
ARTICLE IN PRESS
1071-5819/$ - se

doi:10.1016/j.ijh

�Correspond
E-mail addr

(K.M. Lui), csk
Int. J. Human-Computer Studies 64 (2006) 915–925

www.elsevier.com/locate/ijhcs
Pair programming productivity: Novice–novice vs. expert–expert

Kim Man Lui�, Keith C.C. Chan

Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

Received 8 July 2005; received in revised form 21 April 2006; accepted 21 April 2006

Communicated by D. Boehm-Davis

Available online 16 June 2006
Abstract

Agile Software Development methodologies have grown in popularity both among academic researchers and industrial practitioners.

Among the various methodologies or practices proposed, pair programming, which is concerned with two programmers collaborating on

design, coding and testing, has become a controversial focus of interest. Even though some success stories have been reported with the

use of pair-programming in real software development environment, many people remain rather skeptical of the claims on pair-

programming productivity. Previous studies in pair programming have only addressed the basic understanding of the productivity of

pairs and they have not addressed the variation in productivity between pairs of varying skills and experience, such as between

novice–novice and expert–expert. Statistical productivity measurements reported by different researchers also seem to lead to

contradictory conclusions. Until now, the literature has not addressed how those results and experiments were related to each other. In

this paper, we propose a controlled experiment called repeat-programming which can facilitate the understanding of relationships

between human experience and programming productivity. Repeat-programming can be performed when controversial issues in non-

traditional programming methodologies and development productivity need to be investigated into. To illustrate how the proposed

empirical experiment can put arguable, divisive problems into perspective, we have examined the productivity in pair programming as a

case study. With repeat-programming, we are able to (i) better understand why results of previous pair programming control experiments

reached different conclusions as to the productivity of pair programming and (ii) most importantly, present a case in which

novice–novice pairs against novice solos are much more productive than expert–expert pairs against expert solos.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Programming model; Pair programming; Programmer productivity
1. Introduction

Studies of the applications of cognitive science and
programming in computer science started in the 1970s.
This area has focused on empirical studies of observable
behavior of people as they program. The results of such
studies are useful in understanding natural language texts
(Atwood and Ramsey, 1978), in educational models
(Traynor and Gibson, 2004), in the development of
computer aptitude tests for screening job candidates
(Mayer and Stalnaker, 1968) and in the modeling of
knowledge (Mckeithen et al., 1981; Soloway and Ehrlich,
1984). Previous approaches to the study of computer
e front matter r 2006 Elsevier Ltd. All rights reserved.

cs.2006.04.010

ing author. Fax: +8522774 0842.

esses: cskmlui@comp.polyu.edu.hk

cchan@comp.polyu.edu.hk (K.C.C. Chan).
programming have formulated it as an intelligence-oriented
task undertaken by a single programmer. Rarely it has
been considered as a multi-disciplinary topic in group
dynamics and human intelligence. Further, understand-
ing a highly intelligent task solved by two people in a
collaborative manner may also involve fundamental
problems of modern informatics, software engineering,
time-to-market product development and psychology.
For example, pair programming, which involves two
developers collaborating as a single individual on the
same programming task, has been shown by two experi-
ments to be productive, and to produce higher quality
code than either of them may as single individuals alone
(Nosek, 1998; Williams et al., 2000). This can be a case
where our knowledge of the software development
process can be beneficial to other fields such as cognitive
science.

www.elsevier.com/locater/ijhcs
dx.doi.org/10.1016/j.ijhcs.2006.04.010
mailto:cskmlui@comp.polyu.edu.hk
mailto:cskcchan@comp.polyu.edu.hk


ARTICLE IN PRESS
K.M. Lui, K.C.C. Chan / Int. J. Human-Computer Studies 64 (2006) 915–925916
Human programming is in fact an interdisciplinary topic
that is concerned with the internal information mechanisms
on one side and the brain on the other side. To build highly
intelligent systems, we are interested in using process
engineering and software engineering to explain the
mechanisms of memory and learning. Such developments
will have significance for the development of the next
generation computer (Wang, 2002). This paper aims at
exploring the two ways of programming, pair program-
ming and solo programming and at advancing our under-
standing of the programming productivity.

The idea behind pair programming, also known as
Collaborative Programming, is straight-forward. It in-
volves two programmers collaborating side-by-side on the
design, coding and testing of a piece of software. One, the
Driver, controls the keyboard/mouse and actively imple-
ments the program. The other, the Navigator/Observer,
continuously observes the work with a view to identifying
tactical defects and providing strategic planning.

Pair programming has recently drawn much attention
because of the increase in popularity of eXtreme Program-
ming (XP) (Beck, 2000), but it was first reported in the
workplace in 1995 (Constantine, 1995) and was discussed
as early as 1991 in Distributed Cognition (Hutchins, 1995).
The researchers in distributed cognition reported that the
verbal and non-verbal correlated behaviors of a pair of
programmers can help them to search through larger
spaces of alternatives (Flor and Hutchins, 1992). From
1998 to 2001, scholars in computer science conducted a
number of controlled experiments to evaluate the effec-
tiveness of pair programming. The settings of these
experiments had a number of similarities in that subjects
were divided into a pair-programming group and a solo-
programming group and that the two groups were then
asked to write the same program so that their results could
be directly compared. Interestingly, the experiments
produced different and apparently incompatible results.

In pair programming, time productivity can be measured
as a pair takes z%more effort than an individual. To avoid
confusion between elapsed time and total time per
programmer in our discussion, the z% is interpreted here
as ‘‘Relative Effort Afforded by Pairs’’ (REAP) against
solo programming. The formula for calculating REAP is
shown in (1):
REAP ¼
ðElapsed_time_of_pairÞ � 2� ðElapsed_time_of_individualÞ

Elapsed_time_of_individual
� 100%. (1)
If REAP is zero, pair programming halves the time
required for solo programming. When REAP is greater
than zero but less than 100%, pairs require more total
man-hours but do complete tasks faster. This can be useful
when the critical issue is time-to-market. The commanding
market share advantage that can accrue to early mover
companies can make it worthwhile for them to spend more
on short-term development costs.
The relative productivities of pair and solo programming

have been the focus of much research interest. Nosek (1998)
reported that REAP was 42%. In contrast, Williams et al.
(2000) reported that REAP was 15% on the same task yet
the quality of pair programming was higher. Nawrocki’s
study (2001) indicated that pair programming could be less
efficient as his experiment showed that REAP was 100%.
These experiments do appear to indicate that productiv-

ity in pair programming can vary significantly but the
absence of an underlying principle makes it hard to
account for the productivity variations. There is a need
to understand pair programming and the previous pro-
gramming experiments by an easily reproducible experi-
ment. For example, the findings of an experiment should
allow us to judge when pair programming should be
adopted over solo programming. In this paper, we propose
to investigate into the relative productivities of novice–no-
vice and expert–expert pair programming. Nosek (1998)
pointed out that two average or less-experienced workers
collaborating to perform tasks may take on a much more
challenging task than can two individuals. This is the
equivalent of saying that pair programming is much more
effective and efficient for inexperienced programmers than
for expert programmers. By performing an experiment, we
would like to investigate into the differences.
The paper is organized as follows. Section 2 clarifies the

meaning of productivity in pair programming and intro-
duces the background to the three experimental studies
under consideration in this paper, by Nosek in 1998,
Williams in 2000 and Nawrocki in 2001. In Section 3, we
propose our experiment, ‘‘repeat-programming’’, which
describes the behavior of novice and expert programmers.
The experiment seeks to keep many variables constant
including programming capabilities, fast and slow pro-
grammers and problem comprehension. Thus, the outcome
of the experiment can clearly illustrate the productivity of
pair programming. Section 4 discusses our experimental
results as well as those of Nosek, Williams, Nawrocki and
generalizes them into two guidelines for the adoption of
pair programming. Section 5 suggests guidelines for future
work in software development using pair programming.
The final section offers our conclusion.
2. Solo programming and pair programming

It is expected that, as a recognized practice in Agile
Software Development, pair programming will continue to
attract more attention from academic and industrial
researchers. Our study here includes three controlled



ARTICLE IN PRESS
K.M. Lui, K.C.C. Chan / Int. J. Human-Computer Studies 64 (2006) 915–925 917
experiments in pair programming. The experiments have
been the center of controversial articles in the Agile
Software Development community. We would like to
provide the background in details and to show the
importance of our case study to the research community.

The three experiments focus on productivity assessment
in pair programming in terms of two variables: time and
software quality. The experiments have been widely
referred to, in different papers, that discuss pair program-
ming education applications (Müller and Tichy, 2001;
Gallis et al., 2003; McDowell et al., 2003), personality
analysis (Heiberg et al., 2003), an industrial case study of
pair programming (Gallis et al., 2002) and distributed pair
programming (Baheti et al., 2002). Critics of pair program-
ming also refer to these three experiments (Keefer, 2002;
Stephens and Rosenberg, 2003). These three experiments
are also referred to in a piece of empirically based research
into seeking programming reviews as an alternative to pair
programming (Müller, 2003). In these experiments, subjects
are randomly divided into pair and solo groups and are
asked to write the same program. The productivity of each
group is then assessed in terms of time and software quality.
The results contradict each other. The discrepancies in their
results have not yet been explained in the literature.

Before discussing the three experiments in question, we
would like to unambiguously distinguish two concepts
insofar as they apply in pair programming: economics and
productivity. These concepts are not clearly defined and
hence are often confused.

2.1. Productivity and economics

By economical we mean that programs of an expected
quality are produced at the lowest cost. Let software
quality be an index q and costs be an index c. Notice that
costs are measured here in monetary units and could be
defined as a salary ratio (s)� effort (e). For single
programmers, effort ¼ elapsed time (t) of solo program-
ming and for pairs, effort ¼ (1+REAP)� elapsed time (t)
of solo programming. The greater the values of q and c, the
greater the quality and costs are. Economics in program-
ming is defined by a quality threshold p such that
developing programs satisfy two conditions qXp and
c ¼MinðcÞ. Considering non-critical modules of an appli-
cation, we may expect the quality threshold p to be our
minimum acceptability level and we are satisfied with
software as long as its quality is more than p. The
implication of this is that when developing programming
modules that do not require sophisticated programming
skill, we would employ recent-graduates as developers as
long as their salary ratio� effort satisfies the condition of
minimum cost.

With regard to pair programming, one may want to ask
the question ‘‘why employ two programmers when the
same job can be done by one?’’ A related question can, in
fact, be also asked ‘‘why employ experienced programmers
when graduates can do the job?’’ As shown in Williams
experiment in Section 2.3, the software quality of programs
developed by pairs passed over 80% of the test cases and
had an REAP of 15%. If the quality threshold p is set at
80%, pair programming is recommended. However, had
we expected the software quality to be just 70% of test
cases passed, pair programming would not be adopted
because it would not be economical.
By productivity we mean achieving the greatest quality

within minimum time. The notion of costs used in our
preceding definition of ‘‘economical’’ is replaced with that
of time as we fix a salary ratio between different levels of
programmers. We have q ¼MaxðqÞ, c ¼MinðcÞ and the
salary ratio � constant. Since c ¼ constant� t, then
q ¼MaxðqÞ, e ¼MinðeÞ. This gives an idea which pro-
gramming method (pairs or singles) produces better quality
programs in less time per person. Unfortunately, tackling
two independent constraints without a common relation-
ship is not possible in mathematics. Thus, we have to
simplify our definition. Set a reasonably high-quality
constant r such that qXr and t ¼MinðtÞ. The differences
between economics and productivity lie in (i) the relation-
ship that r should be much greater than p (rbp) and (ii) the
different units of costs, in that money is used in economics
whereas time is used in productivity.
A survey of related literature indicated that there have

been doubts about the productivity of pair programming
(e.g. Keefer, 2002; Müller and Padberg, 2002, Stephens and
Rosenberg, 2003). Some of these authors argued against
pair programming from the point of view of economics and
some of them argued from the point of view of productivity.
Regarding economics, pair programming should be ana-
lysed on the basis of (i) productivity and (ii) the salaries of
programmers of different skill levels. Therefore, the issue of
productivity in pair programming should be answered
before the issue of economics. The purpose of the three
controlled experiments described in Sections 2.2, 2.3 and
2.4 is to allow pair programming to be analysed in terms of
time and software quality.

2.2. Nosek’s experiment

In 1998, Nosek reported on his empirical experiment in
which fifteen full-time system programmers in five pairs
and five singles were asked to write a UNIX script that
performed a database consistency check (DBCC) in a
Sybase database.
In the experiment, the subjects wrote a program that

would initiate the command, detect any errors in the log
and post a warning email if it found any. Executing the
DBCC command returns the status of the database in a log
file. For system programmers, these tasks should be
straight-forward. The only area in which they lacked
experience was DBCC.
The results of this experiment are shown in Table 1.

Time was measured objectively. As for software quality,
two independent graders evaluated the readability and
functionality of the problem solutions and assigned a



ARTICLE IN PRESS

Table 1

Results of Nosek’s experiment: relative effort overhead for pair program-

ming (REAP) is 41.7%

Singles Pairs

Elapsed time (min) 42.60 30.20

Readability score (0–2) 1.40 2.00

Functionality score (0–6) 4.20 5.60

K.M. Lui, K.C.C. Chan / Int. J. Human-Computer Studies 64 (2006) 915–925918
readability score between 0 and 2: 0 for an entirely
unreadable solution, 2 for an entirely readable solution
and 1 for readability in between. Functionality ranged
from 0 for a solution not achieving the goal at all, to 6 for
achieving the goal entirely. Although the two graders
examined the problem solutions with an inter-grader
reliability of 90%, human judgment was involved in
verifying the software quality.

2.3. Williams’ experiment

In 2000, Williams reported a university experiment on
pair programming. Forty-one junior and senior university
students were assigned in 14 pairs and in 13 singles in a way
that there was a sufficient spread of high-high, high-
average, high-low, average-average, average-low, and low-
low pair grouping based on their GPA. The student
subjects were asked to write web scripts that had dynamic
contents. They were asked to retrieve and update a
Microsoft Access database. The students had approxi-
mately 3 years of experience with C++. The applications
were similar to those of a typical e-commerce web site
(Williams, 2000; Williams et al., 2000).

The students in pairs and in singles completed four
assignments over a period of 6 weeks. They recorded the
time they spent on the project with a web-based tool. It
should be noted that the experiment was not monitored by
any person on site and how closely all pairs of the subjects
practice pair programming was not known. However, a
teaching assistant was involved to execute automated
testing to analyse programming quality. The results
showed that programmer-pairs passed more of the auto-
mated post-development test cases than the singles.

In the first assignment, REAP was 60%. After the initial
adjustment period, the total programmer hours the pairs
spent on the second and third assignments decreased
dramatically—REAP was 15% on average. Because of data
entry problems in the experiment, the completion times for
the fourth assignment were not accurate. Thus, the time
performance of the fourth assignment was not reported.

Regarding quality, the percentage of pairs passing the
test cases was 86.4–94.4% whereas the singles passed
70.4–78.1%, as shown in Table 2.

2.4. Nawrocki’s experiment

In 2001, Nawrocki reported 21 fourth-year students were
divided into three groups, each group using a different
methodology to work on the same assignments: (i) five
pairs using XP (called pair-XP in this paper), (ii) five
singles using XP but without pair programming (called
single-XP in this paper) and (iii) six singles using Personal
Software Process (PSP). Nawrocki was primarily interested
in two comparisons: (i) single-XP vs. PSP, and (ii) single-
XP vs. pair-XP. In this paper, we are interested in the
comparison of pairs and singles using the same method.
We have selected single-XP vs. pair-XP for our review (for
the sake of brevity, in this paper we shall refer to them as
pairs and singles).
All the subjects had more than two years of formal study

of C and C++. They were asked to write four programs.
These were programs for finding the mean and standard
deviation of samples of numerical data, finding the linear
regression parameters, counting the number of lines in a
program and counting the total program LOC.
Their results showed the singles and pairs took around

the same amount of time to complete the first three
assignments: 2.4, 1.3 and 2.4 h (Nawrocki and Wojcie-
chowski, 2001). This means that REAP was 100%. The
pairs completed the fourth program in 3.5 h and the singles
in 4.3. This indicates that REAP was 63%, but Nawrocki
remarked that the improvement resulted from the singles
misunderstanding the program requirements. The number
of re-submissions was counted as the subjects had to
rework the program until no errors were discovered during
acceptance testing.
As can be seen in Table 3, the number of re-submissions

shows that the pairs re-worked slightly less than the singles.
Nawrocki concluded that pair programming appeared less
efficient than had been reported by Nosek and Williams.
2.5. Summary remarks

There are several differences between three experiments.
Both Nosek’s and Nawrocki’s experiments were conducted
in a controlled environment—the subjects worked under
direct supervision of the experimenters. In the case of
Williams’ experiment, the subjects worked at home, so we
are not sure whether or not the observer had indeed assist
the driver all the time. If they split off at times and worked
individually on different parts of the assignment, it would
have had quite a strong impact on the completion time.
Such an impact has been studied recently (Nawrocki et al.,
2005).
Also, the meaning of ‘completion time’ is not defined the

same way in these experiments. In Nosek’s experiments
there was a variable called FUNCTIONALITY that
described the degree to which the strategy accomplished
the objectives and that suggested that in that experiment
the solutions delivered by the subjects differ in function-
ality. In Nawrocki’s, there were pre-defined acceptance
tests that are run automatically and ‘completion’ meant
passing those tests at 100%. In Nawrocki’s case, in other
words, all the solutions could be regarded as having the



ARTICLE IN PRESS

Table 2

Percentage of test cases passed

Program 1 (%) Program 2 (%) Program 3 (%) Program 4

Singles (test cases passed) 73.4 78.1 70.4 78.1%

Pairs (test cases passed) 86.4 88.6 87.1 94.4%

REAP 60 15 15 N/A

Source: Williams et al. (2000).

Table 3

Number of re-submissions on average

Average number of resubmissions

Program 1 Program 2 Program 3 Program 4

Singles 3.4 0.1 1.6 4.6

Pairs 3.6 0.1 1 3.3

REAP 100% 100% 100% 63%

Source: Nawrocki and Wojciechowski (2001).

Table 4

A summary of the past experiments

Nosek Williams Nawrocki

Subject Full-time programmers Students Students

Sample size 15 (5 pairs, 5 singles) 41 (14 pairs, 13 singles) 15 (5 pairs, 5 singles)

start_posstart_posexperiments Yes No Yes

Quality assessment Rate by two independent

graders

Examine the percentage of

passing pre-defined test cases

Pass all pre-defined test cases

REAP (see (1)) 41.7% 15% 100%a

Number of programs written by subjects 1 4 4

Conclusion PP is productive PP is productive PP is unproductive

aNote that it holds only for the first 3 programs of Nawrocki’s experiment.

K.M. Lui, K.C.C. Chan / Int. J. Human-Computer Studies 64 (2006) 915–925 919
same functionality. Thus, the meaning of completion in
Nosek’s experiment was not the same as in Nawrocki’s.

Although these differences mean that the results of these
three experiments cannot be directly compared, their
results have all shown the productivity effects on pair
programming to be variable. In Nosek’s and Nawrocki’s
experiments, the differences in productivity of program-
mers with different experience levels were not taken into
considerations and programmers formed pairs randomly.
In the Williams’ experiment, pair and solo groups were
academically equivalent. Pairs were formed to ensure there
was a sufficient spread. The purpose was to establish an
even distribution by academic records rather than by
randomization. Hence, the three experiments did not set
out a formal pre-assessment process to verify whether their
programmer subjects had written similar programs before.
They also did not take into account whether the subjects
were fast or slow programmers. Thus, the first question in
studying productivity in pair programming would be
whether REAP for novice–novice pairs is the same as for
expert–expert. This will enhance our understanding of the
different conclusions reached in the three previous empiri-
cal work of Nosek, Williams and Nawrocki because, if
REAPs for novice–novice and expert–expert programmer
pairs can be significantly different, the sample size in pair
programming experiments must be large enough to average
such deviation. In this paper, we are concerned with the
continuum from novice to expert.
We summarize the characteristics of the three experi-

ments presented in this section in Table 4 below.
3. Repeat-programming

Owing to the differences in programming experience,
novice and expert programmers should perform the same
programming job very differently in terms of time and
software quality. A novice programmer takes longer to
complete a new program. Once he has gained experience by
working on that and other problems of that type, he can
write faster and better. When it comes to programming
skill and experience in forming pairs for pair programming,



ARTICLE IN PRESS
K.M. Lui, K.C.C. Chan / Int. J. Human-Computer Studies 64 (2006) 915–925920
therefore, we have two extremes: novice–novice and
expert–expert. They have the following characteristics:
(1)
 Novice–novice: this is concerned with putting one
novice programming with another novice working as
a pair in pair programming. Logically, they should
complete the whole program faster. We assume that
there will be an x% time reduction. Taking only time
into account, 50% is the break-even point since there
are two people.
(2)
 Expert–expert: This is concerned with pairing one
expert programmer with another expert colleague and
these experts become experts after they mastered work
on that same kind of problem. More precisely, this is an
experienced–experienced pair. Hypothetically, as a pair
they should work y% faster.
Before we investigated into these two extreme cases, we
assumed that the values of x and y can vary independently.
Hence, they may not be very meaningful. However, our
general hypothesis is that a relationship like the ratio of
change of productivity of pair programming along the
experience-scale from novice to expert could be less
changed and more conservative; otherwise, there is no
way that we can tell when we can adopt pair programming
so as to be maximally productive or when a pair outper-
forms two individuals.

Taking the human performance factor into considera-
tion, we attempted to simulate a situation by experiment
where novice programmers are becoming expert program-
mers and to assess their productivity in solo programming
and pair programming. The experiment is called repeat-
programming because in order to emulate a process of
passing from the novice to the expert stage it requires
programmers to write the same program several times. We
observe the behavior and measure the change of produc-
tivity. This section will report the details of the experiment
with repeat-programming.
Fig. 1. An initial study on repeated programming: a pair vs. a single.
3.1. Initial study

Over 2002–2003, we conducted an initial experiment to
examine how programming performance varied when
measured along an axis in which developers become more
familiar with a programming problem. We called the
experiment repeat-programming. It included three major
processes: (i) selecting subjects with ‘‘similar-capability’’
(pre-assessment), (ii) getting subjects familiar with pair
programming (pre-experiment) and (iii) having subjects
repeatedly write the same program (control experiment).

From among 63 candidates we selected three whose
abilities were similar. We did this by pre-assessment. We
chose individuals with the same programming knowledge.
We split these three into an individual and a pair. The pair
is required to practise pair programming (i.e. pre-experi-
ment) before they could proceed with the experiments.
The subjects, the individual and the pair, were asked to
write an first-in-first-out (FIFO) warehouse application
(see Appendix A) in our laboratory. The tasks were
standard—they had to create tables in SQL 2000 and code
in JSP.
Each subject wrote the same program eight times, each

time starting from the beginning. The result is shown in
Fig. 1. The development of two curves is more noteworthy
and meaningful than the values indicated by the curves. As
discussed, programmers with different abilities can produce
different sets of results. However, the trend of the curve
remains consistent.
A large sample is needed to confirm the generalization of

the result of pair programming vs. solo programming
illustrated in Fig. 1. Thus, more empirical studies are
required to validate the results of repeat-programming.

3.2. Controlled experiment

In 2005, we conducted ‘‘repeat-programming’’ with a
larger sample. The subjects were part-time masters’
students who had full-time programming jobs. There were
40 part-time students taking a course on ‘‘Agile Software
Development and XP’’ for a double Masters Degree
program in Softare Engineering jointly offered by the
Hong Kong Polytechnic University, Hong Kong and The
Graduate School of the Chinese Academy of Science,
Beijing, in 2004/2005.
To minimize disparities in programming abilities, we

grouped the forty students so that each group of three
subjects had ‘‘nearly identical’’ abilities. We did this by a
pre-assessment test, which consisted of fifty multiple
choices questions taken from the computer aptitude test
proposed by Munzert (1994). Fig. 2 illustrates the
assessment results of those forty candidates.
The deviation of their marks was not an issue. We were

seeking to form groups of three with each consisting of
students with similar capabilities. Each group of three



ARTICLE IN PRESS
K.M. Lui, K.C.C. Chan / Int. J. Human-Computer Studies 64 (2006) 915–925 921
students was then split into an individual and a pair.
Ultimately, we obtained eight groups of three to participate
in our experiment.

As the subjects did not have formal experience in pair
programming (i.e. continually practicing pair program-
ming for four hours without pairing off), each group of
subjects had to practice pair programming before they
could proceed with the programming task. They were
asked to write Tower of Hanoi as warm-up exercises. The
results of this pre-experiment exercise were not recorded.
Each group decided on their organization of a pair and a
single, which minimized the impact on those who may
personally prefer programming alone or may have been
biased against pair programming as they could work on
solo programming. We also suggested to the pairs that in
cases where conflicts arose they should be resolved by the
decision falling to the one controlling the keyboard/mouse.
Subjects fully understood that dispute and self-assertion
would reduce productivity and run counter to the objective
of the experiment.

The subjects were asked to write an FIFO warehouse
including ‘‘in/out operations’’, ‘‘reserved stock’’, ‘‘bin
management’’ and ‘‘goods returned’’ using SQL Server
and ASP (or JSP if they did not know ASP). As the
subjects were full-time programmers, they were familiar
with popular development scripts like SQL and ASP (or
JSP). The requirements of the task as used in our initial
study are used again except that we simplified the
requirements. We did this so that the program could be
completed in one weekend (i.e. 2 days) as the subjects had
full time jobs. The duration of the experiment was eight
weekends, and hence pairs and singles selectively worked
on four weekends. The subjects would record the time they
spent programming.

A set of 50 test cases were worked out that could be used
to assess the software quality. The purpose was to assess
software quality of a program through test cases, rather
than human judgment. Thus, subjects’ programs had to
pass 50 test cases. The test cases included application
requirements and exception handling. These types of
measurement were appropriate because we could objec-
Fig. 2. Pre-assessment to select eight groups of three ‘‘similar-capability’’

programmers.
tively measure the quality of the programs written rather
than subjectively by relying on human graders and because
from a customer perspective, users (i.e. customers) would
be more satisfied with software products that had been
formally, objectively and extensively tested and they would
then by more willing to regard a software product as high
quality. Developers and customers, it should be noted, tend
to see software quality differently (Friedman and Voas,
1995).

3.3. Experimental results

On the first round of programming, the individuals
completed the program in 637min on average. Predictably,
on the second round, they did it much faster. Clearly, they
shortened their learning curve, especially in program
design. When we looked closely at each version of their
work, we found that, while the overall design was very
much the same from version to version, the syntax, the
naming standards and ordering of statements, were
different in each version.
The pair programmers worked on the same tasks, in the

same way, and under the same conditions. In the first
round, the pair was much faster than the single, requiring
only a little more than 410 to complete the task.
As expected, the finishing time of each unit can vary. If

each round is independently considered, the results of each
round contradict one another. The effort of the pair was by
29% greater than that of the single on the same task
(REAP ¼ 29%) while the second, the third and the fourth
pairs had REAPs of 57%, 69% and 91% (see Fig. 3).
Appendix B provides the full results of each.
All the programs submitted by the subjects had to pass

50 test cases. It was unlikely that subjects would be able to
pass all fifty test cases at the first attempt. The subjects
needed to test the cases in an iterative manner in order to
get through them. This was to keep software quality
constant.
Both Figs. 1 and 3 show the time taken by the individual

and the pair to write the same program on each occasion.
The two curves are similar. The trend is far more
noteworthy and meaningful than the values indicated by
the curves. Programmers with different abilities can
produce different sets of results. However, the trend of
the curves basically remains consistent (see Appendix B for
the result of each group). The characteristic is conservative
and is less dependent on whether they are fast or slow
coders, or talented or weak programmers. Nor does it
make much difference how long the different pairs took to
solve the problem in the first round. As shown in Figs. 1
and 3, it is clear that

f 0ðnÞo0, where f(n)�(elapsed_time_of_individual–
elapsed_time_of_pair) at round n.

This means that the productivity of pair programming
diminishes when pairs keep solving the same problem.
Although in reality no programmer will write a program
twice in exactly the same way, programmers are actually



ARTICLE IN PRESS

Fig. 3. Repeat-programming (8 groups of 3 ‘‘similar-capability’’ mem-

bers, 1 pair and 1 single).

K.M. Lui, K.C.C. Chan / Int. J. Human-Computer Studies 64 (2006) 915–925922
solving many problems of a similar kind using design
patterns from experts or out of their own experience
(Gamma et al., 1995).

4. Two issues

Repeat-programming shows that pair programming
performs well when a pair encounters challenging pro-
gramming problems. By ‘‘challenging programming pro-
blems’’, we mean problems that require more sophisticated
and less straight-forward algorithms to solve. This is rarely
related to the programming skills of any particular
computer language.

This section discusses some of the implications of our
experiment. Particularly, we consider how we can under-
stand the discrepancies of REAP in the three controlled
experiments and how the difference between REAP of
novice programmers and REAP of expert programmers
can be helpful in software development.

4.1. Past experimental results

The three experiments on pair programming reviewed in
Section 2 produced inconsistent findings. This indicates
that pair programming can only be productive in some
situations; otherwise there would not be substantial
deviations in their results.

Repeat-programming does not account for those proper-
ties which are the focus of Distributed Cognition (i.e.
environmental controls, social and cultural factors). Thus,
our experiment cannot provide full explanations for the
discrepancies between the three studies. In fact, it may be
that the variance originates from more than a single factor.
Tuckman (1965) develops a model to describe how groups
of people change through four stages before becoming
maximally effective. Thus, two developers may require time
to become an experienced, stable and productive pair. The
variance in the results of these three studies demonstrates
the fit of Tuckman’s model as the subjects in Nosek’s and
Nawrocki’s experiments had no experience of pair pro-
gramming.
In pair programming, Tuckman’s model is often known

as pair jelling. Pair jelling is the time it takes for a
conditioned solo programmer to learn how to be a pair
programmer (Williams et al., 2000). Williams data shows
that REAP ¼ 60% for the 1st program is followed by a
stabilization at about REAP ¼ 15% for the 2nd and 3rd
programs. Similarly, Nawrocki’s students got REAP ¼

100% for the first 3 programs, but had a downward
REAP ¼ 61% with the 4th program.
Although different REAPs in the three earlier studies

reported in Section 2 probably have more to do with the
kind of problem, their discrepancies are supported by
repeat-programming. In the Nosek’s and William’s experi-
ments, their subjects handled more challenging program-
ming problems than the Nawrocki’s subjects, which were
asked to find the mean and standard deviation of samples
of numerical data and count the number of lines in a
program. Thus, according to repeat-programming, REAPs
should be lower in the Nosek’s and Williams’ and REAPs
should be higher in the Nawrocki’s study.
What repeat-programming illustrates is how the factor

of familiarity affects productivity in pair programming
while other factors such as pair jelling, albeit having impact
on productivity, are less controlled or are not measured in
their experiments. This helps us understand better the
discrepancies in the three controlled experiments and hence
practitioners can be more confident of the adoption of pair
programming.

4.2. Principles for novice–novice pairs vs. expert–expert

pairs

To be essentially pragmatic and broadly applicable for
pair programming in real development, we must first
resolve the question of when a pair outperforms two
individuals. Thus, from the interpretation of the people
performance along time series in repeat-programming, we
establish the first principle:

Principle (a): A pair is much more productive in terms
of completion time and can work out a better solution in
terms of software quality and maintenance than two
individuals when the pair is new to a programming
problem and more effort is required to produce the
design, algorithm, and coding of that program

This principle suggests that pair programming works
well when a pair encounters challenging programming
problems. Although few people have defined what the term
‘‘challenging programming problems’’ actually means, for
us it simply means solving problems that demand more
sophisticated and non-straight-forward algorithms to solve
and this is rarely related to programming skills of any



ARTICLE IN PRESS

Table 5

A potential paradigm derived from repeat-programming for managing inexperienced programmers using pair programming

Step Activity By principle (see Section 4.2)

i Pair up

ii Work on design and algorithm and identify patterns of logic (a)

iii Code and test sub-programs in pair programming (a)

iv When the pair encounters any sub-program in which same logic has been done in pair before, the pair

should split off and two programmers independently code (and test) the sub-program in solo

programming

(b)

v Pair up

vi Review and perform integration tests

vii Go back to step (ii) until completion of assignments

K.M. Lui, K.C.C. Chan / Int. J. Human-Computer Studies 64 (2006) 915–925 923
particular computer language. The second principle we can
establish is as follows:

Principle (b): Pair programming can substantially drop
in productivity when a pair has had previous experience
of the same task and the pair has not yet forgotten that
experience

This principle does not address any change of software
quality. It simply states the fact that solo programming is
faster than pair programming when programmers are
working on solutions they have already met. As long as a
pair knows a programming solution well enough, it is
effective for the person who controls the keyboard and
mouse not to interrupt his writing even though he may
make small mistakes such as typos. On the other hand, his
partner probably feels less challenged by watching the
known solution the guy is writing.

To combine these two principles, we conclude that
novice–novice pairs against novice solos are much more
productive in terms of elapsed time and software quality
than expert–expert pairs against expert solos.

5. Future work

Given the limitation that in repeat-programming pro-
grammers with ‘‘similar-capability’’ is in fact an ideal case,
the experiment requires further tests. It is for this reason
that we do not strictly define the term ‘‘similar-capability’’.
Indeed, it is conceivable that different programmers might
solve different problem at different speeds.

Repeat-programming described here can provide a basis
for future work that seek to develop a pair programming
framework that can be embedded in a software method for
improving overall productivity and optimizing resources.
We have concluded in Section 4.2 that, strictly speaking, in
pair programming, a pair of less experienced programmers
vs. a less experienced programmer will be much more
productive than a pair of experienced programmers vs. an
experienced programmer alone.

Thus, Table 5 suggests a pair programming frame-
work based on the principles deduced from the results of
repeat-programming. Leaving aside human, cultural and
workplace environmental factors, the first principle in
Section 4.2 would indicate that experienced programmers
in pairs perform well in steps (ii), (iii). Step (vi) allows the
pairs to review their work products and to integrate and
test their sub-programs, particularly work done in solo
programming.

6. Conclusion

Previous studies in pair programming have only
addressed the basic understanding of the productivity of
pairs, rather than the change of productivity between
novice–novice pairs and expert–expert pairs. The three
controlled experiments, by Nosek, Williams and Nawrocki,
all reported statistical productivity measurements, but their
conclusions seemed contradictory. Until now, the literature
has not addressed how those results and experiments were
related to each other. This paper contributes to advancing
our understanding of pair programming by connecting
their results with ours (i.e. using repeat-programming to
demonstrate the change of the productivity along the scale
from novice–novice pairs to expert–expert pairs). We find
that pair programming effectively helps developers solve
unfamiliar programming problems. A further contribution
of the work is to provide an innovative and original
approach to analysing empirical software engineering
experiments and to exploring behavioural relationships
between humans (i.e. programmers), work (i.e. program-
ming) and methods (i.e. pair programming).

Acknowledgements

The authors would like to thank John Nosek for the
many insights he contributed to this work. They also thank
other anonymous reviewers of IJHCS for their thoughtful
comments. In particular, we thank one of them who
suggested that we use a term to refer to the relative effort of
a pair of programmers. We thank Pekka Abrahamsson and
Laurie Williams for their comments on the earlier version
of this paper. Finally, we also appreciate very much the
Associate Editor, Deborah A. Boehm-Davis, for her useful
comments and suggestions.



ARTICLE IN PRESS
K.M. Lui, K.C.C. Chan / Int. J. Human-Computer Studies 64 (2006) 915–925924
Appendix A

An FIFO warehouse stores inventory in which movement
of goods in and out is based on the principle of FIFO. It is a
principle where by goods is supposed to be sold in
chronological order in which it was received or produced.
Thus, items purchased (or manufactured) first and placed in
a warehouse are assumed to be sold before items purchased
(or manufactured) at a later date. An FIFO warehouse
module can be implemented in three sub-modules as follows:

A.1. Basic configuration

A Warehouse Master should have a:
Warehouse code—a unique code for each warehouse
Name—warehouse name
New_average_unit_cost ¼
average_unit_cost� total_quantityþ price� quantity_of_goods_receipt

total_quantityþ quantity_of_goods_receipt
.

Table A1

Production Date

(YYYYMMDD)

Batch Date

(YYYYMMDD)

Sum Order of

goods issued

20020103 20030120 40050223 2

20020204 20030120 40050324 3

N/A 20030210 20030210 1

Table A2

1st round 2nd round 3rd round 4th round

Solo Pair Solo Pair Solo Pair Solo Pair
Number of bins—the number of bins available in a
warehouse

Status—a warehouse can be set to active or blocked
A Lot Master should have a:

Lot code—a unique code for each lot
Fixed item status—fixed bin for one item only
Multiple item status—allow for any items to be entered

into the same bin
An item master should have

An item code—a unique code for each material
Descriptions—item’s descriptions
Price—current price of an item
Average unit cost (calculated by system)—determine the

value of the inventory by Average Unit cost� total stored
quantity.

Production date—item’s manufacturing date
Minimum stock—the minimum reorder level
Maximum stock—the maximum storage level

A lot—product link should have
Item code—item code
Batch date (generated by system)—today’s date
Lot code—Warehouse’s lot code
Quantity in—item quantity received
Quantity out—item quantity issued
Quantity (updated by the system)—item quantity left

A.2. Operations

Group A 580 440 490 430 470 360 420 410

Group B 1190 760 790 500 520 420 320 350

Group C 1060 610 590 510 630 440 450 415
1
Group D 560 340 310 280 250 240 220 260
Stock-transfer—The inventory movement from one
stock lot to another stock lot
Group E 450 360 330 240 190 230 240 190
2

Group F 520 310 240 230 220 180 190 160

Group G 490 260 240 190 170 190 230 180
Goods-received—The entry of an item into the ware-
house if and only if the total quantity of the item is less
than its maximum stock level.
Group H 240 200 260 180 220 190 210 230

3
 Goods-issued—the passing out of materials
4
 Goods-movement—A report that shows today’s items in
and out.
5
 Replenishment—A report that shows items below the
minimum stock level.

A.3. Warehouse in/out logic
1
 Item issued is based on the minimum value of the sum
of production date and batch date. An example is
shown in Table A1
2
 The average unit cost for a warehouse item should be
calculated whenever there is goods a ‘‘Receipt’’
transaction. Note that the average unit cost remains
unchanged for other operations such as stock transfer
and goods issue:
If the total quantity of a warehouse item is less than
3

the minimum stock level, alert the shortage of quantity
in a report.
4
 If the total quantity of a warehouse item is more than
the maximum stock level, reject any goods receipt for
this item.
Appendix B

Twenty-four subjects forming eight groups of ‘‘similar-
capability’’ pairs and singles wrote the same FIFO
program fourth times. The group is listed in the order in
Fig. 2 (Table A2):



ARTICLE IN PRESS
K.M. Lui, K.C.C. Chan / Int. J. Human-Computer Studies 64 (2006) 915–925 925
References

Atwood, M.E., Ramsey, H.R., 1978. Cognitive structure in the

comprehension and memory of computer programs: an investigation

of computer program debugging. US Army Research Institute for the

Behavioral and Social Sciences, Technical Report (TR-78-A21),

Alexandra, VA.

Baheti, P., Gehringer, E., Stotts, D., 2002. Exploring the efficacy of

distributed pair programming. In: Proceedings of Extreme Program-

ming and Agile Methods—XP/Agile Universe, USA, August,

pp. 208–220.

Beck, K., 2000. eXtreme Programming Explained: Embrace Change.

Addison-Wesley, Boston, MA.

Constantine, L.L., 1995. Constantine on Peopleware. Yourdon Press,

Englewood Cliffs, NJ.

Flor, N.V., Hutchins, E., 1992. Analyzing distributed cognition in

software teams: a case study of team programming during adaptive

software maintenance. In: Koenemann-Belliveau, J., Moher, T.,

Robertson, S. (Eds.), Proceedings of Empirical Studies of Program-

mers: Fourth Workshop. Ablex, Norwood, NJ.

Friedman, M., Voas, J., 1995. Software Assessment: Reliability, Safety,

and Testability. Wiley, New York.

Gallis, H., Arisholm, E., Dybå, T., 2002. A transition from partner

programming to pair programming—an industrial case study. In:

Proceedings of the 17th Annual ACM Conference on Object-Oriented

Programming, Systems, Languages and Applications, USA, available

at http://www.simula.no/publication_one.php?publication_id=511.

Gallis, H., Arisholm, E., Dybå, T., 2003. An initial framework for

research on pair programming. In: Proceedings of International

Symposium on Empirical Software Engineering, Italy, pp. 132–142.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley,

Reading, MA.

Heiberg, S., Puus, U., Salumaa, P., Seeba, A., 2003. Pair programming

effect on developers productivity. In: Proceedings of Extreme

Programming and Agile Processes in Software Engineering, Italy,

May, pp. 215–224.

Hutchins, E., 1995. Cognition in the Wild. MIT Press, Cambridge, MA.

Keefer, G., 2002. Extreme programming considered harmful for

reliable software. In: Proceedings of the 6th Conference on Qua-

lity Engineering in Software Technology, Germany, December,

pp. 129–141.

Mayer, D.B., Stalnaker, A.W., 1968. Selection and evaluation of computer

personnel—the research history of SIG/CPR. In: Proceedings of the

23rd ACM National Conference, pp. 657–670.
McDowell, C., Werner, L., Bullock, H., Fernald, J., 2003. The impact of

pair programming on student performance, perception, and persis-

tence. In: Proceedings of the 25th International Conference on

Software Engineering, USA, May, pp. 602–607.

Mckeithen, K.B., Reitman, J.S., Reuter, H.H., Hirtle, S.C., 1981.

Knowledge organization and skill differences in computer program-

mers. Cognitive Psychology 13, 307–325.

Müller, M.M., 2003. Are reviews an alternative to pair programming? In:

Proceedings of Empirical Assessment In Software Engineering, UK,

April, pp. 3–12.

Müller, M.M., Padberg, F., 2002. Extreme programming from an

engineering economics viewpoint. In: Proceedings of the Fourth

International Workshop on Economics-Driven Software Engineering

Research, Orlando, Florida, May, pp. 57–60.

Müller, M.M., Tichy, W.F., 2001. Case study: extreme programming in a

university environment. In: Proceedings of the 23rd International

Conference on Software Engineering, Toronto, pp. 537–544.

Munzert, A., 1994. Part IV: computer I.Q.—program procedure, Test

Your IQ (third edn). Random House, pp. 112–117.

Nawrocki, J., Wojciechowski, A., 2001. Experimental evaluation of pair

programming. In: Proceedings of the 12th European Software Control

and Metrics Conference, London, April, pp. 269–276.

Nawrocki, J., Jasiñski, M., Olek, L., Lange, B., 2005. Pair programming

vs. side-by-side programming. In: Proceedings of EuroSPI, Budapest,

November, pp. 28–38.

Nosek, J.T., 1998. The case for collaborative programming. Communica-

tions of the ACM 41 (3), 105–108.

Soloway, E., Ehrlich, K., 1984. Empirical studies of programming

knowledge. IEEE Transactions on Software Engineering 10 (5),

595–609.

Stephens, M., Rosenberg, D., 2003. Extreme Programming Refactored:

the Case against XP. Apress, Berkeley, CA.

Traynor, D., Gibson, P., 2004. Towards the development of a cognitive

model of programming: a software engineering approach. In:

Proceedings of the 16th Workshop of Psychology of Programming

Interest Group, Ireland, available at www.cs.may.ie/�dtraynor/

papers/PPIGarticle.pdf

Tuckman, B.W., 1965. Developmental sequences in small groups.

Psychological Bulletin 63, 384–399.

Wang, Y., 2002. On cognitive informatics. In: Proceedings of the 1st IEEE

International Conference on Cognitive Informatics, pp. 34–42.

Williams, L., 2000. The Collaborative Software Process. Ph.D. Disserta-

tion, University of Utah.

Williams, L., Kessler, R., Cunningham, W., Jeffries, R., 2000. Strengthen-

ing the case for pair programming. IEEE Software 17 (4), 19–25.

http://www.simula.no/publication_one.php?publication_id=511
http://www.cs.may.ie/~dtraynor/papers/PPIGarticle.pdf
http://www.cs.may.ie/~dtraynor/papers/PPIGarticle.pdf
http://www.cs.may.ie/~dtraynor/papers/PPIGarticle.pdf

	Pair programming productivity: Novice-novice vs. expert-expert
	Introduction
	Solo programming and pair programming
	Productivity and economics
	Nosekaposs experiment
	Williams’ experiment
	Nawrockiaposs experiment
	Summary remarks

	Repeat-programming
	Initial study
	Controlled experiment
	Experimental results

	Two issues
	Past experimental results
	Principles for novice-novice pairs vs. expert-expert pairs

	Future work
	Conclusion
	Acknowledgements
	Basic configuration
	Operations
	Warehouse in/out logic

	References


