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■ The year was 1975. . .
■ Stop-the-world GC commonplace, but how to reduce pause times for

interactive or real-time applications?

◆ Start and stop GC during convenient times for the user
◆ Time-share one processor between mutator and a GC thread
◆ Use two processors, one for mutator and one for GC

■ Description of concurrent mark-sweep-compact algorithm (not
implementated, but some ideas about hardware optimizations)
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■ Problem: An object may be moved while the mutator is accessing the
object. Mutator may see inconsistent state of object.

◆ Solution:
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■ Problem: An object may be moved while the mutator is accessing the
object. Mutator may see inconsistent state of object.

◆ Solution: Use forwarding pointers inside objects if relocated
(difficulties?)

◆ Mutator must check relocation status during GC phases where an
object could be moved

◆ Need to protect flag indicating current GC phase
◆ Possible race if GC is relocating an object while the mutator is

accessing it. Protect object access during relocation using
semaphores. Overhead of acquiring object (“munch”) lock.
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■ Problem: The mutator may create a new object during GC. Freelist
needs to be synchronized; GC needs to know that there is another
accessible object.
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■ Problem: The mutator may create a new object during GC. Freelist
needs to be synchronized; GC needs to know that there is another
accessible object.

◆ Solution: Protect access to freelists but increase concurrency by
having GC access the front and the mutator access the back. Modify
mutator to signal new objects to GC thread. (difficulties?)

◆ Increased overhead for object creation, potential contention with GC
thread
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■ Problem: The mutator may add or remove references from objects. If the
object was marked by GC, the new references may not be traced. If the
modification occurs during object relocation, modifications could be lost
during pointer update.
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■ Problem: The mutator may add or remove references from objects. If the
object was marked by GC, the new references may not be traced. If the
modification occurs during object relocation, modifications could be lost
during pointer update.

◆ Solution: During mark phase, mutator must notify GC thread when
modifying a field of a marked object to point to an unmarked object.
Protect object access during relocation using semaphores.
(difficulties?)

◆ Increased overhead for object modification, overhead of acquiring
object (“munch”) lock.
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■ One mutator processor, one GC processor
■ Memory is divided into spaces of homogenous cells

◆ Single word memory reads and writes are atomic
◆ Shared access to global variables, GC stack and mutator stack
◆ Synchronization via semaphore (P “try-to-acquire” and V

“increment”)

■ An object is a sequence of pointers and has a mark and flag flag
■ Coarse gcstate lock
■ Reasonable? Efficient?
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Mark bit false false true true
Flag bit false true false true

Meaning Not traced Relocated Accessible On freelist

Mark phase Cell not yet
traced

Accessible

Relocate phase Candidate
target for
relocation

Relocated Candidate
source for
relocation

Update phase Need to
normalize
pointers

Reclaim phase Return to
freelist

Return to
freelist

On freelist
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■ Recursive marking with an explicit stack
■ Minimize contention by keeping critical sections small (see gcmark1())
■ Three phases

1. Process rootset
2. Process mutator stack
3. Process additional mutator generated objects

setgcstate(‘‘mark’’)

for addr in rootspace: # Process rootset

gcpush(addr)

gcmark1()

...
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i = 0

while True: # Process mutator stack

P(mstack)

if (i >= mstack.index)

break

gcpush(mstack.cells[i].ptr)

mstack.cells[i].mark = True

V(mstack)

gcmark1()

i += 1

mstack.gcdone = True

V(mstack)

...
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P(gcstate)

while gcstack.index > 0: # Process new objects

V(gcstate)

gcmark1()

P(gcstate)

gcstate = ‘‘relocate’’

mstack.gcdone = False

V(gcstate)
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while gcstack.index != 0:

x = gcpop()

if x.space == ‘‘mstack’’:

contents(x).mark = True

x = contents(x).ptr

if not contents(x).mark:

munch(x)

for addr in contents(x).ptrs:

gcpush(addr)

contents(x).mark = True

unmunch()
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■ Global munch register indicates which object GC or mutator is currently
accessing

munch(x):

P(munch)

while x = munch[other]:

pass

munch[mine] = x

V(munch)

unmunch():

munch[mine] = None
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■ Copy compaction (problems?)
■ General mark-sweep-compact (problems?); from [Cohen and Nicolau]:

◆ Lisp 2: Reserve field to store new location
◆ Morris or Jonkers: Threading to keep track of pointers to objects

■ “Two-pointer” swapping scheme: Maintain two pointers, one sweeping up
from the bottom of memory and the other sweeping down from the top of
memory.

◆ When the former reaches a garbage cell and the latter reaches a live
object, relocate the live object to the empty cell

◆ Use marked and flag bits to identify live and relocated objects
◆ Use a freelist (why?)
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Figure 1: One step of the gcrelocate algorithm

■ Pros? Cons?
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■ For all acessible objects (in spaces and in stack), if any of the object’s
pointers references a relocated object, normalize the pointer reference.

◆ Use munch() to maintain object view consistency
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■ Add all objects with mark bit false to end of freelist, setting mark bit and
flag bit to true

■ Reset mark bit on accessible objects to false
■ Maintain sweepindex, indicating frontier of reclaimation
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■ Argument passing: push and pop

■ Object creation (cons): create
■ Object traversal (car, cdr): select
■ Object update (rplaca and rplacd): clobber
■ Object equality (eq): identity
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P(mstack)

mstack.index += 1

munch(address(mstack, mstack.index))

mstack.cells[mstack.index].ptr = normalize(x)

unmunch()

if gcstate == ‘‘mark’’

and mstack.gcdone # GC Done marking stack

and mstsack.cells[mstack.index].mark

and not contents(x).mark: # But x unmarked

mstack.cells[mstack.index].mark = False

gcpush(address(mstack, mstack.index))

V(mstack);
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... # Wait until freelist is not empty

P(gcstate)

newcell = ... # Grab new object from freelist

munch(newcell)

if gcstate == ‘‘reclaim’’:

newmark = s.sweepindex <= newcell.addr

else:

newmark = True

...
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for i in range(nargs, 0, -1):

x = pop()

if gcstate == ‘‘update’’:

x = normalize()

contents(newcell).ptrs[i-1] = x

# Special case for mark phase when all args are marked

newmark = ...

contents(newcell).mark = newmark

contents(newcell).flag = False

unmunch()

push(newcell)

V(gcstate)
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P(gcstate)

x = pop()

if gcstate == ‘‘relocate’’:

munch(x) # Ensures consistency during normalize

x = normalize(contents(normalize(x)).ptrs[i])

if gcstate == ‘‘relocate’’:

unmunch()

push(x)

V(gcstate)
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P(gcstate)

y = pop()

x = pop()

if gcstate == ‘‘update’’:

y = normalize(y)

munch(x)

contents(normalize(x)).ptrs[i] = y

unmunch()

if gcstate == ‘‘mark’’

and contents(x).mark # Replacing marked with unmarked ref

and not contents(y).mark:

contents(x).mark = False

gcpush(x)

V(gcstate)
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■ Hardware support?
■ More . . .
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setgcstate(‘‘relocate’’)

j = 0; k = length(s.cells)

while j < k:

# Scan up to lowest unmarked cell

while j < k and s.cells[j].mark:

j += 1

# Scan down to highest marked cell

while j < k and (not s.cells[k].mark or s.cells[j].flag):

k -= 1

if j < k:

relocate1(j, k)

j += 1; k -= 1
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relocate1(j, k):

s.cells[j] = s.cells[k]

s.cells[j].mark = True

munch(address(space, k))

s.cells[k].mark = False # Mark relocated

s.cells[k].flag = True

s.cells[k].ptrs[0] = address(space, j)

unmunch()
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