A separate paper �
�
 provides constructions
that are optimal in load and various availability measures for any threshold failure assumption up
to the maximum of n���

�



The following theorem was proved in �
�
 for benign�failure quorum systems� and holds a fortiori
for masking quorums �as a result of M�Consistency�� Let c�Q� denote the size of the smallest quorum
of Q�

Theorem ��� �
�
 IfQ is a quorum system over a universe of n elements� then L�Q� � maxf �
c�Q�

� c�Q�
n
g�

and thus� L�Q� � �p
n
�

Below we give several examples of masking quorum systems and describe their properties�

Example ��	 �f �masking� Suppose that B � fB � U � jBj � fg� n � �f � Note that this
corresponds to the usual threshold assumption that up to f servers may fail� Then� the quorum
system Q � fQ � U � jQj � dn��f��� eg is a masking quorum system for B� M�Consistency is
satis�ed because any Q�� Q� � Q will intersect in at least 	f � � elements� M�Availability holds
because dn��f��� e 
 n � f � A strategy that assigns equal probability to each quorum induces a

load of �
n
dn��f��� e on the system� By Theorem ���� this load is in fact the load of the system� �

The following example is interesting since its load decreases as a function of n� and since it
demonstrates a method for ensuring system�wide consistency in the face of Byzantine failures while
requiring the involvement of fewer than a majority of the correct servers� These advantages are
dramatic when n is su�ciently large� e�g�� hundreds of servers�

Example ��
 �Grid quorums� Suppose that the universe of servers is of size n � k� for some
integer k and that B � fB � U � jBj � fg� 
f � � 
 p

n� Arrange the universe into a
p
n � p

n

grid� as shown in Figure 	� Denote the rows and columns of the grid by Ri and Ci� respectively�
where � 
 i 
 p

n� Then� the quorum system

Q �

�
Cj �

�
i�I

Ri � I� fjg � f� � � �png� jI j� 	f � �

�

is a masking quorum system for B� M�Consistency holds since every pair of quorums intersect in
at least 	f � � elements �the column of one quorum intersects the 	f � � rows of the other�� and
M�Availability holds since for any choice of f faulty elements in the grid� 	f � � full rows and a
column remain available� A strategy that assigns equal probability to each quorum induces a load

of ��f���
p
n���f���
n

� and again by Theorem ���� this is the load of the system� �

Note that by choosing B � f�g �i�e�� f � �� in the example above� the resulting construction
has a load of O� �p

n
�� which asymptotically meets the bounds given in Theorem ���� In general�

however� this construction yields a load of O� fp
n
�� which is not optimal� Malkhi et al� �
�
 show a

lower bound of
q

�f��
n

on the load of any masking quorum system for B � fB � U � jBj � fg� and
provide a construction whose load matches that bound�

Example ��� �Partition� Suppose that B � fB�� � � � � Bmg� m � �� is a partition of U where Bi �� �
for all i� � 
 i 
 m� This choice of B could arise� for example� in a wide area network composed
of multiple local clusters� each consisting of some Bi� and expresses the assumption that at any
time� at most one cluster is faulty� Then� any collection of nonempty sets �Bi � Bi� � 
 i 
 m� can

�



k

k

Figure 	� Grid construction� k � k � n� f � � �one quorum shaded��

be thought of as �super�elements� in a universe of size m� with a threshold assumption f � � �see
Figure 
�� Therefore� the following is a masking quorum system for B�

Q �

��
i�I

�Bi � I � f�� � � � � mg� jI j � dm��
� e

�

M�Consistency is satis�ed because the intersection of any two quorums contains elements from at
least three sets in B� M�Availability holds since there is no B � B that intersects all quorums� A
strategy that assigns equal probability to each quorum induces a load of �

m
dm��

� e on the system

regardless of the size of each �Bi� and again Theorem ��� implies that this is the load of the system�
If m � k� for some k� then a more e�cient construction can be achieved by forming the grid

construction from Example ��� on the �super elements� f �Big� achieving a load of �
p
m��
m

� �

� �z � � �z �� �z � � �z �� �z �
B� B� B� B� B�

�B�
�B�

�B�
�B�

�B�

z �� �U

Figure 
� Partition fB�� B�� B�� B�� B�g� �Bi�s shaded�

� Variations

��� Dissemination quorum systems

As a special case of services that can employ quorums in a Byzantine environment� we now consider
applications in which the service is a repository for self�verifying information� i�e�� information that
only clients can create and to which clients can detect any attempted modi�cation by a faulty server�
A natural example is a database of public key certi�cates as found in many public key distribution

�



systems �e�g�� ���� ��� 	

�� In its simplest form� a public key certi�cate is a structure containing a
name for a user and a public key� and represents the assertion that the indicated public key can be
used to authenticate messages from the indicated user� This structure is digitally signed �e�g�� �
�
�
by a certi�cation authority so that anyone with the public key of this authority can verify this
assertion and� providing it trusts the authority� use the indicated public key to authenticate the
indicated user� Due to this signature� it is not possible for a faulty server to undetectably modify a
certi�cate it stores� However� a faulty server can undetectably suppress a change from propagating
to clients� simply by ignoring an update from a certi�cation authority� This could have the e�ect�
e�g�� of suppressing the revocation of a key that has been compromised�

As can be expected� the use of digital signatures to verify data decreases the cost of accessing
replicated data� To support such a service� we employ a dissemination quorum system� which has
weaker requirements than masking quorums� but which nevertheless ensures that in applications like
those above� self�verifying writes will be propagated to all subsequent read operations despite the
arbitrary failure of some servers� To achieve this� it su�ces for the intersection of every two quorums
to not be contained in any set of potentially faulty servers �so that a written value can propagate
to a read�� This leads to requirement D�Consistency below� And� supposing that operations are
required to continue in the face of failures� then due to the lack of accurate failure detection� there
should be quorums that a faulty set cannot disable� this yields requirement D�Availability below�

De�nition ��� A quorum system Q is a dissemination quorum system for a fail�prone system B if
the following properties are satis�ed�

D�Consistency� �Q�� Q� � Q �B � B � Q� � Q� �� B

D�Availability� �B � B �Q � Q � B �Q � �
�

A dissemination quorum system will su�ce for propagating self�verifying information as in the
application described above� The write operation is implemented as described in Section 
� and
the read operation becomes�

Read� For a client to read a variable x� it queries servers to obtain a set of value�timestamp pairs
A � f�vu� tu�gu�Q for some quorum Q� The client then discards those pairs that are not veri�able
�e�g�� using an appropriate digital signature veri�cation algorithm� and chooses from the remaining
pairs the pair �v� t� with the largest timestamp� v is the result of the read operation�

It is important to note that timestamps must be included as part of the self�verifying infor�
mation� so they cannot be undetectably altered by faulty servers� In the case of the application
described above� existing standards for public key certi�cates �e�g�� ���
� already require a real�time
timestamp in the certi�cate�

The following lemma proves correctness of the above protocol using dissemination quorum
systems� The proof is almost identical to that for masking quorum systems�

Lemma ��� A read operation that is concurrent with no write operations returns the value written
by the last preceding write operation in some serialization of all preceding write operations�

Due to the assumption of self�verifying data� we can also prove in this case the following property�

��



Lemma ��� A read operation that is concurrent with one or more write operations returns either
the value written by the last preceding write operation in some serialization of all preceding write
operations� or any of the values being written in the concurrent write operations�

The above lemmata imply that the protocol above implements a regular variable �	�
� Theorems
analogous to the ones given for masking quorum systems above are easily derived for dissemination
quorums� Below� we list these results without proof�

Theorem ��� Let B be a fail�prone system for a universe U � Then there exists a dissemination
quorum system for B i� Q � fU nB � B � Bg is a dissemination quorum system for B�

Corollary ��� Let B be a fail�prone system for a universe U � Then there exists a dissemination
quorum system for B i� for all B�� B�� B� � B� U �� B� � B� � B�� In particular� suppose that
B � fB � U � jBj � fg� Then� there exists a dissemination quorum system for B i� n � 
f �

Below� we provide several example constructions of dissemination quorum systems�

Example ��	 �f �dissemination� Suppose that B � fB � U � jBj � fg� n � 
f � Note that this
corresponds to the usual threshold assumption that up to f servers may fail� Then� the quorum
system Q � fQ � U � jQj � dn�f��� eg is a dissemination quorum system for B with load �

n
dn�f��� e�

�

Example ��
 �Grid� Let the universe be arranged in a grid as in Example ��� above� and let
B � fB � U � jBj � fg� 	f � � 
 p

n� Then� the quorum system

Q �

�
Cj �

�
i�I

Ri � I� fjg � f� � � �png� jI j � f � �

�

is a dissemination quorum system for B� The load of this system is �f���
p
n��f���
n

� �

Example ��� �Partition� Suppose that B � fB�� � � � � Bmg�m � 
� is a partition of U as in Figure 
�
For any collection of nonempty sets �Bi � Bi� � 
 i 
 m� the f �dissemination construction of
Example ��� on the �super�elements� �Bi � Bi �as in Example ���� yields a dissemination quorum
system with a load of �

m
dm��

� e� Ifm � k� for some k� the Grid construction of Example ��� achieves

a load of �
p
m��
m

� �

��� Opaque masking quorum systems

Masking quorums impose a requirement that clients know the fail�prone system B� while there may
be reasons that clients should not be required to know this� First� it somewhat complicates the
client�s read protocol� in particular� when no concise description of B exists� Second� by revealing
the failure scenarios for which the system was designed� the system also reveals the failure scenarios
to which it is vulnerable� which could be exploited by an attacker to guide an active attack against
the system� By not revealing the fail�prone system to clients� and indeed giving each client only
a small fraction of the possible quorums� the system can somewhat obscure �though perhaps not
secure in any formal sense� the failure scenarios to which it is vulnerable� especially in the absence
of client collusion�

In this section we describe one way to modify the masking quorum de�nition of Section � to
be opaque� i�e�� to eliminate the need for clients to know B� In the absence of the client knowing

��



B� the only method of which we are aware for the client to reduce a set of replies from servers to a
single reply from the service is via voting� i�e�� choosing the reply that occurs most often� In order
for this reply to be the correct one� however� we must strengthen the requirements on our quorum
systems� Speci�cally� suppose that the variable x is written with quorum Q�� and that subsequently
x is read with quorum Q�� If B is the set of arbitrarily faulty servers� then �Q� � Q�� n B is the
set of correct servers that possess the latest value for x �see Figure ��� In order for the client to
obtain this value by vote� this set must be larger than the set of faulty servers that are allowed
to respond� i�e�� Q� � B� Moreover� since these faulty servers can �team up� with the out�of�date
but correct servers in an e�ort to suppress the write operation� the number of correct� up�to�date
servers that reply must be no less than the number of faulty or out�of�date servers that can reply�
i�e�� �Q� � B� � �Q� n Q��� Finally� to e�ectively mask failures by any B � B in an asynchronous
environment� we add the availability requirement �O�Availability��

De�nition ��� A quorum system Q is an opaque masking quorum system for a fail�prone system
B if the following properties are satis�ed�

O�Consistency�� �Q�� Q� � Q �B � B � j�Q� �Q�� nBj � j�Q� �B� � �Q� nQ��j
O�Consistency�� �Q�� Q� � Q �B � B � j�Q� �Q�� nBj � jQ� �Bj
O�Availability� �B � B �Q � Q � B � Q � �
�

B

Q�

Q�

�

� �O�Consistency��

O�Consistency��

Figure �� O�Consistency� and O�Consistency	

Note that O�Consistency� admits the possibility of equality in size between �Q� � Q�� n B and
�Q��B�� �Q� nQ��� Equality is su�cient since� in the case that the faulty servers �team up� with
the correct but out�of�date servers in Q�� the value returned from �Q� �Q�� nB will have a higher
timestamp than that returned by �Q��B�� �Q� nQ��� Therefore� in the case of a tie� a reader can
choose the value with the higher timestamp� It is interesting to note that a strong inequality in
O�Consistency� would permit a correct implementation of a single�reader singer�writer safe variable
that does not use timestamps �by taking the majority value in a read operation��

It is not di�cult to verify that an opaque masking quorum system enables a client to obtain
the correct answer from the service� The write operation is implemented as described in Section ��

�	



and the read operation becomes�

Read� For a client to read a variable x� it queries servers to obtain a set of value�timestamp pairs
A � f�vu� tu�gu�Q for some quorum Q� The client chooses the pair �v� t� that appears most often
in A� and if there are multiple such pairs� the one with the highest timestamp� The value v is the
result of the read operation�

Opaque masking quorum systems� combined with the access protocol described previously� provide
the same semantics as regular masking quorum systems� The proof is almost identical to that for
regular masking quorums�

Lemma ���
 A read operation that is concurrent with no write operations returns the value written
by the last preceding write operation in some serialization of all preceding write operations�

Below we give several examples of opaque masking quorum systems �or just �opaque quorum
systems�� and describe their properties�

Example ���� �f �opaque� Suppose that B � fB � U � jBj � fg where n � �f and f � �� Then�
the quorum system Q � fQ � U � jQj � d�n��f� eg is an opaque quorum system for B� whose load

is �
n
d�n��f� e� �

The next theorem proves a resilience bound for opaque quorum systems�

Theorem ���� Suppose that B � fB � U � jBj � fg� There exists an opaque quorum system for
B i� n � �f �

Proof� That n � �f is su�cient is already demonstrated in Example ���� above� Now suppose
that Q is an opaque quorum system for B� Fix any Q� � Q such that jQ�j 
 n � f �Q� exists
by O�Availability�� note that jQ�j � f by O�Consistency	� Choose B� � Q�� jB�j � f � and some
Q� � Q such that Q� � U n B� �Q� exists by O�Availability�� Then jQ� � Q�j 
 n � 	f � By
O�Consistency	� jQ� �Q�j � f � and therefore there is some B� � B such that B� � Q� �Q�� Then

n� 
f � jQ� � Q�j � jB�j
� j�Q� �Q�� nB�j
� j�Q� nQ��� �Q� � B��j ���

� jQ� nQ�j� jB�j
� jB�j� jB�j
� 	f

Where ��� holds by O�Consistency�� Therefore� we have n � �f � �

Example ���� �Partition� Suppose that B � fB�� � � � � B�kg� k � �� is a partition of U where Bi �� �
for all i� � 
 i 
 
k� Choose any collection of sets �Bi � Bi� � 
 i 
 
k� such that j �Bij � c for
a �xed constant c � �� Then� the f �opaque construction of Example ���� on the �super�elements�
f �Big �as in Example ����� with universe size 
k and a threshold assumption f � �� yields an opaque
quorum system with load �k��

�k � �

�




Unlike the case for regular masking quorum systems� an open problem is to �nd a technique for
testing whether� given a fail�prone system B� there exists an opaque quorum system for B �other
than an exhaustive search of all subsets of 	U��

In the constructions in Examples ���� and ���
� the resulting quorum systems exhibited loads
that at best were constant as a function of n� In the case of masking quorum systems� we were able
to exhibit quorum systems whose load decreased as a function of n� namely the grid quorums� A
natural question is whether there exists an opaque quorum system for any fail�prone system B that
has load that decreases as a function of n� In this section� we answer this question in the negative�
we show a lower bound of �

� on the load for any opaque quorum system construction� regardless of
the fail�prone system�

Theorem ���� The load of any opaque quorum system is at least �
� �

Proof� O�Consistency� implies that for any Q�� Q� � Q� jQ��Q�j � jQ�nQ�j� and thus jQ��Q�j �
jQ�j
� � Let w be any strategy for the quorum system Q� and �x any Q� � Q� Then� the total load

induced by w on the elements of Q� is�X
u�Q�

lw�u� �
X
u�Q�

X
Qi�u

w�Qi�

�
X
Qi

X
u�Q��Qi

w�Qi�

�
X
Qi

jQ�j
	

w�Qi�

�
jQ�j
	

Therefore� there must be some server in Q� that su�ers a load at least �
� � �

We now present a generic construction of an opaque quorum system for B � f�g and increasingly
large universe sizes n� that has a load that tends to �

� as n grows� We give this construction
primarily to show that in at least some cases the lower bound of �

� is tight� due to the requirement
that B � f�g� this construction is not of practical use for coping with Byzantine failures�

Example ���� Suppose that the universe of servers is U � fu�� � � � � ung where n � 	� for some
� � 	� and that B � f�g� Consider the n � n Hadamard matrix H���� constructed recursively as
follows�

H��� �

�
�� ��
�� �

�

H�k� �

�
H�k � �� H�k� ��
H�k � �� �H�k � ��

�
� k � 	

H��� has the property thatH���H���T � nI � where I is the n�n identity matrix� Using well�known
inductive arguments ���� Ch� ��
� it can be shown that �i� the �rst row and column consist entirely
of ���s� �ii� the i�th row and i�th column� for each i � 	� has ��s in n

� positions �and similarly for
���s�� and �iii� any two rows �and any two columns� i� j � 	 have identical elements in n

� positions�
i�e�� ��s in n

� common positions and ���s in n
� common positions�

��



We treat the rows of H��� as indicators of subsets of U � That is� let Qi � fuj � H����i� j
 � �g
be the set de�ned by the i�th row� � 
 i 
 n� Note that Q� � � and that u� is not included in
any Qi� We claim that the system Q � fQ�� ���� Qng is an opaque quorum system for B� Using
properties �i� �iii� above� we have that jQij � n

� for each i � 	� that each ui� i � 	� is in exactly
n
� of the sets Q�� � � � � Qn� and that for any i� j � 	� if i �� j then jQi � Qj j � n

� � From these� the

O�Consistency� and O�Consistency	 requirements can be quickly veri�ed� and a load of
n

�

n�� can
be achieved� e�g�� with a strategy that assigns equal probability to each quorum� �

� Faulty clients

So far� we have been concerned with providing a consistent service to a set of correct clients� In
this section� we extend our treatment to address faulty clients in addition to faulty servers� Since
updates may now be generated by faulty clients� we can make no assumption of self�verifying data�
and thus use masking quorum systems �Section �� to implement the service� We focus on ensuring
the consistency of the data stored at the replicated service as seen by correct clients only�

A di�culty in handling faulty clients is that a faulty writer might send di�erent updates to
di�erent servers and may fail to contact a full quorum� We therefore modify the write protocol
to prevent clients from leaving the service in an inconsistent state� and to guarantee that updates
propagate to �at least� a full quorum� We maintain availability of the service despite the possibly
malicious behavior by any number of clients� so that a correct client can always complete a write
operation with as little as one available quorum�

The treatment here provides a single�writer multi�reader safe variable semantics �ignoring reads
by faulty clients�� Since the initial conference publication of this work �	�
� single�writer objects
with stronger semantics in the case of faulty clients have been constructed using Byzantine quorums
and have been used to solve the distributed consensus problem �	�
� Other work has extended
the treatment here to provide multi�writer variables �
�
� using a protocol that employs digital
signatures and avoids any communication among the servers themselves�

The write protocol performed by a client is changed in that a writer computes the timestamp
locally� without consulting the servers� and in that it denotes the quorum it attempts to access in
the update request� We replace the write operation of Section 
 by the following�

Write� For a client c to write the value v� it chooses a timestamp t � Tc greater than any value it
has chosen before� and then performs the following two steps� �i� it chooses a quorum Q and sends
an update message �update� Q� v� t� to each server in Q� and �ii� if after some timeout period� it
has not received an acknowledgement from every server in Q� it repeats �i� �and �ii���

Every server that receives an update message from a client engages in an �update� protocol
to guarantee uniqueness of the value associated with a timestamp and its propagation to a full
quorum� The protocol is presented in Figure ��

In order to argue correctness for this protocol� we have to adapt the de�nition of operation
precedence and operation duration to allow for the behavior of a faulty client� The reason is that
it is unclear how to de�ne when an operation by a faulty client begins or ends� as the client can
behave outside the speci�cation of any protocol� We make use of the following terminology�

De�nition 	��We say that a server delivers an update �v� t� when it receives �ready� Q� v� t� from
each server in the set Q� � Q n B for some fail�prone set B �step � of the update protocol in
Figure ��� �

��



�� If a server receives �update� Q� v� t� from a client c� if t � Tc� and if the server has not previously
received from c a message �update� Q�� v�� t�� where either t� � t and v� �� v or t� � t� then the
server sends �echo� Q� v� t� to each member of Q�

	� If a server receives identical echo messages �echo� Q� v� t� from every server in Q� then it sends
�ready� Q� v� t� to each member of Q�


� If a server receives identical ready messages �ready� Q� v� t� from a set B� of servers� such that
B� �� B for all B � B� then it sends �ready� Q� v� t� to every member of Q if it has not done so
already�

�� If a server receives identical ready messages �ready� Q� v� t� from a set Q� of servers� such that
for some B � B� Q� � Q nB� then �i� if t is greater than the timestamp it currently holds� then
it updates its variable and timestamp to v and t� respectively� and �ii� regardless of whether it
updates the variable and timestamp� it sends an acknowledgment message to c where Tc � t�

Figure �� An update protocol

We now say that a write operation that writes v with timestamp t begins when the �rst correct
server receives �update� Q� v� t�� and ends when all correct servers in some quorum have delivered
the update� Note that by this de�nition� a write operation by a faulty client could last arbitrarily
long� and could overlap other writes by the same client� Nevertheless� carrying over the remainder
of the precedence de�nition� we have that the write protocol together with the update protocol in
Figure � implement a single�writer multi�reader safe variable�

Lemma 	�� A correct process� read operation that is concurrent with no write operations returns
the value written by the last preceding write operation in some serialization of all preceding write
operations�

To prove this lemma� we need the following properties of our protocol�

Lemma 	�� A correct server delivers �v� t� only if some correct server previously received
�update� Q� v� t��

Proof� To deliver �v� t�� a correct server must receive a ready message from some correct server�
Moreover� the �rst �ready� Q� v� t� message from a correct server is sent only after it receives
�echo� Q� v� t� from each member of Q� Since� a correct member sends �echo� Q� v� t� only if it �rst
receives �update� Q� v� t�� this proves the lemma� �

Lemma 	���Agreement� If a correct server delivers �v� t� and a correct server delivers �v�� t�� then
v � v��

Proof� As argued in the previous lemma� for a correct server to deliver �v� t�� �echo� Q� v� t� must
have been sent by all servers in Q� Similarly� �echo� Q�� v�� t� must have been sent by all servers in
Q�� Since every two quorums intersect in �at least� one correct server� and since any correct server
sends �echo� �� �v� t� for at most one value �v� v must be identical to v�� �

��



Proof of Lemma ���� Let W denote the set of write operations preceding the read� Note that by
Lemma ���� any value�timestamp pair in W is well de�ned� i�e�� the same value corresponds to any
timestamp at all correct servers that deliver it� By de�nition� every write in W was delivered to a
full quorum� and by assumption and Lemma ��
� no correct server has delivered any write outside
W � Therefore� by the construction of masking quorum systems� the read operation will return the
value written in the write operation in W with the highest timestamp� So� it su�ces to argue that
there is a serialization of the writes in W in which this write operation appears last� or in other
words� that this write operation precedes no other write operation inW � This results� however� from
the fact that there is a single writer and that servers echo an update request only if its timestamp
is higher than the one they have in store� and so any later write operation has a higher timestamp� �

In addition� we argue liveness and completeness of our protocol as follows�

Lemma 	���Propagation� If a correct server delivers �v� t�� then eventually there exists a quorum
Q � Q such that every correct server in Q delivers �v� t��

To prove this lemma� we make use of the following fact�

Lemma 	�	 If Q is a masking quorum system over a universe U with respect to a fail�prone system
B� then �Q � Q �B�� B�� B� � B� Q �� B� � B� �B��

Proof� Assume otherwise for a contradiction� i�e�� that there is a Q � Q and B�� B�� B� � B such
that Q � B��B��B�� By M�Availability� there exists Q� � Q� Q��B� � �� Then� Q�Q� � B��B�

and thus �Q �Q�� nB� � B�� contradicting M�Consistency� �

Proof of Lemma ���� According to the protocol� the correct server that delivered �v� t� received a
message �ready� Q� v� t� from each server in Q� � Q n B for some Q � Q and B � B� Since� for
some B� � B� �at least� all the members in Q� nB� are correct� every correct member of Q receives
�ready� Q� v� t� from each of the members of B� � Q� nB�� Since� �B�� � B� Q� nB� �� B�� �by
Lemma ����� the ready messages from B� cause each correct member of Q to send such a ready

message� Consequently� �v� t� is delivered by all of the correct members of Q� �

Lemma 	�
�Validity� If a correct client c sends �update� Q� v� t� to every server in Q and all servers
in Q are correct� then eventually a correct server delivers �v� t��

Proof� Since both the client and all of the members of Q are correct� �update� Q� v� t� will be
received and echoed by every member in Q� Consequently� all the servers in Q will send �ready� Q�
v� t� messages to the members of Q� and will eventually deliver �v� t�� �

� Conclusions

The literature contains an abundance of protocols that use quorums for accessing replicated data�
This approach is appealing for constructing replicated services as it allows for increasing the avail�
ability and e�ciency of the service while maintaining its consistency� Our work extends this suc�
cessful approach to environments where both the servers and the clients of a service may deviate
from their prescribed behavior in arbitrary ways� We introduced a new class of quorum systems�
namely masking quorum systems� and devised protocols that use these quorums to enhance the

��



availability of systems prone to Byzantine failures� We also explored two variations of our quo�
rum systems� namely dissemination and opaque masking quorums� and for all of these classes of
quorums we provided various constructions and analyzed the load they impose on the system�

Our work leaves a number of intriguing open challenges and directions for future work� One is to
characterize the average performance of our quorum constructions and their load in less�than�ideal
scenarios� e�g�� when failures occur� Also� in this work we described only quorum systems that are
uniform� in the sense that any quorum is possible for both read and write operations� In practice it
may be bene�cial to employ quorum systems with distinguished read quorums and write quorums�
with consistency requirements imposed only between pairs consisting of at least one write quorum�
Although this does not seem to improve our lower bounds on the overall load that can be achieved�
it may allow greater �exibility in trading between the availability of reads and writes�

Acknowledgments

We are grateful to Andrew Odlyzko for suggesting the use of Hadamard matrices to construct
opaque masking quorum systems with an asymptotic load of �

� � We also thank Yehuda Afek
and Michael Merritt for helpful discussions� and Vassos Hadzilacos and Rebecca Wright for many
helpful comments on earlier versions of this paper� An insightful comment by Rida Bazzi led to a
substantial improvement over a previous version of this paper�

��



References

��� Y� Afek� H� Attiya� D� Dolev� E� Gafni� M� Merritt and N� Shavit� Atomic snapshots of shared memory� Journal
of the ACM 	
�	��
���
�
� September �����

��� Y� Afek� D� Dolev� E� Gafni� M� Merritt and N� Shavit� A bounded �rst�in �rst�enabled�solution to the l�
exclusion problem� In Proceedings of the �th International Workshop on Distributed Algorithms� LNCS 	
��
Springer�Verlag� ���
�

��� D� Agrawal and A� El Abbadi� Integrating security with fault�tolerant distributed databases� Computer Journal
����������
� February ���
�

�	� D� Agrawal and A� El Abbadi� An e�cient and fault�tolerant solution for distributed mutual exclusion� ACM
Transactions on Computer Systems ��������
� �����

��� J� H� Anderson� Composite registers� Distributed Computing ������	����	� �����

��� R� A� Bazzi� Synchronous Byzantine quorum systems� In Proceedings of the ��th ACM Symposium on Principles
of Distributed Computing �PODC�� pages �������� August �����

��� P� A� Bernstein� V� Hadzilacos and N� Goodman� Concurrency control and recovery in database systems�
Addison�wesley� ��
��

�
� G� Bracha and S� Toueg� Asynchronous consensus and broadcast protocols� Journal of the ACM ���	��
�	�
	
�
October ��
��

��� S� Y� Cheung� M� H� Ammar� and M� Ahamad� The grid protocol� A high performance scheme for maintaining
replicated data� In Proceedings of the �th IEEE International Conference on Data Engineering� pages 	�
�		��
���
�

��
� International Telegraph and Telephone Consultative Committee �CCITT�� The Directory � Authentication
Framework� Recommendation X��
�� ��

�

���� D� Dolev� E� Gafni and N� Shavit� Toward a non�atomic era� l�exclusion as a test case� In Proceedings of the
��th ACM Symposium on Theory of Computing� pages �
���� May ��

�

���� D� Dolev and N� Shavit� Bounded concurrent time�stamp systems are constructible� SIAM Journal of Comput�
ing� to appear� Also in Proceedings of the ��st ACM Symposium on the Theory of Computing� pages 	�	�	���
��
��

���� A� El Abbadi and S� Toueg� Maintaining availability in partitioned replicated databases� ACM Transactions on
Database Systems �	������	���
� June ��
��

��	� H� Garcia�Molina and D� Barbara� How to assign votes in a distributed system� Journal of the ACM ���	��
	��

�
� October ��
��

���� D� K� Gi�ord� Weighted voting for replicated data� In Proceedings of the �th ACM Symposium on Operating
Systems Principles� pages ��
����� �����

���� M� Hall� Jr� Combinatorial Theory� �nd Ed� Wiley�Interscience Series in Discrete Mathematics� ��
��

���� M� Herlihy� A quorum�consensus replication method for abstract data types� ACM Transactions on Computer
Systems 	���������� February ��
��

��
� M� P� Herlihy and J� D� Tygar� How to make replicated data secure� In Advances in Cryptology	CRYPTO 
��
Proceedings �Lecture Notes in Computer Science ����� pages �������� Springer�Verlag� ��

�

���� A� Israeli and M� Li� Bounded time�stamps� Distributed Computing ��	���
���
��

��
� A� Kumar� Hierarchical quorum consensus� A new algorithm for managing replicated data� IEEE Transactions
on Computers 	
���������

	� �����

���� A� Israeli and A� Shaham� Optimal multi�write multi�reader atomic register� In Proceedings of the ��th ACM
Symposium on Principles of Distributed Computing� pages ���
�� �����

���� L� Lamport� R� Shostak and M� Pease� The Byzantine generals problem� ACM Transactions on Programming
Languages and Systems 	�����
��	
�� July ��
��

���� B� Lampson� M� Abadi� M� Burrows� and E� Wobber� Authentication in distributed systems� Theory and
practice� ACM Transactions on Computer Systems �
�	��������
� November �����

��	� L� Lamport� On interprocess communication �part II� algorithms�� Distributed Computing ��
���
�� ��
��

���� M� Li� J� Tromp and P� M� B� Vitanyi� How to share concurrent wait�free variables� Journal of the ACM� to
appear�

��



���� M� Maekawa� A
p
n algorithm for mutual exclusion in decentralized systems� ACM Transactions on Computer

Systems ������	������ ��
��

���� D� Malkhi and M� Reiter� A high�throughput secure reliable multicast protocol� Journal of Computer Security�
�� ����� pp ��������

��
� D� Malkhi and M� Reiter� Byzantine quorum systems� In Proceedings of the ��th ACM Symposium on Theory
of Computing �STOC�� pages ������
� May �����

���� D� Malkhi and M� Reiter� Survivable consensus objects� In preparation�

��
� D� Malkhi and M� Reiter� Secure and scalable replication in Phalanx� In preparation�

���� D� Malkhi� M� Reiter� and A� Wool� The load and availability of Byzantine quorum systems� In Proceedings of
the ��th ACM Symposium on Principles of Distributed Computing �PODC�� pages �	������ August �����

���� D� Malkhi� M� Reiter� and R� Wright� Probabilistic quorum systems� In Proceedings of the ��th ACM Symposium
on Principles of Distributed Computing �PODC�� pages �������� August �����

���� D� Malkhi� M� Reiter� A� Wool and R� Wright� Probabilistic Byzantine Quorum Systems� Brief Announce�
ment in Proceedings of the ��th ACM Symposium on Principles of Distributed Computing �PODC�� ���
� to
be published� Full version submitted for publication�

��	� R� Mukkamala� Storage e�cient and secure replicated distributed databases� IEEE Transactions on Knowledge
and Data Engineering ����������	�� April ���	�

���� M� Naor and A� Wool� The load� capacity� and availability of quorum systems� In Proceedings of the 
�th IEEE
Symposium on Foundations of Computer Science� pages ��	����� ���	�

���� M� Naor and A� Wool� Access control and signatures via quorum secret sharing� In Proceedings of the 
rd ACM
Conference on Computer and Communications Security� pages ������
� March �����

���� M� O� Rabin� E�cient dispersal of information for security� load balancing� and fault tolerance� Journal of the
ACM �����������	
� ��
��

��
� M� K� Reiter� Distributing trust with the Rampart toolkit� Communications of the ACM ���	������	� April
�����

���� R� Rivest� A� Shamir� and L� Adleman� A method for obtaining digital signatures and public�key cryptosystems�
Communications of the ACM ��������
����� February ���
�

�	
� A� Shamir� How to share a secret� Communications of the ACM ��������������� November �����

�	�� J� J� Tardo and K� Alagappan� SPX� Global authentication using public key certi�cates� In Proceedings of the
���� IEEE Symposium on Research in Security and Privacy� pages �����		� May �����

�	�� R� H� Thomas� A majority consensus approach to concurrency control for multiple copy databases� ACM
Transactions on Database Systems 	�����

��
�� �����

	�


