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Register Allocation via Graph Coloring

Preston Briggs

Abstract

Chaitin and his colleagues at IBM in Yorktown Heights built the first global register
allocator based on graph coloring. This thesis describes a series of improvements and

extensions to the Yorktown allocator. There are four primary results:

Optimistic coloring Chaitin’s coloring heuristic pessimistically assumes any node
of high degree will not be colored and must therefore be spilled. By optimisti-
cally assuming that nodes of high degree will receive colors, I often achieve lower
spill costs and faster code; my results are never worse.

Coloring pairs The pessimism of Chaitin’s coloring heuristic is emphasized when
trying to color register pairs. My heuristic handles pairs as a natural conse-
quence of its optimism.

Rematerialization Chaitin et al. introduced the idea of rematerialization to avoid
the expense of spilling and reloading certain simple values. By propagating
rematerialization information around the SSA graph using a simple variation of
Wegman and Zadeck’s constant propagation techniques, I discover and isolate
a larger class of such simple values.

Live range splitting Chow and Hennessy’s technique, priority-based coloring, in-
cludes a form of live range splitting. By aggressively splitting live ranges at
selected points before coloring, I am able to incorporate live range splitting into
the framework of Chaitin’s allocator.

Additionally, I report the results of experimental studies measuring the effectiveness
of each of my improvements. I also report the results of an experiment suggesting that
priority-based coloring requires O(r?) time and that the Yorktown allocator requires
only O(nlogn) time.

Finally, I include a chapter describing many implementation details and including
further measurements designed to provide an accurate intuition about the time and

space requirements of coloring allocators.
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Chapter 1

Introduction

1.1 Compilers and Optimization

Classically, an optimizing compiler is divided into three stages:

The front-end translates the source language into an intermediate form. This trans-
lation may be accomplished in one or more passes over the code, depending
on the structure of the source language. Compile-time error checking is usu-
ally performed at this stage. Ideally, the front-end is language dependent and
machine independent.

The optimizer consists of several passes, each performing specific transtormations
on the intermediate form. While the transformations are intended to improve
performance of the final code, there is no question of achieving any sort of real
optimality. We are interested in global optimizations; that is, optimizations
that use information gathered from an entire routine to guide transformations.
Common global optimizations include strength reduction, loop-invariant code
motion, and common subexpression elimination [4]. The optimizer is intended
to be both language and machine independent.

The back-end translates the intermediate form into a machine-specific form, usually
object code. This translation, also called code generation, may require several
passes, including instruction selection, instruction scheduling, and register allo-
cation. The back-end is largely language independent and machine dependent.

This division provides a useful separation of concerns, simplifying the development
and maintenance of each stage. Additionally, there is the possibility of reusing each
stage in several compilers. For example, a completely machine-independent front-end
for FORTRAN might be used in compilers for many different machines.

Of course, this is an idealized view. In practice, each stage tends to exhibit
both language and machine dependencies. These dependencies inhibit reuse and
maintenance and are therefore the target of compiler designers. Typically, we see
such reuse only when compiling closely related languages (e.g., FORTRAN and C) for

closely related machines (e.g., the common 32-bit RISC processors).



1.2 Optimization and Register Allocation

A register is one of a small number of high-speed memory locations in a computer’s
CPU. Registers differ from ordinary memory locations in several respects.
o The register set is small; a register may be directly addressed with a few bits.

Memory can be quite large; a memory location is usually specified indirectly,
using an “addressing mode” that includes one or more register references.

o Registers are fast; typically, two registers can be read and a third written — all
in a single cycle. Memory is slower; a single access can require several cycles.

The limited size and high speed of the register set makes it one of the critical resources
in most computer architectures. A register allocator, typically one phase of the back-
end, controls utilization of the register set by a compiled program.

Registers, and therefore register allocators, must serve many purposes. In the
simplest case, operands for primitive machine instructions must appear in registers.
Intermediate results, arising during the evaluation of complex expressions, are held
in registers by even naive compilers. More sophisticated compilers attempt to place
frequently used variables in registers to avoid repeated fetches and stores. For an
optimizing compiler, registers are the ideal place to hold values for reuse after common
subexpression elimination or loop-invariant code motion. It is in connection with
optimization that register allocation becomes crucially important.

During the development of the first FORTRAN compiler, John Backus suggested
that the optimization of subscript expressions should be considered separately from
the question of allocating index registers [7]. This idea has since been extended
beyond the problems of optimizing subscript expressions; our approach to the design
of optimizing compilers says:

During optimization, assume an infinite set of registers; treat register
allocation as a separate problem.

This important, perhaps essential, separation of concerns enables optimization to
proceed in a relatively simple fashion, optimistically avoiding difficult choices caused
by limited resources. This point of view was promoted by John Cocke and led to the
development of the influential PL.8 compiler and 801 computers [50, 6].

When there are enough registers, this separation of concerns looks like a good
idea. When there are not enough registers, the assumption underlying the separation
of concerns breaks down and we see cases where optimization causes degradation due

to lack of registers.



The task of register allocation may be attacked at one of several levels:

o Register allocation may be performed over expressions. This technique is a
form of instruction scheduling, with the goal of reducing register requirements.
Work by Aho, Johnson, Sethi, and Ullman considers how to minimize register
requirements by careful ordering of expression evaluation [60, 2.

e More aggressive allocators can manage registers over a complete basic block.
Work by Freiburghouse suggests one practical approach [37]. Further work by
Aho, Johnson, and Ullman proves the difficulty of generating optimal code in
the presence of common subexpressions [3].

e Global allocators work over an entire routine. Chaitin’s allocator operates at
this level. Other examples include work by Chow and Hennessy and work by
Callahan and Koblenz [26, 16].

o Interprocedural register allocation works over a collection of routines, usually
an entire program. Examples include work by Wall and work by Santhanam

and Odnert [63, 58].

We believe that global register allocation is required to support global optimization.

1.3 Register Allocation and Graph Coloring

Unfortunately, good register allocation is difficult. Idiosyncratic machine details com-
plicate even the simplest allocators. Robust allocators must also deal gracefully with
complex programs and inadequate numbers of registers. Furthermore, attempts to
achieve optimal solutions for any of these problems invariably lead to combinatorial
explosion.

Graph coloring offers a simplifying abstraction. By building and coloring an in-
terference graph representing the constraints essential to register allocation, we are
able to handle many apparently disparate details in a unified fashion. Nodes in the
interference graph represent live ranges (e.g., variables and temporaries) and edges
represent interferences between live ranges. Roughly, if two live ranges are both live
at some point in the routine, they are said to interfere and cannot occupy the same
register.! If the nodes in the graph can be colored in k or fewer colors, where any
pair of nodes connected by an edge receive different colors and k is the number of

registers available on the machine, then the coloring corresponds to an allocation. If

1Several definitions of live and interfere are possible. See Section 2.2.2 for more discussion.



a k-coloring cannot be discovered, then the code must be modified and a new coloring
attempted. A global register allocator based on this approach was developed by Greg
Chaitin and his colleagues at IBM [20].

1.3.1 Minimizing Register Usage

Informally, the goal of register allocation is to minimize the number of loads and stores
that must be executed. Reducing the register allocation problem to the graph coloring
problem subtly changes the goal; instead of minimizing memory traffic, the “reduced”
goal is minimizing register usage. In other words, by shifting our attention to graph
coloring, we are attacking a nearby problem. Note though, that this new goal is well
suited to the style of optimization advocated by Backus and Cocke (i.e., optimistically
assuming an infinite register set during optimization). Many transformations are
justified only if there is a register available to hold a temporary value. Proceeding
optimistically, the optimizer will always assume such transformations are profitable.
If the register allocator is able to map all of the registers used by the optimizer
onto the finite set of machine registers, then all of the optimizer’s assumptions will
be correct. Therefore, the goal of minimal register usage is desirable, as is a large

register set — each support the optimizer.

1.3.2 Minimizing Spill Code

Even with optimal coloring and a large register set, it will sometimes be necessary to
spill certain values to memory. Several difficult problems arise. Overall, we wish to
minimize the dynamic cost of inserted spill instructions (loads and stores). We must
somehow choose live ranges to spill that are cheap to spill and that relax pressure
in the graph, allowing coloring to progress. Furthermore, we must choose where
to place spill instructions. These problems are all complex and highly interrelated;

nevertheless, good solutions are required.

1.4 Overview

This thesis presents a series of extensions to Chaitin’s work on register allocation
via graph coloring. Chapter 2 presents an introduction to Chaitin’s work and a
brief history of the field. The main results of the thesis are contained in Chapters 3
though 6; they are briefly introduced in the sections below. Chapter 7 describes



the framework used to compare allocation techniques and summarizes the results of
a series of experiments testing the efficacy of our improvements. Additionally, we
briefly compare the Yorktown allocator with priority-based coloring, a competitive
approach developed by Chow and Hennessy [26]. Chapter 8 describes many of the
important details required for efficient implementation of a graph coloring allocator.
Additionally, a variety of measurements are included to help provide intuition about

the expected costs, in time and space, of a coloring allocator.

1.4.1 Improved Coloring and Spilling

Optimal graph coloring is unlikely to be practical. The problem of determining the
minimal number of colors needed to color an arbitrary graph is NP-complete [48].
Furthermore, the problem of finding a k-coloring for some fixed k£ > 3 is also NP-
complete [39]. Finally, Garey and Johnson have shown that unless P = NP, no
polynomial-time heuristic can guarantee using less than twice the minimal number of
colors [38].

Due in part to these pessimistic results, there has been little study in the area of
optimal coloring for global register allocation. Instead, researchers have concentrated
on finding efficient heuristic approaches [18, 46, 9]. Useful heuristics extend naturally
to help solve the spill problem; that is, they provide guidance when live ranges must
be spilled.

In Chapter 3, we present a refinement to Chaitin’s coloring heuristic. Our heuristic
may be considered optimistic in contrast to Chaitin’s pessimistic approach. The

optimistic heuristic spills a subset of the live ranges spilled by the pessimistic heuristic.

1.4.2 Coloring Pairs

On many important architectures, a pair of single-precision floating-point registers
may be treated as a double-precision register. Additionally, some machines pro-
vide instructions that load and store pairs and quadruples in a single instruction.
Unfortunately, there is no adequate way to take advantage of these features using
Chaitin’s allocator.

Chapter 4 discusses the problem in some detail. We show why Chaitin’s coloring
heuristic overspills in the presence of register pairs and why our optimistic coloring

heuristic avoids overspilling.



1.4.3 Rematerialization

Many important details must be handled correctly for best results from a global
allocator. Stated more strongly, they must be handled correctly to achieve simply
acceptable results. One example, mentioned briefly by Chaitin et al., is the idea of
rematerialization. This is a technique required for acceptably clean spilling of live
ranges defined by constants and other simple expressions.

In Chapter 5, we introduce an extension to Chaitin’s allocator allowing precise

spilling and rematerialization of a wider class of live ranges.

1.4.4 Live Range Splitting

Fabri and Chow independently observed that splitting a single live range into several
pieces and considering the new, smaller live ranges separately can produce an inter-
ference graph that colors with fewer colors [34, 25]. Chow and Hennessy used this
idea, called live range splitting, as the basis for a new allocator that avoided spilling
when splitting was possible.

Live range splitting has several merits. If an entire live range is spilled, as in
Chaitin’s work, its value will reside in a register only for short periods around each
definition and use. Splitting allows the value to stay in a register over longer intervals
— often an entire block or over several blocks.

Unfortunately, live range splitting is difficult. There are two fundamental prob-
lems: picking live ranges to split and picking places to split them. While optimal
solution of either of these problems is certainly NP-hard, Chapter 6 extends the ideas
introduced in Chapter 5 to attack both of these problems.



Chapter 2

Background

The first implementation of a graph coloring register allocator was described by
Chaitin et al. [20]. This chapter explains their allocator in some detail. The first
section introduces the general concept of register allocation via graph coloring. The
second concentrates on the Yorktown allocator, including explanations of the individ-

ual phases. The last section gives a brief history of the area.

2.1 Register Allocation via Graph Coloring

We assume that the allocator works on low-level intermediate code, similar to as-
sembly. The code has been shaped by an optimizer, addressing modes have been
determined, and an execution order has been fixed. Of course, these assumptions ig-
nore the possibility of cooperation between allocation and other parts of the compiler;
see Chapter 9 for a discussion of these opportunities. For simplicity when discussing
the generation of spill code, we assume a load-store architecture; however, provisions
can be made for more complex target architectures (see Chapter 8).

Before allocation, the intermediate code can reference an unlimited number of
registers. We refer to this unrestricted set of “pre-allocation” registers as virtual
registers. The goal of allocation is to rewrite the intermediate code so that it uses
only the registers available on the target machine — the machine registers. Note that
both virtual registers and machine registers serve simply as names, much like variables
in C and FORTRAN. In a manner common to other portions of the compiler, we care
little about names per se; instead, we care about the named objects.

In the case of register allocation, we are concerned with values and live ranges.
A value corresponds to a single definition. A live range is composed of one or more
values, connected by common uses. On input to the allocator, all the values compris-
ing a single live range will be named by the same virtual register. Furthermore, a
single virtual register may also name several other live ranges. Similarly, any machine

register will usually name several live ranges after allocation.



To model register allocation as a graph coloring problem, the compiler first con-
structs an interference graph (G. The nodes in G represent live ranges and the edges
represent interferences. Thus, there is an edge in G from node 2 to node j if and only
it live range [; interferes with live range [;; that is, they are simultaneously live at
some point and cannot occupy the same register. The live ranges that interfere with
a live range [; are called neighbors of [; in the graph; the number of neighbors in the
graph is the degree of [; — denoted [?.

To find an allocation from G, the compiler looks for a k-coloring of G — an assign-
ment of colors to the nodes of G such that neighboring nodes always have distinct
colors. If we choose k to match the number of machine registers, then we can map
a k-coloring into a feasible register assignment. Because finding a k-coloring of an
arbitrary graph is NP-complete, the compiler uses a heuristic technique to search for
a coloring; it is not guaranteed to find a k-coloring for all k-colorable graphs.

Of course, some routines are sufficiently complex that no k-coloring is possible,
even with an exhaustive coloring algorithm; their interference graphs are simply not
k-colorable. If a k-coloring cannot be found, some live ranges are spilled; that is, kept

in memory rather than registers.

2.2 The Yorktown Allocator

The first implementation of a global register allocator based on graph coloring was
done by Chaitin and his colleagues as part of the PL.8 compiler at IBM Research in
Yorktown Heights [6]. Further work by Chaitin yielded an improved coloring heuristic
that attacked the problems of coloring and spilling in an integrated fashion [18].
This thesis builds directly upon the work of Chaitin and his colleagues; therefore,
it is important to establish a clear understanding of (our interpretation of) their work.

Figure 2.1 illustrates the overall flow of the Yorktown allocator.

( spill code W

—{ renumber build coalesce spill costs simplify select [—

Figure 2.1 The Yorktown Allocator




Renumber This phase finds all the live ranges in a routine and numbers them uniquely.
In the papers on the PL.8 compiler, this type of analysis is referred to as getting
“the right number of names.”

Build The next step is to construct the interference graph (G. For efficiency, G is
simultaneously represented in two forms: a triangular bit matrix and a set of
adjacency vectors.

Coalesce The allocator removes unneeded copies, eliminating the copy instruction
itself and combining the source and target live ranges. A copy may be removed
if the source and target live ranges do not interfere. We denote the coalesce of
li and l]' as l”

Since the removal of a copy instruction can change the interference graph, we
repeat build and coalesce until no more copies can be removed. However, when
the allocator combines [; and [;, it can quickly construct a conservative ap-
proximation to the set of interferences for [;;. The conservative update of &G
lets the allocator perform many combining steps before rebuilding the graph;
in practice, we make a complete pass over the code before rebuilding.

Spill Costs In preparation for coloring, a spill cost estimate is computed for every
live range [. The spill cost for [ is an estimate of the cost of load and store
instructions that would be required to spill [. The cost of each instruction is
weighted by 10? where d is the instruction’s loop nesting depth, giving a simple
approximation of the actual impact at run-time.

Simplify This phase, together with select, cooperates to color the interference graph.
Simplify repeatedly examines the nodes in @, removing all nodes with degree
< k. As each node is removed, its edges are also removed (decrementing the
degree of its neighbors) and it is pushed on a stack s.

If we reach a point where every node remaining in G has degree > k, a node is
chosen for spilling. Rather than spilling its corresponding live range immediately
(requiring updates of the code and recomputation of the interference graph), it
is simply removed from G and marked for spilling.

Eventually, G will be empty. If any nodes have been marked for spilling, they
are spilled in spill code and the entire allocation process is repeated. Otherwise,
no spill code is required and s is passed on to select.

Select Colors are chosen for nodes in the order determined by simplify. In turn,
each node is popped from s, reinserted in (G, and given a color distinct from its
neighbors. The success of simplify ensures that a color will be found for each
node as it is inserted.
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Spill Code In a single pass over the routine, spill code is inserted for each spilled
live range. Since we are assuming a load-store architecture, spilling requires
(approximately) a load instruction before each reference to a spilled live range
and a store after each definition of a spilled live range. Refinements to this
simple policy are introduced below.

Note that values are spilled to locations in the current stack frame. There are
several reasons for this policy. First, many values have no natural location in
memory; e.g., compiler-generated temporaries. Furthermore, by spilling to the
stack, we are able to handle recursive and reentrant routines. Finally, locations
in the stack frame can typically be accessed quickly.

The following sections give further detail about the various phases of allocation.

2.2.1 Discovering Live Ranges

In a given routine, a variable z may be used many times, for many different tasks.
Similarly, a routine expressed in intermediate form after optimization may use the
same virtual register for several purposes. However, there is no need for the allocator
to assign each disjoint use of some virtual register to the same machine register. In
fact, such behavior is undesirable since it constrains the possible colorings.

Each disjoint use of a virtual register is a unique live range and it is the live ranges
in a routine that are colored by the allocator. Therefore, the first task of the allocator
is to discover the live ranges in a routine. This procedure is called getting the right
number of names by Chaitin and web analysis by Johnson and Miller [46]. In our
implementation, each live range is given a unique index and the intermediate code is
rewritten in terms of live range indices instead of the original virtual register numbers
— hence the term renumber.

Conceptually, live ranges are discovered by finding connected groups of def-use
chains. A single def-use chain connects the definition of a virtual register to all of its
uses. When several def-use chains share a single use (in other words, when several
definitions reach a single use), we say they are connected by the use. Of course, all
the chains originating at a given definition are considered connected.

Consider the example shown in Figure 2.2. The upper half is an abstract control-
flow graph with a few low-level statements representing code before renumbering.
The lower half illustrates the same code, but rewritten to illustrate the effect of
renumbering. Notice that four different live ranges have been discovered, all originally

represented by r50. The simple cases (r0 and r2) are restricted to a single basic block.
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Figure 2.2 Renumbering
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The live range represented by r1 is more complex — three definitions in different basic
blocks are connected by uses in three other basic blocks. It is precisely this sort of
code that makes global allocators more powerful than allocators that are restricted
to expressions or basic blocks. The efficient implementation of renumber is discussed

in Section 8.4.

2.2.2 Interference

The concept of interference is an important key to understanding graph coloring allo-
cators. Intuitively, if the allocation of two live ranges to the same register changes the
meaning of the program, they interfere. Chaitin et al. give a precise set of conditions
for interference, noting that two live ranges interfere if there exists some point in the

procedure and a possible execution of the procedure such that:
1. both live ranges have been defined,
2. both live ranges will be used, and

3. the live ranges have different values.

Each of these conditions is generally undecidable, as is their intersection. Chaitin’s
approach is to approximate interference by noting which live ranges are both live and
available (in the data-flow sense) at each assignment.

We say that a live range [ for a variable v is live at some statement s if there exists
a path from s to some use of v and there is no assignment to v on the path. Similarly,
[ is available at s if there is a path from a definition of v leading to s. Note that
availability and liveness correspond to conditions 1 and 2 above; they are conservative
approximations of the exact but undecidable conditions required for interference.?

By handling copy instructions specially, Chaitin is also able to achieve a conser-
vative approximation of condition 3. Since the source and destination live ranges will
certainly have the same value at a copy, they need not interfere. In fact, for there to
be any possibility of coalescing, they must not interfere. Of course, if they interfere

for other reasons (perhaps one is incremented in a loop), then an interference will be

added at another point in the code and coalescing will be correctly inhibited.

2Condition 2 specifies that a value will be used; liveness says that it may be used. It is the abso-
lute guarantee of “will be used” that makes condition 2 undecidable in the general case. Similar
arguments hold for conditions 1 and 3.
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An alternative approach is to add interferences at each block by making all live
ranges that are both live and available at the end of each basic block interfere with
each other. However, this approach is less precise than Chaitin’s idea of adding in-
terferences at each assignment due to Chaitin’s careful handling of copy instructions.
Furthermore, the block-level approach can require much more time, since it can re-
quire adding O(n?) interferences at each block versus O(n) at each assignment. The
exact tradeoff is difficult to determine, since it depends on the number of assignments

and the average number of live ranges (n) alive across each point in the routine.

2.2.3 The Interference Graph

One of the central data structures in the Yorktown allocator is the interference graph.

Viewed as an abstract data type, the interference graph must provide five operations:

new(n) Return a graph with n nodes, but no edges.
add(g,x,y) Return a graph including ¢ with an edge between the nodes x and y.

interfere(g, x,y) Return true if there exists an edge between the nodes x and y in the
graph g.

degree(g,x) Return the degree of the node z in the graph g.

neighbors(g, x, f) Apply the function f to each neighbor of node z in the graph g.

In practice, the interference graph is implemented using two representations: a trian-
gular bit matrix and a set of adjacency vectors. The bit matrix supports constant-
time implementations of add and interfere while the adjacency vectors support the
efficient implementation of neighbors. While initialization of the bit matrix requires
O(n?) time, the constant is small in practice (see Sections 7.2.2 and 8.5).

Note that the dual representation is important for efficiency. Without the bit
matrix, the speeds of interfere and add degrade sharply. Alternatively, without the
adjacency vectors, the cost of visiting all the neighbors of a node increases, raising
the cost of coloring from O(n + €) to O(n?). While e is theoretically bounded by n?,
in practice, e < n?.

An alternative implementation, based on a hash table of interfering pairs, of-
fers the same asymptotic efficiencies and avoids the O(n?) space requirements of the
bit matrix. In practice, the time considerations favor the bit-matrix representation.
Space considerations also favor the bit-matrix representation for small graphs; for

large graphs, the hash-table representation may become desirable.
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Early versions of the Yorktown allocator constructed the interference graph in a
single pass, storing adjacencies in a linked list of short vectors. Later versions adopted

a two-pass approach, storing adjacencies in a continuous vector.?

1. Initially, the bit matrix is allocated and cleared. A pass is made over the code,
filling in the bit matrix and accumulating each node’s degree.

2. After the degree of every node is known, adjacency vectors are allocated and
the bit matrix is reinitialized. In a second pass over the code, interferences are
recorded in the bit matrix and the adjacency vectors.

After each pass of coalesce, the graph must be reconstructed. In practice, only step 2
must be repeated, since the degree of each node can be incrementally maintained
while coalescing.

In our implementation, each pass runs backward over each basic block in the
control-flow graph, incrementally maintaining a set s of all live ranges that are cur-
rently live and available. At each definition, edges are added between the defined value
and all members of s. See Section 8.5 for more details on the efficient construction of
the interference graph.

After completing the build-coalesce loop, the memory required for the bit ma-
trix may be deallocated. The adjacency vectors are required for further use during

coloring, both by simplify and select.

2.2.4 Coalescing

After building the interference graph, we are in a position to perform coalescing (also
called subsumption and copy propagation). The code is traversed in any convenient
order. At each copy instruction, we check to see if the source and target live ranges
interfere; if not, they may be coalesced and the copy instruction may be deleted. To
coalesce two live ranges [, and [, forming a third [,,, we simply replace every mention
of either live range with a reference to the result; that is, we replace every mention
of I, and [, with [,.

To perform coalescing efficiently, we establish equivalence classes for each live
range. As live ranges are coalesced, their equivalence classes are unioned, using a fast

disjoint-set union algorithm [1, pages 129-139].

3The reasoning was that the vectors offered quicker traversal and better locality.
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Figure 2.3 Effects of Coalescing

When two live ranges [, and [, are coalesced, we must update the interference
graph so that [, interferes with the neighbors of [, and with the neighbors of /.
While we are able to perform this update accurately, we cannot accurately reflect
updates due to copy instructions being removed. Recall that interferences are added
at each assignment. When we remove a copy instruction (which is an assignment),
some interferences may also be removed. Figure 2.3 illustrates such a case.

In the left column, y and z interfere since vy is live across the definition of z. While
x 1is live across the definition of y, we are certain that there is no interference since
it is clear that x and y have the same value. The right column shows the result of
coalescing = and y. We have rewritten the code in terms of zy and remove the now-
useless copy. When the interference graph is updated, zy will interfere with z since
the result of a coalesce is made to interfere with all the neighbors of the coalesced
ranges. However, it is clear that zy and 2z do not interfere, so the interference graph is
imprecise. Therefore, we must rebuild the interference graph from scratch to ensure
accuracy.

In practice, coalesce makes a complete pass through the intermediate code, co-
alescing wherever possible and updating the interference graph in the conservative
fashion described above. If any copies are removed, the interference graph is rebuilt
and more coalescing attempted. This cycle repeats until no more copies can be re-
moved. While the build-coalesce cycle is bounded by the number of copies in the
code, convergence is usually quite rapid — typically two or three iterations suffice. See

Section 8.6 for measurements on real code.
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Uses of Coalescing

Much of the power and generality of the Yorktown allocator is due to the wide appli-
cability of coalescing. Uses suggested by Chaitin and our own experience include:
e Removing copies introduced during optimization allows use of simpler forms of

some optimizations. For example, coalescing is extremely useful in cleaning up
the copies resulting from the removal of ¢-nodes after using SSA-form [29].

e Coalescing can be used to achieve targeting, which attempts to compute ar-
guments in the correct register for passing to a called procedure. In a called
procedure, coalescing enables easy handling of incoming arguments passed in
registers.

e Similarly, coalescing enables easy handling of the operands and results of ma-
chine instructions with special register requirements; e.g., a multiply instruction
that requires its operands to be in a particular pair of registers.

e Coalescing enables natural handling of common 2-address instructions; e.g.,
instructions of the form r, < r; + r, where the destination is constrained to
match the first operand.

2.2.5 Spilling

The roughest possible version of spill would spill a live range [ by inserting a store
after every definition of [ and a load before every use of [. Chaitin et al. give two
important refinements to this coarse approach.

First, they note that certain live ranges are easy to recompute; for example, live
ranges defined by constants. These live ranges should not be stored and reloaded;
instead, they should be recomputed before each use. Of course, it is trivial to “re-
compute” a constant, but the technique also applies to certain expressions involving
the frame pointer and the constant pool.

Second, it is not necessary to spill around every mention of a live range. Chaitin
describes several situations that should be handled using local analysis.

o If two uses of a spilled live range are close together, it is unnecessary to reload
for the second use; simply use the same register for both uses.

o If a use follows closely behind the definition of a spilled live range, there is no
need to reload before the use.

e Similarly, if all uses of a live range are close to the definition, the live range
should not be spilled.
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In Chaitin’s work, two references are considered “close” if no live range goes dead be-
tween them. Alternatively, if the last use of any interfering live range occurs between
two references, those references are considered distant. See Section 8.7 for details and

the accurate computation of spill costs.

2.2.6 Coloring

The core of the Yorktown allocator is the coloring algorithm. Since the problem of
finding a k-coloring for an arbitrary graph is NP-complete, we rely on non-optimal
heuristic techniques.* When reading modern descriptions of graph coloring heuristics,
it is easy to forget the difficulty of devising good heuristic approaches to difficult
problems. Schwartz presents two algorithms (one attributed to Cocke, the other to
Ershov) illustrating some of the early attempts [59, pages 327-329].

The heuristic employed in the Yorktown allocator was devised by Chaitin [19]. It
requires O(n + €) time, where n is the number of live ranges to be colored and e is the
number of edges in the interference graph. Chaitin also shows how his heuristic can
be used to accomplish both coloring and spilling in an integrated fashion [18]. In our
framework, Chaitin’s coloring heuristic is distributed between simplify and select.

Why does it work? Simplify repeatedly removes nodes from the graph and pushes
them on a stack. In select, the nodes are popped from the stack and added back to
the graph. A node [; is only moved from the graph to the stack if [? < k. Therefore,
when select moves [; from the stack back to the graph, [; will still have less than &
neighbors. Clearly there will be a color available for /; in that graph.

Simplify only removes a node when it can prove that the node will be assigned a
color in the current graph. As each live range is removed, the degrees of its neighbors
are lowered. This, in turn, may prove that they can be assigned colors. In select, the
nodes are assigned colors in reverse order of removal. Thus, each node is colored in
a graph where it is trivially colorable — simplify ordered the stack so that this must
be true. In one sense, the ordering forces the allocator to color the most constrained
nodes first — [; gets colored before [; precisely because simplify proved that [; was
colorable independent of the specific color chosen for [;.

As an example, consider finding a three-coloring for the simple graph shown in
Figure 2.4. The left column (working from the top down) illustrates one possible

sequence of simplifications. In the initial graph, [J < 3, so we are assured that a

4Chaitin et al. give a proof that any graph can be generated by some routine.
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Figure 2.4 Coloring a Simple Graph
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color will be available during select. When [; is removed, the degrees of [, and I3 are
lowered. Since [3 is now < 3, it is removed in turn. The process is repeated until the
graph is completely empty. No spilling is required in the case since there are nodes
with degree < 3 available at every step. The right column (working back up) shows
how select reconstructs the graph, coloring each node as it is added to the graph.

If simplify encounters a graph containing only nodes of degree > k, then a node is
chosen for spilling (see next section). The spill node is removed from the graph and
marked for spilling. One alternative at this point is to immediately insert spill code
for the spill node, rebuild the interference graph, and attempt a new coloring. This
approach is precise but expensive since some routines may require spilling many live
ranges. Chaitin uses a less precise approach, continuing simplification after choosing

a spill node, potentially marking many nodes for spilling in a single pass.

Choosing Spill Nodes

The metric for picking spill nodes is important. Chaitin suggests choosing the node
with the smallest ratio of spill cost divided by current degree.

cost,

(2.1)

my, =
degree,,

Note that degree, is the current degree of the node n; that is, the degree of n in the
partial graph remaining after removing all nodes of low degree. This metric reflects
a desire to minimize total spill costs coupled with a desire to simplify the graph by
lowering the degree of many nodes (the neighbors of node n).

Later work by Bernstein et al. at Haifa explores other spill choice metrics [9].

They present three alternative metrics:

tn
m, = &2 (2.2)
degree,
ln
m, = —— (2.3)
degree, area,,
tn
me = (2.4)
degree, area,,

In equations 2.3 and 2.4, area, represents an attempt to quantify the impact n has
on live ranges throughout the routine.
area,, = Z 5eePthiwidth; (2.5)

1 € instructions

n is alive at ¢
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Here depth; is the number of loops containing the instruction : and width; is the
number of live ranges live across the instruction .

The experiments of Bernstein et al. suggest that no single spill metric completely
dominates the others. Therefore, they propose using a “best of 3”7 technique. They
repeat simplify three times, each time with a different spill metric, and choose the
version giving lowest total spill cost. The reason behind the practical success of the
“best of 37 heuristic is perhaps subtle. Choosing the best node to spill is NP-complete;
therefore, we expect counter-examples for any spill metric. By using a combination
of three, we gain some measure of protection from the worst-case examples. To an
extent, we view the “best of 3”7 heuristic as a filter that helps to smooth some of the

NP-noise in our results.?

2.3 History

The idea of solving allocation problems by abstracting to graph coloring has a sur-
prisingly long history. Ershov notes that early interest in graph theory among pro-
grammers (at least in the Soviet Union) was due to the reduction of storage packing
problems to the graph coloring problem [33, page 174]. Historically, we see two par-

tially overlapping threads: work in memory allocation and work in register allocation.

2.3.1 Memory Allocation

By memory allocation, we mean the problem of laying out storage for variables (scalars
and arrays) in main memory so that they require minimal space. On early machines,
this was an important concern, given their small memories.

Apparently, the earliest work on memory allocation and graph coloring was pub-
lished by Lavrov in 1961 [52]. The work is difficult to understand, hampered somewhat
by translation, but more significantly by the lack of common vocabulary (e.g., there
are no instructions, basic blocks, live ranges, or control-flow graphs — instead we see
operators, routes, carriers, data paths, and areas of effect). Nevertheless, it is clear
that the definition of an incompatibility graph is key to his approach.®

Inspired by Lavrov, Ershov also explored the correspondence between memory

allocation and graph coloring [30]. A coloring-based memory allocator was described

5The term NP-noise was coined by Linda Torczon to describe the annoyingly large variations in spill
costs that occur with even the smallest adjustments to the coloring algorithm.

5Those interested in reading Lavrov should certainly consult Ershov as a guide [33, pages 170-173].
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as part of the Alpha compiler [31, 32]. It is also interesting to read the Editor’s Note
appended to Ershov’s JACM paper.

The attainment of “global memory economy” by means of the “incon-
sistency matrix” is a novel scheme for minimizing the number of storage
cells assigned to variables. An incidence matrix (inconsistency matrix) is
constructed which shows which variables may not occupy the same cell.
This permits extreme compression of the storage area for variables.

Ascher Opler

An extensive description of Ershov’s work on memory allocation and graph coloring
is included in his book [33].

Extensions to Ershov’s work in this area were reported by Fabri [34, 35]. However,
this general approach to conserving memory seems to be of less interest recently.

There are perhaps several reasons:
o relatively large, cheap main memories now available,

e increased reliance on stack-based allocation, with its naturally conservative ap-
proach (however, see [56]), and

e almost exclusive use of separate compilation, making the whole-program anal-
ysis required for memory allocation seem painfully awkward.

Nevertheless, the increasing importance of memory locality together with approaches
to convenient whole-program analysis [27] may lead to a renewed interest in the
problems of packing main memory.

It is important to note that the work of Lavrov, Ershov, and Fabri attacked the
problem of packing arrays in memory. This is not a trivial extension of the scalar
packing problem nor is it naturally expressed as graph coloring. On the other hand,

register allocation is a much closer fit to coloring.

2.3.2 Register Allocation

The idea of managing global register allocation via graph coloring is apparently due to
Cocke [49, 19]. We find some limited discussion of graph coloring in the early 1970’s;
however, it seems to concentrate more on the search for useful coloring heuristics than
on the problems arising in register allocation [59]. Chaitin points out that early work

was fatally hampered by the relatively small memories available at the time [19].
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The first complete global register allocator based on graph coloring was built
by Chaitin and his colleagues at IBM [20]. Chaitin later described an improved
coloring heuristic that handled the problems of coloring and spilling in a natural and
coordinated fashion [18].

There has been a fair amount of work building on the foundation provided by
Chaitin. We have reported an improvement to Chaitin’s coloring heuristic [12]. Other
improvements were introduced by Bernstein et al. [9]. Extensions to enable allocation
of register pairs have been discovered by Nickerson and as part of our own work [57,
13]. Recently, we have described a technique for improving the accuracy of spill code
estimation and placement [14].

An alternative form of global register allocation via graph coloring is described
by Chow and Hennessy [22, 25, 26]. Their work, while based on coloring, differs
in many respects from the work of Chaitin and his successors. They introduce the
concept of live range splitting as an alternative to the spilling techniques originally
used by Chaitin et al. The idea of live range splitting was independently discovered
by Fabri in connection with her work on memory allocation [34]. Extensions and
improvements have been reported by Larus and Hilfinger, Chow, and by Gupta,
Soffa, and Steele [51, 23, 41].

A recent paper by Callahan and Koblenz describes a hierarchical approach to
global register allocation via coloring [16]. Their approach decomposes the control-
flow graph into a tree of tiles, colors each tile individually, and merges the results in
two passes over the tree. It represents an attempt to gain the precision of Chaitin’s
approach to allocation together with a structured approach to live range splitting.

In this thesis, we have avoided extensive comparisons with the work of Callahan
and Koblenz. This is not because we are unaware of their work or because we do not
appreciate its value; rather it is because their work was done largely in parallel with
ours — we have little perspective. As the community gains experience with their work

and ours, we expect to be better able to understand how they compare.
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Chapter 3

Improved Coloring and Spilling

At the heart of a graph coloring allocator is the algorithm used for coloring. Since the
problem of finding a k-coloring is NP-complete, the coloring algorithm must employ a
heuristic. One of the many strengths of the Yorktown allocator is Chaitin’s coloring
heuristic, which attacks the problems of coloring and spill choice in an integrated
fashion. However, since it is a heuristic approach to an NP-complete problem, we are
not surprised to find examples where its performance is not optimal.

In the next section, we present two examples where Chaitin’s coloring heuristic
is not optimal. The examples inspired a variation to Chaitin’s heuristic, reported in
Section 3.2, which offers significant improvements. The final two sections describe

two further variations enabled by our new heuristic.

3.1 Problems

As a part of the R" programming environment, we built an optimizing FORTRAN
compiler [27, 17]. When the project was begun (many years ago), Chaitin’s approach
was new and elegant, so we decided to use it in our new compiler. While discussing
details of the allocator, Ken Kennedy constructed a small example showing how
Chaitin’s heuristic could be forced to spill when a k-coloring was actually possible.

Later, when our allocator was working, we discovered a second interesting example
— this time resulting from real code. In this case, spill code would always be required;
however, Chaitin’s heuristic obviously forced more spills than necessary.”

The two examples, one small and one large, demonstrate a single weakness in
Chaitin’s heuristic. The next two subsections present and explain both examples;

Section 3.2 shows how to overcome the problem.

“The fact that the extra spills were obvious made it possible to detect that there even was a problem.
Usually the sheer bulk of assembly code makes it difficult to detect such mistakes. After all, the
code is correct; it simply runs a little slower than it might.
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3.1.1 The Smallest Example

Suppose we want to find a 2-coloring for the graph shown in Figure 3.1. Clearly one
exists; for example, x and y could be colored red and w and z could be colored green.
If we apply Chaitin’s heuristic though, simplify is immediately forced to spill — there
are no nodes with degree < 2. If we assume for the example that all spill costs are
equal, then some arbitrary node can be chosen for spilling; for example z. After =
is removed from the graph and marked for spilling, the remaining nodes are removed
by simplify.

This example illustrates that Chaitin’s heuristic does not always find a k-coloring,
even when one exists. Of course, we are not surprised, since the problem is NP-
complete. The small size of the example is perhaps surprising. Of course, we might
wonder how often such examples arise in real code, given the relatively large register

sets typically available on modern processors.

3.1.2 A Large Example

In the process of isolating a bug elsewhere in the compiler, we carefully examined the
code generated for a routine named SVD from the software distributed with Forsythe,
Malcolm, and Moler’s book on numerical methods [36]. The routine implements the
singular value decomposition of Golub and Reinsch. It has 214 non-comment lines of
code and 37 DO-loops organized into five different loop nests. The first loop nest is a
simple array copy, shown at the top of Figure 3.2.

Close examination of the code generated for SVD revealed that the allocator was

spilling a large number of short live ranges in deference to the larger, longer live

Figure 3.1 A Simple Graph Requiring Two Colors
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subroutine SVD(M, N, ...)
doI =1, N

do J =1, M

A(TI, J) = B(I, D

enddo
enddo
do

many deeply-nested loops | |
enddo
do

many long live ranges
enddo
do
enddo
do

enddo

Figure 3.2 The Structure of SVD

ranges. The loop indices and limits of the array-copy loop were spilled despite the
fact that there were several unused registers at that point in the code. After some
study, we were able to understand why the register allocator over-spilled so badly and
what situations provoked this behavior

After optimization, about a dozen long live ranges (parameters specifying arrays
and their sizes) extend from the initialization portion, through the array copy, and
into the large loop nests. During coloring, these live ranges restrict the graph so much
that some registers must be spilled. The estimated spill costs for I, J, M, and N (the
indices and limits on the array-copy loops) are smaller than those for the longer live
ranges — quite properly, since I, J, M, and N are only used over a small range that is
less deeply nested than the rest of the routine. Unfortunately, spilling I, J, M, and
N does not lower register pressure in the large loop nests and more live ranges must
be spilled. Eventually, most of the longer live ranges have been spilled and coloring
proceeds. The final result: the code has almost no register utilization during the

array copy.
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3.2 An Improvement

The two examples highlight different problems:

1. The allocator fails to find a two-coloring for the simple diamond graph. By
inspection, we can see that the graph is two-colorable. The problem here is
fundamental: the allocator uses too weak an approximation to decide whether
or not z will get a color.

In looking for a k-coloring, the allocator approximates “x gets a color” by
“x° < k.7 This is a sufficient condition for  to get a color but by no means
a necessary condition. For example, + may have k£ neighbors, but two of those
neighbors may get assigned the same color. This is precisely what happens in
the diamond graph.

2. In SVD, the allocator must spill some live ranges. The heuristic for picking a
spill candidate selects the small live ranges used in shallow loop nests because
they are less expensive to spill. Unfortunately, spilling them is not productive
— it does not alleviate register pressure in the major loop nests.

When the spill decisions are made, the allocator cannot recognize that the spills
do not help.® Similarly, the allocator has no way to retract the decisions. Thus,
these live ranges get spilled and stay spilled.

While discussing the simple diamond graph, Kennedy pointed out that the color-
ing heuristic proposed by Matula and Beck will find a two-coloring of the diamond
graph [54]. Their algorithm differs only slightly from Chaitin’s approach. To sim-
plify the graph, they repeatedly remove the node of smallest current degree, versus
Chaitin’s approach of removing any node n where n® < k. After all nodes have been
removed, they select colors in the reverse of the order of deletion, in the same fashion
as Chaitin.

Applied to the diamond graph, this heuristic generates a two-coloring. Chaitin’s
heuristic fails because it pessimistically assumes that all the neighbors of a node will
get different colors. Using Matula and Beck’s heuristic, we have the opportunity to
discover when some of the neighbors of a node n receive the same color, leaving a
spare color for n itself.

Unfortunately, this scheme simply finds a coloring; there is no notion of finding
a k-coloring for some k, and therefore no mechanism for producing spill code. For
a register allocator, this is a serious problem. Many procedures require spill code —

their interference graphs are simply not k-colorable.

8Rather, it cannot without expensive lookahead.
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Thus, what is needed is an algorithm that combines Matula and Beck’s stronger

coloring heuristic with Chaitin’s mechanism for cost-guided spill selection. To achieve

this effect, we made two modifications to Chaitin’s original algorithm:

1. Simplify removes nodes with degree < k in an arbitrary order. Whenever it

discovers that all remaining nodes have degree > k. it chooses a spill candidate.
That node is removed from the graph; but instead of marking it for spilling,
simplify optimistically pushes it on the stack, hoping a color will be available in
spite of its high degree. Thus, nodes are removed in the same order as Chaitin’s
heuristic, but spill candidates are included on the stack for coloring.

Select may discover that it has no color available for some node. In that case,
it leaves the node uncolored and continues with the next node. Note that any
uncolored node would also have been spilled by Chaitin’s allocator.

If all nodes receive colors, the allocation has succeeded. If any nodes are uncol-
ored, the allocator inserts spill code for the corresponding live ranges, rebuilds
the interference graph, and tries again.

The resulting allocator is shown in Figure 3.3. Spill decisions are now made by select

rather than simplify. The rest of the allocator is unchanged from Chaitin’s scheme.

In this form, the allocator can address both of our example problems.

Deferring the spill decision has two powerful consequences. First, it eliminates

some non-productive spills. In Chaitin’s scheme, spill decisions are made during

simplify, before any nodes are assigned colors. When it selects a node to spill, the

corresponding live range is spilled. In our scheme, these nodes are placed on the stack

as spill candidates. Only when select discovers that no color is available is the live

range actually spilled. This mechanism, in effect, allows the allocator to reconsider

spill decisions.

( spill code W

—]

renumber build coalesce spill costs simplify select |—

Figure 3.3 The Optimistic Allocator
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Second, late spilling capitalizes on specific details of the color assignment to pro-
vide a stronger coloring heuristic. In selecting a color for node z, it examines the
colors of all x’s current neighbors. This provides a direct measure of “does x get a
color?” rather than estimating the answer with “is ° < k7”7 If two or more of z’s
neighbors receive the same color, then z may receive a color even though z° > k.?
On the diamond graph, this effect allows the allocator to generate a two-coloring.

Recall SVD. The live ranges for I, J, M, and N are early spill candidates because
their spill costs are small. However, spilling them doesn’t alleviate register pressure
inside the major loop nests. Thus, the allocator must spill some of the large live
ranges; this happens after the small live ranges have been selected as spill candidates
and placed on the stack. By the time the small live ranges come off the stack in select,
some of these large live ranges have been spilled. The allocator can easily determine
that colors are available for these small live ranges in the early array-copy loops; it
simply looks at the colors used by their neighbors.

Optimistic coloring is a simple improvement to Chaitin’s pessimistic scheme.

Assume that we have two allocators, one optimistic and one pessimistic, and that

both use the same spill choice metric — for example, Chaitin’s metric of dggize' The
optimistic allocator has a stronger coloring heuristic, in the following sense: it will
color any graph that the pessimistic allocator does and it will color some graphs that
the pessimistic allocator will not. When spilling is necessary, both allocators will spill
the same set of live ranges, except when optimistic coloring helps. In those cases, our
allocator will spill a proper subset of the live ranges spilled by Chaitin’s allocator.
Note that the comparisons between the optimistic heuristic and Chaitin’s heuris-
tic are predicated on both versions of simplify removing the same nodes in a given
situation. This won’t necessarily happen, but the assumption is necessary for com-
parison. For our experimental comparisons (see Chapter 7), we have been careful to

implement both versions so they remove nodes in the same order. 1°

9Early versions of priority-based coloring considered only degree when assigning colors, despite
having a single-pass algorithm where the actual colorings are available [22, 25]. Later descriptions
correct this mistake [26].

10At least, the order will be identical on the first trip through the build-color-spill loop. Later
iterations will present different graphs for coloring.
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Results

Optimistic coloring helps generate better allocations. In a few cases, this eliminates
all spilling; the diamond graph is one such example. In many cases, the total spill
cost for the procedure is reduced.

In Section 7.1, we report results of a study comparing our optimistic allocator
with our implementation of the Yorktown allocator. In a test suite of 70 FORTRAN
routines, we observed improvements in 27 cases and a single loss (an extra load
and store were required). Improvements ranged from tiny to quite large, sometimes
reducing spill costs by over 40%.

The single loss was disappointing, since we have claimed that the optimistic col-
oring heuristic can never spill more than Chaitin’s heuristic. However, we must recall
the structure of the allocator. After each attempt to color, spill code is inserted and
the entire built-coalesce-color process is repeated. The optimistic coloring heuristic
will perform as well as Chaitin’s heuristic on any graph; but after spilling, the two
allocators will be facing different problems.

At least one independent confirmation of our results exists. Addition of the op-
timistic coloring heuristic to the back-end of the IBM XL compiler family for the
RS/6000 machines resulted in a decrease of about 20% in estimated spill costs over
the SPEC benchmark suite [44].

The optimistic heuristic is superior theoretically since it can never spill more than
Chaitin’s heuristic on a given graph. It is no more complex asymptotically than
Chaitin’s heuristic. Furthermore, it is no more difficult to implement than Chaitin’s
heuristic. Finally, our experimental results show that the improvement is significant

on a large number of routines.

3.3 Limited Backtracking

Once we have the optimistic coloring heuristic, another refinement is possible. Recall
select. Given a stack of nodes created by simplify, each node n is removed from the
stack and added to the graph. After adding n to the graph, select first examines n’s
neighbors, noting which colors have been used, then chooses a different color for n.
If no color remains from the k-palette, then n is left uncolored and will be spilled.
As an alternative to simply leaving n uncolored, we can sometimes attempt a

limited form of backtracking, re-coloring a neighbor of n and thus freeing a color for
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n. We note that such backtracking must be carefully constrained to avoid the chance
of combinatorial explosion.

By limiting backtracking to a single level, we can maintain our linear time-bound
for coloring. While examining n’s neighbors, we can accumulate the number of uses
of each color (rather than simply noting when each color is used) and note which
neighbor uses each color. If no colors remain for n, we check for colors that have only
been used by a single neighbor. If m is the only neighbor of n using a color ¢, the we
try re-coloring m. If successful, we can then give n the color c.

Another possibility is trying to re-color several neighbors that all use the same
color ¢. This seems to have less potential. For instance, it would be annoying to

successfully re-color three neighbors only to have the fourth block the use of c.

Results

The advantages of limited backtracking are its low cost, easy implementation, and
the fact that it rarely loses.!! On the other hand, the results have been disappointing;
limited backtracking almost never pays off.

In Section 7.1, we compare an allocator with limited backtracking to the optimistic
allocator. In (only) three routines out of seventy, limited backtracking offers a slight
improvement. In the best case, there is a 1.2% reduction in spill cost.

Why so little improvement? When a node is selected as a spill candidate, it
is selected from a graph where every node in the graph has at least k£ neighbors
(otherwise, simplify would have continued removing them before being forced to
choose a spill candidate). Therefore, when select is unable to color a node n (where
n is always a spill candidate), n has at least k£ neighbors and those neighbors have at
least k& neighbors. Therefore, any neighbor of n is relatively constrained and there is

only a small chance that limited backtracking will be able to free a color.

3.4 Alternative Spill-Choice Metrics

In Section 2.2.6, we introduced the “best of 3”7 heuristic originally suggested by
Bernstein et al. [9]. In essence, they run simplify three times, each time using a

different spill choice metric, and choose the ordering that gives the lowest spill cost.

11We have never seen it lose, though such situations are conceivable. Saving an expensive spill now
versus possibly saving less-expensive spills in the future is usually a safe bet.
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This idea extends naturally to our optimistic coloring heuristic. We simply run the
combination of simplify and select three times, being careful with our accounting,
and choose the best result.

The three specific metrics used by Bernstein et al. (Equations 2.2 through 2.4)
are not important; we can invent many similar metrics, perhaps using more exten-
sive combinations to give a “best of 10”7 approach. Of course, there is a tradeoff of
increased compile-time against the diminishing returns offered by such an attack.

An attractive idea is to experiment with different spill cost metrics, attempting
to take advantage of the optimistic coloring heuristic. Rather than trying to remove
nodes with high degree (hoping to greatly simplify the graph), we can try removing
nodes of low degree. The hope is that a node of low degree (but still greater than k)
will be more likely to color since only a few of its neighbors need to overlap (or spill)

to create space in the k-palette. There seem to be several possibilities:

e Search for a node n such that n°® < k + ¢, where ¢ is some small constant. If
many such nodes are found, choose the one with lowest spill cost. If no such
nodes are found, use one of the traditional spill metrics.

e Search for a node n that minimizes the product cost, x degree,,.

e Search for a node that minimizes

cost, degree,

area,

We have performed a few limited experiments with these ideas; however, the
results have been unimpressive. Why? FEach time simplify must choose a spill can-
didate, any one of the spill metrics might indicate the best choice. For an entire
sequence of spill choices (that is, for an entire simplification), it is unlikely that any
one spill metric would be best for every choice. Each run of simplify in a “best of
37 or “best of 10” sequence is therefore a compromise — a series of acceptable choices
that work out reasonably well together.

Additionally, there is a problem of diminishing returns. By adding a “best of 27
choice, we expect some amount of improvement. With “best of 37, we expect a
further (though smaller) improvement. As we continue, the rate of improvement will
continue to slow. Furthermore, the improvements will appear on fewer and fewer
routines. Nevertheless, there seems to be some possibility of improvement in this

area for those patient enough to explore it thoroughly.
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3.5 Summary

The primary contribution of Chaitin’s second allocation paper was a coloring heuris-
tic able to make spill decisions based upon the structure of the interference graph. In
this chapter, we have presented an improvement to Chaitin’s heuristic. The improved
heuristic is able to color more graphs with no spilling and able to color many other
graphs with less spilling. The key difference is that the new heuristic optimistically
attempts to color, even when faced with apparently complex graphs. We also pre-
sented two additional improvements made possible by the same insight that motivates
our optimistic coloring heuristic.

The optimistic heuristic is valuable. We have reported experimental results show-
ing that the optimistic heuristic pays off in many real routines and can reduce spill
costs by up to 40%. In contrast, limited backtracking and the alternative spill-choice

metrics were less valuable.
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Chapter 4

Coloring Register Pairs

Register pairs are a fundamental part of many machine architectures. For example,
many machines use pairs of single-precision registers to hold double-precision values.
The two most common constraints imposed on register pairs are requiring that the
registers be adjacent (named with consecutive integers) and that an adjacent pair be
aligned (typically requiring the first register to have an even number).

Previous descriptions of this problem in the literature have been rather limited.
In 1986, Hopkins described a method to handle the register pair constraints that
arise in the shift instructions on the ROMP microprocessor — the engine in RT/PC
workstations [43]. In 1990, Nickerson published a method for allocating structures
into an aggregate set of adjacent registers. He observed that an allocator based on
our 1989 paper (see Chapter 3) produced good allocations under his scheme [57, 12].

This chapter describes work performed independently of Nickerson and completed
at approximately the same time. We consider various ways to represent register pairs
in the interference graph. We show why Chaitin’s coloring heuristic over-estimates
demand for registers and how the heuristic introduced in Chapter 3 naturally avoids
this problem. Finally, we provide a simple rationale for deciding how many edges
are required to correctly represent an interference between a single register and an

aggregate set of registers.

4.1 Why Are Pairs Hard to Color?

In Chapter 3, we showed examples where Chaitin’s coloring heuristic over-spilled.
When the program includes operations requiring pairs of adjacent registers, this over-
spilling is exaggerated. The reason is simple — introducing pairs of registers requires
modifying the interference graph or changing the way the allocator interprets it. In
Chaitin’s scheme, such modification distorts the allocation — the allocator consistently
overestimates register demand. This causes it to spill values in many cases where

registers are available to hold them.
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To help in the discussion, we use the following simple example to illustrate our
points. Imagine four live ranges, a, b, ¢, and d; where a and b are single-precision
values and ¢ and d are double-precision values. Assume that b interferes with a and ¢

and that ¢ also interferes with d. The interference graph for this example looks like:

We have drawn the nodes for ¢ and d larger than those for @ and b as a reminder that
they require pairs; this reflects a fundamental fact that the allocator must handle.
Such a graph can be viewed as a weighted graph; each node has an integer weight
associated with it. In our problem, the weights correspond to the number of colors
(or registers) needed for each node.

From a graph coloring perspective, a weighted graph is fundamentally harder to
color than an unweighted graph. For example, consider the interference graphs that
result from straight-line code — they are interval graphs. A minimal coloring for an
unweighted interval graph can be found in linear time [40, page 14]. In contrast,
the problem of finding a minimal coloring for a weighted interval graph (which is
identical to the shipbuilding problem) has been shown to be NP-complete even when
the weights are constrained to be either 1 or 2 [40, page 204]. This is exactly the
situation arising when allocating register pairs. In any case, a global register allocator
must be prepared to handle procedures having more complex control flow.?

Fabri explored variations of this problem in the context of packing arrays in mem-
ory [34, 35]. While the work is interesting, it is not directly applicable to our problem.
For example, her problem has no analog for the problems of spill choice and spill place-
ment. Thus, for the purposes of register allocation, we have continued to work with

allocators styled after Chaitin’s work.

4.1.1 Unconstrained Pairs

Initially, consider the simplest case. Assume that the target machine places no ad-

jacency or alignment restrictions on pairs. In this case, the graph shown previously

12Recall that Chaitin et al. showed that any arbitrary interference graph can be generated by some
procedure.
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overconstrains the coloring; instead, we can simply handle the two halves of each

register pair separately. This yields the following graph:

a b c d

e

c d

This simple graph suffices because the machine places no restrictions on a register
pair beyond the obvious requirement that the two halves of the pair occupy different
registers (the edges from ¢ to ¢’ and from d to d’ embody this constraint). Because the
simple constraints can be encoded directly into the interference graph without any
additional interpretation, this graph can be colored directly with Chaitin’s algorithm.
It may over-spill, but the over-spilling will be limited to the kind found in programs
containing no register pairs. Chaitin’s method always finds a four-coloring for the

example graph.

4.1.2 Adjacent Pairs

Extensions to handle adjacent register pairs correctly are more difficult. For the
moment, assume that the target machine requires that pairs be allocated to aligned
adjacent registers. The problem arises during color selection; the allocator must
coordinate the colors for two nodes that appear unrelated. If it assigns a color to
one and cannot assign an adjacent color to the other node, it must either reconsider
the colors that it has already assigned or report complete failure. Neither of these
is a good alternative. For select to reconsider colors requires backtracking, which
can require exponential time. Reporting failure seems unhelpful; it provides no clear
direction for recovery.

Changing our representation for pairs appears to be the best alternative. We
should consider treating the pairs as indivisible units and assigning the pair two

colors in select. This gives us the following graph (more accurately multigraph):

\—c— L -]

It resembles our original graph from Section 4.1, with additional edges to represent

necessary interferences. The simplicity of this representation is appealing. Intuitively,
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the extra edge between b and c reflects the additional constraint placed on b. Similarly,

the extra edge between ¢ and d balances their extra width.

Multigraph Representation

So, why have we moved to a multigraph representation, besides the intuitive appeal
of the pictures? For stronger justification, we must consider the role edges play in
the coloring process. First, edges represent interferences — they are critical to the
correctness of the resulting allocation. Second, they trigger spilling in simplify.

Recall that simplify examines the graph and repeatedly removes nodes with fewer
than &k neighbors, where k is the number of available colors. A node having fewer
than k neighbors always receives a color independent of context. If, during the sim-
plification process, a node always has k or more neighbors, simplify marks it for
spilling. The number of neighbors is the node’s degree. Thus, for the allocator to
work correctly, a node’s degree should accurately reflect its colorability. For register
pairs, we must add enough edges to ensure proper behavior. Too few edges lead to
a situation where simplify fails to reserve enough registers; too many edges leads to
excessive spilling.

The graph shown above correctly models the colorability of each of node. Any
interference that involves a value stored in a pair of registers adds two edges to the
graph. Thus, the interference between b and ¢ creates a pair of edges, as does the
interference between ¢ and d.

This rule makes sense. On a four-register machine, two single registers that inter-
fere with a register pair raise the pair’s degree to four. Placed correctly, the singles
could block allocation of registers to the pair. Similarly, three register pairs that
all mutually interfere create a situation where all three have a degree of four. This
reflects the fact that three register pairs cannot fit into four registers.

Sometimes it is convenient to introduce an interference between a single register
and one half of a pair. Often, one half of a register pair may be used as the source
or destination of an operation. For example, the real half of a complex pair might
be copied to another register. In this case, the target of the copy should interfere
only with the imaginary half of the complex pair. An interference between the target
register and the real half of the pair would prevent coalesce from combining them

and eliminating the copy.
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A Problem

Unfortunately, Chaitin’s coloring heuristic performs poorly on graphs of this form.
The graph is more constrained because of the pairs of edges between pairs and their
neighbors; this triggers earlier application of the spill mechanism. To elucidate this
problem requires a somewhat more complex example. Consider a machine with eight
single-precision floating-point registers that requires double-precision values to be
allocated to adjacent pairs of registers. If we have a double-precision value, four
single-precision values are sufficient to force a spill with Chaitin’s allocator. The

following picture shows why.

Assume that w, z, y, and z each have at least six other interferences. Faced with this
situation, Chaitin’s algorithm invokes the spill metric to choose a value for spilling.
It selects the node that minimizes deC;% and spills it. Of course, many of the possible
assignments would leave space for all five values; for example, placing w, =, y, and
z in the first four registers leaves the last four to hold d. Unfortunately, the early
decision on spilling prevents the allocator from finding such an allocation.

Why does this happen? There exist colorings of w, z, y, and z, like the one
suggested above, that preclude d’s allocation. The “extra” edges in the interference
graph, the second edge from d to each of the other nodes, account for this possibility.
In Chaitin’s scheme, simplify constructs an order in which select is guaranteed to
succeed. Such an order does not exist for the example, so simplify spills one of the
values. Thus, in any region where there is strong competition for registers and a mix-
ture of single registers and register pairs, the allocator will consistently overestimate

the demand for registers and spill values for which registers are available.
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4.2 The Optimistic Coloring Heuristic

Originally, we thought that this problem was endemic to all coloring allocators.
Fortunately, Randy Scarborough asked us a question that caused us to consider the
problem of adjacent pairs in the context of our optimistic coloring heuristic.

The optimistic allocator behaves differently than the pessimistic allocator with
respect to spilling adjacent pairs. Because it defers spill decisions into select, it only
spills a node when it discovers that it cannot color the node. With adjacent pairs,
the behavior is the same; it only spills a pair when it discovers that no adjacent pair
is available.

This change eliminates the over-spilling that arises with Chaitin’s heuristic. To

see this more clearly, reconsider the graph that caused problems in Section 4.1.2.

The pessimistic allocator would spill because the single-precision values w, z, y, and
z might be assigned to registers in a way that precludes successful coloring of d. The
optimistic allocator would simply push a node, say d, on the stack, because the actual
coloring of w, z, y, and z may leave a pair available for d. This can happen in many
ways; for example, w and = might be assigned the same color, y might be spilled, or
y and z might be assigned to consecutive registers. In fact, the only way that d could
be blocked is by an even spacing of the sort suggested by the figure.

The optimistic allocator often succeeds on graphs where the pessimistic allocator
fails. Simplify determines an order for assigning colors; it treats single nodes and
pairs identically. The difference between them is encoded in the number of edges.
Select makes the actual spill decisions; it spills a node only after discovering that it

cannot find the needed color(s).
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4.3 Unaligned Pairs

A few architectures allow the use of unaligned adjacent pairs of registers. The inter-
ference graph required for this situation is slightly more complex than for the aligned
case. For our continuing example, the following interference graph captures all of the

needed properties:

\ c d

The extra edge (between ¢ and d) is required to correctly trigger the selection of a

spill candidate in simplify. The next two graphs help show why this third edge is
necessary between unaligned pairs.

Note that three pairs (z, y, and z) can be colored so that there is no adjacent pair
of colors for d. The fact that d has nine edges will trigger the spill heuristic in simplify,
causing it to select a spill candidate. Of course, the candidate will not necessarily be

spilled — this is the key difference between the optimistic and pessimistic approaches.

>

d

Even two pairs and a single may be placed so that d cannot be colored, as shown
below. Again, d’s eight edges are sufficient to warn that d may have to be spilled

during select.
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Finally, we note that requiring four edges between each interfering pair would be too
conservative. This would suggest that only two pairs (say = and y) would suffice to
preclude coloring d.

These examples show that the extra flexibility offered by eliminating alignment
restrictions complicates the allocation process by enlarging the graph. Furthermore,
because of the additional constraints that it adds, it can actually lead to worse allo-

cations.

4.4 Using Pairs for Memory Access

In some cases, it is desirable to use adjacent registers for loads and stores. For
example, complex numbers are often represented in storage as a pair of adjacent
single-precision floating-point numbers. On some machines, it is advantageous to
load these values into an adjacent register pair using a double-precision floating-point
load. Unfortunately, tying all subsequent uses of the component parts of the complex
number to the adjacent registers restricts the allocator’s freedom. Our compiler han-
dles this issue by carefully shaping the code before the allocator sees it. It generates a
double-precision load into an adjacent pair of virtual registers, and then immediately
copies the component values into single registers.!® This allows the allocator to keep
the values in adjacent registers at points where they are loaded and stored, while
offering it the chance to keep them in non-adjacent registers during the rest of their
lifetimes. It decides between these choices during coalescing, based on the structure
of the interference graph. The allocator is the proper place to make this decision — it
relies on information that cannot be made available earlier in compilation.

These ideas may become more important in the future. Architects can make more
memory bandwidth accessible through the use of wider load and store instructions.
For example, on Intel’s 1860 XP, the quad-word, floating-point load £1d.q loads four
registers at a time, allowing a program to move twice as much data as the double-
word version £1d.d and four times as much as the single-word version £1d.1 [45].
Naturally, any appreciable use of this feature ties down a large number of registers

and allocating them carefully becomes important.

13These extra copies are only inserted when loading and storing complex numbers. Ordinary double-
precision values are managed with no extra copies, since extra copies would provide no additional
flexibility.
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Previous work by Nickerson focuses on allocating aggregate data structures to
adjacent sets of registers [57]. Nickerson assumes that the data items must remain
adjacent throughout their lifetimes and that the components of the aggregate can have
different lifetimes. In our work, we handle cases where the components of an aggregate
have different lifetimes by enforcing adjacency only at those instructions where it is
required. Pairs are used at instructions that require them; when a component is
used for some different lifetime, we separate out that non-adjacent use. This can
be accomplished by copying the component into another register; this lets coalesce,
simplify, and select determine whether or not to preserve adjacency. Note that this

is only important for values having components with different lifetimes.

4.5 Summary

This chapter examines the problem of dealing with register pairs in a graph coloring
register allocator. To work with register pairs, the allocator needs a way to represent
them in the interference graph; this entails either changing the interference graph
or its interpretation. We have shown how to represent different sets of constraints:
unconstrained pairs, adjacent pairs, and unaligned adjacent pairs. The key issue is
determining the number of edges to add between an aggregate node and each of its
neighbors. Our scheme extends in a straightforward way to larger aggregate register
groupings.

Unfortunately, when presented with a multigraph, Chaitin’s allocator consistently
over-estimates the demand for registers. This results in allocations that underuse
the register set, spilling values even when registers are available to hold them. An
optimistic allocator avoids such over-spilling. This allows the compiler-designer to
use a simple representation for adjacent register pairs without provoking underuse of
the register set. The previous chapter has shown that the optimistic coloring heuristic
produces better allocations than Chaitin’s pessimistic heuristic; this chapter shows

that optimism also improves the treatment of register pairs.
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Chapter 5

Rematerialization

This chapter examines a specific problem that arises in global register allocation —
rematerialization. When a value must be spilled, the allocator should recognize those
cases when it is cheaper to recompute the value than to store and retrieve it from
memory. While our discussion is set in the context of the Yorktown allocator, the
same questions arise in all global allocators.

The next section introduces the problem and suggests why it is important. We give
a high-level view of our approach in Section 5.2 and describe the necessary low-level

modifications to the allocator in Section 5.3. Results are discussed in Section 5.4.

5.1 Introduction

Chaitin et al. discuss several ideas for improving the quality of spill code [20]. They
point out that certain values can be recomputed in a single instruction and that
the required operands will always be available for the recomputation. They call
these exceptional values never-killed and note that such values should be recalculated
instead of being spilled and reloaded. They further note that an uncoalesced copy
of a never-killed value can be eliminated by recomputing it directly into the desired
register. Together, these techniques are called rematerialization. Many opportunities

for rematerialization arise in practice, including:
e immediate loads of integer constants and floating-point constants,
e computing a constant offset from the frame pointer or the static data pointer,
e loads from a constant location in the stack frame or the static data area, and

e loading non-local frame pointers from a display [4, Section 7.4].

The values must be cheaply computable from operands that are available throughout

the procedure.
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Source Ideal Yorktown Splitting
| | |
p — Label p <« Label p <« Label
store p store p
\ p — Label reload p reload p
y—y+[p y—y+[p y—y+[p y—y+[p
p — Label reload p
\ reload p
p—p+l p—p+l p—p+l p—p+l1
store p
| |

Figure 5.1 Rematerialization versus Spilling

Consider the code fragments shown in Figure 5.1.'* Examining the Source column,
we note that p is constant in the upper loop, but varying in the lower loop. The
register allocator should take advantage of this situation.

Imagine that high demand for registers in the upper loop forces p to be spilled;
the Ideal column shows the desired result. In the upper loop, p is loaded just before
it is needed (using some sort of “load-immediate” instruction). For the lower loop, p
is loaded just before the loop, again using a load-immediate.

The third column illustrates the code that would be produced by the Yorktown
allocator. The entire live range of p has been spilled to memory, with loads inserted
before the uses and stores inserted after the definitions.

The final column shows code we would expect from a “splitting” allocator [26, 51,
41, 16]; the actual code might be worse.'> Unfortunately, examples of this sort are
not discussed in the literature on splitting allocators and it is unclear how best to

extend these techniques to achieve the Ideal solution.

14The notation [p] means “the contents of the memory location addressed by p.”

15In fact, our work on rematerialization was motivated by problems observed during our experiments
with splitting.
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5.2 Rematerialization

It is important to understand the distinction between live ranges and values. A live
range may comprise several values connected by common uses. In the Source column
of Figure 5.1, p denotes a single live range composed from three values: the address
Label, the result of the expression p + 1, and (more subtly) the merge of those two
values at the head of the second loop.

The Yorktown allocator correctly handles rematerialization when spilling live
ranges with a single value, but cannot handle more complex cases; e.g., the vari-
able p in Figure 5.1. Our task is to extend the Yorktown allocator to take advantage
of rematerialization opportunities for complex, multi-valued live ranges. Our ap-
proach is to tag each value with enough information to allow the allocator to handle

it correctly. To achieve this, we
1. split each live range into its component values,
2. propagate rematerialization tags to each value, and

3. form new live ranges from connected values having identical tags.

This approach allows correct handling of rematerialization, but introduces the new
problem of minimizing unnecessary splits. The following sections describe how to
find values, how to propagate tags, how to split the live ranges, and how to remove

unproductive splits.

5.2.1 Discovering Values

To find values, we construct the procedure’s static single assignment (SSA) graph, a
representation that transforms the code so that each use of a value references exactly
one definition [29]. To achieve this goal, the construction technique inserts special
definitions called ¢-nodes at those points where control-flow paths join and different
values merge. We actually use the pruned SSA, with dead ¢-nodes (¢-nodes with no
uses) eliminated [21].

A natural way to view the SSA graph for a procedure is as a collection of values,
each composed of a single definition and one or more uses. Each value’s definition is
either a single instruction or a ¢-node that merges two or more values. By examin-
ing the defining instruction for each value, we can recognize never-killed values and

propagate this information throughout the SSA graph.
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5.2.2 Propagating Rematerialization Information

To propagate tags, we use an analog of Wegman and Zadeck’s sparse simple con-
stant algorithm [64].'® We modify their lattice slightly to represent the necessary

rematerialization information. The new lattice elements may have one of three types:

T  Top means that no information is known. A value defined by a copy instruction
or a ¢-node has an initial tag of T.

inst If a value is defined by an appropriate instruction (never-killed), it should be
rematerialized. The value’s tag is simply a pointer to the instruction.

1 Bottom means that the value cannot be rematerialized. Any value defined by
an “inappropriate” instruction is immediately tagged with L.

Additionally, their meet operation M is modified in an analogous fashion. The new

definition is:

any [ T = any

any [ L = L

inst; M inst; = inst; if inst; = inst;
inst; T inst; = L  if inst; # inst;

Note that inst; = inst; compares the instructions on an operand-by-operand basis.
Since our instructions have at most 2 operands, this modification does not affect the
asymptotic complexity of propagation.

During propagation, each value will be tagged with an inst or L. Values defined
by a copy instruction will have their tags lowered to inst or L, depending on the
value that flows into the copy. Values defined by ¢-nodes will be lowered to inst if
and only if all the values flowing into the node have identical inst tags; otherwise,
they are lowered to L.

This process tags each value is the SSA graph with either an instruction or L. If a
value’s tag is L, spilling that value requires a normal, heavyweight spill. If, however,
its tag is an instruction, it can be rematerialized by inserting the instruction specified
by the tag. The tags are used in two phases of the allocator: spill costs uses the tags
to compute more accurate spill costs and spill code uses the tags to emit the desired

code.

16The more powerful sparse conditional constant algorithm is unnecessary; by this point in the
compilation, all constant conditionals have been folded.
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Source S5SA Splits Minimal
Y
p — Label po < Label po < Label po < Label
Y
y —y+[p] y — y + [po] Y — y + [po] Y — y + [po]
P1 — po/\ P12 < Po
! p1 — ¢(po, p2)
p—p+l p2—p1+1 pr—pi+1 pP1p2 p12 < p12 +1

Figure 5.2 Introducing Splits

5.2.3 Inserting Splits

After propagation, the ¢-nodes must be removed and values renamed to recreate
an executable program. Consider the example in Figure 5.2. The Source column
simply repeats the example introduced in Figure 5.1. The SSA column shows the
effect of inserting a ¢-node for p and renaming the different values comprising p’s live
range. The Splits column illustrates the copies necessary to distinguish the different
values without ¢-nodes. The final column (Minimal) shows the single copy required
to isolate the never-killed value py from the other values comprising p. We avoid the
extra copy by noting that p; and p; have identical tags after propagation (both are
1) and may be treated together as a single live range p1. Similarly, two connected
values with the same inst tag would be combined into a single live range.

For the purposes of rematerialization, the copies are placed perfectly — the never-
killed value has been isolated and no further copies have been introduced. The al-
gorithm for removing ¢-nodes and inserting copies is described in Section 5.3.1. In
Chapter 6, we discuss the possibility of including all the copies suggested in the Splits

column.
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5.2.4 Removing Unproductive Splits

Our approach inserts the minimal number of copies required to isolate the never-killed
values. Nevertheless, coloring can make some of these copies superfluous. Recall the
Minimal column in Figure 5.2. If neither py nor py, are spilled and they both receive
the same color, the copy connecting them is unnecessary. Because it has a real run-
time cost, the copy should be eliminated whenever possible. Of course, coalesce would
remove all of the copies, losing the desired separation between values with different
tags. So, we use a pair of limited coalescing mechanisms to remove unproductive
copies:

Conservative coalescing is a straightforward modification of the standard coalesce

phase. Conceptually, we add a single constraint to coalesce — only combine two
live ranges if the resulting single live range will not be spilled.

Biased coloring increases the likelihood that live ranges connected by a copy get
assigned to the same register. Conceptually, select tries to assign the same
color to two live ranges connected by a copy instruction.

Taken together, these two mechanisms remove most of the unproductive copies.

5.3 Implementation

The Yorktown allocator can be extended naturally to accommodate our approach.
The high-level structure depicted in Figure 3.3 is unchanged, but a number of low-
level modifications are required. The next sections discuss the enhancements required

in renumber, coalesce, and select.

5.3.1 Renumber

Chaitin’s version of renumber (termed “getting the right number of names”) was
based on def-use chaining. Long before our interest in rematerialization, we adopted
an implementation strategy for renumber based on the pruned SSA graph. The old

implementation has four conceptual steps:

1. Determine liveness at each basic block using a sparse data-flow evaluation

graph [21].

2. Insert ¢-nodes based on dominance frontiers. Avoid inserting dead ¢-nodes.
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Renumber the operands in every instruction to refer to values instead of the
original virtual registers. At the same time, accumulate availability information
for each block. The intersection of live and avail is needed at each block to allow
construction of a precise interference graph.

Form live ranges by unioning together all the values reaching each ¢-node using
a fast disjoint-set union. The disjoint-set structure is maintained while build-
ing the interference graph and coalescing (where coalesces are further union
operations).

In our implementation, steps 3 and 4 are performed during a single walk over the domi-

nator tree. Using these techniques, renumber completely avoids the use of bit-vectored

data-flow analysis. Despite the apparent complexity of the algorithms involved, it is

fast in practice and requires only a modest amount of space (see Section 8.4 for more

details on the implementation of renumber as well as measurements and discussion

of required compile time and space).

Because renumber already uses the SSA graph, only modest changes are required

to support rematerialization. The modified renumber has six steps:

1.

2.

Determine liveness at each basic block using a sparse data-flow evaluation graph.

Insert ¢-nodes based on dominance frontiers, still avoiding insertion of dead

¢-nodes.

Renumber the operands in every instruction to refer to values. At the same
time, initialize the rematerialization tags for all values.

Propagate rematerialization tags using the sparse simple constant algorithm as
modified in Section 5.2.2.

Examine each copy instruction. If the source and destination values have iden-
tical inst tags, we can union them and remove the copy.

Examine the operands of each ¢-node. If an operand value has the same tag
as result value, union the values; otherwise, insert a split (a distinguished copy
instruction) connecting the values in the corresponding predecessor block.'?

Steps 5 and 6 are performed in a single walk over the dominator tree.

1"During the initial construction of the control-flow graph, we insert extra basic blocks to ensure a
unique predecessor wherever splits may be required.
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5.3.2 Conservative Coalescing

To prevent coalescing from removing the splits that have been carefully introduced
in renumber, we must limit its power. Specifically, it should never coalesce a split
instruction if the live range that results may be spilled. In normal coalescing, two
live ranges [; and [; are combined if [; is defined by a copy from [; and they do
not otherwise interfere. In conservative coalescing, we add an additional constraint:
combine two live ranges connected by a split if and only if /;; has < k neighbors of
“significant degree,” where significant degree means a degree > k.

To understand why this restriction is safe (indeed, conservative), recall Chaitin’s
coloring heuristic. Before any spilling, nodes of degree < k are removed from the
graph. When a node is removed, the degrees of its neighbors are reduced, perhaps
allowing them to be removed. This process repeats until the graph is empty or all
remaining nodes have degree > k. Therefore, for a node to be spilled, it must have
at least k neighbors with degree > k in the initial graph.

In practice, we perform two rounds of coalescing. Initially, all possible copies are
coalesced (but not split instructions). The graph is rebuilt and coalescing is repeated
until no more copies can be removed. Then, we begin conservatively coalescing split
instructions. Again, we repeatedly build the interference graph and attempt further
conservative coalescing until no more splits can be removed.

In theory, we should not intermix conservative coalescing with unrestricted coa-
lescing, since the result of an unrestricted coalesce may be spilled. For example, [;
and [; might be conservatively coalesced, only to have a later coalesce of [;; with [
provoke the spilling of /;;; (since the significant degree of [;;; may be quite high). In
practice, this may not prove to be a problem, permitting a slight simplification of the
entire process.

Conservative coalescing directly improves the allocation. Each coalesce removes
an instruction from the resulting code — a split instruction that was introduced by
the allocator. In regions where there is little competition for registers (a region of low
register pressure), conservative coalescing undoes all splitting. It cannot, however,

undo all of the non-productive splits by itself.
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5.3.3 Biased Coloring

The second mechanism for removing useless splits involves changing the order in which
colors are considered for assignment. Before coloring, the allocator finds partners —
values connected by splits. When select assigns a color to [;, it first tries colors
already assigned to one of [;’s partners. With a careful implementation, this is no
more expensive than picking the first available color; it really amounts to biasing the
spectrum of colors by previous assignments to [;’s partners.

The biasing mechanism can combine live ranges that conservative coalescing can-
not. For example, [; might have 2k neighbors of significant degree; but these neigh-
bors might not interfere with each other and thus might all be colored identically.
Conservative coalescing cannot combine /; with any of its partners; the resulting live
range would have too many neighbors of significant degree. Biasing may be able to
combine [; and its partners because it is applied after the allocator has shown that
both live ranges will receive colors. At that late point in allocation, combining them
is a matter of choosing the right colors. By virtue of its late application, the biasing
mechanism uses a detailed level of knowledge about the problem that is not available

any earlier in the process — for example, when coalescing is performed.

Limited Lookahead and Backtracking

Of course, biased coloring will not always succeed in assigning adjacent partners to
the same register. The vagaries of the coloring process ensure that cases will arise
when [; and [; will be adjacent partners and be assigned to different registers. To
help cope with these cases, we can add a final improvement to select.

When selecting a color for [;, the allocator can try to select a color that is still
available for each of its adjacent uncolored partners. This increases the likelihood
that biased coloring will succeed. We call this technique limited lookahead.

Similarly, when selecting a color for [;, the allocator may discover that none of the
available colors matches its already colored adjacent partners. In this case, the allo-
cator can try to change the colors assigned to those partners. We call this technique
limited backtracking.

Notice that this form of backtracking differs from the style suggested in Section 3.3.
In that case, we were attempting to avoid spills; in this case, we are attempting to
remove splits. Unfortunately, neither form of backtracking cooperates well with biased

coloring. Having carefully selected a color for a node, perhaps matching a partner’s



ol

color, it would be disappointing if some sort of backtracking disturbed our artfully
arranged coloring. While it is possible to account for the direct effects of recoloring,
the extended case involves exponential exploration of the graph. Therefore, in the
presence of biased coloring, we attempt no backtracking.

In practice, we try each heuristic in succession. First, we try to find a color
matching a colored partner. If that fails, we try limited lookahead, seeking to avoid

colors that uncolored partners cannot use. If all else fails, we take any free color.

5.4 Results

Our recognition and exploration of this problem was prompted by poor spilling ob-
served in our experimental splitting allocator (see Chapter 6). However, Randy
Scarborough pointed out that our approach was really orthogonal to the splitting
question. Therefore, it seems natural to compare our new approach to the simpler
scheme used in the Yorktown allocator and our optimistic allocator.

In Section 7.1, we present a comparison of the optimistic allocator with the en-
hanced allocator described here. In our test suite of 70 routines, we observed im-
provements in 28 cases and two cases of degradation. One loss was small (2 loads,
2 stores, and an extra copy); the other was somewhat larger. Improvements ranged
from tiny (after all, some routines may offer no opportunities for rematerialization)
to reasonably large (typically reducing spill costs by 10 to 20%). It is possible to see a
pattern of trading loads for load-immediates: we often see a fairly large reduction in
load instructions offset by an increased number of load-immediate instructions. Since
loads are usually more expensive, we win in the balance.

Typically, the number of stores and copies is also reduced. The reduction in copy
instructions suggests that our various heuristics for removing unhelpful splits are

“good enough.”

5.5 Summary

The primary contribution of this chapter is a natural extension of Chaitin’s ideas on
rematerialization. We show how to handle complex live ranges that may be completely
or partially rematerialized. We describe a technique for tagging the component values
of a live range with correct rematerialization information. We introduce heuristics,
conservative coalescing and biased coloring, that are required for good results. Finally,

we report experimental results showing the effectiveness of our extensions.
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Our work extends the work described by Chaitin et al. and recalls an approach sug-

gested by Cytron and Ferrante [28].

Chaitin et al. introduce the term rematerialization and discuss the problem briefly.
Because their allocator cannot split live ranges, they handle only the simple
case where all definitions contributing to a live range are identical. Our work
is a direct extension and is able to handle each component of a complete live
range separately and correctly.

Cytron and Ferrante suggest splitting based on (the equivalent of) the SSA. Their
goal is minimal coloring in polynomial-time — achieved at the cost of introducing
extra copies. There is no direct discussion of rematerialization; indeed, they do
not consider the possibility of spilling. In contrast, we are concerned primarily
with quality of spill-code. Nevertheless, their work might be considered a direct
ancestor of our approach.

It is also interesting to compare our approach to other published alternatives; for
example, the splitting allocator of Chow and Hennessy and the hierarchical coloring
allocator of Callahan and Koblenz [26, 16]. The published work does not indicate how
they handle rematerialization. It is possible that they make no special provisions,
trusting their splitting algorithm to do an adequate job.!®

Some colleagues have suggested the possibility of more extensive rematerialization,
perhaps recomputing entire expressions to avoid excess spilling. The difficulty is
avoiding the introduction of additional register pressure in the attempt to save a spill

(which was due to excess pressure in the first place).

8nspired by a draft of our paper [14], Brian Koblenz has added rematerialization to their allocator.
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Chapter 6

Aggressive Live Range Splitting

Consider the example shown in Figure 6.1. The left side sketches a pair of loops, each
updating a variable. If we assume that each loop has only one register available for
either = or y, then the right column illustrates the ideal allocation. The Yorktown
allocator can never produce this ideal allocation; a value is either held in a register
for its entire lifetime or it is spilled for its entire lifetime, with appropriate loads and
stores inserted immediately before and after each use and definition. Since neither
x nor y can be held in a register across both loops, the Yorktown allocator will spill
both variables and the resulting code will require many more loads and stores than
the ideal allocation.

This chapter explores ways of extending the Yorktown allocator to handle prob-
lems similar to those illustrated in Figure 6.1. We propose an aggressive approach to

splitting and consider alternative implementations.

T— ... T— ...
Y— ... Y— ...
store y
Y
r—x+... r—x+...
Y
store
reload y
Y
y—y+... Yye—y+...
Y

Figure 6.1 Splitting
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6.1 Live Range Splitting

As an alternative to the “spill everywhere” approach used in the Yorktown allocator,
Chow and Hennessy describe a scheme called live range splitting [26]. They observe
that breaking a live range into several pieces and considering the pieces separately
can produce an interference graph that colors with less spilling.!'® Thus, when their
allocator cannot assign a color to some live range [;, it splits /; into smaller live ranges,
one for each basic block in which [; appears. These new, smaller live ranges become
independent candidates for coloring; eventually, they will be colored or spilled.

To decrease the amount of fragmentation introduced by splitting, Chow and
Hennessy also included a method for combining some of these small live ranges. After
splitting a live range, their allocator examines the resulting set of smaller live ranges.
If it finds two adjacent live ranges that would have degree < k when combined, they
are pasted together.

Live range splitting has several merits. The splitting process often creates live
ranges of lower degree and the limitation on combining keeps degrees low. If an
entire live range is spilled, as in Chaitin’s work, its value will reside in a register only
for trivial periods around each definition or use. Splitting allows the live range to
stay in a register over longer intervals — often an entire block or, if combinations are
possible, over several blocks. With luck, the new live range can be large enough to

extend over all of an important construct, like an inner loop.

6.1.1 Theoretical Difficulties

Two theoretically hard problems arise in splitting: choosing the right live ranges to
split and the right places to split them. Chow and Hennessy use simple heuristics to
attack both problems.

e They choose live ranges to split based upon failure of their coloring heuristic.
Unfortunately, there is no assurance that this scheme will select the best live
ranges to split. For example, in the code from Figure 6.1, their technique will
fail to produce the ideal allocation. One of  and y will be colored successfully
and the other will be split. However, the ideal allocation requires that both
live ranges be split. Their allocator never backtracks to consider splitting a
successfully colored live range.

19Fabri used this same observation to improve the coloring in her work on storage optimization [34].
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e Splits are recombined based solely on degree; this can lead to unfortunate loca-
tions for split points. For example, Chow might build a live range that extends
into a loop, but does not encompass the whole loop, thus requiring a split on
the loop’s back edge.

Note that split points tend to become spill points; therefore, the correct placement

of split points is crucial.

6.1.2 Practical Difficulties

There is a third problem we must consider — efficiency. Chow and Hennessy are able
to perform live range splitting relatively efficiently; but to do so, they must sacrifice
many of the desirable features of the Yorktown allocator (see Section 7.2). Retaining
the precision and algorithmic efficiency of the Yorktown allocator is a challenge. The
key problem seems to be the difficulty and expense of maintaining the interference

graph as live ranges are split.

6.2 Aggressive Live Range Splitting

Our approach to all these problems is to aggressively split live ranges before attempt-
ing to color. This idea, combined with our earlier ideas for undoing excess splits
(recall Sections 5.3.2 and 5.3.3), seems to offer a useful tack. The following sections
provide more detail on splitting and the complications it introduces for the rest of

the allocator.

6.2.1 Splitting

In our search for a splitting technique that produced good results with a reasonable
running time, we were forced to reconsider the fundamental basis of the coloring
approach to register allocation. The key insight is that the interference graph captures
none of the structure of the control-flow graph. In reducing the allocation problem to
a coloring problem, the compiler loses almost all information about the topography of
the code. There is no representation for locality. Estimates of execution frequency get
factored into estimated spill costs, but because the information is computed over the
whole procedure, it gives equal weight to both near and distant references. Thus, a
live range that is heavily used in some critical inner loop may get spilled in deference
to a value that is live across the loop and used in one or more distant but deeply

nested loops.
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In an effort to recapture geographic locality, we advocate:

1. finding those points in the code where we would like to spill, if spilling is actually
required, and

2. splitting every live range at those points.

Thus, we avoid the difficult problem of picking the optimal live ranges to split by
splitting all the live ranges that cross a split point. We choose split points based on
the structure of the control-flow graph. Of course, such a general statement admits

many specific interpretations. Possibilities include:
e splitting at every basic block,°

e splitting around high-level control structures, such as loops and if-then-else
statements, or

e as suggested in Chapter 5, splitting based on the SSA-graph.

In Section 6.4, we consider several alternatives in detail.

6.2.2 Spilling

Our approach to splitting has some subtle consequences. In the original interference
graph, all of the live ranges are independent. After splitting, some of the live ranges
are related — they are partners. Recognition and proper handling of partners is critical
if the allocator is to produce high-quality spill code. For example, each set of partners
should spill to the same location.

Consider the example in Figure 6.2. The single live range in (a) is split in (b) by
the introduction of a copy. The resulting live ranges, [; and [, are partners. If /; is
spilled, we should get (c). Alternatively, (d) illustrates the result of spilling ;. Note
that each partner spills to the same location. Finally, (e) shows the result of spilling
both partners.

Now consider the costs for the sequence from (b) through (c) to (e). Moving from
(b) to (c) costs one store and one load, but saves one copy. The transition from (c)
to (e) saves one load at the split point and costs one load at the use point. No new

instructions are required; instead, the load is effectively moved. Therefore, the cost

20This can be even more effective if we artificially limit the size of basic blocks to some relatively
small size [51].
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(a) (b) () (d) (e)

store j store j
I ' I; spilled I ' I; spilled
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' '
reload & reload k
—1 — k — k — k — k

Figure 6.2 Spilling Partners

of spilling [, at (c) is determined by the relative loop nesting depth of the split point
and the use. If the split point is nested more deeply than the use, it will be profitable
to spill /.

We account for these situations while computing spill costs and inserting spill
code. Additionally, we update spill costs incrementally during simplify. In terms of
the example in Figure 6.2, if [; cannot be colored and must be spilled, the cost of
spilling its partner is immediately adjusted, increasing the probability of spilling /.
Furthermore, if any live range has a negative spill cost, it will be spilled immediately
and its partners’ costs updated appropriately.

The incremental adjustment to spill costs during simplify is really just a simple
heuristic that has proven effective in practice. Since a node chosen as a spill candidate
may not actually be spilled (indeed, we hope it is not), the adjustments are in some
sense premature. We have also experimented with adjusting spill costs during select,
when we actually mark nodes for spilling. However, the results were nearly always
disappointing.

The effect of this careful handling of partners is important. Aggressive splitting
can divide long live ranges into long chains of partners. If one partner is spilled, it
tends to drag its immediate partners along. Conversely, when a partner is kept in a
register, it tends to hold its immediate partners in registers. Together with register

pressure from competing live ranges, this works to force spill points out of loop nests.
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before splitting after splitting after spilling a and ¢
a «—
T — a — store a
b—a reload b
— T c—a — b — b
c—b store b
—z —c reload ¢
—c

Figure 6.3 Splitting and Spilling

6.2.3 Cleanup

Consider the example in Figure 6.3. The left illustrates the code for a small DO-loop,
where all details except for references to x have been omitted. The center illustrates
the effect of splitting = into three ranges labeled a, b, and ¢. The right illustrates the
effect of spilling a and ¢ outside the loop. Note that the splits (copy instructions) are
converted into loads and stores, just outside the loop as desired. Unfortunately, the
store of b at the loop exit is unnecessary.

While the specific case shown in Figure 6.3 is easy to recognize; the general prob-
lem is global in nature. Consider the example sketched in Figure 6.4. On the left
side, a single live range has been split into four components separated by copy in-
structions. On the right side, the fourth component [, has been spilled. The question
arises: How do we handle the copy z « y? One possibility is to convert it to a store
instruction; certainly the spill location in memory must have the correct value when z
is finally loaded. However, suppose [,, has also been spilled. In this case, the value in
memory would already be initialized and the copy instruction can simply be deleted.
The difficulty is that the correct handling of z « y doesn’t depend on [, [,, or even

their immediate partners.
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Figure 6.4 Globally Unnecessary Stores

For best results, we would like to see such facts reflected immediately in the
spill costs for each component, similar to the heuristic used to maintain spill costs
for immediate partners. However, it seems difficult to accomplish this updating on
the fly. Therefore, we simply insert redundant stores when they may be necessary,
accepting the imprecision.

However, we are able to detect and eliminate redundant stores in a separate pass
by solving a global data-flow problem for each set of partners (recall that all the
partners split from a single live range share the same spill location). Redundant
stores are discovered and removed immediately after spill code has been inserted, in
a separate phase called cleanup. Partially redundant stores are still a problem; see
Figure 6.6 for an example.

Note that this problem is apparently shared by other allocators that attempt
splitting [26, 16]. Actually, the other allocators seem to accept the extra stores, with

no attempt at later cleanup.?! It seems to be a difficulty inherent in splitting.

21In conversation, David Callahan mentioned that they were aware of the problem and were consid-
ering solutions, though he knew of nothing better than our batch approach.
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Figure 6.5 The Splitting Allocator

6.3 Implementation

Integrating these ideas into our allocator was a major task. Figure 6.5 shows a high-
level view of the resulting allocator. Several points have changed from the optimistic
allocator depicted in Figure 3.3. While there are many components, they may be

partitioned into three major phases:

before splitting The portion is lifted directly from our earlier implementations of
the Yorktown allocator. The intent here is to use the unrestricted coalesce
to remove any extraneous copies from the code before introducing new splits.
Thus, before the splitter is ever invoked, the allocator will reduce the number
of live ranges to some canonical set. In the simplified code, any remaining copy
instructions are meaningful.

splitting This is a generic splitting phase. For our experiments, we can employ
any one of several possible splitting heuristics. Each splitter does some com-
bination of data-flow analysis and control-flow analysis and introduces splits
(distinguished copies) to guide the remainder of the allocation.

after splitting This portion of the allocator is nearly identical to the optimistic
allocator shown in Figure 3.3. The major differences are the use of conservative
coalesce and biased select (already introduced to support rematerialization) and
global cleanup after spilling.
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The final phase of the allocator must carefully maintain the distinction between
live ranges (discovered by the first phase) and partners (determined by splitting).
Furthermore, the allocator must maintain the relation between partners and their
original live ranges, since all partners split from a single live range should spill to the

same location. This relation is also required by cleanup.

6.4 Splitting

We have considered many possible approaches to splitting. The two next sections
describe several heuristic approaches that appeared attractive. Section 6.4.3 describes

some important details common to all our implementations.

6.4.1 Loop-Based Splitting

Our exploration of live range splitting was motivated by the intuition that we often

want to split live ranges around loops.

Splitting Around All Loops

Our initial approach was simple and aggressive:

1. Find all loops in the code using Tarjan’s algorithm for testing reducibility [62].
For our experimental purposes, this approach is adequate; production imple-
mentations will require extensions to handle irreducible control-flow graphs.

2. Edges leading in and out of loops are marked as split points. We insert empty
basic blocks at each split point (we refine this notion in Section 6.4.3).

3. Split all the live ranges that cross each split point by inserting copies in the
new basic block.

Our early implementations were exploratory; many of the heuristics we now employ
were discovered in the course of our experiments. For instance, our work on remate-
rialization was prompted by examples observed in practice — for example, in handling
the many COMMON blocks in the SPEC program doduc.

Despite some encouraging results, our overall impression is that splitting around
all loops gives unstable results; that is, it performs well in some cases and poorly in
other cases. Even more disappointing were the compile-time costs. In some cases,

space and time requirements were increased by a factor of ten. While some increase in
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compile-time or space might have been acceptable if we could count on better results;
more expensive allocations and inferior results were not attractive.

We have tried other, more conservative, possibilities. For example, we can split
around outermost loops only, approximately splitting the routine into manageable
pieces. Alternatively, we can split only around innermost loops, attempting to isolate
computationally intensive areas in the code. However, all these approaches share
the common weakness of ignoring all information about the location of uses and

definitions.

Splitting Based on Inactivity

An attractive alternative is to split only inactive live ranges around loops. The
intuition here is that some live ranges extend across a loop without being mentioned
(used or defined) in the body of the loop. It seems clear that they should be spilled
first if there is excess pressure in the loop. Therefore, we can do a simple scan of the
code in each loop, accumulating the set of live ranges mentioned in the loop. Given
this set, we can split any unmentioned live range at the entrance and exit of the loop.

This simple approach extends naturally to loop nests. For each loop, we accu-
mulate the same information. Then, working from the outermost loop inward, we
split unmentioned live ranges around a loop — but only if the live range was not split
around an enclosing loop. Figure 6.6 illustrates the desired effect on a nest of two
DO-loops. In this case, z is referenced in the innermost loop; therefore, it is not split
at all. There is a use of y in the outermost loop, but it is unreferenced in the inner-
most loop; therefore, y is split on the edges leading in and out of the innermost loop.
There are no mentions of z in either loop; therefore, z is split around the outermost
loop (but not the innermost).

We implemented a version of our allocator that split unmentioned live ranges
around loops. During limited tests, the results were almost uniformly disappointing.
Reconsidering Figure 6.6 with a more sceptical eye, we can see possible reasons for
the poor results:

Splitting z There was little benefit gained by splitting z. If the unsplit z is spilled,
the results will be nearly identical to the result of spilling z’. Of course, if the

outer loop is never executed, the split is preferred; but these cases are perhaps
uncommon in practice (especially with FORTRAN routines).

Splitting y If y’ is spilled, the results will actually be worse than simply spilling the
unsplit y. The two split points will be converted into a store and a load inside
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the outer loop, whereas spilling the unsplit ¥ would only require a load in the
loop. This case is annoying since y is not modified inside the loop; all but the
first store will be useless. Note that cleanup is unhelpful in this case, since the
store is required on the initial iteration. Handling this case optimally is difficult
— it requires cloning the entire loop nest.?? Again, if the inner loop is never
executed, splitting vy is helpful.

Of course, one loop nest is not an entire routine. It is certainly easy to construct
cases where splitting y or z as shown in Figure 6.6 can be profitable. These points

are simply mentioned to help illustrate the difficulties of proper splitting.?

6.4.2 Splitting Based on Dominance

An alternative is to split live ranges based on the location of ¢-nodes in the pruned
SSA graph. This idea was suggested by several people in discussions about splitting
(including Jeanne Ferrante and Mike Lake). Furthermore, it is a natural extension
to our work with rematerialization. Exploration of this alternative leads to several

approaches based on the fundamental idea of dominance.

Dominance and Dominance Frontiers

Cytron et al. give a fast method for building the SSA-graph based on the idea of
dominance frontiers [29]. Dominance frontiers, as the name suggests, are based on
the idea of dominance.

In a flow graph (a directed graph with a designated node start), a node & domi-
nates a node y if all paths from start to y include x. Additionally, if  # y, then x
strictly dominates y. In the control-flow graph for a large routine, a given basic block
often dominates many other blocks; for example, the header of a loop will dominate
all members of the loop.

The dominance frontier of a node = (DF,) is the set of nodes y such that z
dominates a predecessor of y but does not strictly dominate y. Notice that the
last clause allows x to be a member of its own dominance frontier. Intuitively, the
dominance frontier of x does not include nodes dominated by x; rather, it includes

the nodes just outside the dominion of .

22This discussion suggests the possibility of splitting only undefined live ranges around loops; that
is, live ranges that are not defined inside the loop. This is a conservative approach that avoids some
of the problems of cleaning up extra loads. We have not yet explored this avenue.

23Certainly these difficulties were not obvious to us when we began work on this problem.
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To insert ¢-nodes for a variable v, we find basic blocks containing definitions of v.
For each such basic block b, we insert a ¢-node for v in each block of DFj. Since we
are building a pruned SSA-graph, we actually insert a ¢-node in a block d only if v is
live on entrance to d. Of course, a ¢-node represents a new definition of v; therefore,
further ¢-nodes are inserted in DFy. Cytron et al. give an efficient worklist algorithm

for placing ¢-nodes in this iterated dominance frontier.

Splitting at Dominance Frontiers

Recall the discussion in Section 5.2.3. In that case, we were attempting to isolate
never-killed values by inserting a minimum number of splits. We inserted splits on
edges leading into a ¢-node if the incoming value had a different tag than the value
defined by the ¢-node. In the present case, we simply insert splits on all edges leading
to a ¢-node. The effect is to isolate all the values in each live range, allowing the
allocator to handle each value individually.

This approach is attractive for several reasons. Of course, we already have all
the required machinery as a result of our work on rematerialization. Furthermore, we
avoid the awkwardness of finding loops (for loop-based splitting) in irreducible control-
flow graphs. Finally, this approach is intuitively appealing because it depends on the
structure of the control-flow graph and the location of definitions in the routine. It
seems to achieve much of the effect of loop-based splitting with much less actual
splitting. Additionally, we can hope to obtain some benefit in other regions of the
control-flow graph; for example, around IF and CASE constructs.

We were able to build a splitting allocator that split live ranges based on the
pruned SSA-graph. In Section 7.1, we compare the SSA-based allocator with the
rematerializing allocator discussed in Chapter 5. From a total of 70 routines, we
found a difference in 35 cases, with 21 improvements and 14 degradations. These
numbers are pessimistic in that the improvements appear larger in magnitude than
the degradations. On the other hand, the relatively large losses on twldrv and
tomcatv are disappointing. We also note that the number of copy instructions almost
always increases when using SSA-based splitting. This suggests that our heuristics
for removing excess copies, while adequate for rematerialization, are less satisfactory

in this case.
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Splitting at Reverse Dominance Frontiers

Splitting at ¢-nodes (or dominance frontiers) is appealing since it accounts for both
control structure and the location of definitions; however, there is no allowance for the
location of uses. Recall the example loop nest shown on the left side of Figure 6.6. If
we attempt to split based on the location of ¢-nodes, we get no splits at all. Remember
that ¢-nodes are inserted based on the location of definitions. In this example, the
definitions of x, y, and z are all located in the first block, a block that dominates
every other block in the graph. Again, this is only a small example, but we can
imagine realistic cases. For instance, this same situation arises when parameters are
defined in the entrance to a subroutine and remain constant throughout the routine.
Since the entrance block of a routine certainly dominates the entire routine, none of
the constant parameters will be split. This seems unhelpful — an effective splitting
allocator should have some provision for splitting these live ranges.

These considerations suggest additional splitting based on the location of uses
and reverse dominance frontiers. The reverse dominance frontier for a node is defined
to be the dominance frontier, but computed on the reverse control-flow graph; that
is, the control-flow graph with all edges reversed. The algorithm for placing reverse
¢-nodes would be similarly analogous to the algorithm invented by Cytron et al.
for placing ¢-nodes. To achieve the desired effect (splitting at forward and reverse
dominance frontiers), we maintain two worklists simultaneously, with each ¢-node
placement contributing to both worklists.

Figure 6.7 shows two rather simple examples that help illustrate the effect of
splitting at both forward and reverse dominance frontiers. In the upper example, we
show a loop containing a use (and no definitions) of a live range x that is live across
the loop. The lower example illustrates the effect if x is dead at the end of the loop
(any further uses would be masked by the second definition of ). Note that we avoid
splits when the result would be unused. In both cases we have completely separated
the uses and definitions; if desired, it would be possible to allocate a, b, and ¢ to
different registers.

The intuition behind splitting at dominance frontiers is not to achieve complete
separation of all uses and definitions (indeed, it does not); instead, it relates to the
traditional use of dominators in optimization. Consider the lower half of Figure 6.7.
If a is spilled, the load of b occurs at the split point, at a point leading inevitably to

a use of b.
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We built another version of our splitting allocator that split live ranges at both
forward and reverse dominance frontiers. Section 7.1 contains a comparison with our
rematerializing allocator. The results are mediocre. Out of 70 routines, there were
differences in 42 cases: 13 improvements and 29 degradations. Furthermore, many of
the degradations were quite large. On the other hand, there was a 22% reduction in
spill cost for tomcatv; in raw cycles, this improvement probably dominates all other

effects in the entire thesis. Once again, we see significant losses due to excess copies.

6.4.3 Mechanics

There are many mechanical details that must be handled correctly while splitting to

achieve best results. They are largely independent of any specific splitting heuristic.

Inserting New Basic Blocks

Conceptually, we would split live ranges on edges in the control-flow graph. In prac-
tice, splits may require actual instructions: copies or perhaps loads and stores. To
accommodate the split instructions, we must create basic blocks along some of the
edges in the control-flow graph. While it may be possible to create the new blocks
when and where desired, we simply create them when the control-flow graph is con-
structed. After allocation, empty blocks can be quickly deleted.?*

Recall that splits are always inserted before a join or after a fork. If the edge
leading into a join has a source with no other successor, then we simply insert the
split at the end of the source block. Similarly, if the edge leading from a fork has a
destination with a single predecessor, than we insert the split at the beginning of the
successor block. Therefore, new blocks are only required on edges whose source has
more than one successor and whose destination has more than one predecessor.

It may be difficult (in a practical sense) to split some edges. For example, in a
FORTRAN routine, it seems difficult to split edges leading from an ASSIGNed GOTO
to a join point. Fortunately, the use of ASSIGN is apparently rare. FORTRAN’s
computed GOTO statement, Pascal’s CASE statement, and C’s switch statement are

all manageable, given an adequate intermediate representation.

24Deletion of empty blocks is required anyway, since coalesce is sometimes able to delete every
instruction in a basic block.
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Splits to Avoid

It is clear that we ought to avoid splitting a live range immediately after it is defined or
immediately before it is used. In fact, if we recall the details of spill code generation,
it becomes clear that we ought not split a live range if there have been no deaths
between its definition and the end of the block. Similarly, we avoid splitting a live
range if there are no deaths between the beginning of the block and its use. Finally,
we must be careful not to split a live range at both the beginning and end of a block
if there are no deaths within the block.

Ordering Splits

Many split instructions may be inserted in a single block. Before spilling, the ordering
of individual splits is unimportant; however, after some live ranges have been spilled,
the order of resulting loads, stores, and the remaining splits is significant — stores
should be scheduled first, then splits (copies), and finally loads. The insight here is
that a store is the end of a live range and a load is the beginning of a live range — by
placing loads after stores, we minimize interferences.

Unfortunately, we discovered this idea too late. None of our experimental imple-
mentations take advantage of the insight; instead, splits are inserted in some arbitrary

order and the order remains unchanged while spilling.

6.5 Summary

The approach to spilling used in the Yorktown allocator (and in the variations dis-
cussed in earlier chapters) is quite coarse. It is easy to give examples where some
form of live range splitting is desirable: Figure 6.1 illustrates a typical artificial ex-
ample; a more realistic example is provided by SVD (Figure 3.2). In this chapter, we
have described an approach that allows finer control over spilling within the general
context of the Yorktown allocator.

The fundamental problem with the Yorktown allocator is that the reduction of the
register allocation problem to graph coloring throws away a large amount of informa-
tion; for example, the structure of the control-flow graph. Of course, an advantage of
the reduction to coloring is the distillation of large amounts of programmatic detail

to the essential concept of interference. When there are adequate registers, the loss
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of structure information is unimportant. When there are insufficient registers, the
information about control structure could have been used to help minimize spilling.

Our general approach is to split live ranges into finer components before attempt-
ing to color. Thus, instead of being forced to spill an entire live range, the allocator
can simply spill the troublesome components individually.

The bulk of our work has been exploring the consequences of our aggressive ap-
proach to splitting. We were able to identify a number of important details that must
be handled correctly for best results. These have never been published before and
it seems likely that other splitting allocators may be improved by correctly handling
these cases.

Our approach is sensitive to the heuristic employed for splitting. In Section 6.4, we
considered several alternative heuristics. Despite the intuitions and rationalizations
supporting each heuristic, none were completely satisfactory. While there were some
notable successes on individual routines, each splitting heuristic seemed too unstable
for production use. Furthermore, our heuristics for removing excess splits seemed
inadequate. Of course, our implementations also suffer from uncontrolled placement
of splits, as discussed in the previous section.

Future work will certainly begin with new implementations, taking advantage of
our new ideas for split placement. Additionally, there are many unexplored heuristics
for splitting; given the difficulty in removing excess copies, we plan to explore splitting
heuristics that perform less unnecessary splitting. In our implementation, splitting is
only performed once; therefore, we can afford to spend a fair amount of time deciding
which live ranges to split and where to split them. The sensitivity of our allocator to
the splitting heuristic (as shown by the widely varying results) emphasizes the need
for accurate splitting.

There are other approaches to live range splitting. Chow and Hennessy are able
to accomplish splitting by sacrificing much of the precision and efficiency offered by
Chaitin’s approach (see Section 7.2). Callahan and Koblenz also describe an approach
based on a hierarchical decomposition of the control-flow graph [16]. However, our
experience suggests that other approaches to splitting may not be achieving the high-
quality code they desire. While studying the (many) problems discovered during
the course of our experiments, we have often referred to published descriptions of

other splitting allocators — neither the problems nor their solutions are discussed.?®

25The problems solved by rematerialization and cleanup are two good examples.
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One possibility is that the problems have not been noticed, perhaps due to lack
of comparison with other allocators. In our work, we have been able to compare
against a high-quality allocator; therefore, cases of poor performance are immediately
exposed. Without reference to the standard set by the Yorktown allocator and our

improvements, we would be unable to evaluate the performance of our approach.
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Chapter 7

Measurements and Comparisons

There are many qualities to consider when comparing register allocators — implemen-
tation difficulty, compile-time and space requirements, and allocation quality. Since
our work largely concentrates on improving the Yorktown allocator, we are interested
in comparing allocation quality; the implementation difficulty and compile-time and
space requirements are relatively constant across our variations. The next section
presents a series of experiments used to compare the Yorktown allocator and several
of the improvements discussed in the previous chapters.

A second well-known approach to global register allocation, priority-based col-
oring, was introduced by Chow and Hennessy [26]. The final section compares the
Yorktown allocator with priority-based coloring and presents an experiment used to

study their compile-time behavior.

7.1 Measuring Allocation Quality

When building a register allocator for an optimizing compiler, we are primarily con-
cerned with the speed of the generated object code. A high quality allocation will
result in faster code than a low quality allocation. Usually, slower code will be the
result of extra instructions; e.g., load and store instructions required for spill code.?®
In this section, we describe a series of experiments designed to compare the allocation
quality of various versions of our allocator. We perform comparisons by measuring
the number of instructions executed by routines compiled using each allocator. The
following sections present a description of the experiments followed by a summary

and discussion of the results. The complete results are given in Appendix A.

260n pipelined machines, register allocation may sometimes have an adverse impact on instruction
scheduling; however, these considerations are beyond the scope of this work.
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7.1.1 Methodology

To support our research, we have written an optimizing compiler for FORTRAN.
The compiler is part of the R" programming environment and includes support for
interprocedural analysis and a variety of traditional optimizations [27]. We currently
generate code for the IBM RT/PC and have experimental code generators for the
Sparc, i860 and RS/6000. To experiment with register allocation, we have written a
series of allocators that are independent of any particular architecture.

The optimizer is organized as a collection of independent programs, each accom-
plishing a distinct transformation. During optimization, a routine is represented in a
low-level intermediate form, ILOC. Each pass of the optimizer reads in a routine via
stdin, performs the necessary analysis and transformations, and writes the result to
stdout. Since each pass consumes and produces ILOC, they may be organized in any
order, with specific passes added, repeated, or omitted as desired.

After optimization, which includes passes to accomplish the effects of instruction
selection, we run register allocation. The register allocator is also organized as an
independent pass, consuming and producing ILOC, but it is always run after the
optimization passes and may not be omitted or repeated.

ILOC is a low-level intermediate language designed to allow extensive optimiza-
tion. It resembles the assembly language for a simple RISC machine, with the ad-
dition of hooks for interprocedural information and certain higher-level operations
representing FORTRAN intrinsics. During optimization, the high-level operations
may be expanded to a sequence of lower-level operations or subroutine calls if re-
quired. The design of ILOC and the entire optimizer was heavily influenced by the
PL.8 compiler [6].

Each register allocator is built around the same basic framework. An ILOC routine
that assumes an infinite register set is rewritten in terms of the target machine’s
register set, with spill code added as necessary. The stack frame size may be adjusted
to accommodate spilled values and copy instructions may be added and deleted. The
target register set is specified in a small table and may be varied (within limits) to

allow convenient experimentation with a wide variety of register sets.
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After register allocation, each ILOC routine is translated into a complete C routine.
Each C routine is compiled and the resulting object files are linked into a complete
program. There are several advantages to this approach:

e By inserting appropriate instrumentation during the translation to C, we are
able to collect accurate, dynamic measurements.

e Compilation to C allows us to test a single routine (perhaps from a library) in
the context of a complete program running with real data.

e We are able to perform our tests in a machine-independent fashion, potentially
using a variety of register sets.

Simply timing actual machine code is inherently machine-dependent and tends to
bury the important issues (loads and stores) under the sometimes massive costs of
incidental floating-point computation.

The idea was originally suggested to us by Hans Boehm as a way to avoid having
to retarget the compiler for every new architecture we encountered (this approach
was used by researchers at Xerox PARC to aid in porting Cedar [5]). We were further
influenced by Mills et al., who describe a compiled instruction set simulator [55].

During the translation into C, we are able to add instrumentation to accumulate
the dynamic occurrences of any class of ILOC instruction. For the purposes of com-
paring register allocators, we are concerned with the number of loads, stores, copies,
load-immediates, and add-immediates.?” At the entrance of an instrumented routine,
five integer variables are initialized. At each instruction, the appropriate counter is
incremented. When the routine exits, the values of all five counters, along with the
name of the routine, are printed to stderr.

Figure 7.1 shows a small sample of ILOC code and the corresponding C transla-
tion. Usually there is a one-to-one mapping between the ILOC statements and the
C translations, though some additional C is required for the function header and
declarations of the “register” variables; e.g., r14 and £15. Also note the simple in-
strumentation appearing immediately after several of the statements. The number
of load-immediates is accumulated in the variable i, the number of copies in ¢, the
number of loads in 1, the number of add-immediates in a, and the number of stores
in s (not shown in the example). Of course, this code is simple, but the majority of
ILOC is no more complex. However, some care is required in handling procedure call

and return.

27The numbers of load-immediates and add-immediates are affected by rematerialization.
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LLE3: nop LLA4:
LLA4: 1di ri4 8 LLE3: 1ri14 = (int) (8); i++;
add r9 ri5 rii r9 = ri1b + rii;
mvf f15 f0 £15 = £0; c++;
be L0023 goto L0023;
L0023: lddrr fi14 ri14 19 L0023: f14 = *((double *) (ri14 + r9)); 1l++;
dabs f14 fi14 f14 = fabs(f14);
dadd £f15 £f15 fi4 f15 = f15 + f14;
addi ri14 ri14 8 ri4 = r14 + (8); at+;
sub r7 ri0 ri4 r7 = ri0 - ri4;
br ge 7 Ne N7 if (xr7 >= 0) goto N6; else goto N7;

Figure 7.1 1LOC and C

The Target Machine

For the tests reported here, our target machine is defined to have sixteen integer reg-
isters and sixteen floating-point registers. Each floating-point register is capable of
holding a double-precision value, so no distinction is made between single-precision
and double-precision values once they are held in registers. Integer register 0 and
floating-point register 0 are both defined to be 0. Integer register 1 is reserved as the
frame pointer. Up to four integer registers may be used to pass arguments (recall
that arguments are passed by reference in FORTRAN; therefore, the argument regis-
ters hold pointers to the actual values); any remaining arguments are passed in the
stack frame. Function values are returned in an integer or floating-point register, as
appropriate. Ten of each register class are designated as callee-saves; the remaining
six (including the argument registers) are not preserved by the callee.

When reporting costs, we assume that each load and store requires two cycles;
all other instructions are assumed to require one cycle. Of course, these are simply
convenient assumptions that reflect no actual machine architecture. The raw data is
given in Appendix A to allow the interested reader to recalculate results for different

relative instruction weightings.

Spill Costs

Since our instrumentation reports dynamic counts of all loads, stores, etc., we need a
mechanism for isolating the instructions that arise due to register allocation decisions

— after all, a typical routine will perform some loads and stores even with an infinite
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register set. A difficulty is that some spills are profitable. In other cases, the allocator
removes instructions; e.g., copy instructions. Therefore, we tested each routine on a
hypothetical “huge” machine with 128 registers, assuming this would give a nearly
perfect allocation. The difference between the “huge” results and the results for one of
the allocators targeted to our “standard” machine should therefore equal the number
of cycles added by the allocator to cope with insufficient registers.

In reality (or when dealing with NP-complete problems), problems arise. A few
routines from our test suite require more instructions with the “huge” machine than
the “standard” machine. In these cases (notably yeh, from the program doduc), we

simply present raw results, with no attempt to determine spill contributions.

The Test Suite

Our test suite is a collection of seventy routines contained in eleven programs. Eleven
routines are from Forsythe, Malcolm, and Moler’s book on numerical methods [36].
They are grouped into seven programs with simple drivers. The remaining fifty-nine
routines are from the SPEC benchmark suite [61]. Four programs were used: doduc
(41 routines), £pppp (12 routines), matrix300 (5 routines), and tomcatv (1 routine).
The two other FORTRAN programs in the suite (spice and nasa7) require language

extensions not yet supported by our front-end.

7.1.2 Results

In earlier chapters, we have described several improvements to the basic Yorktown
allocator, giving a sequence of allocators. Similarly, we have organized our results as
a sequence of comparisons: each variation is compared with the previous approach.

We present five tables comparing six allocators:

e Table 7.1 shows a comparison of test results for the Yorktown allocator (Chaitin)
and the optimistic allocator described in Chapter 3 (Optimistic).

e Table 7.2 shows the results of adding limited backtracking (as described in
Section 3.3) to the optimistic allocator. In this case, the improvements were
small, so the percentages are reported with a extra digit of precision.

e Table 7.3 shows the results of our improved approach to rematerialization
(see Chapter 5). In this case, we compare the optimistic allocator using the
Yorktown allocator’s limited rematerialization to a version of the optimistic
allocator using our enhanced approach to rematerialization.
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e Experimental results for our splitting allocator (see Chapter 6) are shown in
Table 7.4 and Table 7.5. In each case, we compare against our best previ-
ous allocator (the optimistic allocator with our approach to rematerialization).
Table 7.4 shows the effect of splitting based on the SSA-form. Table 7.5 shows
the results of splitting at both forward and reverse dominance frontiers.

In each case, the tables show only routines where a difference was found (some routines
were so short as to require no spill code). Furthermore, we have omitted routines when
the differences comprised less than one percent of the spill code (approximately ten
cases total, over the five tables).

Each table is organized identically. The first two columns give the program and
subroutine name. The third and fourth column give the observed spill costs for the
two allocators being compared. These costs are calculated from dynamic counts of in-
structions as described earlier. The last column (total) gives the percent improvement

in spill costs from the old allocator to the new one, where

old — new

% improvement = ————— x 100
old

Therefore, large positive numbers indicate significant improvements. Middle columns
show the contribution of each instruction type to the total.

All percentages have been rounded to the nearest integer. Insignificant results are
reported as 0 (or, for an insignificant but negative result, —0). In cases where the
result is zero, we simply show a blank. Since results are rounded, the total entry may
not equal the sum of the individual instruction entries.

For an example, consider the first row in Table 7.1. This row presents results
for the routine fmin from the program fmin. The Yorktown allocator generated an
allocation requiring 551 cycles of spill code; the optimistic allocator required only
370 cycles. 16% of the savings came from having to execute fewer loads and 16%
arose from fewer stores. A further insignificant fraction from fewer load-immediates.
The total improvement was 32%.

A few rows are distinguished by a x in the total column. In these cases, we were
unable to determine the spill contribution of the total cost since the allocation for the
“huge” machine required more cycles than the allocations for the “standard” machine.
In these few cases, we simply show the total costs (all loads, stores, etc.) and report

the actual cycles saved for each instruction type.



Cycles of Spill Code Percentage Contribution
program  routine Chaitin Optimistic || load | store | copy | Idi | addi || total
fmin  fmin 551 370 16 16 0 32
seval  spline 125 117 5 2 6
solve  decomp 362 305 10 6 0 16
svd  svd 2,509 1,977 16 7 -2 21
doduc  colbur 25 19 8 8 8 24
dcoera 29 15 21 21 7 48
ddeflu 443 335 13 12 -0 24
debflu 1,939 1,131 20 20 42
debico 463 459 0 0 1
deseco 5,000 4,957 4 2 -1 3 0 10
drepvi 252 218 7 6 14
ihbtr 452 400 6 6 12
inithx 714 579 11 4 4 19
integr 526 502 5 5
lectur 257 221 11 2 2 14
paroi 1,780 1,433 9 6 ) 20
prophy 1,954 1,531 13 9 0 21
repvid 651 599 4 4 8
supp 146 149 -1 -1 0 -2
yeh 353 297 32 24 *
fpppp d2esp 51 35 16 16 -2 2 31
efill 173 94 21 23 2 46
fpppp 1,472 1,444 1 1 2
twldrv 13,731,802 | 11,311,624 12 7 0 18
matrix300 lbmk14 136 132 1 1 3
sgemm 12,321 9,905 10 10 20
sgemv 3,027 1,808 40 0 -0 40
tomcatv  tomcat || 394,397,732 | 367,995,733 3 3 -0 7

Table 7.1 Effects of Optimistic Coloring

Cycles of Spill Code Percentage Contribution
program routine || Optimistic | Backtrack || load | store | copy | Idi | addi || total
doduc  ddeflu 335 327 1.2 1.2 2.4
drepvi 218 214 0.9 0.9 1.8
matrix300 sgemv 1,808 1,804 0.1 0.1 0.2

Table 7.2 Effects of Limited Backtracking




Cycles of Spill Code

Percentage Contribution

program  routine Optimistic | Rematerial || load | store | copy Idi | addi || total
rkf45  fehl 68 50 26 T =7 27
seval  spline 117 102 10 2 2 -1 13
solve  decomp 305 286 4 3 -1 6
svd  svd 1,977 1,966 1 0 -0 1
zeroin  zeroin 236 234 2 -1 1
doduc  bilan 1,046 966 ) 3 8
bilsla 16 15 6 6
colbur 19 24 || =11 | —11 -5 —26

ddeflu 335 375 -5 -7 1 1 —12
debico 459 418 6 0 1 2 9
deseco 4,957 4636 7 2 -2 0 7
drepvi 218 175 4 14 0 2 20

drigl 32 31 3 3

heat 34 31 6 1 9

ihbtr 400 395 1 0 -0 1
inideb 50 48 4 4

inisla 31 28 6 3 10

inithx 579 437 17 10 -2 25

integr 502 372 18 12 -3 26

lectur 221 166 2 23 25
orgpar 39 35 ) -3 8 10

paroi 1,433 1,383 8 0 —-1| -4 4
pastem 289 220 20 10 13 | —19 24
repvid 599 404 9 13 11 33

yeh 297 290 4 4 2| =3 *

fpppp d2esp 35 34 6 -3 3
main 210 199 0 ) )
twldrv 11,311,624 | 11,198,058 2 0 -1 1
matrix300 sgemm 9,905 8,398 12 6 -3 15
tomcatv  tomcat || 367,995,733 | 355,039,258 4 0 -0 4

Table 7.3

Effects of Rematerialization




Cycles of Spill Code Percentage Contribution

program  routine Rematerial SSA load | store | copy | Idi | addi || total
fmin  fmin 370 359 10 -7 3
seval  spline 102 101 1 -0 1
solve  decomp 286 278 3 3 -3 | -1 3
svd  svd 1,966 1,883 -0 4 1| -0 4
zeroin  zeroin 234 143 39 12 | —12 39
doduc cardeb 83 85 -2 -2
colbur 24 25 —4 —4

ddeflu 375 257 12 1 -2 4 32

debflu 1,131 1,290 -3 -5 -7 1] —-14
debico 418 431 -3 -3
deseco 4,636 4,363 2 3 0 0 -0 6
drepvi 175 160 6 ) -2 9

drigl 31 32 -3 -3

heat 31 26 6 13 -3 16

ihbtr 395 319 21 2 -3 | -0 19
inideb 48 25 48 48

inithx 437 435 1 -0 1

integr 372 383 1 —4 -3

lectur 166 145 -2 14 13

paroi 1,383 1,366 2 2 -0 —4 1
pastem 220 218 12 1| —12 1
prophy 1,525 1,678 -7 -3 -1 2 —10
repvid 404 429 —6 —6

saturr 106 114 —4 —4 -8

sigma 12 13 -8 -8

sortie 20 24 || =10 | —10 —20

supp 149 137 4 4 8

yeh 290 283 2 4 1 *

fpppp d2esp 34 38 —6 —6 —12
efill 94 70 2 26 -2 26

main 199 198 1 1
twldrv 11,198,058 | 13,165,137 || —11 -1 -5 —18
matrix300 sgemm 8,398 6,308 21 7 -3 25
saxpy 46 38 9 9 17
tomcatv  tomcat || 355,039,258 | 406,856,259 -7 -7 -0 —15

Table 7.4 FEffects of SSA-Based Splitting
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Cycles of Spill Code

Percentage Contribution

program  routine Rematerial | Dominance || load | store | copy Idi | addi || total
fmin  fmin 370 427 31| =21 | —40 14 —15
rkf45  fehl 50 66 || —32 4 —4 —32
seval  spline 102 53 53 6| —10 -2 1 48
solve  solve 85 90 -2 -2 -1 —6
decomp 286 308 9 -3 | —13 -1 -8

svd  svd 1,966 2991 || —=15 | —-19 | —-17 -1 —52
zeroin  zeroin 234 128 36 8 | —43 45 45
doduc  bilan 966 1,038 -5 -2 0 -8
cardeb 83 155 -2 —84 —87
coeray 133 141 —6 -2 *
colbur 24 29 -8 —4 -8 —21
dcoera 15 11 53 131 =33 7 27

ddeflu 375 298 13 15| —11 4 21

debflu 1,131 1,273 0 0] —13 -0 0 13
debico 418 606 6 —51 —45
deseco 4,636 5,079 4 2 -3 | -1 -2 —10
drepvi 175 194 -1 -2 —4 -3 —11

drigl 131 134 -2 -2

dyeh 106 91 6 6 3 *

ihbtr 395 528 -1 -5 | =32 4 —34
inideb 48 117 —144 —144
inithx 437 558 1 -5 =23 —28

integr 372 447 20 8§ | —14 | —-34 —20

inter 22 12 27 18 45

lectur 166 171 17 2 -8 —21 7 -3

paroi 1,383 1,738 —6 —4 -9 -2 —4 —26
pastem 220 451 12 1| =57 —61 —105
prophy 1,525 2,662 -9 -9 | —43 —14 -0 —75
repvid 404 537 13 T —25| —-28 -33

saturr 106 141 || —13 ) -7 —-33

sortie 20 26 —-10 —20 —30

supp 149 110 17 17 -9 26

yeh 290 269 18 2 —6 *

fpppp d2esp 34 28 12 6 -9 9 18
efill 94 133 -9 23 | =56 —41
fmtgen 143 251 || =24 | =22 | —-47 -5 *
gamgen 2,083 4478 0 —115 || —115
twldrv 11,198,058 | 25,826,498 || —33 | —37 | —45 | —15 0 —130
matrix300 sgemm 8,398 6,015 21 7 -0 28
sgemv 1,808 2,109 -0 —17 —17

saxpy 46 42 9 9 -9 9
tomcatv  tomcat || 355,039,258 | 276,432,455 8 15 -0 -0 22

Table 7.5 Effects of Splitting at Dominance Frontiers
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7.2 Priority-Based Coloring

An important alternative approach to global register allocation via graph coloring
was developed by Chow and Hennessy [25, 26]. Given the existence of competitive
techniques, it is naturally interesting to compare them. Unfortunately, it is difficult
to perform useful comparisons of global register allocators. Ideally, each would run on
the same machine, target the same machine, use the same input language produced
by the same optimizer, and be implemented and tuned with equal care. While we
have performed a large number of comparisons under exactly these strictures (see
Section 7.1), our comparisons are all between relatively similar allocators; adding a
significantly different allocator (e.g., priority-based coloring) to the mix would re-
quire a large amount of time. In addition, it is difficult to achieve the best possible
performance without extensive testing and tuning.

Nevertheless, some comparisons are possible. In the next two sections, we present
a brief discussion comparing the priority-based coloring with the Yorktown allocator
in terms of allocation quality and the results of an experiment comparing the two

allocators in terms of speed.

7.2.1 Allocation Quality

While both allocators are based on graph coloring, they differ in most respects. Chow
and Hennessy have published another comparison of the Yorktown allocator and
priority-based coloring; the interested reader should consult their paper for another

viewpoint [26, pages 5H13-517].

Intermediate Representation The Yorktown allocator works on code that has
already been massaged into its final form; all optimization, address mode selection,
and instruction scheduling has been completed (though instruction scheduling will
be repeated after allocation) [6]. Chow’s implementation of priority-based coloring
runs much earlier in the compilation process, on a relatively high-level intermediate
language [22]. This seems like a mere detail of implementation rather than a require-
ment of either allocation scheme. Certainly Larus and Hilfinger demonstrate that
it is possible to do priority-based coloring on low-level code [51]. The advantage to
using the low-level form is greater accuracy in allocation; the advantage to using the
high-level form is allocation speed (typically many less live ranges will have to be

handled) and greater machine-independence.
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The Yorktown allocator accepts code referencing an unlimited number of virtual
registers. The virtual registers are used to hold temporaries generated by the opti-
mizer and variables allocated by the front-end. Note that the front-end must load all
values into registers before they may be referenced (recall our assumption of a load-
store architecture). This exposes the load instructions to optimization; for example,
common subexpression elimination and loop-invariant code motion. The result is that
even a global variable may appear temporarily (perhaps across a loop) in a virtual
register and therefore be subject to allocation. As a result of allocation, some of the
virtual registers may be spilled to memory. Priority-based coloring (as described by
Chow and Hennessy) takes a different approach. Before allocation, their intermediate
code has all variables and temporaries in memory. As a result of allocation, some
of these values are promoted to registers. The effect of these different viewpoints on
allocation quality is unclear. From a practical standpoint, Chow and Hennessy note
that their scheme produces working code without ever running the register allocator.?®
Again, this is an implementation issue; Larus and Hilfinger’s version of priority-based

coloring is much closer to Chaitin’s work in this respect.

Spilling and Splitting When the Yorktown allocator must spill, it spills an entire
live range at once (modulo the local spilling considerations described in Section 2.2.5).
There is no possibility of splitting a live range into two or more pieces, some spilled
and others kept in registers. The great power of priority-based coloring is exactly this
ability to perform live range splitting.

To support live range splitting, several tradeoffs seem to be required. The interfer-
ence graph constructed by the Yorktown allocator is precise whereas the interference
graph used during priority-based coloring is relatively coarse. In priority-based col-
oring, two live ranges appear to interfere if they share a common basic block. This is
conservative, since one might be live only at the beginning and the other live only at
the end, with no actual overlap at the instruction level. As a result, the graphs built
by the Yorktown allocator will tend to have a smaller coloring, leading to less spill
code. On the other hand, the coarse graphs constructed by priority-based coloring

are relatively easy to update during live range splitting.

280n a load-store architecture, operands must appear in registers. In Chow’s compiler, unallocated
variables are loaded into temporary registers by the code generator whenever they are required as
operands.
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Coalescing Given such a coarse interference graph, it seems impossible to incorpo-
rate coalescing into priority-based coloring. Recall that coalescing examines pairs of
live ranges connected by a copy. If the live ranges do not interfere with each other,
they can be coalesced and the copy removed. However, in priority-based coloring, two
live ranges connected by a copy always interfere (since they share a copy instruction,
they must share a basic block and therefore interfere in the coarse graph).

We believe that coalescing is important. It is a powerful mechanism providing

natural solutions to several real problems arising during code generation.

e Parameters passed in registers are naturally managed by coalescing. In priority-
based coloring, these parameters are handled by a special-purpose mechanism
called precoloring [26, Section 7.1].

e (Coalescing removes unnecessary copies; Chow relies on a separate optimization
called copy propagation [22, pages 39-41]. We note that coalescing is copy
propagation. Furthermore, coalescing is a particularly effective form of copy
propagation because it is performed at a very late stage of compilation. Finally,
we note that Chow’s approach to global copy propagation uses iterative data-
flow analysis to attack a problem that is inherently not rapid [47]. In this case,
the problem is formulated so that a conservative solution is found quickly. A
more precise solution could require longer analysis times.

e Chaitin et al. describe how to use coalescing to handle 2-address instructions.
Similar extensions can be used to manage idiosyncratic instructions that re-
quire their operands in particular registers. Priority-based coloring seems less
adaptable to these situations.

Coloring Since the problem of finding a k-coloring for a graph is NP-complete, both
allocators employ an efficient heuristic to determine an approximate solution. The
Yorktown coloring heuristic is guided entirely by the structure of the graph; but, spills
are determined by a combination of graph structure and estimated spill cost. Priority-
based coloring is guided by a combination of estimated profit and live range size. An
attempt is made to color high-priority live ranges first, where priority is determined
by the apparent profit of allocating a live range to a register, with preference given
to shorter live ranges. This approach seems weaker because it ignores the structure
of the graph. As a result, we would expect the Yorktown coloring heuristic to find
better colorings with less spilling. Of course, this tendency is mitigated (or perhaps

overwhelmed) by the benefits of splitting instead of spilling.
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Coverage Finally, we note that the Yorktown allocator controls the assignment
of the entire register set. With priority-based coloring, the machine’s register set is

divided into three subsets:

locals Live ranges that include only one basic block are allocated, before coloring,
into the set of local registers.

globals These are reserved for use by the coloring algorithm for live ranges that
initially include more than one basic block.

temporaries A final group of registers is reserved for use by the code generator, since
a few temporaries may be required when expanding the high-level intermediate
language statements into their low-level assembly language components.

The size of each subset is fixed, potentially forcing further inefficiencies in register

usage.

7.2.2 Allocation Time

While it is certainly possible to determine the asymptotic complexity of many of the
sub-components of each allocator, it is difficult to draw useful conclusions about the
relative speeds of each allocator in practice. In an effort to address this question,
we have conducted an experiment attempting to determine the expected behavior of

each allocator.

Methodology

The overall plan is to measure the time required to perform register allocation on a
wide variety of routines, using both the Yorktown allocator and an allocator based
on priority-based coloring. While we have written our own implementation of the
Yorktown allocator, we rely upon Chow’s own implementation of priority-based col-
oring that is embedded in the MIPS £77 compiler.

This situation is not completely ideal. While we can give each compiler the same
FORTRAN source, the code seen by the allocators is surely different in many respects.
Perhaps more importantly, Chow’s implementation allocates registers on fairly high-
level intermediate code, whereas our allocator operates on code at the level of assembly
language. The result is that our allocator must consider many more live ranges for a
given routine. Note that this difference is a matter of implementation choice rather

than an essential characteristic of the techniques.
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Attempting to minimize unnecessary differences, we ported our code to a MIPS
R3000, where all timings were performed. We configured our allocator to allocate
registers for the MIPS register model (32 integer registers and 16 double-precision
floating-point registers). Because our optimizer performs no loop unrolling, we sup-
pressed loop-unrolling in the MIPS optimizer to avoid a gross mismatch in the amount

of work presented to each allocator. The command used for the MIPS compiler was
£77 -c -02 -Wo,-loopunroll,0 -Wo,-1,log-file source-file

where -Wo,-loopunroll controls loop-unrolling and -Wo, -1 enables logging of various
optimizer statistics. We used the -01limit flag when necessary to force optimization
of exceptionally large routines. All tests used version 2.20 of the MIPS compiler.

For test data, we collected 181 FORTRAN routines. The routines were drawn from
several sources, including the SPEC benchmark suite, the LAPACK library, and the
RiCEPS benchmark suite. The routines ranged in size from 48 bytes of object code
to more than 41,000 bytes of object code.

Results

Figure 7.2 is a scatter plot summarizing the results of the experiment. Note imme-
diately that both axes are log-scales. The vertical axis represents time required for
allocation; the horizontal axis reflects the object code size (the size of the .text seg-
ment, as reported by the size command). The curves are created from the points
of the scatter plot, smoothed by the lowess function provided as part of the S data
analysis package [8, pages 497-498].

Each test was repeated ten times on an unloaded machine and the resulting times
were averaged; each point in the scatter plot represents the average allocation time for
a single routine. The timer granularity was 10 milliseconds. Reported times include
cache miss times, but exclude paging [24]. The times shown for the Yorktown allocator
include all control-flow and data-flow analysis, construction of the interference graph,
coalescing, coloring, and spilling. The times shown for priority-based coloring are the

sum of two times reported by the MIPS compiler:

reg alloc preparation This is the time spent in data-flow analysis and building
all the data structures for register allocation, including the interference graph.

global coloring This is the time required for coloring and splitting.
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Note that we have not included the cost of copy propagation when reporting times
for priority-based coloring, though the Yorktown allocator achieves much of the same
effect via coalescing. There are two reasons. First, it was impossible to separate
the cost of local copy propagation from other local optimizations. Second, Chow’s
copy propagator actually propagates expressions, achieving a larger effect than that

achieved by simply coalescing [22, pages 39-41].

Discussion

While there are a variety of points to be made about the data shown in Figure 7.2, the
speed comparisons are the prime concern. We see that priority-based coloring is far
faster on the smallest routines, sometimes as much as a factor of eight (remember we
are using a logarithmic scale). At the other end of the scale, the Yorktown allocator
is about six times faster than priority-based coloring on the largest routines. Of
course, they meet in the middle, requiring similar time for routines with five to ten
thousand bytes of object code (perhaps 300 lines of FORTRAN, depending on details

of comments, declarations, and so forth).

Caveats This data should be interpreted carefully, with due consideration for the
following points.

At the large end of the size scale, there are unfortunately few samples, primar-
ily due to the difficulty of finding large routines. Furthermore, some of the largest
routines (fpppp and twldrv) are somewhat artificial, with the bulk of their code con-
tained in a few huge basic blocks. Nevertheless, we have specifically included them
because of their notoriety among compiler writers.

We must also remember that the two allocators implement different algorithms.
Priority-based coloring performs live range splitting, which we expect to allow more
precise control of spilling; i.e., better code quality. So, while priority-based coloring

requires more time for large routines, the results may justify the effort.?®

Complexity On a log-log graph, a straight line is defined by the equation y = kx°

where ¢ and k are constants defining the slope and position of the line, respectively.

2%Note that the superiority of priority-based coloring is not assured; recall the discussion in
Section 7.2.1.
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The slope of the line is completely determined by the value of ¢. Abstracting to “big-
O” notation, we obtain the equation y = O(x°) where the constant ¢ determines the
slope. Therefore, by observing the slopes of lines representing the time required for
allocation versus the size of the routine, we can determine each allocator’s observed

time complexity.

Priority-Based Coloring Figure 7.3 repeats the graph shown earlier, but in-
cludes only the data for priority-based coloring. The dotted line illustrates the slope
of a line parallel to y = 2. The distribution of measurements suggests that the time
required for priority-based coloring is, in practice, O(n?), where n is the size of the

routine, with a constant-time overhead dominating the smallest cases.

The Yorktown Allocator Figure 7.4 shows only the data for our implementa-
tion of the Yorktown allocator. The dotted line illustrates the slope of a line parallel
y = z and the dashed line illustrates the slope of a line parallel to y = xlogz.
The plots suggest that, in practice, the time required by the Yorktown allocator is
O(nlogn), where n is the size of the routine. The flattening of the curve for the
smallest routines is again explained by a constant-time overhead (a much greater
overhead than required by priority-based coloring).

The wide variation in times for a given size routine may be in part explained
by recalling that the number of iterations of the two major loops in the allocator
(the build-coalesce loop and the build-color-spill loop) will vary independently of the
routine size. Chapter 8 explores these questions and additional performance details

in greater depth.

Conclusions Both techniques are fast, especially for small and medium-sized rou-
tines. Given the overall costs of compilation, there seems to be little excuse for not
using one of the global allocation techniques in an optimizing compiler. Of course, as
machines get faster, the time required for allocation will continue to shrink (consider
the results in Chapter 8). Note also that we have considered only FORTRAN routines;
presumably other languages with better facilities for expressing modularity will tend
to have smaller routines, leading to even smaller allocation times in practice.

For small routines, Chow’s implementation of priority-based coloring shows that

it can be very fast indeed. Unfortunately, our implementation of the Yorktown allo-
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cator seems slower. However, it is likely that this problem is susceptible to tuning.?°
For large routines, the O(n?) behavior of priority-based coloring makes its use prob-
lematic for production compilers. While tuning alone cannot improve its algorithmic
complexity, it is possible that some form of “damage control” could be used to avoid

explosive allocation times, trading away some allocation quality for improved alloca-

tion time.

30To be fair, it should be noted that we worked hard to make our implementation fast on large
routines. On the other hand, relatively little attention was paid to handling small cases.
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Chapter 8

Engineering

To support our experiments, we have written an optimizing compiler for FORTRAN.
The optimizer is organized as a collection of independent programs, each accomplish-
ing a distinct transformation. Each routine is represented in a low-level intermediate
form, ILOC. Each pass reads in a routine via stdin, performs the necessary analy-
sis and transformations, and writes the result to stdout. Since each pass consumes
and produces ILOC, they may be organized in any order, with specific passes added,
repeated, or omitted as desired.

After optimization, which includes passes to accomplish the effects of instruction
selection, we run register allocation. The register allocator is also organized as an
independent pass, consuming and producing ILOC, but it is always run after the
optimization passes and may not be omitted or repeated.

ILOC is a low-level intermediate language designed to allow extensive optimiza-
tion. It resembles the assembly language for a simple RISC machine, with the addition
of hooks for interprocedural information and certain higher-level operations represent-
ing FORTRAN intrinsics. The design of ILOC and the entire optimizer was heavily
influenced by the PL.8 compiler [6].

A multi-pass design, with many simple passes reading and writing ILOC, is not
efficient in terms of compile time; however, it is ideal for our work. We are able to
experiment with high-level issues involving the ordering of optimizations and with
asymptotically efficient implementations of the individual optimizations.

A naive implementation of a coloring register allocator is not difficult to build; an
efficient implementation is more challenging. Over the course of several implemen-
tation efforts, we have discovered efficient algorithms and data structures for many
parts of the Yorktown allocator. While some of the ideas are surely known to other
implementors, they do not appear in the literature. In the following sections, we

describe many of the details of our implementation.
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8.1 The Internal Representation

The ILOC for a routine is represented internally in a fairly straightforward fashion.
As the routine is read in, a control-flow graph is constructed. The control-flow graph
is a directed graph with a set of nodes, a set of edges, and a distinguished node start.

Every node in the graph is reachable from start. Each node in the graph represents

a basic block. Each block has:
e a list of labels,
e a set of incoming edges,
e a set of outgoing edges,
e a sequence of instructions, and

e slots for holding the results of various forms of analysis.

The start block actually contains no instructions; instead, it is artificially inserted as a
predecessor to all entry points in the routine.? Each edge in the graph is represented

explicitly. An edge contains:
e a source block,
e a destination block, and

e slots for holding the results of various forms of analysis.

Figure 8.1 shows the C declarations for blocks and edges. Notice that the predecessors
of a block are organized as a linked-list. Note also that each edge is simultaneously
the predecessor of a block and the successor of a block; therefore, each edge is part
of two lists.

The instructions in a basic block are organized in a doubly-linked list to allow
constant-time insertion and deletion. The list is also circularly-linked to allow easy
traversal in either direction. By convention, each block has at least one instruction:
an unconditional jump, a conditional branch, or a return. Therefore, the header of
the circularly-linked list can always be the terminating instruction.

Individual instructions also have information about the kind of instruction and

the exact registers and constants used in the instruction. Figure 8.2 illustrates how

31Recall that we are dealing with FORTRAN routines that may have more than one entry point to
a given subroutine.



95

typedef typedef
struct { struct {
Labels labels; Blocks pred;
Edges preds; Blocks succ;
Edges succs; Edges nextPred;
Blocks next; Edges nextSucc;

Insts inst; -
e } Edge, *Edges;
} Block, *Blocks;

Figure 8.1 Blocks and Edges

typedef
struct {
Insts previnst;
Insts nextInst;
Kinds kind;
short parm[4];

} Inst, *Insts;

Figure 8.2 Instructions
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instructions are declared. Parameters are stored in a short vector at the end of the
structure. If more than four are required, we simply allocate extra space and address
beyond the end of the array. Parameters are either register numbers or short indices
into a table of constants.

Each instruction kind is simply a pointer into a constant table of information
about each possible ILOC instruction. The declaration of Kind is shown in Figure 8.3,
along with an excerpt of the constant instruction table. Each kind of instruction has
a string representation and defines zero or more registers, uses zero or more registers,
and employs zero or more constants. We use an incremental style (due to Chaitin [18])
to specify the number of each parameter. For example, the add instruction defines one
register and uses two registers — the defined register is found in parm[0] and the used
registers are found in parm[1] and parm[2]. This style of specification avoids the
need for many additions when examining instructions. The details field is simply
used as a small bit vector for compactly representing a variety of useful facts.

While the control-flow graph is relatively stable, many instructions are created
and deleted during the course of allocation. In addition, many analysis results must
be recorded temporarily — usually in small structures hung off relevant blocks or
edges. Storage management is therefore an important concern. We have tried several
schemes. Initially, we used a variety of ad hoc approaches, handling each problem
as it appeared. When this proved difficult to maintain, we took advantage of a
conservative garbage collector, suitable for use with arbitrary C programs [10]. In
our most recent implementations, we have experimented with a fast, phase-oriented

approach to memory management promoted by Hanson [42].

typedef Kind table[] = {

struct {
char *str; { "add", 1, 3, 3, 0 },
char defs; { "mv", 1, 2, 2, COPY },
char uses; { "14d", 1, 2, 2, MEM },
char parms; { "1di", 1, 1, 2, 0 },
char details; { "st", 0, 2, 2, MEM },

} Kind, *Kinds; { "be", 0, 0, 1, LAST|COND },

Figure 8.3 Instruction Kinds
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8.2 Set Representations

Sets are a fundamental abstraction widely used in programming. Many implementa-
tions are possible, each offering different advantages. The choice of implementation
for a given set depends on the exact operations required and their relative frequency.

When building the interference graph, we require fast versions of clear-set, add-
member, and delete-member, as well as a quick way to enumerate the members of
a set. Bit vectors are inefficient in this application since they require O(u) time to
clear the set and to enumerate the members. Here u is the size of the universe. This
requirement is distressing when the average number of members in a set is small, but
the universe is relatively large. We have developed an alternative implementation
that supports these operations efficiently.

Using the matrix initialization idea suggested in a homework problem by Aho,
Hopcroft, and Ullman [1, problem 2.12], we are able to achieve constant-time opera-
tions for clear-set, add-member, delete-member, member?, choose-one, and cardinal-
ity. Furthermore, the following operations may be performed in O(n) time, where
n is the number of members: set-union, set-intersection, set-difference, set-copy, set-
equality, and enumeration of the members. Set-complement requires O(u) time, but
is rarely necessary given the existence of an efficient set-difference. Of course, the
tradeoff is that the new representation requires much more space than a bit vector —
in our case 32 times more space. Nevertheless, for many applications, this tradeoff
is justified. In our implementation, we use up to four of these sets simultaneously.
Together, they typically comprise about 1% of the total working set during allocation.
Furthermore, it is easy and efficient to convert between our set representation and a
packed vector form (a vector of shorts containing only the members of the set).

In our representation, a set has three components: two vectors, each u ele-
ments long, and an additional scalar that records the number of members in the set.
Figure 8.4 illustrates an example set with a single member 3. The scalar members
delimits the initialized portion of the stack. Initialized elements in stack point to
members in array, which point back into the stack. To test for membership of some

number in the set, we can use the following routine:

int member(Set s, int n) {
int a = s->arrayl[n];
return 0 <= a && a < s->members && s->stack[a] == n;
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array 0

stack | 3

1 | members

Figure 8.4 Set Representation

Since all members of the set appear between 0 and members in stack, clearing the
set requires simply setting members = 0. Enumeration of all the members is accom-
plished by iterating over the elements of stack. Adding a member involves first
checking for membership and then extending the stack to point at the new member.
Similarly, the appropriate entry in array is made to point at the new stack entry.

For a final example, consider the code for deleting a member:

void deleteMember(Set s, int n) {

int a = s->arrayl[n];

int m = s->members;

if (0 <= a &% a < m && s->stack[a] == n) {
int e = s->stack[--m];
s->members = m;
s->stack[a] = e;
s->arrayl[e] = a;

}
}

In this case, we first check for membership, then pop one element e from the stack.
The popped element replaces the deleted member in stack[a] and the link from
arrayle] to stack[a] is updated.

8.3 Liveness

To support renumber, build, spill costs, and spill code, we must know which values are

live at each point in the routine. More precisely, for renumber, we must know which
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virtual registers are live at each point; for build, spill costs, and spill code, we need
to know which live ranges are live at each point. In our implementation, we are able
to translate from virtual register numbers to live range indices. Thus, we calculate
liveness information in terms of virtual registers before each invocation of renumber;
all other phases are supported by the results of this analysis. Note however, that the
computation of live virtual registers must be repeated after each invocation of spill
code, since spilling alters the results.

Our early implementations employed iterative data-flow analysis to solve the live-
ness problem [4, Section 10.6]. We used a traditional bit-vector representation for
sets of live registers, where the liveness of each virtual register was represented by a
bit. This approach requires two bit vectors per basic block, with [rn/32] words per
bit vector, where n is the number of virtual registers. We also face the problem of
traversing the bit vectors when building the interference graph. While we can use
the set representation discussed in Section 8.2 for handling basic blocks efficiently, we
must somehow convert between representations.

Choi, Cytron, and Ferrante describe a method for performing data-flow analysis
using sparse data-flow graphs [21]. Their approach is closely related to the work on
SSA, but allows solution of forward and backward data-flow problems. Our positive
experiences with SSA and our frustration with the bit-vector approach prompted con-
sideration of their sparse approach. While a description of their approach is outside

the scope of this thesis, there are a few points that deserve mention:

e We make an initial pass over the code to discover which virtual registers are live
at the beginning of at least one block; other registers are uninteresting globally.
This same information is used to speed construction of the pruned SSA graph.

e We build all the sparse graphs at once, using a single walk of the dominator tree

(the procedure Search [21, Figure 3]). This speeds construction, but requires

more SpELCG.32

In limited tests, the sparse approach seems to be slightly faster than the bit-vector
implementation. The exact tradeoff depends on the machine (the bit-vector approach
benefits from long cache lines) and the code being analyzed. The sparse approach
seems require about half the memory of the bit-vector approach, depending on the
sparsity of the problem. Finally, the sparse approach enables efficient initialization

of the live sets when building the interference graph.

32Ron Cytron pointed out this possibility and clarified several details in the paper.
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8.4 Live Ranges

In our implementation, the handling of virtual registers, values, and live ranges is
complex and requires explanation. In all cases, the operands of each ILOC instruction
are small integers; but the meaning of the integers changes from phase to phase.
Recall the flow graph shown in Figure 3.3. On input to renumber, the routine is
always expressed in terms of virtual registers, where a given register number may
appear in many places and have many distinct uses. During the build-coalesce loop,
the integers represent values. Each definition in the routine introduces a distinct
value; each value is represented by a distinct integer. The values serve as indices into
a disjoint-set structure, where each set represents a different live range. The meaning
of the routine may not be recovered from the values alone; the disjoint-set tree is
required. Before spill costs, the routine is rewritten in terms of live ranges and the
disjoint-set tree is discarded. A single live range is a connected web of definitions
and uses. Each live range is numbered uniquely and the definitions and uses refer
directly to the live range. Of course, spilling a live range can cause it to become
disconnected; therefore, we say that the routine, after spill code, is again expressed in
terms of virtual registers. Finally, after successfully coloring the interference graph,
the routine is rewritten in terms of machine registers.

Values and live ranges are determined by renumber. Our implementation is based
upon construction and manipulation of the pruned SSA graph [21]. The SSA form
is constructed as described by Cytron et al., except that no dead ¢-nodes are in-
serted [29]. Furthermore, when renaming the virtual registers, we simply use distinct
integers for each definition [29, Figure 12]. Thus, each integer corresponds to a single
definition (perhaps a ¢-node) and a single value.

Live ranges are composed of values connected by common uses. In the pruned
SSA graph, values are connected only by ¢-nodes. To determine live ranges, we union
the operands of each ¢-node together with the value defined by the node, using a fast
disjoint-set union [1, Section 7.4]. Once all unions have been performed, the ¢-nodes
can be discarded. To determine the live range for a given value, we would perform a
find operation. However, we do not immediately rewrite the routine in terms of live
ranges; instead, we maintain the disjoint-set tree for use during coalesce.

In Chapters 5 and 6, we used SSA to guide the placement of split points. In
those cases, we were primarily taking advantage of the fact that ¢-nodes are placed

at dominance frontiers, though the propagation of rematerialization tags uses the
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single-birthpoint property of SSA to achieve asymptotic efficiency. To compute live
ranges, we are again taking advantage of the single-birthpoint property to achieve
efficiency. Without the ¢-nodes, we would be required to union all the definitions

reaching each use. With ¢-nodes, we are only required to union definitions reaching

each ¢-node.

8.5 The Interference Graph

The flow graph shown in Figure 2.1 is slightly misleading in its depiction of the

build-coalesce process. The actual process is sketched more precisely here:

(allocate space for the bit matriz)
(fill in the bit matriz, accumulating the degree of each node)
do {
(allocate adjacency vectors based on the degree of each node)
(clear the bit matriz)
(fill in the bit matriz and the adjacency vectors)
improved = coalesce();
} while (improved);
(free space for the bit matriz)

We allocate [n?/16] bytes for the triangular bit matrix, where n is the number of
live ranges (including the machine registers). When adding an edge between the two
live ranges ¢ and j to the bit matrix, we first check to see if the corresponding bit
is already set. If the bit is not yet set, we set it and increment the degree of both 2
and j. The specific bit is indexed by i + j2/2, where i < j. Of course, we must find
the correct byte and select the specific bit.

When allocating the adjacency vector for a node n, we allocate 2 bytes for each
edge incident on n. This allows room for an index to the interfering node, though not
a pointer. Of course, this policy also limits our implementation to graphs of less than
65,536 nodes. In practice, this limit has not been approached (consider the examples,
especially twldrv, in Section 8.9).

To fill in the interference graph, we must examine every basic block in the flow
graph (in some arbitrary order) and walk over the instructions of the block in reverse
order. As we walk over the instructions, we maintain a set 1ive containing all the
live ranges that are both live and available at that point in the routine. The set is

initialized from the global information collected earlier.
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for each block b in the flow graph {
(build the set 1ive from b->1liveQut)
i = b->inst;
do {
(examine instruction i updatling graph and live)
i = i->previnst;
} while (i '= b->inst);

The structure b->1liveOut is a packed vector containing the set of all values that
are live and avail at the end of the block. For each value in the vector, we find the
associated live range and add it to the set live.

Each instruction is handled by making any defined live ranges interfere with all
the members of 1ive. Then all defined live ranges are removed from live and all
used live ranges are added to live.

ik = i->kind;
if (ik->details & COPY)
deleteMember(live, find(i->parm[1]));
for (p=0; p<ik->defs; p++)
addEdges (graph, live, find(i->parm[pl));
for (p=0; p<ik->defs; p++)
deleteMember(live, find(i->parm[pl));

while (p < ik->uses)
addMember(live, find(i->parm[p++]));

Note the use of £ind to compute the live range number from the values stored in each
instruction.

Copy instructions are handled specially to avoid adding an undesirable interference
between the source and destination (recall the discussion in Section 2.2.2).

We call addEdges to insert an entire set of interferences for a single live range. In
practice, this allows some loop-invariant computations to be preserved as individual
edges are added. The alternative, a loop over the members of 1ive repeatedly calling
addEdge, is much slower. In our implementation, we have two routines for adding
edges to the interference graph: the first only sets bits in the bit matrix; the second
sets bits in the bit matrix and adds edges to the adjacency vectors. These are passed,
one at a time, as procedure parameters defining addEdges to a single routine that

traverses the control-flow graph, recording interferences.
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Handling Multiple Register Classes

Many architectures provide more than one class of register. In some cases, the classes
might be distinct; for instance, the floating-point and integer registers provided by the
RS/6000 are completely separate. In other cases, two classes may overlap, completely
or partially. The classes are determined by the operations possible on the registers;
for example, on the RS/6000, floating-point addition is only possible for operands
contained in floating-point registers. On the 68020, addition is possible with the en-
tire set of general-purpose registers; but multiplication is only possible on the data
registers and only the address registers may be used with the auto-increment address-
ing mode. Thus, the register classes are architecture dependent and are defined by
the restrictions imposed by the instruction set.

Unfortunately, it is sometimes difficult to determine the register classes defined
by a particular architecture. We have no specific methodology beyond careful exam-
ination of the instruction set and addressing modes. Note though that instructions
where a particular register is required (versus a limited set of registers) are handled
via coalescing.

We specify the class of each live range with a small bit vector (usually contained in
a single byte). For the sake of a concrete example, consider the register set provided by
a combination of the Motorola 68020 and the 68881 floating-point coprocessor. There
are three basic classes of register: address registers, data registers, and floating-point
registers. We assign one bit to each register class: say 1, 2, and 4, respectively.
Therefore, a live range that could be assigned to either an address register or a
data register would have a class of 3. We also construct a table of all machine
instructions, specifying the largest possible class of each register operand. Thus, the
source and result of a register-to-register integer add instruction would have a class
of 3, whereas the operands of a floating-point add instruction would have a class
of 4. Some instructions should have unrestricted classes. For example, the source
and destination of a copy instruction should have class of 7. Similarly, the source of
a store instruction and the result of a load instruction should have a class of 7. This
policy allows maximal freedom when coloring.

The class of each live range is determined by examining all the instructions that
use it and intersecting their requirements. This is accomplished in a single pass over
the routine before constructing the interference graph. Given live ranges of many

classes, we can be more precise about when two live ranges interfere. We say that
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two live ranges interfere only if the intersection of their classes is not zero. Thus,
floating-point live ranges do not interfere with integer live ranges in our example.
Intuitively, this makes sense — they are not competing for the same set of machine
registers.

The class of each live range is also used to guide insertion of edges between the
live range and the machine registers. For example, we force the insertion of edges
between a floating-point live range and all the integer machine registers. This ensures
that the floating-point live range will not be assigned to an integer machine register.
We add an edge between a live range and a machine register if the intersection of

their classes is zero.

8.6 Coalescing

The coalesce phase is implemented as a single traversal of the control-flow graph,
examining all the instructions in each basic block and removing copies when possible.
Because some coalesces can preclude others, we visit high-priority blocks first, where
priority is determined by loop-nesting depth. For each instruction i, we perform the
following steps:
if (i->kind->details & COPY) {
dst = pathCompress(i->parm[0]);
src = pathCompress(i->parm[1]);
if (src == dst) (unlink i from the block)
else (!interfere(graph, src, dst)) {
father = min(src, dst);
son = max(src, dst);
union(father, son);

(update graph so thal father contains all the edges from son)
(unlink 1 from the block)

}

Deleting redundant copy instructions from the block is accomplished by unlinking
i from the doubly-linked list of instructions. Combining the sets of edges is more
complex. We always link the son to the father’s tree, since the first k live ranges are
reserved for machine registers and should always take precedence. Initially, each node
has a single adjacency vector containing all the neighbors. As nodes are coalesced,
the adjacency vectors are linked together; therefore, we assume all nodes have lists of

adjacency vectors. As the list is moved from son to father, we traverse each adja-
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cency vector, checking for new edges. If an edge is new to the father (determined by
examining the bit matrix), we increment the degree of father and set the appropriate
bit in the bit matrix.

If any unions are performed during a pass of coalesce, the interference graph is
rebuilt and coalescing is repeated. Of course, the lists of adjacency vectors are freed
before the graph is rebuilt and a new adjacency vector of the correct size is allocated
for each node. The size is determined by each node’s degree.

Note the use of pathCompress here compared to our use of £ind during build.
Our implementation of £ind is simply a macro that does a single indirection to find
the root of the appropriate union-find tree; pathCompress is a recursive procedure
that must search up to the root of the tree, compressing the path upon return. Since
build only accesses the union-find structure, we compress all paths before building the
graph. On the other hand, coalesce repeatedly modifies the structure (via union),
exposing new opportunities for incremental path compression when accessing the

union-find structure.

Uses of Coalescing

In Section 2.2.4, we claimed that coalescing served many purposes besides the obvious
one of removing unneeded copy instructions. In the following sections, we describe
how we use coalescing to simplify handling of parameters passed in registers and to

handle the special register requirements of certain architectures.

Passing Parameters in Registers To enable separate compilation, a compiler
adheres to a calling convention, usually established by the machine’s architect. The
convention will specify the location of the return address, the stack frame layout,
which registers are preserved across a call, and the location of parameters and function
return values. In many RISC machines, the first few parameters will be passed in
specific registers and a function value will be returned in a particular register.

We handle parameters passed in registers by introducing copies between the ap-
propriate machine registers and virtual registers. Figure 8.5 illustrates a simple ex-
ample. The left column shows a small C routine and the middle column shows an
ILOC implementation of the same routine. In the uppermost fragment of ILOC, three
mv instructions are used to copy the arguments from their machine registers (in this
case, r0, rl, and r2) into virtual registers. The second ILOC fragment implements

the call to bar, including a copy of the argument into the correct machine register
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int foo(int x, foo: frame foo: frame
int vy, mv x50 r0 mv 152 r2
int z) { mv r51 ri add 0 r0 ri
return bar(x + y) + z; mv 152 r2 bs bar
} add 0 r0 152
add r53 r50 rb1 rtn
mv r0 b3
bs bar

mv 154 r0
add rb5 rb4 rb2

mv r0 rbb
rtn

Figure 8.5 Passing Parameters in Registers

and a second copy to recover the result of calling bar. The last fragment copies the
expression result into the machine register used to hold function values on return.
The rightmost column shows the same code after coalescing. For this example, we
assume that r2 is not preserved across procedure calls; therefore, r52 and r2 would
interfere, preventing their coalesce. During coloring, r52 would be assigned to a
“callee-saves” register (a register preserved across call sites) or spilled (if no such
register was available).

In our implementation, we do not allow machine registers to be spilled; therefore,
we must be careful when coalescing a long-lived virtual register and a machine reg-
ister. Without coalescing, a long-lived but little-used live range might be spilled. If
coalescing is allowed, the resulting unspillable live range may constrain the interfer-
ence graph, provoking many more spills. Our approach to the problem is to limit the
amount of coalescing that occurs on the first pass through the build-color-spill loop.
Specifically, we avoid coalescing copies introduced to handle incoming parameters,
since these are likely to be long-lived. After the first pass introducing spill code, we
allow these copies to be coalesced, assuming that the first pass spilled most of the
unimportant live ranges. As a consequence, we force the allocator to run for at least

two passes on every routine.

Handling Instruction Constraints Some architectures specify that certain in-
structions take their operands in specific registers or produce their results in a specific

register. These requirements can be handled exactly like the call to bar in Figure 8.5.
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Two-address instructions are slightly more complex. In many architectures (e.g.,
the Motorola 68000 family ), arithmetic instructions are 2-address instead of 3-address.
In other words, instead of supporting a general form of rq «— ry + ry, they require
the result and the first operand to use the same register; e.g., r;1 «— r;1 + 7. In
ILOC, the operands are never overwritten by the result. This policy enables easy
reuse of any expression value; however, we are sometimes faced with the problem of
expressing ILOC’s 3-address instructions in terms of simpler 2-address instructions.
Chaitin et al. point out that we can handle such constraints by attempting to coalesce
the result live range with the appropriate operand. Furthermore, if the operation is
commutative, we can attempt to coalesce with either operand. If the coalesce is
successful, we have a trivial mapping to the 2-address assembly instruction. If the
result cannot be coalesced with either operand, an additional copy instruction must

be introduced to avoid overwriting the operands. For example,

add r0 r1 r2 ie, rg—ryi+7r9

becomes

mv r0 ri
add r0 r0 r2

This extra copy is introduced at the last stage of allocation, after coloring has been

successfully completed.

8.7 Spill Costs

The correct computation of spill costs is important, since they control the choice of
spill candidates during coloring. Chaitin describes several special cases that must be
handled correctly when generating spill code (recall the discussion in Section 2.2.5);
these same considerations apply when estimating spill costs. Furthermore, we must
account for the possibility of rematerialization. Chaitin also points out that spilling
the source or destination of a copy instruction means that the copy instruction can
be deleted. Finally, if aggressive live range splitting is employed, we must account for
the correct handling of split instructions (Section 6.2.2).

For each live range, we accumulate the costs due to required loads, required stores,
and copies saved. Of course, the costs are simply estimates of the actual run-time
costs; in our implementation, we weight the number of instructions required by 10,

where d is the loop-nesting depth of each instruction. Additionally, we weight loads
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and stores by an additional factor of 2 (compared to copies, load-immediates, and add-
immediates). Production implementations might weight loads more heavily, though
instruction scheduling can often reduce load costs.

Our implementation of spill costs is organized as a single pass over the blocks in
the control-flow graph, where the instructions in each block are traversed in reverse

order.

for (r=0; r<ranges; r++) {
range[r] .loads = 0.0;
range[r] .stores = 0.0;
range[r] .copies = 0.0;
range[r] .infinite = FALSE;
}
for each block b in the flow graph {
clearSet(needload);
(build the set 1ive from b->1liveQut)
copySet (mustSpill, live);
i = b->inst;
do {
(examine instruction i updatling sets and accumulating costs)
i = i->previnst;
} while (i '= b->inst);
for all members r of needLoad
range[r] .loads += b->depth;

}

(summarize costs for each live range)

We maintain a set needLoad of live ranges that are live and have been used since the
last death.®® At any death, or the beginning of the block, we charge a load to each
member of the set.

Live ranges that are live across a death are added to the set mustSpill. At a
definition of the live range i, if 1 is not a member of mustSpill, then the definition
must be “close” to all uses of i and range[i].infinite is set.

Finally, we maintain the set 1ive throughout the basic block to enable detection
of deaths. For each instruction i, we perform three basic steps:

ik = i->kind;

(handle definitions of 1)
(check for deaths)
{

handle uses of i)

33A death is the last use of a live range in a basic block.
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At each definition, we must update 1ive and needLoad. Additionally, we must check

for membership in mustSpill

for (p=0; p<ik->defs; p++) {
r = i->parm[p];
if (member(needLoad, r)) {
deleteMember (needload, r));
if (!member(mustSpill, r)) rangel[r].infinite = TRUE;
}
range[r] .stores += b->depth;
deleteMember(live, r);

}

Checking for deaths is accomplished by examining each use and testing for member-

ship in 1ive. If a death is found, we must update mustSpill and clear needLoad

for (p=ik->defs; p<ik->uses; p++) {
r = i->parm[p];
if (!'member(live, r)) {
for all members m of needLoad {
range[m] .loads += b->depth;
addMember (mustSpill, m);

}

clearSet(needlLoad);

}

The uses must be re-examined in order to update live and needLoad.

for (p=ik->defs; p<ik->uses; p++) {
r = i->parm[p];
addMember(live, r);
addMember (needLoad, r);

}

After the entire routine has been examined, we are able to summarize the cost of each
live range.
for (r=k; r<ranges; r++) {

if (rangelr].lattice == BOT)
range[r].cost = 2.0 * (rangel[r].loads + rangel[r].stores);

else
range[r].cost = range[r].loads - rangelr].stores;
range[r] .cost -= rangel[r].copies;
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Note that we correctly account for the rematerialization tag for each live range. If
range[r] .infinite is set, then the live range is treated as though it had infinite
spill cost and the computed cost is ignored.

This description is necessarily simplified. We have ignored the possibility of dif-
ferent classes of registers. This is primarily important when updating needLoad and
mustSpill after discovering a death. For example, it is clear that the last use of a
floating-point live range provides no new allocation opportunities for an integer live
range; therefore, only floating-point live ranges should be added to mustSpill and
deleted from needLoad.

The structure of spill code is very similar to spill costs. Rather than counting
required loads and stores, the actual spill instructions are inserted for spilled live
ranges. Similarly, the instructions defining live ranges that are both spilled and

rematerializable are deleted.

8.8 Coloring

Coloring occurs in two phases: simplify and select. Each phase runs in O(n + €)
time, where n is the number of nodes in the interference graph and e is the number
of edges.

In preparation for simplify, we classify each node based on its degree and its spill
cost. All nodes of degree < k are placed in a set low. Nodes of degree > k and finite
spill cost are placed in a set high. Nodes of high degree and infinite spill cost (recall
the discussion in Section 8.7) are not included in either set.

Simplify builds a stack s containing all the nodes, including spill candidates. The
bulk of simplify is a single loop:

loop {
while (members(low) > 0) {

m = chooseOne(low);
deleteMember(low, m);
(remove m from the graph, updating low and high)
push(s, m);
}
if (members(high) == 0) break;
(select a spill candidate m from high)
deleteMember(high, m);
addMember (low, m);



111

To remove a node m from the graph, we visit each neighbor n (using the adjacency
vectors constructed in Section 8.5) and decrement its degree. If the new degree of n
is k — 1, then n is removed from high and added to low.

To select a spill candidate, we consider all the nodes in high, where high contains
all nodes of finite spill cost remaining in the graph. We choose the node with the
smallest ratio of spill cost to degree.?® In our implementation, we simply examine all
the nodes in sequence. This can be expensive if many spill candidates must be se-
lected; additionally, it does not fit within the O(n+e¢) time bounds for simplify. While
other implementations are imaginable, we have not explored the problem thoroughly.

The implementation of select is straightforward. Each node is initially given the
color k (where final colors will be in the range 0...%k — 1). The body of select is a

single loop:

while (lempty(s)) {

m = pop(s);

if ('range[m].infinite && range[m].cost <= 0.0)
range[m] .spill = TRUE;

else {
for (c=0; c<k; c++) used[c] = FALSE;
for all the neighbors n of m

used[range[n].color] = TRUE;

used[k] = FALSE;
c = 0;
while (used[c]) c++;
if (¢ < k) range[m].color = c;
else range[m].spill = TRUE;

}
}

In our implementation, we attempt to use colors from the set of “callee-saves” registers
last. These are preserved across call sites and should be reserved as long as possible
for use by long-lived live ranges. We do not preserve “caller-saves” registers across
a call site; instead, we recognize that they are killed by the call and force them to
interfere with live ranges that are live across the call site (recall our handling of r52

in the example shown in Figure 8.5).

34Ben Chase reminded us to use “cross multiplication” when comparing two fractions.
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8.9 Compile-Time Characteristics

Table 8.1 illustrates the compile-time performance of the optimistic allocator on three
routines from the SPEC benchmark suite. The left-most column describes the alloca-
tor phase being measured (recall the flow graph shown in Figure 3.3). The individual
phases are grouped together, where each group represents one iteration of the major
build-color-spill loop. Thus, we see that the allocator was required to spill twice for
repvid; on the third iteration, a coloring was discovered. On the other hand, tomcatv
required an additional iteration to converge.

All times are given in seconds. The times were collected via calls to system-
supplied timer routines, based on a 100 Hz clock, on an unloaded IBM RS/6000
model 540. The allocator was run ten times on each routine and the resulting times
were averaged.

The control-flow row gives the time required for control-flow analysis, including
construction of the forward and reverse dominator trees and the forward and reverse
dominance frontiers. The times given for renumber include the time required for
live analysis and construction of the pruned SSA graph. The color row gives times
showing the combined cost of simplify and select. In addition to the time costs, the
spill code entries also show the number of live ranges spilled.

The build-coalesce entries are more complex. The first row reports the time for
the entire build-coalesce loop and the number of bytes required for the triangular bit
matrix. The additional rows report the number of bytes required for the adjacency
vectors and the current number of live ranges. Each pass of coalescing will decrease
the number of live ranges and the number of edges within the graph. There is an
additional row for each iteration of the build-coalesce loop.

The space required for the bit matrix is [r?/16] bytes, where n is the number
of live ranges plus the number of machine registers (in our case, 32). The adjacency
vectors require 4 bytes per edge in the graph.

The total row includes the total time required for allocation and the largest
amount of storage required at any point for the interference graph (the sum of the
requirements for the bit matrix and the adjacency vectors during the initial pass of
the build-coalesce loop).

The three routines were selected to illustrate compile-time costs over a range of
sizes. The first routine is repvid, from the program doduc, with 144 non-comment
lines of FORTRAN. It compiles to a .text size of 1284 bytes using IBM’s x1f compiler
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repvid tomcatv twldrv
phase time | bytes | ranges || time bytes | ranges time bytes | ranges
control-flow .00 .00 .01
renumber .03 .06 .07
build-coalesce A7 | 8,696 .39 21,684 10.27 | 1,196,292
57,320 341 124,720 557 2,161,348 | 4,343
38,472 235 85,560 422 1,407,220 | 2,967
36,460 228 79,612 414 1,375,468 | 2,948
36,168 227 77,356 411 1,361,472 | 2,944
75,844 409 1,357,192 | 2,942
1,355,044 | 2,941
spill costs .01 .02 .16
color .02 .04 1.16
spill code 01 38 .02 80 A7 337
renumber .02 .02 .10
build-coalesce .06 | 6,088 .09 19,744 .63 827,648
30,092 280 51,740 530 380,652 | 3,607
26,460 242 47,076 478 365,072 | 3,448
spill costs .01 .01 .07
color .01 .02 .14
spill code .01 13 .01 25 .03 78
renumber .01 .02 .10
build-coalesce .03 4,696 .05 17,164 .60 758,644
26,404 242 47,432 792 363,104 | 3,452
363,000 | 3,451
spill costs .01 .01 .07
color .01 .02 13
spill code .01 3
renumber .02
build-coalesce .05 17,296
47,592 494
spill costs .01
color .01
| total [ 40 ] 66,016 | | 89 ] 146,404 | | 14.19 | 3,357,640 |

Table 8.1 Compile-Time Characteristics
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with optimization. The second routine is tomcatv, with 133 lines and a .text size
of 3064 bytes. The largest routine is twldrv from the program fpppp, with 881 lines
and a .text size of 15,616 bytes.

The results in Table 8.1 illuminate a number of interesting details about the

optimistic allocator.

e The very low cost of control-flow analysis illustrates the speed and practicality
of the algorithm for calculating dominance frontiers [29].

e The initial pass of the build-coalesce process dominates the overall cost of al-
location (as noted by Chaitin). In comparison, additional iterations of the
build-color-spill loop are quite inexpensive.

e The higher cost of coloring in the first pass arises from the cost of choosing
nodes to spill. While the cost of coloring is linear in the size of the graph, spill
selection is O(s-n), where s is the number of spill choices and n is the number of
nodes. With a large number of spills, this term dominates the cost of simplify.

We are pleased with the overall speed of the allocator. Our results appear to be
slightly faster than the times reported by IBM’s x1f compiler for register allocation

and comparable to the times reported for optimization.

8.10 Discussion

The recent introduction and exploration of SSA form has been been an exciting de-
velopment in an area that appeared to be well understood. Many researchers are
recasting old optimizations in terms of SSA for improved clarity and efficiency; our
approach to determining live ranges is one example. Furthermore, new techniques
and sharper versions of old techniques are being developed; e.g., our work on rema-
terialization.

It is difficult to recover an efficient, executable program from SSA form after
extensive transformations; removing the ¢-nodes requires insertion of many copies.
Cytron et al. suggest using coloring to minimize the number of copies, relying on
any of the common coloring-based allocation techniques [29]. This idea is not strictly
accurate. Chow’s approach — priority-based coloring — is inadequate since it cannot
remove copies via coalescing. More to the point, coloring is not actually required;
rather, the combination of renumber, build, and coalesce will remove the unnecessary

copies.
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Our implementation has always been entirely isolated from the optimizer; however,
given closer connection to an optimizer based on SSA, a simplified implementation
of renumber would be possible. Additionally, the structure of renumber, build, and
coalesce could be modified, perhaps improving overall performance. A sketch of one

possible implementation is given here:

1. Build (or inherit) the pruned SSA form. During the construction, rename to
remove copies (some care must be exercised with copies involving machine reg-
isters). The copies will be effectively subsumed in the ¢-nodes.??

2. Build the interference graph, handling ¢-nodes much like copies.

3. During coalesce, attempt to coalesce each operand of a ¢-node with the result.

This approach may be much faster than our current scheme since it eliminates most
copies without recourse to coalescing (recall the high cost of the initial build-coalesce
loop as shown in Table 8.1). On the other hand, this approach may be slower due to
larger interference graphs or more coalescing related to ¢-nodes. Obviously, imple-

mentation experience will help resolve these questions.

35Kenny Zadeck pointed out this possibility.
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Chapter 9

Conclusion

Chaitin and his colleagues described the first global register allocator based on graph
coloring. This thesis describes a series of improvements and extensions to their work.
The improvements lead to reduced spill costs and faster code; the extensions enable
wider application of the basic techniques. Additionally, we report on experimental
studies measuring the effectiveness of each of our improvements. Finally, we describe
many implementation details and include measurements designed to provide accurate
intuitions about the time and space requirements of coloring allocators.

In the next two sections, we offer some perspective on optimization, register allo-
cation, and graph coloring. In the final two sections, we summarize the contributions

of the thesis and discuss directions for future work.

9.1 Register Allocation and Optimization

The isolation of register allocation from other parts of optimization is a simplifying
separation of concerns. When there are enough registers, this simplification looks like
a good decision — the individual optimizations are simpler to build and the resulting
code is still good. When there are not enough registers, the assumption underlying the
separation of concerns breaks down and we begin to see cases of “over-optimization”
— cases where optimization causes degradation due to excessive spill code.

How many registers are enough? The answer depends on many factors: the appli-
cation code, the amount of instruction-level parallelism offered by the target machine
(including pipeline latency), and the speed of the CPU compared to the bandwidth of
memory. Furthermore, the ability of the compiler to take advantage of the machine’s
resources is important. A compiler that attempts only minimal optimization will re-
quire very few registers for best results. On the other hand, those “best results” will
presumably be worse than results achieved with an aggressive optimizing compiler.

Some alternatives have been studied. For example, Leverett attacks the problem

of combining register allocation with instruction selection [53]. Others have explored
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the possibility of combining instruction scheduling (in one of several possible flavors)
with register allocation, recognizing that extensive motion due to scheduling can
dramatically increase register pressure [11]. Callahan et al. perform aggressive loop
transformations while accounting for register pressure to avoid over-optimization [15].

In each of these cases, we could argue that consideration of register pressure
unnecessarily complicates the optimizer; the correct solution to the problem of over-
optimization is more registers. Of course, this is not helpful to those implementing
compilers for existing machines; but, it will perhaps serve as a cautionary note to
architects — current optimizers are only effective when the machine has an adequate
register set. Machines with long pipelines, many execution units, or a relatively low

bandwidth to memory will require many registers for best performance.

9.2 Register Allocation and Graph Coloring

The reduction of register allocation to graph coloring is a further simplification of
the problem. Of course, since we are “simplifying” to an NP-complete problem, we
may not have made much progress in the theoretical sense; but in the practical sense,
the advantages have proven enormous. However, the viability of the reduction to
graph coloring again depends on an adequate register set. With sufficient registers,
a graph coloring register allocator offers a wonderfully clear approach to the prob-
lem. With insufficient registers, the abstraction to graph coloring will look like an
over-simplification, since too much important information about the structure of the
routine is lost. Therefore, it becomes interesting to consider other approaches to the
problem global register allocation. Our work with live range splitting is one possibil-
ity. Other possibilities include priority-based coloring, by Chow and Hennessy [26],
and the hierarchical graph coloring allocator of Callahan and Koblenz [16].

9.3 Contributions

The work described in this thesis may be divided into three parts:

1. improvements to the Yorktown allocator, working within the basic framework
established by Chaitin et al.,

2. exploration of aggressive live range splitting, extending Chaitin’s framework to
enable more precise spill code, and

3. practical work, including a variety of experiments and engineering studies.
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In the first category, we include improvements to the Yorktown allocator’s coloring
and spilling heuristics. The optimistic heuristic for coloring and spilling is perhaps
the most important single contribution. By making only a small change to Chaitin’s
heuristic, we obtain better colorings with less spill code. The optimistic heuristic has
been implemented as part of several industrial and academic compilers. Furthermore,
it has influenced the design of new methods for global register allocation.

The correct handling of register pairs is a natural consequence of our use of the
optimistic heuristic. The obvious difficulties of handling pairs with Chaitin’s heuristic
were simply extreme cases of similar, though less obvious, difficulties that arose when
coloring individual registers. We believe this extension may have impact on the design
of future processors. Some architectures (e.g., the MIPS R2000 and the IBM RS/6000)
have avoided the use of register pairs to support double-precision arithmetic. This
design decision may have been influenced by the lack of an adequate method for
allocating register pairs.

The need for better rematerialization became obvious during our exploration of
aggressive live range splitting. Because of our experiments using SSA to support
renumber, we were able to discover a generalization of Chaitin’s approach to rema-
terialization. In addition to the improvement obtained in the splitting allocator, we
were able to achieve improvements in the code produced by the optimistic allocator.

Our approach to live range splitting is basically an attempt to preserve some of the
information ordinarily lost during the reduction to graph coloring — information that
should prove useful when spilling. While our results were not entirely satistactory,
we were able to expose, and in some cases solve, several unexpected problems that
seem inherent to any splitting allocator. Examples include the fully and partially
redundant stores arising from splitting and spilling. Of course, the work on improv-
ing rematerialization was originally prompted by problems observed during splitting.
Furthermore, the heuristics for conservative coalescing and biased coloring, though
reported in connection with rematerialization, were discovered during our work on
splitting.

In the third category, we include contributions stemming from our experimental
implementations and comparisons of the various allocators. The experiments served
many purposes. In some cases, they gave an indication of the importance of certain
modifications. During our work with live range splitting, the experimental compar-
isons helped expose the weaknesses of different splitting heuristics — weaknesses that

were not at all obvious before implementation.
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Results of our practical work include:

e a methodology for comparing allocators,

e extensive experimental results showing the usefulness of the optimistic heuristic
and rematerialization, and pointing out both the problems and potential profits
of live range splitting,

e a limited comparison of priority-based coloring with the Yorktown allocator,

e explanations of many of the important algorithms and data structures required
for efficient implementation of our allocator, and

e measurements of many phases of the allocators, designed to provide useful in-
tuition about the time and space requirements of global register allocation via
graph coloring.

9.4 Future Work

Despite our efforts, the test suite used in our experiments is small by industrial

% We need to spend considerably more time expanding and diversifying

standards.
the range of test programs. Of course, as the test suite becomes larger, more extensive
support for automatic testing will become mandatory.

The experimental results reported for aggressive live range splitting are conser-
vative. We have already discovered improvements that may significantly affect our
results. We also intend to continue exploring possibilities offered by other splitting
heuristics. Additionally, we will search for sharper approaches to the problem of
conservative coalescing.

We are interested in implementing the allocators described by Chow and Hennessy
and by Callahan and Koblenz in the context of our compiler. This would finally
allow useful comparisons between radically different approaches. Of course, such
implementations and comparisons will have to be conducted carefully, perhaps with
the active participation of the inventors.

Finally, we are interested in ways of overcoming the separation between opti-
mization and allocation. We have mentioned some possibilities for avoiding over-
optimization in Section 9.1. Alternatively, we could perhaps pass additional infor-
mation from the optimizer to the allocator to support undoing certain optimizations

instead of spilling (similar in effect to rematerialization).

350ur colleagues in industry describe test suites containing over one million lines of code.
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Appendix A

Detailed Results

The following sections contain the raw results of our experiments comparing allocation
quality (see Section 7.1). Additionally, we give calculated spill costs for each allocator
on each routine. Each section contains results from a group of programs. The routines
making up each program are further grouped into subsections.

Each table contains seven rows of results, with measurements for six of our exper-
imental allocators and a row of measurements for the “huge” machine. Five columns
give the number of loads, stores, copies, load-immediates, and add-immediates exe-
cuted during an invocation of the routine. When a routine was executed many times
during a program, we report results from the first execution only. The sixth column
(total cost) gives a weighted total of all the measured instructions, where loads and
stores are weighted twice and the other instructions are weighted once. The final
column (spill cost) gives the difference between each allocator’s total cost and the
“huge” machine’s total cost. This value should equal the number of cycles spent on
spill code; that is, the number of cycles wasted due to insufficient registers and poor
allocation.

A blank entry simply means that the result is identical to the previous row.

A.1 Forsythe, Malcolm, and Moler

The routines, transcribed from Forsythe, Malcolm, and Moler’s book on computa-
tional methods [36], are included as sentimental favorites. They were among the first
routines we used to test our compiler. In particular, the routines decomp and solve
were always reliable test cases, exposing a remarkable number of errors in the register

allocator and all phases of the optimizer.



A.1.1 fmin
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 115 45 74 3 9 406
chaitin 270 155 26 72 957 551
optimistic 225 110 71 776 370
backtrack
rematerial
SSA-based 207 51 765 359
dominance 167 149 173 19 833 427
A.1.2 rkf45
fehl
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 131 46 24 34 61 473
chaitin 176 7 29 541 68
optimistic
backtrack
rematerial 167 2 34 523 50
SSA-based
dominance 175 45 4 539 66
rkf45
allocator || loads | stores | copies | Idi’s | addi’s || total cost | spill cost
huge 15 21 15 0 11 98
chaitin 41 41 2 177 79
optimistic
backtrack
rematerial
SSA-based
dominance
A.1.3 seval
seval
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 13 3 3 2 10 47
chaitin 21 8 73 26
optimistic
backtrack
rematerial
SSA-based
dominance 21 5 4 75 28
spline
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 254 101 1 5 54 770
chaitin 301 116 2 895 125
optimistic 298 115 887 117
backtrack
rematerial 292 114 0 6 872 102
SSA-based 291 1 871 101
dominance 265 111 10 8 53 823 53
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A.1.4 solve
decomp
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 79 49 49 19 86 410
chaitin 224 102 16 18 772 362
optimistic 206 91 17 715 305
backtrack
rematerial 200 87 19 696 286
SSA-based 195 82 26 22 688 278
dominance 187 82 53 21 718 308
solve
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 26 15 7 5 23 117
chaitin 53 31 5 6 202 85
optimistic
backtrack
rematerial 6 5
SSA-based 5 6
dominance 54 32 7 5 207 90
A.1.5 svd
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 495 322 210 37 318 2,199
chaitin || 1,371 760 88 2,705 2,509
optimistic || 1,166 671 147 2,176 1,977
backtrack
rematerial || 1,158 141 48 4,165 1,966
SSA-based 1,159 632 128 54 4,082 1,883
dominance || 1,309 857 272 | 68 5,190 2,991
A.1.6 urand
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 13 10 32 4 2 84
chaitin 17 14 100 16
optimistic
backtrack
rematerial
SSA-based
dominance 34 102 18
A.1.7 zeroin
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 79 41 51 8 8 307
chaitin 113 63 47 136 543 236
optimistic
backtrack
rematerial 111 49 541 234
SSA-based 65 49 78 450 143
dominance 69 54 151 30 435 128
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A.2 SPEC
A.2.1 doduc

In the SPEC benchmark suite, the program doduc is supplied with several data files
— some for initial testing and one for actual benchmark. We used the standard

benchmark data file for our tests.

arret
allocator || loads | stores | copies | Idi’s | addi’s || total cost | spill cost
huge 5 1 0 3 0 15
chaitin 0
optimistic
backtrack
rematerial
SSA-based
dominance
bilan
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 982 256 15 90 130 2,711
chaitin 1,109 301 782 142 3,759 1,048
optimistic || 1,108 301 3,757 1,046
backtrack
rematerial || 1,082 287 3,677 966
SSA-based 780 3,675 964
dominance || 1,108 298 3,749 1,038
bilsla
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 7 5 0 1 1 26
chaitin 11 9 2 42 16
optimistic
backtrack
rematerial 1 41 15
SSA-based
dominance
cardeb
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 216 155 2 15 168 927
chaitin 214 153 0 108 1,010 83
optimistic
backtrack
rematerial
SSA-based 2 1,012 85
dominance 178 1,082 155




coeray
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 34 24 6 4 9 135
chaitin 36 22 4 6 135 0
optimistic 4 133 -2
backtrack
rematerial
SSA-based
dominance 10 6 141 6
colbur
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 44 33 13 12 10 189
chaitin 53 39 5 15 214 25
optimistic 52 38 13 208 19
backtrack
rematerial 53 39 6 213 24
SSA-based 7 214 25
dominance 54 15 218 29
dcoera
allocator || loads | stores | copies | Idi’s | addi’s || total cost | spill cost
huge 60 51 11 4 1 248
chaitin 77 48 4 12 277 29
optimistic 74 45 10 263 15
backtrack
rematerial
SSA-based
dominance 70 44 9 11 259 11
ddeflu
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 194 94 45 69 91 781
chaitin 283 211 12 133 1,224 443
optimistic 254 185 14 1,116 335
backtrack 252 183 1,108 327
rematerial 263 196 12 135 1,156 375
SSA-based 240 164 19 120 1,038 257
dominance 238 168 55 121 1,079 298
debflu
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 993 629 95 252 630 4,221
chaitin || 1,243 | 1,067 27 | 831 662 6,160 1,939
optimistic || 1,048 873 801 5,352 1,131
backtrack
rematerial
SSA-based 1,067 902 126 646 5,511 1,290
dominance 1,046 872 196 804 658 5,494 1,273
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allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 699 295 1 99 149 2,239
chaitin 745 319 4 395 173 2,700 463
optimistic 744 318 2,696 459
backtrack
rematerial 731 317 1 385 2,655 418
SSA-based 398 2,668 431
dominance 718 599 2,843 606
deseco
allocator || loads | stores | copies Idi’s | addi’s total cost | spill cost
huge 3,495 902 155 619 1,272 10,840
chaitin || 4,618 | 1,639 112 | 2,219 | 1,495 16,340 5,500
optimistic || 4,497 | 1,582 140 | 2,029 | 1,470 15,797 2,957
backtrack
rematerial || 4,330 | 1,539 2,140 | 1,458 15,476 1,636
SSA-based || 4,276 | 1,469 127 | 2,127 | 1,459 15,203 1,363
dominance || 4,239 | 1,494 280 | 2,640 | 1,533 15,919 5,079
drepvi
allocator || loads | stores | copies | Idi’s | addi’s || total cost | spill cost
huge 53 15 12 15 28 191
chaitin 117 75 4 27 443 252
optimistic 108 67 409 218
backtrack 107 66 405 214
rematerial 104 52 3 23 366 175
SSA-based 99 48 6 351 160
dominance 105 54 10 29 385 194
drigl
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 33 19 4 24 34 166
chaitin 35 33 198 32
optimistic
backtrack
rematerial 23 197 31
SSA-based 24 198 32
dominance 6 23 199 33
dyeh
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 32 32 10 3 2 143
chaitin 26 22 6 107 —36
optimistic
backtrack
rematerial 5 106 —-37
SSA-based
dominance 23 19 2 91 —52
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ewvVv
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 8 10 3 2 8 49
chaitin 8 12 53 4
optimistic
backtrack
rematerial
SSA-based
dominance
heat
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 46 20 16 26 17 191
chaitin 54 30 11 29 225 34
optimistic
backtrack
rematerial 53 10 222 31
SSA-based 52 28 11 217 26
dominance 51 26 18 30 219 28
hmoy
allocator || loads | stores | copies | Idi’s | addi’s || total cost | spill cost
huge 6 0 0 5 3 20
chaitin 0
optimistic
backtrack
rematerial
SSA-based
dominance
ihbtr
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 75 24 15 42 159 414
chaitin 217 90 0 93 866 452
optimistic 204 77 814 400
backtrack
rematerial 202 76 94 809 395
SSA-based 161 72 13 95 733 319
dominance 204 85 128 77 942 528
inideb
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 170 170 0 21 151 852
chaitin 163 163 99 902 50
optimistic
backtrack
rematerial 97 900 48
SSA-based 74 877 25
dominance 166 969 117




iniset
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge || 9,466 | 9,466 152 | 168 | 9,340 47,524
chaitin || 9,467 | 9,467 47,528 2
optimistic
backtrack
rematerial || 9,466 9,466 0 320 47,524 0
SSA-based
dominance 1 321 47,526 2
inisla
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 9 8 0 1 1 36
chaitin 16 16 2 67 31
optimistic
backtrack
rematerial 15 1 64 28
SSA-based
dominance
inithx
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 606 201 2 153 351 2,120
chaitin 756 274 1 422 2,834 714
optimistic 717 259 395 2,699 579
backtrack
rematerial 669 231 405 2,557 437
SSA-based 229 3 2,555 435
dominance 24 507 2,678 558
integr
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 477 106 12 163 192 1,533
chaitin 611 176 281 2,059 526
optimistic 257 2,035 502
backtrack
rematerial 567 147 273 1,905 372
SSA-based 145 27 1,916 383
dominance 529 133 63 401 1,980 447
inter
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 4 2 0 0 0 12
chaitin 11 6 34 22
optimistic
backtrack
rematerial
SSA-based
dominance 8 4 24 12
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allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 289 257 41 204 340 1,677
chaitin 310 326 8 314 1,934 257
optimistic 396 324 310 1,898 221
backtrack
rematerial 4 259 1,834 166
SSA-based 7 235 1,822 145
dominance 282 322 18 294 328 1,848 171
lissag
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 19 11 0 2 12 74
chaitin 24 16 94 20
optimistic
backtrack
rematerial
SSA-based
dominance
main
allocator loads | stores | copies Idi’s | addi’s total cost | spill cost
huge || 43,914 | 43,919 0 | 5,495 | 43,916 225,080
chaitin 0
optimistic
backtrack
rematerial
SSA-based
dominance 5,498 225,083 3
orgpar
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 29 22 5 7 18 132
chaitin 38 3 1 10 171 39
optimistic
backtrack
rematerial 32 2 7 167 35
SSA-based
dominance 31 165 33
paroi
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 709 410 32 141 488 2,899
chaitin 1,102 598 29 462 788 4,679 1,780
optimistic || 1,021 543 29 713 4,332 1,433
backtrack
rematerial 965 540 45 514 4,282 1,383
SSA-based 950 523 41 764 4,265 1,366
dominance || 1,011 568 170 | 545 2,637 1,738
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allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 600 54 219 218 345 2,090
chaitin 680 107 219 244 2,379 289
optimistic
backtrack
rematerial 651 93 178 299 2,319 220
SSA-based 638 92 204 2,308 218
dominance 303 433 2,541 451
prophy
allocator || loads | stores | copies Idi’s | addi’s total cost | spill cost
huge 838 577 62 249 251 3,392
chaitin || 1,184 855 3 | 1,020 245 5,346 1,954
optimistic || 1,059 769 244 1,923 1,531
backtrack
rematerial 767 1,018 4,917 1,525
SSA-based || 1,115 793 19 | 991 5,070 1,678
dominance || 1,128 833 656 | 1,231 245 6,054 2,662
repvid
allocator || loads | stores | copies | Idi’s | addi’s || total cost | spill cost
huge 483 143 63 51 259 1,625
chaitin 573 221 128 301 259 2,276 651
optimistic 560 208 2,224 599
backtrack
rematerial 534 169 63 2,029 404
SSA-based 88 2,054 429
dominance 507 155 166 413 2,162 537
saturr
allocator || loads | stores | copies | Idi’s | addi’s || total cost | spill cost
huge 179 170 11 12 11 732
chaitin 229 175 4 23 3 838 106
optimistic
backtrack
rematerial
SSA-based 231 27 846 114
dominance 236 180 11 873 141
si
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 20 1 12 2 27 83
chaitin 23 3 93 10
optimistic
backtrack
rematerial
SSA-based
dominance 13 94 11
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allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 12 0 0 5 0 29
chaitin 15 3 41 12
optimistic
backtrack
rematerial
SSA-based 1 42 13
dominance
sortie
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 23 11 1 14 5 88
chaitin 28 16 108 20
optimistic
backtrack
rematerial
SSA-based 29 17 112 24
dominance 28 16 3 18 114 26
subb
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 310 248 0 78 0 1,194
chaitin 391 215 1,290 96
optimistic
backtrack
rematerial
SSA-based
dominance
supp
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 435 308 1 20 0 1,507
chaitin 522 294 0 21 1,653 146
optimistic 523 295 20 1,656 149
backtrack
rematerial
SSA-based 520 292 1,644 137
dominance 510 282 33 1,617 110
vgjyeh
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 12 13 4 3 1 58
chaitin 0
optimistic
backtrack
rematerial
SSA-based
dominance
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x21y21

allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 42 42 0 2 46 216
chaitin 43 43 220 4
optimistic
backtrack
rematerial
SSA-based

dominance

yeh
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 65 73 27 5 10 318
chaitin 92 70 14 353 35
optimistic 76 58 297 —-21
backtrack

rematerial 74 56 12 8 290 —28
SSA-based 73 54 11 283 —-35
dominance 64 53 17 269 —49
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A.2.2 fpppp

Since fpppp accepts input controlling the problem size, we arbitrarily used the number

“5” which seems adequate to exercise most of the program.

aclear

allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 1 16 0 1 17 52
chaitin 0
optimistic
backtrack
rematerial
SSA-based

dominance

d2esp
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 389 401 25 26 369 2,000
chaitin 397 417 8 46 2,051 51
optimistic 393 413 9 45 2,035 35
backtrack
rematerial 392 46 2,034 34
SSA-based 393 414 2,038 38
dominance 390 412 12 43 2,028 28
efill
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 124 88 3 18 43 488
chaitin 175 124 0 20 661 173
optimistic 157 104 17 582 94
backtrack
rematerial
SSA-based 156 92 2 558 70
dominance 161 93 53 621 133
fmtgen
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 38 20 7 4 18 145
chaitin 21 4 144 -1
optimistic
backtrack
rematerial 20 5 143 -2
SSA-based
dominance 50 31 62 9 251 106




fmtset
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 141 89 5 11 32 508
chaitin 142 90 512 4
optimistic
backtrack
rematerial 141 89 4 12 508 0
SSA-based
dominance 139 87 19 507 -1
fpppp
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 1,930 274 0 5 0 4,413
chaitin || 2,561 379 5,885 1,472
optimistic || 2,553 373 5,857 1,444
backtrack
rematerial
SSA-based
dominance

gamgen Note that the SSA-based splitter produced illegal code for gamgen.

allocator

loads

stores

copies

Idi’s

addi’s

total cost

spill cost

huge

20,052

10,859

0

23

6,834

68,679

chaitin

20,062

10,864

74

8,336

70,762

2,083

optimistic

backtrack

rematerial

SSA-based

dominance

10,863

11,233

73,157

4,478

ilsw

allocator

loads

stores

copies

Idi’s

addi’s

total cost

spill cost

huge

1

0

2

chaitin

0

optimistic

backtrack

rematerial

SSA-based

dominance

intowp

allocator

loads

stores

copies

Idi’s

addi’s

total cost

spill cost

huge

0

0

4

chaitin

0

optimistic

backtrack

rematerial

SSA-based

dominance
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Iclear
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 1 26 0 1 27 83
chaitin 0
optimistic
backtrack
rematerial
SSA-based
dominance
main
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 129 283 7 76 134 1,041
chaitin 4 289 1,251 210
optimistic
backtrack
rematerial 3 279 1,240 199
SSA-based 2 1,239 198
dominance 130 284 4 275 1,241 200
twldrv
allocator loads stores copies Idi’s addi’s total cost spill cost
huge || 42,312,412 | 10,400,205 | 171,806 | 819,862 | 1,286,276 || 107,703,178
chaitin || 46,867,951 | 12,261,427 54,111 | 1,372,374 | 1,749,739 || 121,434,980 | 13,731,802
optimistic || 46,077,911 | 11,813,625 | 110,337 119,014,802 | 11,311,624
backtrack
rematerial || 45,965,582 | 11,813,259 1,483,478 118,901,236 | 11,198,058
SSA-based || 46,606,622 | 11,894,122 | 633,610 120,868,315 | 13,165,137
dominance || 47,848,939 | 13,874,276 | 5,168,232 | 3,190,025 | 1,724,989 || 133,529,676 | 25,826,498
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A.2.3 matrix300

Ibmk14

allocator || loads stores | copies | Idi’s | addi’s total cost | spill cost
huge 7 | 270,027 58 963 | 90,936 632,025
chaitin 23 270,101 3 974 632,161 136
optimmistic 22 | 270,100 632,157 132
backtrack
rematerial
SSA-based

dominance

prnt

allocator || loads | stores | copies | Idi’s | addi’s || total cost | spill cost
huge 304 | 90,005 303 301 1,202 182,424
chaitin 321 90,018 182,484 60
optimistic
backtrack
rematerial
SSA-based 302 302
dominance 304

saxpy
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 604 304 2 0 1 1,819
chaitin 617 314 1,865 46
optimistic
backtrack
rematerial
SSA-based 615 321 1,857 38
dominance 6 1,861 42
sgemim
allocator || loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge || 1,230 | 1,830 | 1,215 2 901 8,238
chaitin || 4,842 | 4,535 902 20,559 12,321
optimistic || 4,238 | 3,931 18,143 9,905
backtrack
rematerial || 3,637 | 3,629 301 16,636 8,398
SSA-based || 2,742 | 3,328 | 1,204 14,546 6,308
dominance 3,326 915 14,253 6,015
sgemv
allocator loads | stores | copies | Idi’s | addi’s total cost | spill cost
huge 924 1,224 913 3 303 5,515
chaitin 2,139 1,828 302 8,542 3,027
optimistic 1,535 1,822 303 7,323 1,808
backtrack 1,534 1,821 7,319 1,804
rematerial || 1,535 1,822 7,323 1,808
SSA-based 1,524 1,821 305 7,321 1,806
dominance 1,822 616 7,624 2,109




A.2.4 tomcatv

136

allocator loads stores copies Idi’s addi’s total cost spill cost
huge || 352,236,895 | 71,609,914 | 218,082 | 181,174 | 39,362,624 833,455,498
chaitin || 489,075,095 | 104,910,820 | 93,905 | 232,173 | 39,464,322 || 1,227,853,230 | 394,397,732
optimistic || 482,470,495 | 98,359,920 | 93,906 1,201,451,231 | 367,995,733
backtrack

rematerial | 476,018,795 | 98,309,945 | 140,781 1,188,494,756 | 355,039,258
SSA-based || 488,972,895 | 111,238,545 | 192,382 1,240,311,757 | 406,856,259
dominance || 462,659,096 | 72,301,942 | 269,282 | 232,273 1,109,887,953 | 276,432,455
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