
The Quest for Perfect and Compact Symmetry
Breaking for Graph Problems

Marijn J.H. Heule
The University of Texas at Austin, United States

Abstract—Symmetry breaking is a crucial technique to solve
many graph problems. However, current state-of-the-art tech-
niques break graph symmetries only partially, causing search
algorithms to unnecessarily explore many isomorphic parts of the
search space. We study properties of perfect symmetry breaking
for graph problems. One promising and surprising result on
small-sized graphs —up to order five— is that perfect symmetry
breaking can be achieved using a compact propositional formula
in which each literal occurs at most twice. At least for small
graphs, perfect symmetry breaking can be expressed more com-
pactly than the existing (partial) symmetry-breaking methods.
We present several techniques to compute perfect symmetry-
breaking formulas and analyze them.

I. INTRODUCTION

Over the last two decades, the speed and capacity of
satisfiability (SAT) solvers has improved by several orders
of magnitude, enabling solutions to some long-standing open
problems such as Erdős’ discrepancy problem [14] and the
Boolean Pythagorean triples problem [10]. However, a main
weakness of SAT solvers in some applications is their inability
to capitalize on symmetries, that is, avoiding needless explo-
ration of isomorphic sub-problems. Several methods have been
proposed to counter this weakness, in particular by adding
symmetry-breaking predicates [7]. Existing methods are not
strong enough to make the SAT approach successful for long-
standing open problems in graph theory, such as computing
Ramsey numbers [9]. We present a novel approach to address
symmetries in graph problems in order to make advances
towards solving some of these open problems.

For hard combinatorial problems with few symmetries, such
as Van der Waerden numbers [8], [15] and Erdős’ discrepancy
problem, general purpose methods, in particular SAT solvers,
are the current state-of-the art. However, hard combinatorial
problems with lots of symmetries, such as Ramsey numbers,
are still best solved using dedicated approaches. Although
SAT has been applied to Ramsey numbers [16], [5], the most
impressive result, computing R(4, 5) [18], is two decades old
and has not been reproduced with general purpose methods.

This contrast can be explained by a gap in ability to fully
break all symmetries. When there are just a few symmetries,
it is relatively easy to break them using a small predicate,
so solvers can avoid isomorphic parts of the search space.
However, when there are many symmetries, such as when
permuting all the vertices of a graph, then there is no sub-
exponential method that can fully break them yet.

The current state-of-the-art symmetry-breaking methods for
SAT [1] or specifically for graphs [6] are unable to break
all symmetries for graph problems of order five and larger.

We will show that the average number of active graphs
per isomorphism class —after symmetry breaking, with both
methods— is quadratic in the size of the graph. Any perfect
symmetry-breaking technique would ensure that only one
graph is active per isomorphism class. Slightly reducing the
average number of active graphs per isomorphism class clearly
improves performance [6]. Any method that would perfectly
break graph symmetries is therefore expected to boost the
capabilities of general purpose solvers significantly.

The question arises: how expensive is it to perfectly break
all graph symmetries? We decided to use the number of
clauses required to achieve perfect symmetry breaking as the
measurement. The main motivation for this focus is that more
high-level measurements could be expressed using clauses,
while this does not hold for the other way around. Conse-
quently, there may exist polynomial-sized perfect symmetry
breaking for graph problems using clauses, while high-level
representations might be exponential in size.

In this paper we present several approaches to answering
that question. One surprising result is that breaking all graph
symmetries may be possible with compact predicates. For
example, up to order five, the largest size for which we
could compute optimal results, literals occur at most twice
in the smallest predicates. Moreover, our compact and perfect
predicates are smaller than the most compact representation
of existing (partially) symmetry-breaking methods, at least for
small graphs.

We present our study of perfect symmetry breaking for
graph problems using the concept of isolators: predicates,
over Boolean variables representing potential edges of graphs
of a given order, which rule out only redundant graphs. We
developed algorithms to compute isolators that are perfect
(break all symmetries) or optimal (perfect and minimal in
size). We show that interesting patterns can be observed in
the graphs that are admitted by optimal isolators.

II. BACKGROUND AND RELATED WORK

We denote by Gk the set of all labeled, undirected graphs
of order k. Graphs G,H ∈ Gk are in the same isomorphism
class if G can be obtained by relabeling the vertices of H .

Example 1. Consider the set of all labeled, undirected graphs
of order three using the vertex labels a, b, and c. We will
represent graphs as a set of edges where each edge is written
as the two vertices it connects. G3 is:

{{},{ab},{ac},{bc},{ab, ac},{ab, bc},{ac, bc},{ab, ac, bc}}

1

Graphs {ab, ac} and {ac, bc} are in the same isomorphism
class, because {ab, ac} can be obtained from {ac, bc} by
swapping the vertex labels a and c.

A graph existence problem of order k asks whether there
exists an unlabeled, undirected graph of order k with a given
property. Since the graphs are unlabeled, only one graph
from each isomorphism class needs to be considered. The
Ramsey numbers are famous graph existence problems. Graph
existence problems have been thoroughly studied, as can be
observed in a survey pointing to over 600 papers on the
subject [19].

The state-of-the-art symmetry-breaking tool for SAT prob-
lems (not restricted to graph problems) is shatter [1]. For
graph existence problems, the symmetries —detected on the
clausal level— correspond to permutations of the vertices.
Given a graph existence problem of order k, shatter
adds symmetry-breaking predicates that sort the vertices. The
addition of the predicates can reduce the SAT solving time by
orders of magnitude.

More specifically, let the vertices be named v1, . . . , vk.
Given a graph G, Ai,j denotes the ith row of the adjacency
matrix of G without columns i and j. Symmetry-breaking
predicate p�(vi, vj) enforces a lexicographic order between
Ai,j and Aj,i, denoted by Ai,j � Aj,i. Predicate p�(vi, vj)
can be encoded with about 6k clauses using auxiliary (non-
edge) variables. Using only the edge variables, it costs about
2k clauses to express this constraint. Hence auxiliary variables
can reduce the encoding from exponential to linear in the
number of vertices.

The symmetry-breaking clauses added by shatter to
graph existence problems of order k correspond to the con-
straint p�(v1, v2) ∧ p�(v2, v3) ∧ . . . ∧ p�(vk−1, vk). We will
call this symmetry-breaking technique the quad method as
it adds O(k2) clauses. Codish et al. [6] made two observa-
tions regarding the predicates p�(vi, vj) for graph existence
problems: i) p�(vi, vj) is not transitive; and ii) it is valid to
add all predicates p�(vi, vj) with 1 ≤ i < j ≤ k to graph
existence problems. We will refer to this latter method as the
cubic method as it adds O(k3) clauses.

We define the redundancy ratio of a graph symmetry-
breaking method as the ratio between the number of assign-
ments that satisfy the predicates and the number of isomor-
phism classes. One can view the redundancy ratio as the
average number of graphs per isomorphism class that are not
eliminated by a graph symmetry-breaking method. We call a
graph symmetry breaking perfect for order k if the redundancy
ratio is one for order k.

Figure 1 shows the redundancy ratios of the quad and cubic
methods, which are only perfect up to order four. The cubic
method outperforms the quad method, but for both methods,
the redundancy ratio increases almost quadratically for higher
orders within the experimental range: approximately (k− 5)2

for quad and (k− 6)2 for cubic. Although their difference in
redundancy ratio is modest, the cubic method is able to solve
some graph existence problems that are too hard for the quad

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

re
du

nd
an

cy
ra

tio

size of the graph

quad
cubic

Fig. 1. The redundancy ratios of the quad and cubic symmetry-breaking
methods.

method [6] to solve. Therefore, it is expected that a perfect
graph symmetry-breaking technique would boost performance
on graph existence problems significantly.

A recent paper [12] presents a perfect symmetry-breaking
approach based on so-called canonical sets. This approach
realizes a redundancy ratio of one, but has several disadvan-
tages. Most importantly, the number of clauses and variables
required to express these symmetry-breaking predicates grows
exponentially in the size of the graph. For example, perfect
symmetry-breaking for graphs of order five via canonical sets
uses 225 clauses and 55 variables. In contrast, the method we
propose in this paper produces perfect symmetry breaking for
graphs of order five using only 12 clauses and 10 variables.
Due to the exponential growth, it is impossible to use this
method for any graph existence problems of order 11 and
higher. Additionally, the canonical sets method does not allow
us to answer the main question of this paper: how expensive
is it to perfectly break all graph symmetries? Canonical sets
are only able to express a subset of the possible symmetry-
breaking options. In particular, our compact perfect symmetry-
breaking predicates cannot be expressed using canonical sets.

III. PERFECT ISOLATORS AND CANONICAL FORMS

Consider propositional formulas over variables representing
all possible edges between k vertices. We say that a graph
G ∈ Gk is admitted by such a formula F if there exists a
satisfying assignment of F in which each edge variable is
assigned to true if and only if the edge occurs in G. An isolator
of Gk, written I , is such a formula that admits at least one
graph in each isomorphism class of Gk. We write each edge’s
variable and its positive literal in the same way as the edge
itself. Negation of literals is notated with an overline.

Example 2. Consider the isolator Iex := (ab∨ac)∧ (ac∨ bc)
of G3 using the vertex labels a, b, and c. Four full assignments
satisfy Iex (using t for true and f for false):

ab = f , ac = f , bc = f ; ab = t, ac = f , bc = f ;

ab = t, ac = t, bc = f ; ab = t, ac = t, bc = t.

These assignments correspond to the following four graphs:

{}; {ab}; {ab, ac}; {ab, ac, bc}.

Observe that each graph occurs in a different isomorphism
class as each graph has a different number of edges.

Throughout this paper, we distinguish three special types of
isolators. The trivial isolator equals the empty formula and
thus admits all graphs G ∈ Gk. A perfect isolator admits
exactly one graph from each isomorphism class. An optimal
isolator is a perfect isolator with a minimal number of clauses.
Iex in Example 2, which is equivalent to P ′3 in Example 3,
is an optimal isolator for G3. Notice that a perfect isolator
breaks all graph symmetries in graph existence problems, i.e.
the reduction ratio is one.

A canonical labeling C of Gk is a subset of Gk containing
exactly one graph from each isomorphism class. Given a
canonical labeling C, a graph G ∈ C is the canonical form of
all graphs occurring in the isomorphism class of G. Several
canonical labeling algorithms have been implemented, such
as nauty [17] and bliss [13]. For each perfect isolator I
of Gk, there is an induced canonical labeling C, containing
the graphs that are admitted by I . As we will show below, it
is also possible to convert a canonical labeling into a perfect
isolator.

Example 3. Consider the graphs of order three with vertex
labels a, b, and c. There are four isomorphism classes of G3:
graphs with zero edges, one edge, two edges, and three edges.
There are two different canonical labelings of G3 (modulo
vertex renaming) which are shown below as C3 and C′3.

C3 := {{}, {ab}, {ac, bc}, {ab, ac, bc}}
C′3 := {{}, {ab}, {ab, ac}, {ab, ac, bc}}

For both canonical labelings there exists a perfect isolator
consisting of two binary clauses with Boolean variables ab,
ac, and bc expressing that edges ab, ac, and bc are present.

P3 := (ac ∨ bc) ∧ (ac ∨ bc) // equals : ac↔ bc

P ′3 := (ab ∨ ac) ∧ (ac ∨ bc) // equals : bc→ ac→ ab

A canonical labeling can easily be converted into a perfect
isolator, albeit one of exponential size. Let L(G) denote the
representation of a graph G as a set of literals: L(G) contains
for each present edge in G the corresponding positive literal,
and for each absent edge the corresponding negative literal. For
example, take a graph G ∈ G4: if G = {ab, ad, bc, cd}, then
L(G) = {ab, ac, ad, bc, bd, cd}. Let C be a canonical labeling
of Gk. A perfect isolator in disjunctive normal form (DNF)
based on C can be constructed as follows:

PDNF :=
∨
G∈C

(
∧

l ∈ L(G))

The size of any PDNF of Gk is exponential in k, because the
number of isomorphism classes is exponential in k. In order to
use such isolators for SAT solving, a transformation into CNF

is required. We write PCNF for the Tseitin transformation [22]
of PDNF. PCNF is larger than PDNF by a factor of about k2.

The size of the isolator PCNF can be reduced significantly.
There exist two tools that can simplify propositional formulas:
espresso [4] and bica [11]. Both tools can simplify a
formula to its smallest CNF representation. We denote by
Psimp the smallest formula in CNF that is logically equivalent
to PDNF. The sizes of different representations of perfect
isolators based on nauty’s canonical labelings are shown in
Table I. Computing the PDNF and PCNF is cheap, but com-
puting Psimp with bica is costly for larger graphs (seconds
for k = 6, minutes for k = 7, and hours for k = 8).

TABLE I
THE SIZE OF PERFECT ISOLATORS IN CUBES (PDNF) OR IN CLAUSES

(PCNF AND Psimp) BASED ON THE nauty’S CANONICAL LABELINGS
AND FORMULA SIMPLIFICATIONS BY bica.

k 2 3 4 5 6 7 8

|PDNF| 2 4 11 34 156 1, 044 12, 346
|PCNF| 3 13 67 341 2, 341 21, 925 345, 689
|Psimp| 0 2 9 24 77 311 > 1, 839

We also simplified canonical labelings produced by bliss.
The sizes of the resulting simplified formulas were similar to
those produced via nauty. However, bica is significantly
slower in reducing the bliss-based formulas. We tried to
use espresso, but it is not powerful enough to minimize
perfect isolators of order six and larger.

Although the sizes of Psimp are minimal for a given
canonical labeling, much smaller perfect isolators may exist
for other canonical labelings. An optimal isolator of Gk is the
smallest Psimp among all canonical labelings of Gk.

IV. OPTIMAL ISOLATORS VIA SATISFIABILITY SOLVING

Perfect isolators of order four and up are hard to compute.
As a potential solution, we propose to translate the optimal
isolator problem into Boolean satisfiability (SAT). Let Fk,m be
the SAT problem encoding that there exists a perfect isolator
of order k consisting of m clauses. We will refer to such
clauses as isolator clauses. To find an optimal isolator for a
given k, we need to find an m such that Fk,m is satisfiable,
while Fk,m−1 is unsatisfiable. We first describe some details
about the encoding of Fk,m followed by some results.

A. Encoding

Let Ek be the set of edges that occur in graphs in Gk. Set
Lk contains a positive and negative literal for each element in
Ek. The main variables used in the encoding of Fk,m, namely
xl,i with l ∈ Lk and i ∈ {1, . . . ,m}, describe the isolator
clauses Ci and are defined as follows:

xl,i :=

{
t if l ∈ Ci

f otherwise

Additionally, we have variables yG,i denoting that isolator
clause Ci satisfies graph G ∈ Gk. An isolator clause Ci

satisfies a graph G if and only if there exists a literal l ∈ Ci

such that l ∈ L(G). This can be encoded with m · |Ek| · |Gk|

binary clauses and m · |Gk| clauses of length |Ek| which
together represent the following definition using the logical
OR constraint:

yG,i := OR({xl,i | l ∈ L(G)})

Notice that the above encoding quickly becomes very large.
For example, using k = 6, the number of clauses is close to
m ·106. Using auxiliary variables, the above constraint can be
encoded with 2m · |Gk| binary clauses and m · |Gk| clauses of
length |Ek|.

Finally, variables zG denote whether graph G is satisfied
by all m isolator clauses, or, equivalently, whether graph G is
admitted by the isolator. This can be realized by the straight-
forward encoding of the following logical AND constraint,
requiring O(m · |Gk|) clauses.

zG := AND(yG,1, . . . , yG,m)

The only constraints in Fk,m that are not definitions, express
that exactly one graph from each isomorphism class is satisfied
by all m isolator clauses. This graph can be seen as the
canonical form of that isomorphism class. Let Ik denote the
partitioning of Gk into isomorphism classes. For each isomor-
phism class I ∈ Ik, we add the following EXACTLYONE
constraint, for which compact encodings exist [20]:

EXACTLYONE({zG | G ∈ I})

To guide the solver, some redundant clauses can be added,
for example ensuring that Ci cannot be a tautology.

B. Results

Using the encoding described above and solving the for-
mulas with glucose 3.0 [2] and treengeling [3], we
computed optimal isolators for graphs up to order five1. For
graphs of order six or larger, we were not able to compute
an upper bound, i.e., find a satisfying assignment for any
Fk,m using parallel SAT solvers running on 24 cores with
a 24 hour time limit. Crucial for the lower bound (UNSAT)
results is breaking the symmetry of the isolator clauses, which
is realized by adding constraints that enforce a lexicographic
order between the isolator clauses. Table II shows the results
of the experiments.

TABLE II
STATISTICS OF SAT SOLVING OPTIMAL ISOLATOR PROBLEMS. glucose

(G) WAS THE FASTEST SOLVER ON THE EASY FORMULAS, WHILE
treengeling (T) WAS STRONGER ON HARD FORMULAS. RUNTIMES ARE

IN WALL CLOCK SECONDS RUNNING ON A QUAD CORE INTEL XEON
E31280 CPU.

formula result variables clauses runtime
F4,6 UNSAT 756 2, 458 0.18 (G)
F4,7 SAT 861 2, 827 0.01 (G)
F5,11 UNSAT 14, 480 54, 756 3, 510.36 (T)
F5,12 SAT 15, 609 59, 281 102.69 (G)

1The isolators and CNF formulas mentioned in this paper are available at
http://www.cs.utexas.edu/∼marijn/isolator/

An optimal isolator of order four, P4, shown below, consists
of seven clauses: five binary and two ternary. Notice that P4

is a renamable Horn formula, as are the optimal isolators of
order three (recall P3 and P ′3).

P4 := (ad ∨ bd) ∧ (bd ∨ ac) ∧ (cd ∨ bc) ∧ (ab ∨ bc) ∧
(bc ∨ ac) ∧ (ab ∨ bd ∨ cd) ∧ (bc ∨ bd ∨ ad)

Optimal isolators of order five, such as P5 below, consist of
only twelve clauses. It is surprising to see that such a small
formula —just slightly larger than the number of edges, similar
to order four— admits exactly one graph from each of the 34
isomorphism classes. Moreover, all clauses in P5, apart from
the last one, have length three or less.

P5 := (ad ∨ bd) ∧ (bd ∨ ac) ∧ (cd ∨ bc) ∧ (bc ∨ ad) ∧
(ae ∨ ce) ∧ (be ∨ ae) ∧ (ab ∨ bd ∨ cd) ∧
(ae ∨ de ∨ be) ∧ (ad ∨ ce ∨ de) ∧ (ab ∨ cd ∨ de) ∧
(ac ∨ ad ∨ ce) ∧ (ce ∨ ab ∨ ae ∨ bc)

Optimal isolators P4 and P5 have four clauses in common:
the first three binary clauses and the first ternary clause.
Another property they share is that each literal occurs at most
twice. If the latter holds for optimal isolators of larger orders
—though unlikely— then their size would be linear in the
number of edge variables.

C. Analysis of Optimal Isolators

We studied the canonical labelings induced by optimal
isolators. Figure 2 visualizes the canonical labelings induced
by the optimal isolators P3, P4, and P5. We call two canonical
forms connected if they differ by exactly one edge. In Figure 2
connections are shown with an arrow from the graph without
the edge to the graph with the edge.

Notice that there are several similarities in these visual-
izations. For example, in all three cases, there are two root
canonical forms (i.e., graphs without incoming arcs): the
edge-less graph and a path of two edges. Furthermore, the
canonical forms of the single edge graph and the two-edge
path together form a triangle. We also looked at visualizations
of the canonical labelings produced by nauty, bliss, and
shatter. The latter pattern (the triangle) is not present in
those canonical labelings.

The order in which edges are added starting from the empty
graph are similar. Comparing the visualizations of P4 and P5

reveals that edges are added in the following order: ab, cd, bc,
ad, bd, and ac. Also the canonical form of order k of the star
with k−1 edges has the vertex with the highest label as center
of the star. Finally, notice that the canonical forms admitted
by P5 are either part of a chain or a big cluster.

These and other patterns may provide some insight in how
to construct compact isolators for orders larger than five.

V. PERFECT ISOLATORS VIA RANDOM PROBING

Above, we discussed two methods for computing perfect
isolators: i) simplifying a formula representing a canonical

http://www.cs.utexas.edu/~marijn/isolator/

P3 :

a b

c

P4 :

a b

cd

P5 :

a b

c
d

e

Fig. 2. The canonical forms of graphs based on the smallest perfect isolators P3 (top), P4 (middle), and P5 (bottom). When two graphs differ by exactly
one edge, there is an arrow from the graph without the edge to the graph with the edge.

labeling; and ii) encoding the problem into SAT. The first
method works for graphs up to order eight, but the resulting
isolators are relatively large. The second method can compute
optimal isolators up to order five, but cannot deal with larger
graphs. In this section, we present a third method which
scales reasonably well, while producing more compact perfect
isolators than the first method.

A. Random Probing Algorithm

The last method we present to compute perfect isolators is
based on random probing. The algorithm starts with the trivial
isolator. In each step, a clause is added to the isolator using
some randomized heuristics. The algorithm terminates when
the isolator becomes perfect.

The trivial isolator admits all graphs, while a perfect isolator
admits only one graph per isomorphism class. In order to
compute a compact perfect isolator, one wants to pick a clause
to extend the current isolator that reduces the number of
graphs that are admitted by the isolator as much as possible —
bringing it closer to a perfect isolator. Yet not all clauses can
be picked as it is required that at least one graph is admitted
from each isomorphism class.

The greedy version of the randomized probing algorithm
picks a clause that reduces the number of graphs admitted by
the isolator the most, breaking ties randomly. More specifi-
cally, the reduction measurement of a clause with respect to
an isolator is the number of graphs that are admitted by the
isolator, but no longer admitted once the clause is added to
the isolator. The algorithm that always picks a clause with
the highest reduction measurement is not able to compute an
optimal isolator for graphs of order five, regardless of how ties
are broken — because there is no optimal isolator that contains
clauses with only the highest reduction measurement.

The algorithm needs two improvements to find optimal
isolators of graphs of order five. The first improvement ranks
all the clauses based on the reduction measurement, again
breaking ties randomly. But instead of picking the top ranked
clause, the new algorithm picks the nth element in the ranking
with probability 0.5n. So with 50% chance the top element is
picked, with 25% chance the second element is picked, etc.

After this modification, the algorithm could in theory com-
pute any perfect isolator, although the probability for most of
them is extremely small. In practice, the algorithm does not
find an optimal isolator of graphs of size five after millions of
random probes with a very high probability. The main reason
is that most top ranked clauses perform exactly the same
reduction, i.e., the set of graphs that are ruled out by those
clauses is exactly the same. Consequently, it does not matter
whether you pick the first, second, or third ranked clause,
because in most cases they are equivalent as a candidate for
extending the isolator.

The second modification was developed to counter this
effect. Apart from a ranking, each clause gets a hash value
based on the set of graphs that are ruled out by that clause. In
case multiple clauses have the same reduction and hash value,

only one of them appears in the ranking and the other ones
are ignored.

(a)

10−5

10−4

10−3

10−2

10−1

12 14 16 18 20 22 24

pr
ob

ab
ili

ty

number of clauses

round 1

(b)

10−6

10−5

10−4

10−3

10−2

10−1

30 35 40 45 50 55 60 65

pr
ob

ab
ili

ty

number of clauses

round 1
round 2

(c)

10−5

10−4

10−3

10−2

10−1

120 140 160 180 200 220

pr
ob

ab
ili

ty

number of clauses

round 1
round 2
round 3
round 4

Fig. 3. Distribution of the size of perfect isolators using the random
probing algorithm on graphs of order five (a), six (b), and seven (c). Round
1 experiments used the trivial isolator as starting points. Round r > 1
experiments initialized isolators using the first 10(r − 1) clauses of one of
the 50 best probes of Round r − 1.

B. Implementation Optimizations

Several optimizations were implemented to perform random
probing reasonably efficiently. The initial stable version was
too slow to perform large-scale experiments. The optimizations
described below improved the performance by more than two
orders of magnitude when computing isolators of order six
and larger.

First, the results of one step can be partially reused for the
next step. Clauses can be partitioned into three sets: conflict-
ing, redundant, and useful clauses. Conflicting clauses rule out
all remaining graphs in some isomorphism class. Redundant
clauses admit all remaining graphs in all isomorphism classes.
Useful clauses rule out some remaining graphs, but still admit
at least one graph in each isomorphism class. Once a clause is
known to be conflicting or redundant, it can be ignored from
that point onwards, as it will stay conflicting or redundant in
future steps.

Second, further implementation optimizations can be de-
rived from the subsumption relation between clauses: if a
clause C is subsumed by a clause D, then the reduction of C
is less or equal to the reduction of D. Since we are interested
in useful clauses with a high reduction, a clause is ignored
if there exists at least one useful clause that subsumes it.
Moreover, if a clause D is redundant, then all clauses C ⊃ D
are redundant as well. Hence, all clauses that are subsumed by
redundant clauses can be marked redundant without computing
their reduction. The subsumption relation is checked efficiently
using a hash table.

C. Results

We ran the random probing algorithm starting with the
trivial isolators of orders five to seven. The results of two
million random probes on order five are shown in Figure 3
(a). With a high probability, the random probing algorithm
computes a perfect isolator around seventeen clauses long.
With a very small probability, slightly more than one in a
million, the algorithm computes an optimal isolator of order
five, consisting of only twelve clauses. The improvements
discussed in Section V-B were crucial to finding optimal isola-
tors. The average runtime of a single probe is approximately
0.02 seconds. Although a single probe is cheap, computing
an optimal isolator using randomized probing is relatively
expensive as it may require hundreds of thousands of probes.
The SAT solving approach is much more efficient since it can
compute an optimal isolator of order five in a few minutes.

Random probing for isolators of order six are shown in
Figure 3 (b). Using the same setup as with order five, the
smallest perfect isolator after 400,000 probes consisted of
29 clauses, with each probe running for about 0.5 seconds.
In order to improve these results, the smallest 50 isolators
discovered were used as starting points for a second round
of 400,000 probes. For this second round, the first step
consists of choosing the first ten clauses of one of the 50
best isolators. After this initialization, the probing algorithm
continued as usual. During this second round, perfect isolators
were discovered consisting of only 27 clauses.

The random probing algorithm was somewhat changed for
perfect isolators of order seven: we turned the first modifica-
tion off, i.e., always picked the highest ranked clause, because
it resulted in smaller perfect isolators. This is probably caused
by the smaller sample size (80,000 probes per round), which
was necessary because for order seven, the runtime of a single
probe was on average 7 minutes. The smallest isolator we
found consisted of 114 clauses after four rounds. Details are
shown in Figure 3 (c).

Computing a perfect isolator of order eight required starting
with a non-trivial isolator, because the number of initial
graphs, |G8| = 228, was too large for our implementation to
handle. We used the symmetry-breaking predicate of the quad
method of order eight (see Section II) as the initial isolator,
which consists of 170 clauses and adds 28 auxiliary variables.
A single probe with that starting point resulted in a perfect
isolator of 956 total clauses in two days.

The focus of this paper is on computing small perfect
isolators and not yet on exploiting them. However, we believe
that small perfect isolators are not only interesting from a
theoretical point of view, but also from a practical one. For
example, Itzhakov and Codish [12] determine the number of
graphs that have no clique and no co-clique of size four
(also known as Ramsey R(4, 4, k) graphs) and claw-free
graphs after perfect symmetry breaking. Table III shows that
breaking symmetries using perfect isolators produced by the
random probing results in much smaller formulas for which
all solutions can be computed much faster.

TABLE III
COMPARISON OF THE CANONICAL SETS METHOD AND PERFECT

ISOLATORS BY RANDOM PROBING ON THE SIZE OF THE
SYMMETRY-BREAKING PREDICATES (n DENOTES NUMBER OF VARIABLES,

AND m DENOTES NUMBER OF CLAUSES) AND THE COSTS TO COMPUTE
ALL SOLUTIONS ON RAMSEY R(4, 4, k) GRAPHS AND CLAW-FREE CF (k)
GRAPHS. COSTS FOR CANONICAL SETS ARE TAKEN FROM [12], WHILE WE

COMPUTED ALL SOLUTIONS USING sharpSAT [21].

F F + canonical sets F + probe isolator
problem n m n m time n m time
R(4, 4, 6) 15 30 72 315 0.01 15 57 0.00
R(4, 4, 7) 21 70 286 1395 0.05 21 184 0.01
R(4, 4, 8) 28 140 2177 10885 1.69 56 1096 0.04
CF (6) 15 60 72 345 0.01 15 87 0.00
CF (7) 21 140 286 1465 0.03 21 254 0.01
CF (8) 28 280 2177 11025 1.08 56 1236 0.03

VI. CONCLUSIONS

We studied the concept of perfect isolators for small graphs.
One surprising and encouraging result is that there exist very
small perfect isolators for graphs up to order five — the largest
order for which we could compute optimal (smallest perfect)
isolators. For graphs up to order eight, perfect isolators were
obtained via a random probing algorithm. These isolators are
likely not optimal.

The main question that remains unanswered is the growth
rate of optimal isolators. Focussing only at the known optimal
isolators, the growth rate appears to be quadratic in the size of

the graph: All optimal isolators of order k have approximately
(but fewer than) |Ek| + k clauses. However, when the best
(non-optimal) results of larger graphs are taken into account,
the growth rate appears much steeper. This discrepancy might
be explained by the lack of using auxiliary variables when
constructing perfect isolators. Auxiliary variables are crucial
to realize compact (partial) symmetry-breaking predicates via
existing methods.

In future research we want to compute optimal and perfect
isolators for graphs of larger orders. We expect that such
isolators will be helpful in tackling hard graph existence
problems, such as Ramsey numbers.

Acknowledgements The author is supported by the National
Science Foundation under grant number CCF-1526760 and
acknowledges the Texas Advanced Computing Center (TACC)
at The University of Texas at Austin for providing grid
resources that have contributed to the research results reported
within this paper.

REFERENCES

[1] Fadi A. Aloul, Karem A. Sakallah, and Igor L. Markov. Efficient
symmetry breaking for boolean satisfiability. In Georg Gottlob and Toby
Walsh, editors, IJCAI-03, Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, August
9-15, 2003, pages 271–276. Morgan Kaufmann, 2003.

[2] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in
modern SAT solvers. In Craig Boutilier, editor, IJCAI 2009, Proceedings
of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, pages 399–404, 2009.

[3] Armin Biere. Lingeling, Plingeling and Treengeling entering the SAT
competition 2013. Proceedings of SAT Competition 2013, page 51, 2013.

[4] Robert King Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T.
McMullen, and Gary D. Hachtel. Logic Minimization Algorithms for
VLSI Synthesis. Kluwer Academic Publishers, Norwell, MA, USA,
1984.

[5] Michael Codish, Michael Frank, Avraham Itzhakov, and Alice Miller.
Computing the ramsey number R(4, 3, 3) using abstraction and symme-
try breaking. CoRR, abs/1510.08266, 2015.

[6] Michael Codish, Alice Miller, Patrick Prosser, and Peter J. Stuckey.
Breaking symmetries in graph representation. In Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence,
IJCAI ’13, pages 510–516. AAAI Press, 2013.

[7] James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy.
Symmetry-breaking predicates for search problems. In Proc. KR96, 5th
Int. Conf. on Knowledge Representation and Reasoning, pages 148–159.
Morgan Kaufmann, 1996.

[8] Michael R. Dransfield, Lengning Liu, Victor W. Marek, and Miroslaw
Truszczynski. Satisfiability and computing van der waerden numbers.
Electr. J. Comb., 11(1), 2004.

[9] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey
Theory. A Wiley-Interscience publication. Wiley, 1990.

[10] Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and
verifying the boolean pythagorean triples problem via cube-and-conquer,
2016. Accepted for SAT 2016.

[11] Alexey Ignatiev, Alessandro Previti, and Joao Marques-Silva. Sat-based
formula simplification. In Marijn Heule and Sean Weaver, editors,
Theory and Applications of Satisfiability Testing – SAT 2015, volume
9340 of Lecture Notes in Computer Science, pages 287–298. Springer
International Publishing, 2015.

[12] Avraham Itzhakov and Michael Codish. Breaking symmetries in graph
search with canonizing sets, 2015. http://arxiv.org/abs/1511.08205.

[13] Tommi Junttila and Petteri Kaski. Engineering an efficient canonical la-
beling tool for large and sparse graphs. In Proceedings of the Meeting on
Algorithm Engineering & Expermiments, pages 135–149, Philadelphia,
PA, USA, 2007. Society for Industrial and Applied Mathematics.

[14] Boris Konev and Alexei Lisitsa. A sat attack on the erdos discrepancy
conjecture. In Carsten Sinz and Uwe Egly, editors, Theory and Applica-
tions of Satisfiability Testing SAT 2014, volume 8561 of Lecture Notes
in Computer Science, pages 219–226. Springer International Publishing,
2014.

[15] Michal Kouril and Jerome L. Paul. The van der waerden number W(2,
6) is 1132. Experimental Mathematics, 17(1):53–61, 2008.

[16] Oliver Kullmann. Green-tao numbers and sat. In Ofer Strichman and
Stefan Szeider, editors, Theory and Applications of Satisfiability Testing
SAT 2010, volume 6175 of Lecture Notes in Computer Science, pages
352–362. Springer Berlin Heidelberg, 2010.

[17] Brendan D. McKay. Practical Graph Isomorphism. Technical report
(Vanderbilt University. Department of Computer Science). Department
of Computer Science, Vanderbilt University, 1981.

[18] Brendan D. McKay and Stanislaw P. Radziszowski. R(4, 5) = 25.
Journal of Graph Theory, 19(3):309–322, 1995.

[19] Stanisław P. Radziszowski. Small Ramsey numbers. The Electronic
Journal of Combinatorics, #DS1, 2014.

[20] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality
constraints. In Proc. of the 11th Intl. Conf. on Principles and Practice
of Constraint Programming (CP 2005), pages 827–831, Sitges, Spain,
October 2005.

[21] Marc Thurley. sharpsat: Counting models with advanced component
caching and implicit bcp. In Proceedings of the 9th International
Conference on Theory and Applications of Satisfiability Testing, SAT’06,
pages 424–429, Berlin, Heidelberg, 2006. Springer-Verlag.

[22] Grigori S. Tseitin. On the complexity of derivation in propositional
calculus. In J. Siekmann and G. Wrightson, editors, Automation of
Reasoning 2, pages 466–483. Springer-Verlag, 1983.

http://arxiv.org/abs/1511.08205

	Introduction
	Background and Related Work
	Perfect Isolators and Canonical Forms
	Optimal Isolators via Satisfiability Solving
	Encoding
	Results
	Analysis of Optimal Isolators

	Perfect Isolators via Random Probing
	Random Probing Algorithm
	Implementation Optimizations
	Results

	Conclusions
	References

