
00

A SAT Approach to Clique-Width

MARIJN J. H. HEULE, Department of Computer Sciences, The University of Texas at Austin
STEFAN SZEIDER, Institute of Computer Graphics and Algorithms, Vienna University of Technology

Clique-width is a graph invariant that has been widely studied in combinatorics and computational logic.
Computing the clique-width of a graph is an intricate problem, the exact clique-width is not known even for
very small graphs. We present a new method for computing clique-width via an encoding to propositional
satisfiability (SAT) which is then evaluated by a SAT solver. Our encoding is based on a reformulation
of clique-width in terms of partitions that utilizes an efficient encoding of cardinality constraints. Our SAT-
based method is the first to discover the exact clique-width of various small graphs, including famous named
graphs from the literature as well as random graphs of various density. With our method we determined the
smallest graphs that require a small pre-described clique-width. We further show how our method can be
modified to compute the linear clique-width of graphs, a variant of clique-width that has recently received
considerable attention. In an appendix we provide certificates for tight upper bounds for the clique-width
and linear clique-width of famous named graphs.

Categories and Subject Descriptors: Theory of computation [Logic]: Constraint and logic programming;
Mathematics of computing [Discrete mathematics]: Graph theory

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: clique-width, linear clique-width, satisfiability, k-expression, cardinality
constraint, SAT solver, SAT encoding

ACM Reference Format:
Marijn J. H. Heule and Stefan Szeider, 2015. A SAT approach to clique-width. ACM Trans. Comput. Logic 0,
0, Article 00 (January 2015), 29 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Clique-width is a fundamental graph invariant that has been widely studied in com-
binatorics and computational logic. Clique-width measures in a certain sense the com-
plexity of a graph. It is defined via a graph construction process which starts from
single-vertex graphs as axioms and builds from this larger graphs by means of three
operations (disjoint union, vertex relabeling, and edge insertion; see Section 2.2 for
details). Vertices that share the same label at a certain point of the construction pro-
cess must be treated uniformly in subsequent steps. The clique-width of a graph is the
smallest number of labels that suffices to construct the graph. This graph composition
mechanism was first considered by Courcelle, Engelfriet, and Rozenberg [1991; 1993]
and has since then been an important topic in combinatorics and computer science.

A preliminary and shortened version appeared in the proceedings of SAT’13, The 16th International Con-
ference on Theory and Applications of Satisfiability Testing
Heule’s research was supported in part by the National Science Foundation under grant CNS-0910913 and
DARPA contract number N66001-10-2-4087.
Szeider’s research was supported by the ERC, grant reference 239962 (COMPLEX REASON).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1529-3785/2015/01-ART00 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:2 M. J. H. Heule and S. Szeider

Graphs of small clique-width have advantageous algorithmic properties. Algorith-
mic meta-theorems show that large classes of NP-hard optimization problems and #P-
hard counting problems can be solved in linear time on classes of graphs of bounded
clique-width [Courcelle et al. 2000; 2001]. Similar results hold for the graph invari-
ant treewidth, however, clique-width is more general in the sense that graphs of small
treewidth also have small clique-width, but there are graphs of small clique-width
but arbitrarily large treewidth [Courcelle and Olariu 2000; Corneil and Rotics 2005].
Unlike treewidth, dense graphs (e.g., cliques) can also have small clique-width.

All these algorithms for graphs of small clique-width require that a certificate for
the graph having small clique-width is provided. However, it seems that computing the
certificate, or just deciding whether the clique-width of a graph is bounded by a given
number, is a very intricate combinatorial problem. More precisely, given a graph G and
an integer k, deciding whether the clique-width of G is at most k is NP-complete [Fel-
lows et al. 2009]. Even worse, the clique-width of a graph with n vertices of degree
greater than 2 cannot be approximated by a polynomial-time algorithm with an ab-
solute error guarantee of nε unless P = NP, where 0 ≤ ε < 1 [Fellows et al. 2009]. In
fact, it is even unknown whether graphs of clique-width at most 4 can be recognized in
polynomial time [Corneil et al. 2012]. One can decide in exponential time (2k+1)nnO(1)

whether the clique-width of a graph with n vertices is at most k [Wahlström 2011].
There are approximation algorithms with an exponential error that, for fixed k, com-
pute f(k)-expressions for graphs of clique-width at most k in polynomial time (where
f(k) = (23k+2 − 1) by Oum and Seymour [2006], and f(k) = 8k − 1 by Oum [2008]).
Because of this intricacy of this graph invariant, the exact clique-width is not known
even for very small graphs.

Our Approach Clique-width via SAT
In this work we propose a new approach to compute the clique-width of graphs. Our
approach is based on the recent advancements in the area of propositional satisfiability
(SAT) (see, for instance [Gomes et al. 2008; Biere et al. 2009; Sakallah and Marques-
Silva 2011; Malik and Zhang 2009]). State-of-the-art solvers are highly scalable and
deal routinely with industrial instances with millions of variables. Key application
areas are hardware and software verification. SAT solvers have also been successfully
applied to various problems in combinatorial design [Zhang 2009].

We present a new method for determining the clique-width based on a sophisticated
SAT encoding that makes use of the following two main ingredients.

(1) Reformulation. The conventional construction method for determining the clique-
width of a graph consists of many steps. In the worst case, the number of steps is
quadratic in the number of vertices. Translating this construction method to SAT
results in large instances. We propose a reformulation of the problem in such a
way that the number of steps is less than the number of vertices. The alternative
construction method allows us to compute the clique-width of much larger graphs.

(2) Representative encoding. Applying the frequently-used direct encoding [Walsh
2000] on the reformulation results in instances where unit propagation finds con-
flicts much later than required. We develop a new encoding that is compact and
avoids this shortcoming (it realizes arc consistency in the sense of [Gent 2002]).

Experimental Results
The implementation of our method allows us for the first time to determine the exact
clique-width of various graphs, including famous graphs known from the literature
and random graphs of various density.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:3

(1) Clique-width of small random graphs. We determined experimentally how the
clique-width of random graphs depends on the density. The clique-width is small
for dense and sparse graphs and reaches its maximum for edge-probability 0.5.
The larger n, the steeper the increase towards 0.5. These results complement the
asymptotic results of Lee et al. [2012].

(2) Smallest graphs of certain clique-width. In general it is not known how many ver-
tices are required to form a graph of a certain clique-width. We provide these num-
bers for clique-width k ∈ {1, . . . , 7}. In fact, we could compute the exact number
of different connected graphs (modulo isomorphism) with a certain clique-width
with up to 10 vertices. For instance, there are only 7 connected graphs with 8 ver-
tices and clique-width 5 (modulo isomorphism), and 68 connected graphs with 10
vertices and clique-width 6.

(3) Clique-width of famous named graphs. Over the last 50 years, researchers in graph
theory have considered a large number of special graphs. These special graphs
have been used as counterexamples for conjectures or for showing the tightness
of combinatorial results. We considered 21 prominent graphs from the literature
and computed their exact clique-width. These results may be of interest for people
working in combinatorics and graph theory. We provide certificates for tight clique-
width upper bounds in an appendix.

Linear Clique-Width
Linear clique-width is a variant of clique-width, introduced by Gurski and Wanke
[2005], that has received significant attention, see, e.g., [Adler and Kanté 2013; Cour-
celle and Olariu 2000; Fellows et al. 2009; Heggernes et al. 2011; 2012; Lozin and
Rautenbach 2007]. The definition of linear clique-width is based on the same graph
construction process as clique-width but with the restriction that whenever a disjoint
union is performed, at most one of the two graphs put together contains more than
one vertex. Hence the overall process can be seen as a linear sequence of graphs. Con-
sequently, for every graph the linear clique-width is equal or larger than the clique-
width. We extend our methods from clique-width to linear clique-width.

(4) Reformulation and SAT encoding of linear clique-width. We show that a modifica-
tion of our reformulation of clique-width provides a reformulation for linear clique-
width. In turn, this provides an efficient SAT encoding of linear clique-width.

(5) Linear Clique-width of Famous Named Graphs. We tested the SAT encoding of lin-
ear clique-width on the 21 famous named graphs considered above. Interestingly,
it turned out that the difference between clique-width and linear clique-width is
small: for only one of the considered graphs the difference is 2, for six of the consid-
ered graphs it is 1, and for the remaining graphs, linear clique-width and clique-
width coincide.

1.1. Related Work
We are not aware of any implemented algorithms that compute clique-width ex-
actly. Several algorithms have been implemented that compute upper bounds on
other width-based graph invariants, including treewidth [Dow and Korf 2007; Gogate
and Dechter 2004; Koster et al. 2001], branchwidth [Smith et al. 2012], Boolean-
width [Hvidevold et al. 2012], and rank-width [Beyß 2013]. Durand and Courcelle
[2013] mention a program they used to obtain upper bounds on the clique-width of
some graphs; however, they do not provide any details on the program or its perfor-
mance. Samer and Veith [2009] proposed a SAT encoding for the exact computation
of treewidth. Boolean-width and rank-width can be used to approximate clique-width,
however, the error can be exponential in the clique-width; in contrast, treewidth and

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:4 M. J. H. Heule and S. Szeider

branchwidth can be arbitrarily far from the clique-width, hence the approximation
error is unbounded [Bui-Xuan et al. 2011].

Our SAT encoding is based on a new characterization of clique-width that is based
on partitions instead of labels. A similar partition-based characterization of clique-
width was proposed by Heggernes et al. [2011]. There are two main differences to our
reformulation. Firstly, our characterization of clique-width uses three individual prop-
erties that can be easily expressed by clauses. Secondly, our characterization admits
the “parallel” processing of several parts of the graph that are later joined together.

2. PRELIMINARIES
2.1. Formulas and Satisfiability
We consider propositional formulas in Conjunctive Normal Form (CNF formulas, for
short), which are conjunctions of clauses, where a clause is a disjunction of literals,
and a literal is a propositional variable or a negated propositional variables. A CNF
formula is satisfiable if its variables can be assigned true or false (denoted 1 or 0,
respectively), such that each clause contains either a variable set to true or a negated
variable set to false. The satisfiability problem (SAT) asks whether a given formula is
satisfiable.

2.2. Graphs and Clique-width
All graphs considered are finite, undirected, and without self-loops. We denote a graph
G by an ordered pair (V (G), E(G)) of its set of vertices and its set of edges, respec-
tively. An edge between vertices u and v is denoted uv or equivalently vu. For basic
terminology on graphs we refer to a standard text book [Diestel 2000].

Let k be a positive integer. A k-graph is a graph whose vertices are labeled by inte-
gers from {1, . . . , k}. We call the k-graph consisting of exactly one vertex v (say, labeled
by i) an initial k-graph and denote it by i(v). The clique-width of a graph G, denoted
cwd(G), is the smallest integer k such that G can be constructed from initial k-graphs
by means of repeated application of the following three operations.

(1) Disjoint union (denoted by ⊕);
(2) Relabeling: changing all labels i to j (denoted by ρi�j);
(3) Edge insertion: connecting all vertices labeled by i with all vertices labeled by j, i 6=

j (denoted by ηi,j or ηj,i); already existing edges are not doubled.

A construction of a k-graph using the above operations can be represented by an al-
gebraic term composed of ⊕, ρi�j , and ηi,j (i, j ∈ {1, . . . , k}, and i 6= j). Such a term is
called a k-expression defining G. Thus, the clique-width of a graph G is the smallest
integer k such that G can be defined by a k-expression.

EXAMPLE 2.1. The graph P4 = ({a, b, c, d}, {ab, bc, cd}) is defined by the 3-expres-
sion

η1,3(ρ1�2(η2,3(η1,2(1(a)⊕ 2(b))⊕ 3(c)))⊕ 1(d)).

Hence cwd(P4) ≤ 3. In fact, one can show that P4 has no 2-expression, and thus
cwd(P4) = 3 [Courcelle and Olariu 2000].

2.3. Partitions
As partitions play an important role in our reformulation of clique-width, we recall
some basic terminology. A partition of a set S is a set P of nonempty subsets of S such
that any two sets in P are disjoint and S is the union of all sets in P . The elements
of P are called equivalence classes. Let P, P ′ be partitions of S. Then P ′ is a refinement

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:5

of P if for any two elements x, y ∈ S that are in the same equivalence class of P ′ are
also in the same equivalence class of P (this entails the case P = P ′).

3. A REFORMULATION OF CLIQUE-WIDTH WITHOUT LABELS
Initially, we developed a SAT encoding of clique-width based on k-expressions. Even
after several optimization steps, we were only able to determine the clique-width of
graphs consisting of up to 8 vertices. We therefore developed a new encoding based on
a reformulation of clique-width which does not use k-expressions. In this section we
explain this reformulation; in the next section we will discuss how it can be encoded
into SAT efficiently.

Consider a finite set V of vertices, the universe. A template T consists of two par-
titions cmp(T ) and grp(T ) of V . We call the equivalence classes in cmp(T ) the com-
ponents of T and the equivalence classes in grp(T ) the groups of T . For some intu-
ition about these concepts, imagine that components represent induced subgraphs, and
groups represent sets of vertices in some component with the same label. A derivation
of length t is a sequence D = (T0, . . . , Tt) satisfying the following conditions.

D1 |cmp(T0)| = |V | and |cmp(Tt)| = 1.
D2 grp(Ti) is a refinement of cmp(Ti), 0 ≤ i ≤ t.
D3 cmp(Ti−1) is a refinement of cmp(Ti), 1 ≤ i ≤ t.
D4 grp(Ti−1) is a refinement of grp(Ti), 1 ≤ i ≤ t.

We would like to note that D1 and D2 together imply that |grp(T0)| = |V |. Thus, in
the first template T0 all equivalence classes (groups and components) are singletons,
and when we progress through the derivation, some of these sets are merged, until all
components are merged into a single component in the last template Tt.

The width of a component c ∈ cmp(T ) is the number of groups g ∈ grp(T ) such that
g ⊆ c. The width of a template is the maximum width over its components, and the
width of a derivation is the maximum width over its templates. A k-derivation is a
derivation of width at most k. A derivation D = (T0, . . . , Tt) is a derivation of a graph
G = (V,E) if V is the universe of the derivation and the following three conditions hold
for all 1 ≤ i ≤ t.

Edge Property: For any two vertices u, v ∈ V such that uv ∈ E, if u, v are in
the same group in Ti, then u, v are in the same component in Ti−1.
Neighborhood Property: For any three vertices u, v, w ∈ V such that uv ∈ E
and uw /∈ E, if v, w are in the same group in Ti, then u, v are in the same
component in Ti−1.
Path Property: For any four vertices u, v, w, x ∈ V , such that uv, uw, vx ∈ E
and wx /∈ E, if u, x are in the same group in Ti and v, w are in the same
group in Ti, then u, v are in the same component in Ti−1.

In a certain sense, the edge property makes sure that a k-expression corresponding
to the k-derivation contains some position where the edge uv can be inserted with
an η-operation. The neighborhood property and the path property ensure that this
η-operation does not introduce unwanted edges. These considerations are made more
precise in the proofs of Lemmas 3.4 and 3.6.

The neighborhood property and the path property could be combined into a single
property by not insisting that all mentioned vertices are distinct. However, two sepa-
rate properties provide a more compact SAT encoding.

The following example illustrates that a derivation can define more than one graph,
in contrast to a k-expression, which defines exactly one graph.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:6 M. J. H. Heule and S. Szeider

EXAMPLE 3.1. Consider the derivation D = (T0, . . . , T3) with universe V =
{a, b, c, d} and

cmp(T0) = {{a}, {b}, {c}, {d}}, grp(T0) = {{a}, {b}, {c}, {d}},
cmp(T1) = {{a, b}, {c}, {d}}, grp(T1) = {{a}, {b}, {c}, {d}},
cmp(T2) = {{a, b, c}, {d}}, grp(T2) = {{a}, {b}, {c}, {d}},
cmp(T3) = {{a, b, c, d}}, grp(T3) = {{a, b}, {c}, {d}}.

The width of D is 3. Consider the graph G = (V, {ab, ad, bc, bd}). To see that D is a
3-derivation of G, we need to check the edge, neighborhood, and path properties. We
observe that a, b are the only two vertices such that ab ∈ E(G) and both vertices appear
in the same group of some Ti (here, we have i = 3). To check the edge property, we
only need to verify that a, b are in the same component of T2, which is true. For the
neighborhood property, the only relevant choice of three vertices is a, b, c (bc ∈ E(G),
ac /∈ E(G), and a, b in a group of T3). The neighborhood property requires that b, c are in
the same component in T2, which is the case. The path property is satisfied since there
is no template in which two pairs of vertices belong to the same group, respectively.

a b

d c

a b

d c

a b

d c

a b

d c

a b

d c

a b

d c

Fig. 1. All connected graphs with four vertices (up to isomorphism). The 3-derivation of Example 3.1 defines
all six graphs. The clique-width of all but the first graph is 2.

Similarly we can verify that D is a derivation of the graph G′ = (V, {ab, bc, cd}).
In fact, for all connected graphs with four vertices, there exists an isomorphic graph
that is defined by D (see Figure 1). However, D is not a derivation of the graph
G′′ = (V, {ab, ac, bd, cd}) since the neighborhood property is violated: bd ∈ E(G′′) and
ad /∈ E(G′′), a, b belong to the same group in T3, while a, d do not belong to the same
component in T2.

We call a derivation (T0, . . . , Tt) strict if |cmp(Ti−1)| > |cmp(Ti)| holds for all 1 ≤ i ≤ t.
LEMMA 3.2. Every k-derivation of a graph G contains as subsequence a strict

k-derivation of G.

PROOF. Let D = (T0, . . . , Tt) be a k-derivation of G. Assume there is some 1 ≤
i ≤ t such that cmp(Ti−1) = cmp(Ti). If also grp(Ti−1) = grp(Ti), then Ti−1 = Ti,
and we can safely remove Ti−1 and still have a k-derivation of G. Hence assume
grp(Ti−1) 6= grp(Ti). This implies that i > 1. If i = t, then we can safely remove Tt
from the derivation and (T0, . . . , Tt−1) is clearly a k-derivation of G. Hence it remains
to consider the case 1 < i ≤ t − 1. We show that by dropping Ti we get a sequence
D′ = (T0, . . . , Ti−1, Ti+1, . . . , Tt) that is a k-derivation of G.

The new sequenceD′ is clearly a k-derivation. It remains to verify thatD′ is a deriva-
tion of G. The template Ti+1 is the only one where these properties might have been vi-
olated by the removal of Ti. However, since all three properties impose a restriction on
the set of components of the template preceding Ti+1, and since cmp(Ti−1) = cmp(Ti),
the properties are not affected by the deletion of Ti. Hence D′ is indeed a k-derivation
of G.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:7

By repeated application of the above shortening we can turn any k-derivation into a
strict k-derivation.

LEMMA 3.3. Every strict k-derivation of a graph with n vertices has length at most
n− 1.

PROOF. Let (T0, . . . , Tt) be a strict k-derivation of a graph with n vertices. Since
|cmp(T0)| = n and |cmp(T0)| = 1, it follows that t ≤ n− 1.

In the proofs of the next two lemmas we need the following concept of a k-expression
tree, which is the parse tree of a k-expression equipped with some additional informa-
tion. Let φ be a k-expression for a graph G = (V,E). Let Q be the parse tree of φ with
root r. That is, Q contains a node for each occurrence of an operation ⊕, ρi�j , and ηi,j in
φ and for each initial k-graph i(v) in φ; the initial k-graphs are the leaves of Q, and the
other nodes have as children the nodes which represent the two subexpressions of the
respective operation. Consider a node q of Q and let φq be the subexpression of φ whose
parse tree is the subtree of Q rooted at q. Then q is labeled with the k-graph Gq con-
structed by the k-expression φq. Thus the leaves of Q are labeled with initial k-graphs
and the root r is labeled with a labeled version of G. We call a non-leaf node of Q an
⊕-node, η-node, or ρ-node, according to the operation it represents.

Figure 2 exhibits the 3-expression tree of the 3-expression of Example 2.1. For in-
stance, the 3-graphGq3 has as vertices a, b, c and edges ab, bcwhere a and b have label 2,
and c has label 3.

η1,3 q4

⊕ u3

ρ1�2 q3 1(d) l2

η2,3 q2

⊕ u2

η1,2 q1 3(c) l1

⊕ u1

1(a) l0 2(b) l′0

Fig. 2. 3-expression tree for the 3-expression of Example 2.1.

One ⊕-node of the parse tree can represent several directly subsequent ⊕-operations
(e.g., the operation (x⊕ y)⊕ z can be represented by a single node with three children).
For technical reasons we will also allow ⊕-nodes with a single child.

Each k-expression gives rise to a k-expression tree where each ⊕-node has no
⊕-nodes as children, let us call such a k-expression tree to be succinct. Evidently, k-ex-
pressions and their (succinct) k-expression trees can be effectively transformed into
each other.

LEMMA 3.4. From a k-expression of a graph G we can obtain a k-derivation of G in
polynomial time.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:8 M. J. H. Heule and S. Szeider

PROOF. Let φ be a k-expression of G = (V,E) and let Q be the corresponding suc-
cinct k-expression tree with root r. For a node q ∈ V (Q) let R(q) denote the number of
⊕-nodes that appear on the path from r to q. We write U and L for the set of ⊕-nodes
and the set of leaves of Q, respectively. We let t := maxq∈LR(q). For 0 ≤ i ≤ t we define
Ui = { q ∈ U : R(q) = t− i+ 1 } and Li = { q ∈ L : R(q) < t− i+ 1 }. Example 3.5 shows
the sets Ui, Li for the k-expression tree of Figure 2. We observe that for each v ∈ V and
1 ≤ i ≤ t there is exactly one q ∈ Ui ∪ Li such that v ∈ Gq.

We define a derivation D = (T0, . . . , Tt) as follows. For 0 ≤ i ≤ t we put cmp(Ti) =
{V (Gq) : q ∈ Ui ∪ Li } and grp(Ti) =

⋃
q∈Ui∪Li

grp(Gq) where grp(Gq) denotes the
partition of V (Gq) into sets of vertices that have the same label. By construction, D is
a derivation with universe V . Furthermore, since φ is a k-expression, |grp(Gq)| ≤ k for
all nodes q of Q. Hence D is a k-derivation. It remains to show that D is a k-derivation
of G. Let 1 ≤ i ≤ t.

To show that the edge property holds, consider two vertices u, v ∈ V such that uv ∈ E
and u, v are in the same group in Ti. Assume to the contrary that u, v belong to different
components c1, c2 in Ti−1. Since u, v are in the same group in Ti, they are also in the
same component of Ti. Hence there is an ⊕-node q ∈ Ui with u, v ∈ V (Gq) ∈ cmp(Ti).
Let q1, q2 be the children of q with V (Gq1) = c1 and V (Gq2) = c2. Hence uv /∈ E(Gq1) ∪
E(Gq2). However, since u, v are in the same group in Ti, this means that u, v have the
same label in Gq. Thus the edge uv cannot be introduced by an η-operation, and so
uv /∈ E(Gr) = E, a contradiction. Hence the edge property holds.

To show that the neighborhood property holds, consider three vertices u, v, w ∈ V
such that uv ∈ E, uw /∈ E, and v, w are in the same group of Ti. Assume to the contrary
that u, v are in different components of Ti−1, say in components c1 and c2, respectively.
Since v, w are in the same group of Ti, they are also in the same component c of Ti.
Let q ∈ Ui be the ⊕-node such that v, w ∈ V (Gq) = c ∈ cmp(Ti), and let q1, q2 be
the children of q with V (Gq1) = c1 and V (Gq2) = c2. Clearly uv /∈ E(Gq1) ∩ E(Gq2),
hence there must be an η-node p somewhere on the path between q and r where the
edge uv is introduced. However, since v and w share the same label in Gq, they share
the same label in Gp. Consequently, the η-operation that introduces the edge uv also
introduces the edge uw. However, this contradicts the assumption that uw /∈ E. Hence
the neighborhood property holds as well.

To show that the path property holds, we proceed similarly. Consider four vertices
u, v, w, x ∈ V , such that uv, uw, vx ∈ E and wx /∈ E. Assume that u, x are in the same
group in Ti and v, w are in the same group in Ti. Assume to the contrary that u, v are
in different components of Ti−1, say in components c1 and c2, respectively. Above we
have shown that the neighborhood property holds. Hence we conclude that u,w belong
to the same component of Ti−1, and v, x belong to the same component of Ti−1. Since
u, x are in the same group in Ti, they are also in the same component of Ti, say in
component c. Since u,w belong to the same component of Ti−1, they also belong to the
same component of Ti, thus w ∈ c. By a similar argument we conclude that v ∈ c.
Thus all four vertices u, v, w, x belong to c. Let q ∈ Ui be the ⊕-node with V (Gq) = c ∈
cmp(Ti), and let q1, q2 be the children of q with V (Gq1) = c1 and V (Gq2) = c2. Clearly
uv /∈ E(Gq1)∪E(Gq2), hence there must be an η-node p somewhere on the path between
q and r where the edge uv is introduced. However, since v and w share the same label in
Gq, and u and x share the same label inGq, this also holds inGp. Hence the η-operation
that introduces the edge uv also introduces the edge xw. However, this contradicts the
assumption that xw /∈ E. Hence the path property holds as well. We conclude that D
is indeed a k-derivation of G.

The above procedure for generating the k-derivation can clearly be carried out in
polynomial time.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:9

EXAMPLE 3.5. Consider the 3-expression φ for the graph P4 of Example 2.1 and
the 3-expression tree in Figure 2. We apply the procedure described in the proof of
Lemma 3.4. We have:

U0 = ∅, L0 = {l0, l′0, l1, l2},
U1 = {u1}, L1 = {l1, l2},
U2 = {u2}, L2 = {l2},
U3 = {u3}, L3 = ∅.

From that we obtain the 3-derivation D of Example 3.1.

LEMMA 3.6. From a k-derivation of a graph G we can obtain a k-expression of G in
polynomial time.

PROOF. Let D = (T0, . . . , Tt) be a k-derivation of G = (V,E). Using the con-
struction of the proof of Lemma 3.2 we can obtain a strict k-derivation of G from
any given k-derivation of G. Hence we may assume, w.l.o.g., that D is strict. Let
C =

⋃t
i=0 cmp(Ti). We are going to construct in polynomial time a k-expression tree

for G, which can clearly be turned into a k-expression for G in polynomial time.
We proceed in three steps, see Figure 3 for an illustration.
First we construct a k-expression tree Q⊕ that only contains ⊕-nodes and leaves.

For each component c = {v} of T0 we introduce a leaf q(c, 0) with label 1(v). For each
1 ≤ i ≤ t and each component c ∈ cmp(Ti) we introduce an ⊕-node q(c, i). We add edges
to Q⊕ such that q(c′, i− 1) is a child of q(c, i) if and only if c′ ⊆ c. Properties D1 and D3
of a derivation ensure that Q⊕ is a tree. Note that Q⊕ is not necessarily succinct, and
may contain ⊕-nodes that have only one child.

In the next step we add to Q⊕ certain ρ-nodes to obtain the k-expression tree Q⊕,ρ.
We visit the ⊕-nodes of Q⊕ in a depth-first ordering. Let q(c, i) be the currently visited
node. Between q(c, i) and each child q(c′, i − 1) of q(c, i) we add at most k ρ-nodes (the
edge between q(c, i) and q(c′, i − 1) becomes a path) such that afterwards q(c, i) has a
child q′ with grp(Gq′) = { g ∈ grp(Gq(c,i)) : g ⊆ c } ⊆ grp(Ti). This is possible because of
properties D2 and D4 of a derivation and since a partition can be obtained from any of
its refinements by a sequence of steps each merging two equivalence classes.

As a final step, we add η-nodes toQ⊕,ρ and obtain the k-expression treeQ. Let uv ∈ E
be an edge of G. We show that there is an ⊕-node q in Q⊕,ρ above which we can add an
η-node p (q is a child of p) which introduces edges including uv but does not introduce
any edge not present in E .

Let q(c, i) be the ⊕-node of Q⊕,ρ with smallest i such that u, v ∈ V (Gq(c,i)). We write
q = q(c, i) and c = V (Gq) and observe that c ∈ cmp(Ti). Among the children of q are
two distinct nodes q1, q2 such that u ∈ V (Gq1) and v ∈ V (Gq2). It follows that there are
distinct components c1, c2 ∈ Ti−1 with u ∈ c1 and v ∈ c2. By the edge property, u and
v belong to different groups of Ti, and so u and v have different labels in Gq, say the
labels a and b, respectively. We add an η-node p above q (q is a child of p) representing
the operation ηa,b. This inserts the edge uv to Gq. It remains to show that ηa,b does
not add any edges that are not in E. We show this by establishing that for all pairs of
vertices u′, v′ ∈ c where u′ has label a and v′ has label b in Gq, the edge u′v′ is in E.

We consider four cases.
Case 1: u = u′, v = v′. Trivially, u′v′ = uv ∈ E.
Case 2: u = u′, v 6= v′. Assume to the contrary that u′v′ /∈ E. Since v and v′ have

the same label in Gq, they belong to the same group of Ti. The neighborhood property
implies that u and v belong to the same component of Ti−1, a contradiction to the
minimal choice of i. Hence u′v′ ∈ E.

Case 3: u 6= u′, v = v′. This case is symmetric to Case 2.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:10 M. J. H. Heule and S. Szeider

Case 4: u 6= u′, v 6= v′. Assume to the contrary that u′v′ /∈ E. It follows from Cases 2
and 3 that uv′, vu′ ∈ E. The path property implies that u and v belong to the same
component of Ti−1, a contradiction to the minimal choice of i. Hence u′v′ ∈ E.

Consequently, we can successively add η-nodes to Q⊕,ρ until all edges of E are in-
serted, but no edge outside of E. Hence we obtain indeed a k-expression tree for G.

This procedure for generating the k-expression tree can clearly be carried out in
polynomial time, hence the lemma follows.

We note that we could have saved some ρ-operations in the proof of Lemma 3.6. In
particular the k-expression produced may contain ρ-operations where the number of
different labels before and after applying the ρ-operation remains the same. It is easy
to see that such ρ-operations can be omitted by changing labels of some initial k-graphs
accordingly.

1(a) 1(b) 1(c) 1(d)

⊕ ⊕ ⊕

⊕ ⊕

⊕

Q⊕

1(a) 1(b) 1(c) 1(d)

ρ1�2

⊕ ⊕ ⊕

ρ1�3

⊕ ⊕

ρ1�2

⊕

Q⊕,ρ

1(a) 1(b) 1(c) 1(d)

ρ1�2

⊕ ⊕ ⊕

ρ1�3η1,2

⊕ ⊕

η2,3

ρ1�2

⊕

η1,3

Q

Fig. 3. 3-expression trees obtained by the construction of the proof of Lemma 3.6 applied to the derivation
D of Example 3.1.

By Lemma 3.3 we do not need to search for k-derivations of length > n − 1 when
the graph under consideration has n vertices. The next lemma improves this bound to
n − k + 1 which provides a significant improvement for our SAT encoding, especially
when the graph under consideration has large clique-width.

LEMMA 3.7. Let 1 ≤ k ≤ n. If a graph with n vertices has a k-derivation, then it has
a k-derivation of length n− k + 1.

PROOF. Let k ≥ 1 be fixed. We define the k-length of a derivation as the number of
templates that contain at least one component of size larger than k (these templates
form a suffix of the derivation). Let `(n, k) be the largest k-length of a strict derivation
over a universe of size n. Before we show the lemma, we establish three claims. For
these claims, the groups of the considered derivations are irrelevant and hence will be
ignored.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:11

Claim 1: `(n, k) < `(n+ 1, k).
To show the claim, consider a strict derivation D = (T0, . . . , Tt) over a universe V of

size n with k-length `. We take a new element a and form a strict derivation D′ over
the universe V ∪ {a} by adding the singleton {a} to cmp(Ti) for 0 ≤ i ≤ t and adding
a new template Tt+1 with cmp(Tt+1) = {V ∪ {a}}. The new derivation D′ has k-length
`+ 1.
Claim 2: Let D = (T0, . . . , Tt) be a strict derivation over a universe V of size n of
k-length `(n, k). Then, Tt−`(n,k)+1 has exactly one component of size k + 1 and all other
components are singletons.

We proceed to show the claim. Let j = t − `(n, k), and observe that j is the largest
index where all components of Tj have size at most k. Let c1, . . . , cr be the components
of Tj+1 of size greater than 1 such that |c1| ≥ |c2| ≥ · · · ≥ |cr|. Thus |c1| > k. We show
that r = 1. Assume to the contrary that r > 1. We pick some element ai ∈ ci, 2 ≤ i ≤ r,
and set X =

⋃r
i=2 ci \ {ai}. The derivation D induces a strict derivation D′ over the

universe V ′ = V \ X. Observe that n′ = |V ′| < |V | = n. Evidently D′ has the same
k-length as D, hence `(n′, k) ≥ `(n, k), a contradiction to Claim 1. Hence r = 1, and c1
is the only component in Tj+1 of size greater than k, all other components of Tj+1 are
singletons. We show that |c1| = k + 1. We assume to the contrary that |c1| > k + 1. We
pick k + 1 vertices b1, . . . , bk+1 ∈ c1 and set X = c1 \ {b1, . . . , bk+1}. Similarly as above,
we observe that D induces a strict derivation D′′ over the universe V ′′ = V ′ \ X, and
that D′′ has the same k-length as D. Since |V ′′| < |V | we have again a contradiction
to Claim 1. Hence Claim 2 is established.
Claim 3: `(n, k) ≤ n− k.

To see the claim, let D = (T0, . . . , Tt) be a strict derivation over a universe V of size
n of k-length `(n, k). Let j = t − `(n, k). By Claim 2 we know that Tj+1 has exactly
one component of size k + 1 and all other components are singletons (hence there are
n− k − 1 singletons). We conclude that |cmp(Tj+1)| = n− k. Since D is strict, we have
n − k = |cmp(Tj+1)| > |cmp(Tj+2)| > · · · > |cmp(Tt)| = 1. Thus `(n, k) = t − j ≤ n − k,
and the claim follows.
We are now in the position to establish the statement of the lemma. LetD = (T0, . . . , Tt)
be a k-derivation of a graph G = (V,E) with |V | = n. By Lemma 3.2 we may assume
that D is strict. Let ` be the k-length of D and let j = t − `. By Claim 3 we know that
` ≤ n− k. We define a new template T ′j with cmp(T ′j) = cmp(Tj) and grp(T ′j) = grp(T0),
and we set D′ = (T0, T

′
j , Tj+1, . . . , Tt). We claim that D′ is a k-derivation of G. Clearly D′

is a derivation, but we need to check the edge, neighborhood, and path property for T ′j
and Tj+1 in D′. The properties hold trivially for T ′j since all its groups are singletons.
For Tj+1 the properties hold since T ′j has the same components as Tj . Thus D′ is indeed
a k-derivation of G. The length of D′ is `+ 1 ≤ n− k + 1, hence the lemma follows.

EXAMPLE 3.8. Again, consider the derivationD of Example 3.1.D defines P4 which
has clique-width 3 [Courcelle and Olariu 2000]. According to Lemma 3.7, it should have
a derivation of length n − k + 1 = 4 − 3 + 1 = 2. We can obtain such a derivation by
removing T1 from D, which gives D′ = (T0, T2, T3).

By combining Lemmas 3.4, 3.6, and 3.7, we arrive at the main result of this section.

PROPOSITION 3.9. Let 1 ≤ k ≤ n. A graph G with n vertices has clique-width at
most k if and only if G has a k-derivation of length at most n− k + 1.

In Section 7.3, we will show that the bound is tight for some graphs: the Sousselier
Graph has 16 vertices and clique-width 6. The shortest possible 6-derivation for this
graph has length 11, which is equal to the bound.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:12 M. J. H. Heule and S. Szeider

4. ENCODING A DERIVATION OF A GRAPH
Let G = (V,E) be a graph and t > 0 an integer. We are going to construct a CNF
formula Fder(G, t) that is satisfiable if and only if G has a derivation of length t. We
assume that the vertices of G are given in some arbitrary but fixed linear order <.

For any two distinct vertices u and v ofG and any 0 ≤ i ≤ twe introduce a component
variable cu,v,i. Similarly, for any two distinct vertices u and v of G with u < v and any
0 ≤ i ≤ t we introduce a group variable gu,v,i. Intuitively, cu,v,i or gu,v,i are true if and
only if u and v are in the same component or group, respectively, in the ith template of
an implicitly represented derivation of G.

The formula Fder(G, t) is the conjunction of all the clauses described below.
The following clauses represent the conditions D1–D4:

(c̄u,v,0) ∧ (cu,v,t) ∧ (cu,v,i ∨ ḡu,v,i) ∧ (c̄u,v,i−1 ∨ cu,v,i) ∧ (ḡu,v,i−1 ∨ gu,v,i)
for u, v ∈ V , u < v, 0 ≤ i ≤ t.

We further add clauses that ensure that the relations of being in the same group and
of being in the same component are transitive:

(c̄u,v,i ∨ c̄v,w,i ∨ cu,w,i) ∧ (c̄u,v,i ∨ c̄u,w,i ∨ cv,w,i) ∧ (c̄u,w,i ∨ c̄v,w,i ∨ cu,v,i) ∧
(ḡu,v,i ∨ ḡv,w,i ∨ gu,w,i) ∧ (ḡu,v,i ∨ ḡu,w,i ∨ gv,w,i) ∧ (ḡu,w,i ∨ ḡv,w,i ∨ gu,v,i)

for u, v, w ∈ V , u < v < w, 0 ≤ i ≤ t.

In order to enforce the edge property we add the following clauses for any two vertices
u, v ∈ V with u < v, uv ∈ E and 1 ≤ i ≤ t:

(cu,v,i−1 ∨ ḡu,v,i).

Further, to enforce the neighborhood property, we add for any three vertices u, v, w ∈ V
with uv ∈ E and uw /∈ E and 1 ≤ i ≤ t, the following clauses:

(cmin(u,v),max(u,v),i−1 ∨ ḡmin(v,w),max(v,w),i)

Finally, to enforce the path property we add for any four vertices u, v, w, x, such that
uv, uw, vx ∈ E, and wx /∈ E, u < v and 1 ≤ i ≤ t the following clauses:

(cu,v,i−1 ∨ ḡmin(u,x),max(u,x),i ∨ ḡmin(v,w),max(v,w),i)

The following statement is a direct consequence of the above definitions.

LEMMA 4.1. Fder(G, t) is satisfiable if and only if G has a derivation of length t.

5. ENCODING A K-DERIVATION OF A GRAPH
In this section, we describe how the formula Fder(G, t) can be extended to encode a
derivation of width at most k. First we will describe the conventional direct encod-
ing [Walsh 2000] followed by our representative encoding which where unit propa-
gation is triggered earlier in case of an inconsistency, and thus supports to find the
solution faster.

5.1. Direct Encoding
We introduce new variables lv,a,i for v ∈ V , 1 ≤ a ≤ k, and 0 ≤ i ≤ t. The purpose is to
assign each vertex for each template a group number, which is an integer between 1
and k. The intended meaning of a variable lv,a,i is that in Ti, vertex v has group num-
ber a. Let F (G, k, t) denote the formula obtained from Fder(G, t) by adding the following

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:13

three sets of clauses. The first ensures that every vertex has at least one group num-
ber, the second ensures that every vertex has at most one group number, and the third
ensures that two vertices of the same group share the same group number.

(lv,1,i ∨ lv,2,i ∨ · · · ∨ lv,k,i) for v ∈ V , 0 ≤ i ≤ t,

(l̄v,a,i ∨ l̄v,b,i) for v ∈ V , 1 ≤ a < b ≤ k, 0 ≤ i ≤ t,

(l̄u,a,i ∨ l̄v,a,i ∨ c̄u,v,i ∨ gu,v,i) ∧ (l̄u,a,i ∨ lv,a,i ∨ ḡu,v,i) ∧ (lu,a,i ∨ l̄v,a,i ∨ ḡu,v,i)
for u, v ∈ V , u < v, 1 ≤ a ≤ k, 0 ≤ i ≤ t.

Together with Lemma 4.1 this construction directly yields the following statement.

PROPOSITION 5.1. Let G = (V,E) be graph and t = |V | − k + 1. Then F (G, k, t) is
satisfiable if and only if cwd(G) ≤ k.

EXAMPLE 5.2. Let G = (V,E) and k = 2. Vertices u, v, w ∈ V in template Ti, are in
one component, but in different groups. Hence the corresponding component variables
are true, and the corresponding group variables are false. The clauses containing the
variables lu,a,i, lv,a,i, lw,a,i with a ∈ {1, 2} after removing falsified literals are:

(lu,1,i ∨ lu,2,i)∧ (lv,1,i ∨ lv,2,i)∧ (lw,1,i ∨ lw,2,i)∧ (l̄u,1,i ∨ l̄v,1,i)∧ (l̄u,1,i ∨ l̄w,1,i)∧
(l̄v,1,i ∨ l̄w,1,i) ∧ (l̄u,2,i ∨ l̄v,2,i) ∧ (l̄u,2,i ∨ l̄w,2,i) ∧ (l̄v,2,i ∨ l̄w,2,i)

These clauses cannot be satisfied, yet unit propagation will not result in a conflict.
Therefore, a SAT solver may not be able to cut off the current branch.

5.2. Representative Encoding
To overcome the unit propagation problem of the direct encoding, as described in Ex-
ample 5.2, we propose the representative encoding which uses two types of variables.
First, for each v ∈ V and 1 ≤ i ≤ t we introduce a representative variable rv,i. This
variable, if assigned to true, expresses that vertex v is the representative of a group in
template Ti. In each group, only one vertex can be the representative and we choose to
make the first vertex in the lexicographical ordering the representative. This results
in the following clauses:

(rv,i ∨
∨
u∈V,u<v gu,v,i) ∧

∧
u∈V,u<v(r̄v,i ∨ ḡu,v,i) for v ∈ V , 0 ≤ i ≤ t

Additionally we introduce auxiliary variables to efficiently encode that the number
of representative vertices in a component is at most k. These auxiliary variables are
based on the order encoding [Tamura et al. 2009]. Consider a (non-Boolean) variable
Lv,i with domain D = {1, . . . , k}, whose elements denote the group number of vertex v
in template Ti. In the direct encoding, we used k variables lv,a,i with a ∈ D. Assigning
lv,a,i = 1 in that encoding means Lv,i = a. Alternatively, we can use order variables
o>v,a,i with v ∈ V , a ∈ D \ {k}, 0 ≤ i ≤ t. Assigning o>v,a,i = 1 means Lv,i > a. Conse-
quently, o>v,a,i = 0 means Lv,i ≤ a.

EXAMPLE 5.3. Given an assignment to the order variables o>v,a,i, one can easily
construct the equivalent assignment to the variables in the direct encoding (and the
other way around). Below is a visualization of the equivalence relation with k = 5.
In the middle is a binary representation of each of the k labels by concatenating the
Boolean values to the order variables.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:14 M. J. H. Heule and S. Szeider

Lv = 1 ↔ lv,1,i = 1 ↔ 0000 ↔ o>v,1,i = o>v,2,i = o>v,3,i = o>v,4,i = 0

Lv = 2 ↔ lv,2,i = 1 ↔ 1000 ↔ o>v,1,i = 1, o>v,2,i = o>v,3,i = o>v,4,i = 0

Lv = 3 ↔ lv,3,i = 1 ↔ 1100 ↔ o>v,1,i = o>v,2,i = 1, o>v,3,i = o>v,4,i = 0

Lv = 4 ↔ lv,4,i = 1 ↔ 1110 ↔ o>v,1,i = o>v,2,i = o>v,3,i = 1, o>v,4,i = 0

Lv = 5 ↔ lv,5,i = 1 ↔ 1111 ↔ o>v,1,i = o>v,2,i = o>v,3,i = o>v,4,i = 1

Although our encoding is based on the variables from the order encoding, we use
none of the associated clauses. We implemented the original order [Tamura et al. 2009],
which resulted in many long clauses and the performance was comparable to the direct
encoding.

Instead, we combine the representative and order variables. Our use of the order
variables can be seen as the encoding of a sequential counter [Sinz 2005]. We would
like to point out that if u and v are both representative vertices in the same component
of template Ti and u < v, then o>u,a,i = 0 and o>v,a,i = 1 must hold for some 1 ≤ a < k.
Consequently, o>u,k−1,i = 0 (vertex u has not the highest group number in Ti), o>v,1,i = 1

(vertex v has not the lowest group number in Ti), and o>u,a,i � o>v,a+1,i. These constraints
can be expressed by the following clauses.

(c̄u,v,i ∨ r̄u,i ∨ r̄v,i ∨ ō>u,k−1,i) ∧ (c̄u,v,i ∨ r̄u,i ∨ r̄v,i ∨ o>v,1,i) ∧∧
1≤a<k−1(c̄u,v,i ∨ r̄u,i ∨ r̄v,i ∨ ō>u,a,i ∨ o>v,a+1,i) for u, v ∈ V , u < v, 0 ≤ i ≤ t.

EXAMPLE 5.4. Consider a graph G = (V,E) with u, v, w, x ∈ V and the represen-
tative encoding with k = 3. We will show that if u,v,w, and x are all in the same
component and they are all representatives of their respective group numbers in tem-
plate Ti, then unit propagation will result in a conflict (because there are four represen-
tatives and only three group numbers). Observe that all corresponding component and
representative variables are true. This example, with falsified literals removed, con-
tains the clauses (ō>u,2,i), (ō>u,1,i ∨ o>

v,2,i), (o>v,1,i), (ō>u,2,i), (ō>u,1,i ∨ o>
w,2,i), (o>w,1,i), (ō>u,2,i),

(ō>u,1,i ∨ o>x,2,i), (o>x,1,i), (ō>v,2,i), (ō>
v,1,i ∨ o>

w,2,i), (o>w,1,i), (ō>v,2,i), (ō>
v,1,i ∨ o

>
x,2,i), (o>x,1,i),

(ō>w,2,i), (ō>
w,1,i ∨ o

>
x,2,i), (o>x,1,i). Literals that are falsified by unit clauses are shown in

bold. Notice that (ō>v,1,i ∨ o>w,2,i) is falsified, i.e., a conflicting clause.

Both the direct and representative encoding require n(n+k−1)(n−k+ 2) variables.
The number of clauses depends on the graph and is in the worst case O(n5 − n4k).

6. LINEAR CLIQUE-WIDTH
In this section we show that our approach can be used to compute the linear clique-
width of graphs, a variant of clique-width introduced by Gurski and Wanke [2005]. A
k-expression is linear if every occurrence of a disjoint union operation ⊕ has at least
one operand that is an initial k-graph i(v). The linear clique-width of a graph G, de-
noted lcwd(G), is the smallest integer k such thatG can be defined by a linear k-expres-
sion. For instance, the 3-expression given in Example 2.1 is linear, hence lcwd(P4) ≤ 3.

The relationship between clique-width and linear clique-width is similar to the re-
lationship between treewidth and pathwidth. The linear clique-width of a graph is al-
ways at least as large as its clique-width, but the difference between these two graph
invariants can be arbitrarily large [Courcelle and Olariu 2000; Fellows et al. 2009]. It is
NP-hard to compute the linear clique-width of a graph [Fellows et al. 2009]. The linear
clique-width of trees can be computed in linear time [Adler and Kanté 2013]. Graphs
with linear clique-width at most k, for k ≤ 4, can be recognized in polynomial time,

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:15

however, the complexity of the recognition problem for fixed k > 4 is open [Heggernes
et al. 2011; 2012].

6.1. Linear k-Derivations
We call a k-derivation D = (T0, . . . , Tt) to be linear if for every 0 ≤ i ≤ t, cmp(Ti)
contains at most one component of size larger than 1. We refer to such a component in
cmp(Ti) as the main component of Ti.

We show “linear versions” of Lemma 3.7 and Proposition 3.9.

LEMMA 6.1. Let 1 ≤ k ≤ n. If a graph with n vertices has a linear k-derivation,
then it has a linear k-derivation of length n− k + 1.

PROOF. First we observe that Claims 1–3 of the proof of Lemma 3.7 clearly hold
for linear k-derivations by the very same arguments. Let D = (T0, . . . , Tt) be a linear
k-derivation of a graphG = (V,E) with |V | = n; by Lemma 3.2 we may assume thatD is
strict. Let ` be the k-length of D and let j = t− `. By Claim 3 of the proof of Lemma 3.7
we know that ` ≤ n − k. We define a new template T ′j with cmp(T ′j) = cmp(Tj) and
grp(T ′j) = grp(T0), and we set D′ = (T0, T

′
j , Tj+1, . . . , Tt). From the proof of Lemma 3.7

it follows that D′ is a k-derivation of G, and since D was linear, also D′ is linear. Hence
the lemma follows.

PROPOSITION 6.2. Let 1 ≤ k ≤ n. A graph G with n vertices has linear clique-width
at most k if and only if G has a linear k-derivation of length at most n− k + 1.

PROOF. Let G = (V,E) be a graph on n vertices and let k ≥ 1 be an integer. Assume
that lcwd(G) ≤ k. Hence G has a linear k-expression. We observe that the k-derivation
obtained from this k-expression by the construction given at the beginning of the proof
of Lemma 3.4 is linear. It follows now from Lemma 6.1 that G has a linear k-derivation
of length at most n− k + 1.

Conversely, assume G has a linear k-derivation D. Let Q be the k-expression tree
obtained by the three steps described in the proof of Lemma 3.6. Since D is linear,
it follows that every ⊕-node q of Q has at most one child p such that |V (Gp)| > 1.
Consequently, Q corresponds to a linear k-expression of G, and thus lcwd(G) ≤ k.

6.2. SAT Encoding of Linear Clique-Width
We extend the SAT encoding described in Section 5 to linear clique-width.

Let G = (V,E) be graph. As above we assume that that the vertices of G are given
in some arbitrary but fixed linear order <. Let k, t be integers and let F (G, k, t) be the
CNF formula as constructed in Section 5, using either the direct, or the representative
encoding. F (G, k, t) is satisfiable if and only if G has a k-derivation of length t.

We obtain a formula L(G, k, t) from F (G, k, t) as follows.
For each v ∈ V and 1 ≤ i ≤ t we introduce a new variable mv,i. This variable is

true if the component c ∈ cmp(Ti) with v ∈ c is the main component of Ti. We add the
following clauses:

(¬cu,v,i ∨mu,i) ∧ (¬cu,v,i ∨mv,i) ∧ (¬mu,i ∨ ¬mv,i ∨ cu,v,i)
for v ∈ V, u < v, 1 ≤ i ≤ t.

These clauses enforce that for any two distinct vertices u, v ∈ V and any 1 ≤ i ≤ t the
following holds: u, v belong to the same component c ∈ cmp(Ti) if and only if c is the
main component of Ti.

This definition allows us to extend Proposition 5.1 as follows.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:16 M. J. H. Heule and S. Szeider

Table I. Runtimes in seconds of the direct and representative encoding on a random graph with 20 vertices
and 95 edges for different values of k. Up to k = 9 the formulas are unsatisfiable, afterwards they are
satisfiable. Timeout (TO) is 20,000 seconds.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16

direct 1.39 14.25 101.1 638.5 18,337 TO TO TO TO 30.57 0.67 0.50 0.10 0.10
repres 0.62 2.12 8.14 12.14 33.94 102.3 358.6 9.21 0.40 0.35 0.32 0.29 0.29 0.28

PROPOSITION 6.3. Let G = (V,E) be graph and t = |V | − k + 1. Then L(G, k, t) is
satisfiable if and only if lcwd(G) ≤ k.

7. EXPERIMENTAL RESULTS
In this section we report the results we obtained by running our SAT encoding on
various classes of graphs.1 Given a graph G = (V,E), we compute that G has clique-
width k by determining for which value of k ∈ {1, . . . , |V |} it holds that

— F (G, k, |V | − k + 1) is satisfiable and
— F (G, k − 1, |V | − k + 2) is unsatisfiable.

We use the same approach for linear clique-width, taking the formulas L(G, k, |V |−k+
1) and L(G, k − 1, |V | − k + 2). We used the SAT solver Glucose version 2.2 [Audemard
and Simon 2009] to solve the encoded problems. Glucose solved the hardest instances
about twice as fast (or more) as other state-of-the-art solvers such as Lingeling [Biere
2012], Minisat [Eén and Sörensson 2004] and Clasp [Gebser et al. 2007]. We used a
4-core Intel Xeon CPU E31280 3.50GHz, 32 Gb RAM machine running Ubuntu 10.04.

Although the direct and representative encodings result in CNF formulas of almost
equal size, there is a huge difference in costs to solve these instances. To determine the
clique-width of the famous named graphs (see below) using the direct encoding takes
about two to three orders of magnitude longer when compared to the representative
encoding. For example, using the representative encoding, we can establish that the
Paley graph with 13 vertices has clique-width 9 within a few seconds, while the solver
requires over an hour using the direct encoding. Because of the huge difference in
speed, we discard the use of the direct encoding in the remainder of this section.

We noticed that upper bounds (satisfiable formulas) are obtained much faster than
lower bounds (unsatisfiable formulas). The reason is twofold. First, the whole search
space needs to be explored for lower bounds, while for upper bounds, one can be “lucky”
and find a solution fast. Second, due to our encoding, upper bound formulas are smaller
(due to a smaller t) which makes them easier. Table I shows this for a random graph
with 20 vertices for the direct encoding and the representative encoding.

We examined whether adding symmetry-breaking predicates could improve perfor-
mance. We used Saucy version 3 for this purpose [Katebi et al. 2012]. After the addition
of the clauses with representative variables, the number of symmetries is drastically
reduced. However, one can generate symmetry-breaking predicates for Fder(G, t) and
add those instead. Although it is helpful in some cases, the average speed-up was be-
tween 5 to 10%.

7.1. Random Graphs
The clique-width of random graphs has been studied by Lee et al. [2012]. Their results
show that for random graphs on n vertices the following holds asymptotically almost
surely: If the graphs are very sparse, with an edge probability below 1/n, then the
clique-width is at most 5; if the edge probability is larger than 1/n, then the clique-

1The sources of the encoding are available on https://bitbucket.org/mjhheule/cwd-encode/.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:17

width grows at least linearly in n. Our first group of experiments complements these
asymptotic results and provides a detailed picture on the clique-width of small ran-
dom graphs. We have used the SAT encoding to compute the clique-width of graphs
with 10, 15, and 20 vertices, with the edge probability ranging from 0 to 1. A plot of
the distribution is displayed in Figure 4. It is interesting to observe the symmetry at
edge probability 1/2, and how the steepness of the curve increases with the number of
vertices. Note the “shoulders” of the curve for very sparse and very dense graphs.

Table 1. Runtimes in seconds of the direct and representative encoding on a random
graph with 20 vertices and 95 edges for di↵erent values of k. Up to k = 9 the formulas
are unsatisfiable, afterwards they are satisfiable. Timeout (TO) is 20,000 seconds.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16

direct 1.39 14.25 101.1 638.5 18,337 TO TO TO TO 30.57 0.67 0.50 0.10 0.10
repres 0.62 2.12 8.14 12.14 33.94 102.3 358.6 9.21 0.40 0.35 0.32 0.29 0.29 0.28

reduced. However, one can generate symmetry-breaking predicates for Fder(G, t)
and add those instead. Although it is helpful in some cases, the average speed-up
was between 5 to 10%.

Our experimental computations are ongoing. Below we report on some of the
results we have obtained so far.

6.1 Random Graphs

The asymptotics of the clique-width of random graphs have been studied by Lee
et al. [27]. Their results show that for random graphs on n vertices the following
holds asymptotically almost surely: If the graphs are very sparse, with an edge
probability below 1/n, then clique-width is at most 5; if the edge probability is
larger than 1/n, then the clique-width grows at least linearly in n. Our first group
of experiments complements these asymptotic results and provides a detailed
picture on the clique-width of small random graphs. We have used the SAT
encoding to compute the clique-width of graphs with 10, 15, and 20 vertices, with
the edge probability ranging from 0 to 1. A plot of the distribution is displayed
in Figure 2. It is interesting to observe the symmetry at edge probability 1/2,
and the how the steepness of the curve increases with the number of vertices.
Note the “shoulders” of the curve for very sparse and very dense graphs.

av
er

a
g
e

cl
iq

u
e-

w
id

th

12

the clauses with representative variables, the formula hardly contains symmetries
anymore. However, one can generate symmetry breaking predicates for FD(G, t)
and add those instead. Although it helpful in some cases, the average speed-up
was between 5 to 10%.

6.1 Random Graphs

The asymptotics of the clique-width of random graphs have been studied by
Johansson [10], and more recently by Lee et al. [11]. Their results how that for
random graphs on n vertices the following holds asymptotically almost surely:
If the graphs are very sparse, with an edge probability below 1/n, then clique-
width is at most 5; if the edge probability is larger than 1/n, then the clique-
width grows linearly in n. Our first group of experiments complement these
asymptotic results and provide a detailed picture on the clique-width of small
random graphs. We have used the SAT encoding to compute the clique-width
of graphs with 10, 15, and 20 vertices, with the edge probability ranging from 0
to 1. A plot of the distribution is displayed in Fig 2. It is interesting to observe
the symmetry at edge probability 1/2, and the how the steepness if the curve
increases with the number of vertices.

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20 vertices
15 vertices

++++
+
+++
+++
++
++
++
+++
++
+++
+++
++++

+++
+++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

10 vertices

Fig. 2. Relation on the edge probability and the clique-width of small random graphs.
Each dot in the graph represents the average clique-width of 100 graphs.

6.2 The Clique-Width Numbers

For every integer k > 0 let nk denote the smallest number such that there exists
a graph with nk many vertices of clique-width k. We call nk be the n’th clique-
width number. From the characterizations known for graphs of clique-width 1,
2, and 3, respectively [8], it is easy to determine the first three clique-width
numbers as 1, 2, and 4. However, already to determine n4 is not straightforward,

edge probability

Fig. 2. Average clique-width of random graphs with edge probabilities between 0 and 1.
Each dot in the graph represents the average clique-width of 100 graphs.

Fig. 4. Average clique-width of random graphs with edge probabilities between 0 and 1. Each dot in the
graph represents the average clique-width of 100 graphs.

7.2. The Clique-Width Numbers
For every k > 0, let nk denote the smallest number such that there exists a graph with
nk vertices that has clique-width k. We call nk the kth clique-width number. From the
characterizations known for graphs of clique-width 1, 2, and 3, respectively [Corneil
et al. 2012], it is easy to determine the first three clique-width numbers (1, 2, and 4).
However, determining n4 is not straightforward, as it requires nontrivial arguments
to establish clique-width lower bounds. We would like to point out that a similar se-
quence of numbers for the graph invariant treewidth is easy to determine, as the com-
plete graph on n vertices is the smallest graph of treewidth n − 1. One of the very
few known graph classes of unbounded clique-width for which the exact clique-width
can be determined in polynomial time are grids [Heggernes et al. 2011]; the k × k grid
with k ≥ 3 has clique-width k+ 1 [Golumbic and Rotics 2000]. Hence grids provide the
upper bounds n4 ≤ 9, n5 ≤ 16, n6 ≤ 25, and n7 ≤ 36. With our experiments we have
determined that n4 = 6, n5 = 8, n6 = 10, n7 = 11, n8 ≤ 12, and n9 ≤ 13. It is known that
the path on four vertices (P4) is the unique smallest graph in terms of the number of
vertices with clique-width 3. We could determine that the triangular prism (3-Prism)
is the unique smallest graph with clique-width 4, and that there are exactly 7 smallest
graphs with clique-width 5. There are 68 smallest graphs with clique-width 6 and one
of them has only 18 edges. See Figure 5 for an illustration. Additionally, we found sev-
eral graphs with 11 vertices and clique-width 7 by extending a graph with 10 vertices
and clique-width 6.

PROPOSITION 7.1. The first seven clique-width numbers are 1, 2, 4, 6, 8, 10, 11.

We used the software package Nauty [McKay 1981] to avoid checking isomorphic
copies of the same graph. There are several other preprocessing methods that can

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:18 M. J. H. Heule and S. Szeider

speed up the search for small graphs of prescribed clique-width k ≥ 2. Obviously, we
can limit the search to connected graphs, as the clique-width of a graph is clearly the
maximum clique-width of its connected components. We can also ignore graphs that
contain twins—two vertices that have exactly the same neighbors—as we can delete
one of them without changing the clique-width. Similarly, we can ignore graphs with a
universal vertex, a vertex that is adjacent to all other vertices, as it can be deleted with-
out changing the clique-width. All these filtering steps are subsumed by the general
concept of prime graphs. Consider a graph G = (V,E). A vertex u ∈ V distinguishes
vertices v, w ∈ V if uv ∈ E and uw /∈ E. A set M ⊆ V is a module if no vertex from V \M
distinguishes two vertices from M . A module M is trivial if |M | ∈ {0, 1, |V |}. A graph
is prime if it contains only trivial modules. It is well known that the clique-width of a
graph is either 2 or the maximum clique-width of its induced prime subgraphs [Cour-
celle and Olariu 2000]. Hence, in our search, we can ignore all graphs that are not
prime. We can efficiently check whether a graph is prime [Habib and Paul 2010]. The
larger the number of vertices, the larger the fraction of non-prime graphs (considering
connected graphs modulo isomorphism). Table II gives detailed results.

Table II. Number of connected and prime graphs with specified clique-width,
modulo isomorphism.

clique-width

|V | connected prime 2 3 4 5 6

4 6 1 0 1 0 0 0
5 21 4 0 4 0 0 0
6 112 26 0 25 1 0 0
7 853 260 0 210 50 0 0
8 11,117 4,670 0 1,873 2,790 7 0
9 261,080 145,870 0 16,348 125,364 4,158 0
10 11,716,571 8,110,354 0 142,745 5,520,350 2,447,190 68

7.3. Famous Named Graphs
The graph theoretic literature contains several graphs that have names, sometimes
inspired by the graph’s topology, and sometimes named after their discoverer. We have
computed the clique-width of several named graphs, the results are given in Table III
(definitions of all considered graphs can be found in MathWorld [Weisstein]). The Paley
graphs, named after the English mathematician Raymond Paley (1907–1933), stick out
as having large clique-width. Our results on the clique-width of Paley graphs imply
some upper bounds on the 9th and 11th clique-width numbers: n9 ≤ 13 and n11 ≤ 17.
For the Petersen graph and the McGee graph, we identified the exact clique-width of
5 and 6, respectively (we provide k-expressions for these graphs in the appendix). This
improves upon the upper bounds provided by Durand and Courcelle [2013] of 6 and 10,
respectively.

Fig. 5. Smallest graphs with clique-width 3, 4, 5, and 6 (from left to right).

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:19

Table III. Clique-width of named graphs. Sizes are reported for the unsatisfiables.

graph |V | |E| cwd length variables clauses UNSAT SAT

Brinkmann 21 42 10 7 (-5) 8,526 163,065 3,932.56 1.79
Chvátal 12 24 5 5 (-3) 1,800 21,510 0.40 0.09
Clebsch 16 40 8 3 (-6) 3,872 60,520 191.02 0.09
Desargues 20 30 8 5 (-8) 7,800 141,410 3,163.70 0.26
Dodecahedron 20 30 8 7 (-6) 7,800 141,410 5,310.07 0.33
Errera 17 45 8 4 (-6) 4,692 79,311 82.17 0.16
Flower Snark 20 30 7 5 (-9) 8,000 148,620 276.24 3.9
Folkman 20 40 5 5 (-11) 8,280 168,190 11.67 0.36
Franklin 12 18 4 6 (-3) 1,848 21,798 0.07 0.04
Frucht 12 18 5 4 (-4) 1,800 20,223 0.39 0.02
Hoffman 16 32 6 7 (-4) 4,160 64,968 8.95 0.46
Kittell 23 63 8 8 (-8) 12,006 281,310 179.62 18.65
McGee 24 36 8 7 (-10) 13,680 303,660 8,700.94 59.89
Paley-13 13 39 9 4 (-1) 1,820 22,776 12.73 0.05
Paley-17 17 68 11 6 (-1) 3,978 72,896 194.38 0.12
Pappus 18 27 8 5 (-6) 5,616 90,315 983.67 0.14
Petersen 10 15 5 5 (-1) 1,040 9,550 0.10 0.02
Poussin 15 39 7 5 (-4) 3,300 50,145 9.00 0.21
Robertson 19 38 9 7 (-4) 6,422 112, 461 478.83 0.76
Shrikhande 16 48 9 5 (-3) 3,680 59,688 129.75 0.11
Sousselier 16 27 6 11 (0) 4,160 63,564 3.67 11.75

The fifth column of Table III (“length”) shows the length of shortest k-derivations
for graphs of clique-width k; the value in parenthesis indicates the difference between
this length and the upper bound provided by Lemma 3.7. We notice that this difference
is substantial for most of the considered graphs but only 0 for the Sousselier Graph.
The numbers in the following columns (i.e., the runtimes and the number of variables
and clauses) are based on the upper bound provided by Lemma 3.7. In the appendix we
provide k-derivations and linear k-derivations of minimal length for the named graphs.

We have also computed the linear clique-width of the named graphs of Table III.
It turned out that for most graphs clique-width and linear clique-width coincide or
are very close, see Table IV. The McGee graph is the only one among the considered
graphs where the gap between clique-width and linear clique-width is 2. For five of
the graphs, the gap is 1, and for all remaining graphs, clique-width and linear clique-
width are the same. Computing linear clique-width turns out to be somewhat less
expensive compared computing clique-width due to the additional clauses. However,
the performance improvement is smaller for graphs whose linear clique-width is larger
than the clique-width.

Table IV. Difference between clique-width and linear clique-width of named graphs.

0 1 2

Brinkmann Paley-13 Chvátal McGee
Clebsch Paley-17 Flower Snark
Desargues Pappus Folkman
Dodecahedron Poussin Franklin
Errera Robertson Hoffman
Frucht Shrikhande Petersen
Kittell Sousselier

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:20 M. J. H. Heule and S. Szeider

8. CONCLUSION
We have presented a SAT approach to the exact computation of clique-width and lin-
ear clique-width, based on a reformulation of clique-width and several techniques to
speed up the search. This new approach allowed us to systematically compute the ex-
act clique-width and linear clique-width of various small graphs. We think that our re-
sults could be of relevance for theoretical investigations. For instance, knowing small
vertex-minimal graphs of certain clique-width could be helpful for the design of dis-
crete algorithms that recognize graphs of bounded clique-width. Such graphs can also
be useful as gadgets for a reduction to show that the recognition of graphs of clique-
width 4 is NP-hard, which is still a long-standing open problem [Fellows et al. 2009];
the question is also open for linear clique-width [Heggernes et al. 2012]. Furthermore,
as discussed in Section 1, there are no heuristic algorithms to compute the clique-
width directly, but heuristic algorithms for related parameters can be used to obtain
upper bounds on the clique-width. Our SAT-based approach can be used to empirically
evaluate how far heuristics are from the optimum, at least for small and medium-sized
graphs.

So far we have focused in our experiments on the exact (linear) clique-width, but for
various applications it is sufficient to have good upper bounds. Our results (see Table I)
suggest that our approach can be scaled to medium-sized graphs for the computation of
upper bounds. We also observed that for many graphs the upper bound of Lemma 3.7 is
not tight. Thus, we expect that searching for shorter derivations, which is significantly
faster, will yield optimal or close to optimal solutions in many cases.

Finally, we would like to mention that our SAT-based approach is very flexible and
open. We think that similar to the adaption to linear clique-width, it can also be
adapted to other variants of clique-width, such asm-clique-width [Courcelle and Twigg
2010] and NLC-width [Wanke 1994]. Our approach could then be used for an empirical
comparison of these parameters.

Acknowledgement
The authors acknowledge the Texas Advanced Computing Center (TACC) at The Uni-
versity of Texas at Austin for providing grid resources that have contributed to the
research results reported within this paper.

A. APPENDIX: K-DERIVATIONS OF NAMED GRAPHS
In this appendix we provide (linear) derivations for the named graphs of Table III.
We will use the following string notation, which avoids the redundancy that comes
along with the explicit statement of each template. Let D = (T0, . . . , Tt) be a derivation
over a universe U . For two elements a, a′ ∈ U let c(a, a′) be the smallest i ∈ {1, . . . , t}
such that a, a′ belong to the same component in Ti. Similarly, if a, a′ belong to the
same group in Tt, let c(a, a′) be the smallest i ∈ {1, . . . , t} such that a, a′ belong to the
same group in Ti; otherwise, if a, a′ do not belong to the same group of Tt, then we let
g(a, a′) = t + 1. Let a1, . . . , an be the elements of U in such an order that for any three
elements ai, ai+1, ai+2 we have c(ai, ai+1), c(ai+1, ai+2) ≤ c(ai, ai+2). It is easy to see that
such an order always exists, although it may not be unique. Now we can represent the
sequence cmp(T1), . . . , cmp(Tt) by the component string

a
c(a1,a2)
1 a

c(a2,a3)
2 a

c(a3,a4)
3 . . . a

c(an−1,an)
n−1 an

For instance, the component string for the derivation of Example 3.1 is a1b2c3d.
For the groups we proceed similarly. Let b1, . . . , bn be the elements of U in such an or-

der that for any three elements bi, bi+1, bi+2 we have g(bi, bi+1), g(bi+1, bi+2) ≤ g(bi, bi+2).

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:21

Now we represent the sequence grp(T1), . . . , grp(Tt) by the group string

b
g(b1,b2)
1 b

g(b2,b3)
2 b

g(b3,b4)
3 . . . b

g(bn−1,bn)
n−1 bn

The corresponding group string for the derivation of Example 3.1 is a3b4c4d. By joining
the component string and the group string with a semicolon we get a concise repre-
sentation of a derivation: a1b2c3d : a3b4c4d. It is straightforward to reconstruct the
derivation from the string.

As an example, consider the Petersen graph as depicted in Figure 6, with

V = {a, b, c, d, e, f, g, h, i, j},
E = {ac, ad, af, bd, be, bg, ce, ch, di, ej, fg, fj, gh, hi, ij}.

a
e

d c

b

f

j

i h

g

Fig. 6. The Petersen graph

With our SAT approach we found the 5-derivation (T0, . . . , T4) with

cmp(T0) = {a, b, c, d , e, f , g , h, i , j}, grp(T0) = {a, b, c, d , e, f , g , h, i , j},
cmp(T1) = {ace, bfg , dhi , i}, grp(T1) = {a, b, c, d , e, f , g , h, i , j},
cmp(T2) = {abcefg , dhi , j}, grp(T2) = {a, b, cg , d , e, f , h, i , j},
cmp(T3) = {abcdefghi , j}, grp(T3) = {ab, cg , d , efi , h, j},
cmp(T4) = {abcdefghij}, grp(T4) = {ab, cg , dh, efi , j};

we omit curly brackets and commas when we state components and groups.
This 5-derivation is represented by the string

a1c1e2b1f1g3d1h1i4j : a3b5c2g5d4h5e3f3i5j.

The construction given in the proof of Lemma 3.6, after simplification to save some
relabelings, yields the 5-expression

η3,5(ABC ⊕ 5(j))

where

ABC = ρ5�6(η1,4(η2,3(AB ⊕ C))),

AB = ρ4�1(ρ5�3(η1,5(η3,4(A⊕B)))),

A = η2,3(η1,2(1(a)⊕ 2(c)⊕ 3(e))),

B = η2,5(η4,5(4(b)⊕ 5(f)⊕ 2(g))),

C = η3,4(η3,5(4(d)⊕ 5(h)⊕ 3(i))).

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:22 M. J. H. Heule and S. Szeider

Next we we provide certificates for tight upper bounds for the clique-width and the
linear clique-width of the famous named graphs mentioned in Section 7.3. We give the
certificates in terms of k-derivations and linear k-derivations, stated in string notation.
We state (linear) k-derivations of minimal length, thus providing certificates for the
derivation lengths stated in Table III. Shortest k-derivations are often not linear, hence
we provide both, a linear k-derivation and a k-derivation, even for graphs whose clique-
width and linear clique-width coincide.

Brinkmann Graph

V = {a, . . . , u}

E = {ad, ae, aj, as, bc, bd, bh, bt, ce, cl, cu, dg, di, ef,
ek, fh, fo, fp, gl, gm, gp, hj, hm, ik, in, io, jn, ju,
km, kq, lo, ls,mr, np, nt, or, pq, qs, qu, rt, ru, st}

10-der = a1b1c1e1k1u2d1g1m1n1p1q3j4h5s5t6f5i5o5r6l :
a4q6b6j7c2g6o7d3k6n7e2p5h7f7i7l7m5u6t7r7s

lin 10-der = a3d1e1f1g1h1i1k1l1m1o2p2q3j4c5b5n6r6s6t6u :
a5l7b6n7c6j7d4h6e5f2g3k6i3p7m2o7q7r7s7t7u

Chvátal Graph

V = {a, . . . , l}

E = {ag, aj, ak, al, bc, bf, bh, bk, cg, ci, cl, dh,
dj, dk, dl, ef, ei, ek, el, fg, fj, gh, hi, ij}

5-der = a1b1f1g1k2c1d1h1i1l3j4e : a2d4b2g3c2h5e5f2i5j5k2l

lin 6-der = a1b1c1g1k1l2e2f3d3i4h4j : a3f5b2g5c3e4k2l5d4i5h5j

Clebsch Graph

V = {a, . . . , p}

E = {ac, ae, ag, aj, am, be, bf, bh, bj, bn, cd, cf, cn, co,
de, dh, di, dp, ek, el, fg, fi, f l, gh, gk, gp, hm, ho,
ij, ik, im, jo, jp, kn, ko, lm, lo, lp,mn, np}

8-der = a1d1g1h1i1j1m1p2b1c1e1f1k1l1n1o :
a2d3b2o3c2e3f2k3g2i3h2j3l2n3m2p,

lin 8-der = a1c1i1j1k1m1n1o2b2f2g2h3d3e3l3p :
a2k3b4c2i3h4d4e4f3m2o4g3j2n4l4p

Desargues Graph

V = {a, . . . , t}

E = {ab, af, at, bc, bq, cd, cl, de, do, ef, ej, fg, gh, gp, hi,
hs, ij, in, jk, kl, kt, lm,mn,mr, no, op, pq, qr, rs, st}

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:23

8-der a1f1g1p1q1r1s1t2c1d1i1j1k1l1n1o3b3h4e4m :
a2c2q4g2i2s5b4k3o3p4t5d2f2j5e5h5l2n2r5m

lin 8-der a1c1d1f1l1m1s1t2b2q3r4p5o6g7e7k8h8i8j8n :
a2c3b4r5q7p8d8f8l2t9e8k9g7s9h9i9j9m6o9n

Dodecahedral Graph (Dodecahedron)

V = {a, . . . , t}

E = {an, ao, ap, be, bf, bm, cg, cn, cs, dh, do, dt, ek, es,
fl, ft, gk, gp, hl, hp, ij, in, iq, jo, jr, kl,mq,mr, qs, rt}

8-der = a1e1h1j1k1l1o1p2c1g1s3n4i5b4m4q6d2f5r3t :
a2c4g3k2p5n6e7b6l7d7f7h2o6t7i5s6q7j5m7r

lin 8-der = a3b1d1e1f1l1m1q1t2j2r3o4k5i6h6p7c7g7n7s :
a7i8b2f3m2t3r4o6j7d5l7h8c8e6q8g8k7p8n8s

Errera Graph

V = {a, . . . , q}

E = {ac, ae, aj, al, aq, bh, bi, bm, bn, bo, ce, cj, ck, co, df
dh, dk, dm, dp, ek, el, ep, fg, fm, fn, fp, gi, gl, gn,
gp, gq, hk, hm, ho, ij, in, io, iq, jo, jq, ko, kp, lp, lq,mn}

8-der = a1c1e1j1k1l1q2b1d1f1h1m1n2p3g3i2o :
a2m3d2e4b2j4c2h3k4f2l3p4g4i4n2q4o

lin 8-der = a5b1d1f1i1k1n1o1p2h2m3e3j4l6c6g6q :
a6j7b2d3h3m7c7e6k4o7f2n5p7g7i6l7q

Flower Snark

V = {a, . . . , t}

E = {ab, ae, aq, bc, bd, ch, ct, dg, ds, ef, ei, fg, fh, gl, hk,
ij, im, jk, jl, kp, lo,mn,mq, no, np, ot, ps, qr, rs, rt}

7-der = a1e1i1j1q2m2n3c1h1k1o1t2d1g1l1p1s4b4f4r :
a3c2d5b5e3g2h5f5i3k3l4j4m3o3p4n5q3s2t5r

lin 8-der = a6b6c3d3f2g1h1k1l1o1p1s1t2r4i4j5m5n6e6q :
a7b7c4d7e7f6i7g3s4h3t5j5k2l6n6o2p7m6r7q

Folkman Graph

V = {a, . . . , t}

E = {ab, ad, aj, al, bc, bm, bs, cd, cf, ch, dm, ds, ef, eh, en, ep, fg, fq, gh,
gj, gl, hq, ij, il, ir, it, jk, kl, kn, kp,mn,mp, no, op, or, ot, qr, qt, rs, st}

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:24 M. J. H. Heule and S. Szeider

5-der = a1i1j1k1l2c1e1f1g1h1q3b2d1s2m4n3o1p4r3t :
a2c4b3d4f1h2j1l3g5e2k3m5i2q3s4o5n3p5r3t

lin 6-der = a5b5c2f1g1h1k1n1o1p1q2m3e3r3t4i4s5d5j5l :
a6b5d6c3m5s6e4f1h3n1p4o2q5r3t6g2k5i6j5l

Franklin Graph

V = {a, . . . , l}

E = {ab, ah, al, bc, bk, cd, cf, de, di,
ef, el, fg, gh, gj, hi, ij, jk, kl}

4-der = a1h2b2j1k3d1i2e2f1g4c5l : a3e3k6b3d2f6c5g2i4h2j6l

lin 5-der = a1g1h1j1k2d2i3f4b4e5c5l : a2k5e6b5d4f6c6g4h2j3i6l

Frucht Graph

V = {a, . . . , l}

E = {ab, ag, ak, bc, bh, cd, ci, de, di,
ef, ej, fg, fj, gk, hk, hl, il, jl}

5-der = a1b1g1h1k2d1e1i1j1l3c3f : a2k3h3l4b2d2i4c4e2g2j4f

lin 5-der = a5b3c2d1e1i1j1l2h4k6f6g : a6k7b6c4d2i3l5h7e2j7f7g

Hoffman Graph

V = {a, . . . , p}

E = {ai, aj, ak, al, bi, bj, bk, bm, ci, cl, cn, co, dj, dl, dn, dp,
ek, el, eo, ep, fi, fm, fn, fo, gj, gm, gn, gp, hk, hm, ho, hp}

6-der = a1c1d1e1l2b1f1g1h1m2p3o4k5n6i5j :
a2b7c2f7d2g7e2h5k6l2m3p4o6n7i7j

lin 7-der = a4c1d1f1g1i1j2o2p3l3m3n4h5b5e5k :
a5h6b6c3d4f3g4n6e6i2j5m6k6l5o3p

Kittell Graph

V = {a, . . . , w}

E = {af, ak, am, aq, aw, bc, bd, bk, br, bt, cl, co, cp, cr, ct, dh, dk, dn, dt, eg, ej, eq,
eu, ew, fk, fl, fm, fn, fs, fv, gp, gq, gr, gu, hn, ho, ht, hv, ij, il, ip, is, iu,
jm, js, ju, jw, kn, kq, kr, lo, lp, ls, lv,ms,mw, nv, ot, ov, pr, pu, qr, qw}

8-der = a7b1c1f1h1n1o1t1v2d1r3l3p4k5e3j3u4m3w6g6q7i5s :
a8b3d3n5c4h2t4o2v7e5r7g8f6m8i8j5l8k5w7q8p6u8s

lin 8-der = a1e1i1l1m1s1u1w2g3j3q4p5r6k7b7c8d8n9h10v11f11o11t :

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:25

a7m2s9k11n12b10d12c11h12e3w4j5i3u6g7q8p8r12f12l11v12o12t

McGee Graph

V = {a, . . . , x}

E = {ab, ah, ax, bc, bs, cd, co, de, dk, ef, ev, fg, fr, gh, gn, hi, ij, iu,
jk, jq, kl, lm, lx,mn,mt, no, op, pq, pw, qr, rs, st, tu, uv, vw,wx}

8-der = a1b1c1o1p1w1x2i1j1k1l1m1t1u3q4s5d3f1h4e4g6n6r6v :
a2i6b2t5j2p4l3x6c2k6d7e5u2w7f5q5s7g5m2o7h7n7r7v

lin 10-der = a1b1e1f1g1m1n1t1w1x2s2v3c3d4k4l5h5i5u6j6o6p6q6r :
a2g6b4e5d5l5m2x6h6t3v6u7c4n7f3s7i6k7j7o7p7q7r7w

Paley Graph with 13 vertices (Paley-13)

V = {a, . . . ,m}

E = {ab, ad, ae, aj, ak, am, bc, be, bf, bk, bl, cd, cf, cg, cl, cm, de, dg, dh, dm,
ef, eh, ei, fg, fi, fj, gh, gj, gk, hi, hk, hl, ij, il, im, jk, jm, kl, lm}

9-der = a1d1e1f1h1j1k1l1m2g3b1c3i : a3k4b4c4d3g4e4f3l4h2j4i4m

lin 9-der = a2b1c1d1e1g1h1i1j2f3k3l3m : a3j4b3h4c2i4d4e3f4g4k4l4m

Paley Graph with 17 vertices (Paley-17)

V = {a, . . . , q}

E = {ab, ac, ae, ai, aj, an, ap, aq, bc, bd, bf, bj, bk, bo, bq, cd, ce, cg
ck, cl, cp, de, df, dh, dl, dm, dq, ef, eg, ei, em, en, fg, fh, fj,
fn, fo, gh, gi, gk, go, gp, hi, hj, hl, hp, hq, ij, ik, im, iq, jk,
jl, jn, kl, km, ko, lm, ln, lp,mn,mo,mq, no, np, op, oq, pq}

11-der = a3b1c1e1f1g1j1k1l1o1p1q2m4d5h3i5n :
a5e4m6b2c6d6f3l5p6g5q6h6i6j6k6n6o

lin 11-der = a1c1d1e1g1h1i1k1m1n1p2o3j4b5f5l5q :
a5i6b5o6c4k6d6e3g6f6h6j5n6l6m2p6q

Pappus Graph

V = {a, . . . , r}

E = {ad, ao, ap, be, bp, bq, cf, cg, cr, dg, dh, ef, eh,
fi, gj, hk, il, im, jm, jn, kl, kn, lo,mp, nq, or, qr}

8-der = a1b1e1h1o1p2c1g1j1k1n1r3i1l2m4d4f4q :
a2g3h5b2n4r5c2e3i5d5f5j2p4l4m5k3o5q

lin 8-der = a1b1i1j1l1n1o1q2d2e3m4h5k5p6c6f6g6r :

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:26 M. J. H. Heule and S. Szeider

a3b4m6h5l2n6k6p7c7d5j7e6i7f7g7o2q7r

Petersen Graph

V = {a, . . . , j}

E = {ac, ad, af, bd, be, bg, ce, ch, di, ej, fg, fj, gh, hi, ij}

5-der = a1c1e2b1f1g3d1i2h4j : a3b5c2g5d4h5e3f3i5j

lin 6-der = a1d1f1g1h1i2b2c2e3j : a2h3b3c4d2g4e4f2i4j

Poussin Graph

V = {a, . . . , o}

E = {ac, af, ak, al, am, bc, bf, bi, bj, bn, cf, ci, cl, dg, dh, dj, dm, dn, do, eg,
ek, el, eo, fj, fm, gi, gl, gn, go, hk, hm, ho, il, in, jm, jn, kl, km, ko}

7-der = a3c1e1g1i1l2d1f1h1j1m3o4b2n4k : a4e2h4l2m4o5b5c3f5d3g5i2j5k5n

lin 7-der = a2c1d1f1i1j1l1n3m4h5o6b7e7g7k : a5m6h8b7c4f3j8d7i2n8e8g8k8l7o

Robertson Graph

V = {a, . . . , s}

E = {ab, ae, ap, as, bc, bi, bm, cd, cg, cr, de, dl, do, ef, ej, fg, fm, fq, gh,
gk, hi, ho, hs, ij, iq, jk, jn, kl, kp, lm, ls,mn, no, nr, op, pq, qr, rs}

9-der = a5l3r2s6b1c1f1g1i1j1k1m1q2n3p4o5d1e6h :
a7b5p6e7c6n5q7d6k4m7f3j7g2i6o6s7h7l7r

lin 9-der a1b1c1d1e1f1g1i1q2h3p4o5m5s6l7j7k7n7r :
a5h6b2f7d8c4q7s8e3i8g5p7l8j8k8m7o8n8r

Shrikhande Graph

V = {a, . . . , p}

E = {ab, ac, ad, ae, af, ag, bc, bg, bh, bi, bj, cd, ch, ck, cl, df,
dk, dm, dn, ef, eg, el, eo, ep, fi, fm, fo, gj, gn, gp, hi, hl,
hm, hp, ij, im, io, jk, jn, jo, kl, kn, ko, lo, lp,mn,mp, np}

9-der = a1b1c1d1g1i1j1k1l2h2n3o4e3f3m1p :
a4o5b2c4j2k5d4i5e5f5g4l5h3n5m5p

lin 9-der = a1b1d1e1f1h1i1j2g2m3c3o4k4l4n4p :
a3b4f2i5c4o5d4j5e4h5g3m5k5l5n5p

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:27

Sousselier Graph

V = {a, . . . , p}

E = {ab, ao, ap, bc, bf, bl, cd, cn, de, dp, ef, ei, eo,
fg, gh, gp, hi, hl, ij, jk, jp, kl, ko, lm,mn,mp, no}

6-der = a4b3f1g1h2i1j1k2o5n6c7e8p9d10l3m :
a5g2j9f4i6o10c8e10d11b7h3k11l11m11n11p

lin 6-der = a4b1f1g1h1i1j2k3o5c6n7e8p9m10d10l :
a5g3j9f2i7o10n11b6h4k11c8e10p11d11l11m

REFERENCES
Isolde Adler and Mamadou Moustapha Kanté. 2013. Linear Rank-Width and Linear Clique-Width of Trees.

In Graph-Theoretic Concepts in Computer Science - 39th International Workshop, WG 2013, Lübeck,
Germany, June 19-21, 2013, Revised Papers (Lecture Notes in Computer Science), Andreas Brandstädt,
Klaus Jansen, and Rüdiger Reischuk (Eds.), Vol. 8165. Springer Verlag, 12–25.

Gilles Audemard and Laurent Simon. 2009. Predicting learnt clauses quality in modern SAT solvers. In Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI’09). Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 399–404. http://dl.acm.org/citation.cfm?id=1661445.
1661509

Martin Beyß. 2013. Fast Algorithm for Rank-Width. In Mathematical and Engineering Methods in Computer
Science, 8th International Doctoral Workshop, MEMICS 2012, Znojmo, Czech Republic, October 25-28,
2012, Revised Selected Papers (Lecture Notes in Computer Science), Vol. 7721. Springer Verlag, 82–93.

Armin Biere. 2012. Lingeling and friends entering the SAT Challenge 2012. In Solver and Benchmark De-
scriptions (Department of Computer Science Series of Publications B.), A. Balint, A. Belov, A. Diepold,
S. Gerber, M. Järvisalo, and C. Sinz (Eds.), Vol. B-2012-2. University of Helsinki, 33–34.

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). 2009. Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, Vol. 185. IOS Press.

Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. 2011. Boolean-width of graphs. Theoretical
Computer Science 412, 39 (2011), 5187–5204.

Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce Reed, and Udi Rotics. 2012. Polynomial-time
recognition of clique-width ≤ 3 graphs. Discr. Appl. Math. 160, 6 (2012), 834–865.

Derek G. Corneil and Udi Rotics. 2005. On the relationship between clique-width and treewidth. SIAM J.
Comput. 34, 4 (2005), 825–847.

Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. 1991. Context-free Handle-rewriting Hyper-
graph Grammars. In Graph-Grammars and their Application to Computer Science, 4th International
Workshop, Bremen, Germany, March 5–9, 1990, Proceedings (Lecture Notes in Computer Science), Hart-
mut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg (Eds.), Vol. 532. 253–268.

Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. 1993. Handle-rewriting hypergraph grammars.
J. of Computer and System Sciences 46, 2 (1993), 218–270.

Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. 2000. Linear time solvable optimization problems
on graphs of bounded clique-width. Theory Comput. Syst. 33, 2 (2000), 125–150.

Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. 2001. On the fixed parameter complexity of graph
enumeration problems definable in monadic second-order logic. Discr. Appl. Math. 108, 1-2 (2001), 23–
52.

Bruno Courcelle and Stephan Olariu. 2000. Upper bounds to the clique-width of graphs. Discr. Appl. Math.
101, 1-3 (2000), 77–114.

Bruno Courcelle and Andrew Twigg. 2010. Constrained-path labellings on graphs of bounded clique-width.
Theory Comput. Syst. 47, 2 (2010), 531–567.

Reinhard Diestel. 2000. Graph Theory (2nd ed.). Graduate Texts in Mathematics, Vol. 173. Springer Verlag,
New York.

P. Alex Dow and Richard E. Korf. 2007. Best-First Search for Treewidth. In Proceedings of the Twenty-Second
AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada.
AAAI Press, 1146–1151.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



00:28 M. J. H. Heule and S. Szeider

Iréne Durand and Bruno Courcelle. 2013. Infinite Transducers on Terms Denoting Graphs. In Proceedings
of ELS 2013, the 6th European Lisp Symposium June 3–4, 2013, Madrid, Spain. 47–58. http://www.
nicklevine.org/els2013/proceedings.pdf.

Niklas Eén and Niklas Sörensson. 2004. An Extensible SAT-solver. In Theory and Applications of Satisfia-
bility Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003
Selected Revised Papers, Enrico Giunchiglia and Armando Tacchella (Eds.). Lecture Notes in Computer
Science, Vol. 2919. Springer Verlag, 502–518.

Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. 2009. Clique-width is NP-
complete. SIAM J. Discrete Math. 23, 2 (2009), 909–939.

Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. 2007. clasp : A Conflict-Driven
Answer Set Solver. In Logic Programming and Nonmonotonic Reasoning, 9th International Conference,
LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings (Lecture Notes in Computer Science),
Chitta Baral, Gerhard Brewka, and John S. Schlipf (Eds.), Vol. 4483. Springer Verlag, 260–265.

Ian P. Gent. 2002. Arc Consistency in SAT. In 15th European Conference on Artificial Intelligence (ECAI
2002), F. van Harmelen (Ed.). IOS Press, 121–125.

Vibhav Gogate and Rina Dechter. 2004. A Complete Anytime Algorithm for Treewidth. In Proceedings of
the Proceedings of the Twentieth Conference Annual Conference on Uncertainty in Artificial Intelligence
(UAI-04). AUAI Press, Arlington, Virginia, 201–208.

Martin Charles Golumbic and Udi Rotics. 2000. On the clique-width of some perfect graph classes. Internat.
J. Found. Comput. Sci. 11, 3 (2000), 423–443. Selected papers from the Workshop on Graph-Theoretical
Aspects of Computer Science (WG 99), Part 1 (Ascona).

Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. 2008. Satisfiability Solvers. In Hand-
book of Knowledge Representation. Foundations of Artificial Intelligence, Vol. 3. Elsevier, 89–134.

Frank Gurski and Egon Wanke. 2005. On the relationship between NLC-width and linear NLC-width. The-
oretical Computer Science 347, 1-2 (2005), 76–89.

Michel Habib and Christophe Paul. 2010. A survey of the algorithmic aspects of modular decomposition.
Computer Science Review 4, 1 (2010), 41–59.

Pinar Heggernes, Daniel Meister, and Charis Papadopoulos. 2011. Graphs of linear clique-width at most 3.
Theoretical Computer Science 412, 39 (2011), 5466–5486.

Pinar Heggernes, Daniel Meister, and Charis Papadopoulos. 2012. Characterising the linear clique-width of
a class of graphs by forbidden induced subgraphs. Discr. Appl. Math. 160, 6 (2012), 888–901.

Pinar Heggernes, Daniel Meister, and Udi Rotics. 2011. Computing the Clique-Width of Large Path Powers
in Linear Time via a New Characterisation of Clique-Width. In Computer Science - Theory and Appli-
cations - 6th International Computer Science Symposium in Russia, CSR 2011, St. Petersburg, Russia,
June 14-18, 2011. Proceedings (Lecture Notes in Computer Science), Alexander S. Kulikov and Niko-
lay K. Vereshchagin (Eds.), Vol. 6651. Springer Verlag, 233–246.

Eivind Magnus Hvidevold, Sadia Sharmin, Jan Arne Telle, and Martin Vatshelle. 2012. Finding Good De-
compositions for Dynamic Programming on Dense Graphs. In Parameterized and Exact Computation
- 6th International Symposium, IPEC 2011, Saarbrücken, Germany, September 6-8, 2011. Revised Se-
lected Papers (Lecture Notes in Computer Science), Dániel Marx and Peter Rossmanith (Eds.), Vol. 7112.
Springer Verlag, 219–231.

Hadi Katebi, Karem A. Sakallah, and Igor L. Markov. 2012. Conflict Anticipation in the Search for Graph
Automorphisms. In Logic for Programming, Artificial Intelligence, and Reasoning - 18th International
Conference, LPAR-18, Mérida, Venezuela, March 11-15, 2012. Proceedings (Lecture Notes in Computer
Science), Nikolaj Bjørner and Andrei Voronkov (Eds.), Vol. 7180. Springer Verlag, 243–257.

Arie M. C. A. Koster, Hans L. Bodlaender, and Stan P. M. van Hoesel. 2001. Treewidth: Computational
Experiments. Electronic Notes in Discrete Mathematics 8 (2001), 54–57.

Choongbum Lee, Joonkyung Lee, and Sang-il Oum. 2012. Rank-width of random graphs. J. Graph Theory
70, 3 (2012), 339–347.

Vadim Lozin and Dieter Rautenbach. 2007. The relative clique-width of a graph. J. Combin. Theory Ser. B
97, 5 (2007), 846–858.

Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from theoretical hardness to practical success.
Commun. ACM 52, 8 (2009), 76–82.

Brendan D. McKay. 1981. Practical graph isomorphism, In Proceedings of the Tenth Manitoba Conference
on Numerical Mathematics and Computing, Vol. I (Winnipeg, Man., 1980). Congr. Numer. 30 (1981),
45–87.

Sang-il Oum and P. Seymour. 2006. Approximating Clique-width and Branch-width. J. Combin. Theory Ser.
B 96, 4 (2006), 514–528.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.



A SAT Approach to Clique-Width 00:29

Sang-Il Oum. 2008. Approximating Rank-width and Clique-width Quickly. ACM Trans. Algorithms 5, 1,
Article 10 (Dec. 2008), 20 pages. DOI:http://dx.doi.org/10.1145/1435375.1435385

Karem A. Sakallah and João Marques-Silva. 2011. Anatomy and Empirical Evaluation of Modern SAT
Solvers. 103 (2011), 96–121.

Marko Samer and Helmut Veith. 2009. Encoding Treewidth into SAT. In Theory and Applications of Satis-
fiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3,
2009. Proceedings (Lecture Notes in Computer Science), Vol. 5584. Springer Verlag, 45–50.

Carsten Sinz. 2005. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In Principles
and Practice of Constraint Programming - CP 2005, 11th International Conference, CP 2005, Sitges,
Spain, October 1-5, 2005, Proceedings (Lecture Notes in Computer Science), Peter van Beek (Ed.), Vol.
3709. Springer Verlag, 827–831.

J. Cole Smith, Elif Ulusal, and Illya V. Hicks. 2012. A combinatorial optimization algorithm for solving the
branchwidth problem. Comput. Optim. Appl. 51, 3 (2012), 1211–1229.

Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. 2009. Compiling finite linear
CSP into SAT. Constraints 14, 2 (2009), 254–272.

Magnus Wahlström. 2011. New plain-exponential time classes for graph homomorphism. Theory Comput.
Syst. 49, 2 (2011).

Toby Walsh. 2000. SAT v CSP. In 6th International Conferenc on Principles and Practice of Constraint
Programming (CP 2000) (Lecture Notes in Computer Science), R. Dechter (Ed.), Vol. 1894. Springer
Verlag, 441–456.

Egon Wanke. 1994. k-NLC graphs and polynomial algorithms. Discr. Appl. Math. 54, 2-3 (1994), 251–266.
Efficient algorithms and partial k-trees.

Eric Weisstein. 2015. MathWorld online Mathematics resource. (2015). Last accessed on February 13, 2015.
Hantao Zhang. 2009. Combinatorial Designs by SAT Solvers. In Handbook of Satisfiability, Armin Biere,

Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). Frontiers in Artificial Intelligence and Appli-
cations, Vol. 185. IOS Press, 533–568.

Received January 2014; revised ; accepted February 2015

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 00, Publication date: January 2015.


