
1 / 33

Multiprocessing compactifying garbage collection
Guy Steele

Presented by Donald Nguyen

March 23, 2009

Context

2 / 33

■ The year was 1975. . .
■ Stop-the-world GC commonplace, but how to reduce pause times for

interactive or real-time applications?

◆ Start and stop GC during convenient times for the user
◆ Time-share one processor between mutator and a GC thread
◆ Use two processors, one for mutator and one for GC

■ Description of concurrent mark-sweep-compact algorithm (not
implementated, but some ideas about hardware optimizations)

Outline

3 / 33

Context

Problems with concurrent GC

Concurrent algorithm

GC thread

Mutator thread

Questions

Problems with concurrent GC

Context

Problems with
concurrent GC

Object access

Object creation

Pointer modification

Concurrent
algorithm

GC thread

Mutator thread

Questions

4 / 33

Object access

5 / 33

■ Problem: An object may be moved while the mutator is accessing the
object. Mutator may see inconsistent state of object.

◆ Solution:

Object access

5 / 33

■ Problem: An object may be moved while the mutator is accessing the
object. Mutator may see inconsistent state of object.

◆ Solution: Use forwarding pointers inside objects if relocated
(difficulties?)

Object access

5 / 33

■ Problem: An object may be moved while the mutator is accessing the
object. Mutator may see inconsistent state of object.

◆ Solution: Use forwarding pointers inside objects if relocated
(difficulties?)

◆ Mutator must check relocation status during GC phases where an
object could be moved

◆ Need to protect flag indicating current GC phase
◆ Possible race if GC is relocating an object while the mutator is

accessing it. Protect object access during relocation using
semaphores. Overhead of acquiring object (“munch”) lock.

Object creation

6 / 33

■ Problem: The mutator may create a new object during GC. Freelist
needs to be synchronized; GC needs to know that there is another
accessible object.

◆ Solution:

Object creation

6 / 33

■ Problem: The mutator may create a new object during GC. Freelist
needs to be synchronized; GC needs to know that there is another
accessible object.

◆ Solution: Protect access to freelists but increase concurrency by
having GC access the front and the mutator access the back. Modify
mutator to signal new objects to GC thread. (difficulties?)

Object creation

6 / 33

■ Problem: The mutator may create a new object during GC. Freelist
needs to be synchronized; GC needs to know that there is another
accessible object.

◆ Solution: Protect access to freelists but increase concurrency by
having GC access the front and the mutator access the back. Modify
mutator to signal new objects to GC thread. (difficulties?)

◆ Increased overhead for object creation, potential contention with GC
thread

Pointer modification

7 / 33

■ Problem: The mutator may add or remove references from objects. If the
object was marked by GC, the new references may not be traced. If the
modification occurs during object relocation, modifications could be lost
during pointer update.

◆ Solution:

Pointer modification

7 / 33

■ Problem: The mutator may add or remove references from objects. If the
object was marked by GC, the new references may not be traced. If the
modification occurs during object relocation, modifications could be lost
during pointer update.

◆ Solution: During mark phase, mutator must notify GC thread when
modifying a field of a marked object to point to an unmarked object.
Protect object access during relocation using semaphores.
(difficulties?)

Pointer modification

7 / 33

■ Problem: The mutator may add or remove references from objects. If the
object was marked by GC, the new references may not be traced. If the
modification occurs during object relocation, modifications could be lost
during pointer update.

◆ Solution: During mark phase, mutator must notify GC thread when
modifying a field of a marked object to point to an unmarked object.
Protect object access during relocation using semaphores.
(difficulties?)

◆ Increased overhead for object modification, overhead of acquiring
object (“munch”) lock.

Concurrent algorithm

Context

Problems with
concurrent GC

Concurrent
algorithm

Assumptions

Flags

GC thread

Mutator thread

Questions

8 / 33

Assumptions

9 / 33

■ One mutator processor, one GC processor
■ Memory is divided into spaces of homogenous cells

◆ Single word memory reads and writes are atomic
◆ Shared access to global variables, GC stack and mutator stack
◆ Synchronization via semaphore (P “try-to-acquire” and V

“increment”)

■ An object is a sequence of pointers and has a mark and flag flag
■ Coarse gcstate lock
■ Reasonable? Efficient?

Flags

10 / 33

Mark bit false false true true
Flag bit false true false true

Meaning Not traced Relocated Accessible On freelist

Mark phase Cell not yet
traced

Accessible

Relocate phase Candidate
target for
relocation

Relocated Candidate
source for
relocation

Update phase Need to
normalize
pointers

Reclaim phase Return to
freelist

Return to
freelist

On freelist

GC thread

Context

Problems with
concurrent GC

Concurrent
algorithm

GC thread

gcmark

gcmark (continued)

gcmark (continued)

gcmark1

munch and unmunch

Compaction options

gcrelocate

gcupdate

gcreclaim

Mutator thread

Questions

11 / 33

g
mark

12 / 33

■ Recursive marking with an explicit stack
■ Minimize contention by keeping critical sections small (see gcmark1())
■ Three phases

1. Process rootset
2. Process mutator stack
3. Process additional mutator generated objects

setgcstate(‘‘mark’’)

for addr in rootspace: # Process rootset

gcpush(addr)

gcmark1()

...

g
mark (continued)

13 / 33

i = 0

while True: # Process mutator stack

P(mstack)

if (i >= mstack.index)

break

gcpush(mstack.cells[i].ptr)

mstack.cells[i].mark = True

V(mstack)

gcmark1()

i += 1

mstack.gcdone = True

V(mstack)

...

g
mark (continued)

14 / 33

P(gcstate)

while gcstack.index > 0: # Process new objects

V(gcstate)

gcmark1()

P(gcstate)

gcstate = ‘‘relocate’’

mstack.gcdone = False

V(gcstate)

g
mark1

15 / 33

while gcstack.index != 0:

x = gcpop()

if x.space == ‘‘mstack’’:

contents(x).mark = True

x = contents(x).ptr

if not contents(x).mark:

munch(x)

for addr in contents(x).ptrs:

gcpush(addr)

contents(x).mark = True

unmunch()

mun
h and unmun
h

16 / 33

■ Global munch register indicates which object GC or mutator is currently
accessing

munch(x):

P(munch)

while x = munch[other]:

pass

munch[mine] = x

V(munch)

unmunch():

munch[mine] = None

Compaction options

17 / 33

■ Copy compaction (problems?)
■ General mark-sweep-compact (problems?); from [Cohen and Nicolau]:

◆ Lisp 2: Reserve field to store new location
◆ Morris or Jonkers: Threading to keep track of pointers to objects

■ “Two-pointer” swapping scheme: Maintain two pointers, one sweeping up
from the bottom of memory and the other sweeping down from the top of
memory.

◆ When the former reaches a garbage cell and the latter reaches a live
object, relocate the live object to the empty cell

◆ Use marked and flag bits to identify live and relocated objects
◆ Use a freelist (why?)

g
relo
ate

18 / 33

Figure 1: One step of the gcrelocate algorithm

■ Pros? Cons?

g
update

19 / 33

■ For all acessible objects (in spaces and in stack), if any of the object’s
pointers references a relocated object, normalize the pointer reference.

◆ Use munch() to maintain object view consistency

g
re
laim

20 / 33

■ Add all objects with mark bit false to end of freelist, setting mark bit and
flag bit to true

■ Reset mark bit on accessible objects to false
■ Maintain sweepindex, indicating frontier of reclaimation

Mutator thread

Context

Problems with
concurrent GC

Concurrent
algorithm

GC thread

Mutator thread

Primitive operations

push(x)

create(nargs)

create(nargs)

(continued)

select(i)

clobber(i)

Questions

21 / 33

Primitive operations

22 / 33

■ Argument passing: push and pop

■ Object creation (cons): create
■ Object traversal (car, cdr): select
■ Object update (rplaca and rplacd): clobber
■ Object equality (eq): identity

push(x)

23 / 33

P(mstack)

mstack.index += 1

munch(address(mstack, mstack.index))

mstack.cells[mstack.index].ptr = normalize(x)

unmunch()

if gcstate == ‘‘mark’’

and mstack.gcdone # GC Done marking stack

and mstsack.cells[mstack.index].mark

and not contents(x).mark: # But x unmarked

mstack.cells[mstack.index].mark = False

gcpush(address(mstack, mstack.index))

V(mstack);

reate(nargs)

24 / 33

... # Wait until freelist is not empty

P(gcstate)

newcell = ... # Grab new object from freelist

munch(newcell)

if gcstate == ‘‘reclaim’’:

newmark = s.sweepindex <= newcell.addr

else:

newmark = True

...

reate(nargs) (continued)

25 / 33

for i in range(nargs, 0, -1):

x = pop()

if gcstate == ‘‘update’’:

x = normalize()

contents(newcell).ptrs[i-1] = x

Special case for mark phase when all args are marked

newmark = ...

contents(newcell).mark = newmark

contents(newcell).flag = False

unmunch()

push(newcell)

V(gcstate)

sele
t(i)

26 / 33

P(gcstate)

x = pop()

if gcstate == ‘‘relocate’’:

munch(x) # Ensures consistency during normalize

x = normalize(contents(normalize(x)).ptrs[i])

if gcstate == ‘‘relocate’’:

unmunch()

push(x)

V(gcstate)

lobber(i)

27 / 33

P(gcstate)

y = pop()

x = pop()

if gcstate == ‘‘update’’:

y = normalize(y)

munch(x)

contents(normalize(x)).ptrs[i] = y

unmunch()

if gcstate == ‘‘mark’’

and contents(x).mark # Replacing marked with unmarked ref

and not contents(y).mark:

contents(x).mark = False

gcpush(x)

V(gcstate)

Questions

Context

Problems with
concurrent GC

Concurrent
algorithm

GC thread

Mutator thread

Questions

Implementing the
algorithm

28 / 33

Implementing the algorithm

29 / 33

■ Hardware support?
■ More . . .

30 / 33

Backup slides

Context

Problems with
concurrent GC

Concurrent
algorithm

GC thread

Mutator thread

Questions

Backup slides

gcrelocate

gcrelocate

(continued)

31 / 33

g
relo
ate

32 / 33

setgcstate(‘‘relocate’’)

j = 0; k = length(s.cells)

while j < k:

Scan up to lowest unmarked cell

while j < k and s.cells[j].mark:

j += 1

Scan down to highest marked cell

while j < k and (not s.cells[k].mark or s.cells[j].flag):

k -= 1

if j < k:

relocate1(j, k)

j += 1; k -= 1

g
relo
ate (continued)

33 / 33

relocate1(j, k):

s.cells[j] = s.cells[k]

s.cells[j].mark = True

munch(address(space, k))

s.cells[k].mark = False # Mark relocated

s.cells[k].flag = True

s.cells[k].ptrs[0] = address(space, j)

unmunch()

	Context
	Context
	Outline

	Problems with concurrent GC
	Object access
	Object creation
	Pointer modification

	Concurrent algorithm
	Assumptions
	Flags

	GC thread
	gcmark
	gcmark (continued)
	gcmark (continued)
	gcmark1
	munch and unmunch
	Compaction options
	gcrelocate
	gcupdate
	gcreclaim

	Mutator thread
	Primitive operations
	push(x)
	create(nargs)
	create(nargs) (continued)
	select(i)
	clobber(i)

	Questions
	Implementing the algorithm
	

	Backup slides
	gcrelocate
	gcrelocate (continued)

