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ABSTRACT
Since 1960, reference counting has been a popular means of garbage
collection. Reference counters achieve low pause times by using
local data to determine liveness, but the use of this local data leaves
the collector unable to collect cyclic garbage. Recent advances
such as the use of coalescing and generations have dramatically
improved the throughput of reference counting collectors. How-
ever, the efficient collection of cyclic garbage remains a stumbling
block. This paper responds to this shortcoming with MSCD, a con-
current tracing algorithm that takes advantage of information avail-
able within a reference counted environment. MSCD outperforms
alternatives such as trial deletion and backup tracing by up to a fac-
tor of two. This advantage is the result of three insights: 1) objects
subject to races during concurrent tracing are trivially identified us-
ing data already established by the reference counter, 2) the trace
performed by the mark phase of the collector can safely omit ob-
jects statically identified as inherently acyclic, and 3) the sweep
phase of the collector can be reduced to just those objects which
are potentially cyclic garbage. We show that MSCD works with
state of the art reference counting collectors — which allow large
numbers of heap mutations to be ignored — without affecting the
correctness or completeness of the algorithm. We provide detailed
performance comparisons of concurrent and non-concurrent ver-
sions of our cycle collector, a simple mark-sweep cycle detector,
and a high-performance implementation of trial deletion.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory manage-
ment (garbage collection)

General Terms
Design, Performance, Algorithms
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1. Introduction
Since it was first described by Collins in 1960 [10], reference count-
ing has held a tantalizing appeal due to its conceptual simplic-
ity, low pause times, and prompt reclamation. The appeal was
tantalizing because reference counting suffered two major draw-
backs: poor throughput, and an inability to collect cyclic data.
The first problem has been addressed by deferred reference count-
ing [11], coalescing [14], and most recently with the use of gener-
ations [8, 4] and ulterior reference counting [8]. This combination
yields throughput competitive with the fastest tracing garbage col-
lectors [8]. Backup collectors are used to address the second prob-
lem, but their overhead is such that unless additional CPU resources
are deployed [5, 17], throughput may suffer noticeably in applica-
tions which generate cyclic garbage. A collector which exhibits low
pause times and high throughput even in the face of cyclic garbage,
has thus long been a goal.
We address this longstanding objective with MSCD, a concur-

rent tracing algorithm that outperforms alternatives including trial
deletion [9, 16, 15, 5] by close to a factor of 2, and backup mark
sweep by up to 30%.1 MSCD achieves this with a novel tracing
algorithm which exploits information available within a reference
counted environment to a) operate concurrently with no additional
synchronization overheads, b) avoid tracing inherently acyclic data,
and c) limit sweeping to potentially cyclic garbage.
Reference counting garbage collectors work by keeping counts

of incoming references to each object, incrementing the count as
each new reference to the object is generated, and decrementing
the count as each reference to the object is deleted or overwritten.
When an object’s count reaches zero, there are no references to it,
so it may be reclaimed. The beauty of this algorithm lies in its
reliance only on local information to directly identify garbage. By
contrast, tracing collectors must trace through all live objects before
indirectly inferring those that are dead as those objects that were not
identified as live. Unfortunately, the reliance on local information
means that reference counting is unable to identify self sustaining
cycles of garbage (consider two objects which point only to each
other). Consequently, reference counters are generally augmented
with cycle detection algorithms.
There are two broad approaches to cycle detection, backup trac-

ing [13] and trial deletion [9, 16, 15, 5, 13], both of which may
be executed either synchronously or concurrently with the applica-
tion. Backup tracing involves occasionally tracing the whole heap
and identifying as garbage those objects left unmarked during the
trace. Trial deletion works on the basis that if a member of an
unreachable self-sustaining cycle were to be temporarily deleted,
the cycle would collapse and the reference count of the temporar-

1MSCD stands for Mark Sweep Cycle Detector. We hope to have
a more imaginative name for the final version of this paper.



ily deleted object would fall to zero, confirming that it was in fact
a dead cycle. Trial deletion thus attempts the deletion of selected
candidates, and, if they are identified as cyclic garbage, they are
properly deleted. Candidates are selected by observing that a dead
cycle can only be created in the uncommon case where an object’s
reference count is decremented to a non-zero value (empirically,
most decrements go to zero).
Both approaches suffer shortcomings. Standard backup tracing

is oblivious to its context in a reference counted heap, missing op-
portunities for lower cost concurrency control, higher throughput
and better scalability, which we exploit. Although trial deletion ex-
hibits improved best-case behavior, in the common and worst case,
it is substantially more expensive. While in some circumstances
this overhead can be absorbed by dedicating additional CPU re-
sources to the task [5, 17], we are interested in a more general so-
lution where such resources may not be available.
Our contribution is a new concurrent backup tracing algorithm

that outperforms standard backup tracing and trial deletion. Our
good performance is achieved in two ways. First, we identify a
new low overhead variant of snapshot-at-the-beginning concurrent
collection [22, 3] that does not require any additional snapshot op-
erations, but instead uses the set of non-zero decrements (already
maintained by the underlying reference counter) to identify all ob-
jects potentially exposed to a race condition. Second, we specif-
ically target the backup trace to the task of cycle collection. We
do this by pruning both the mark and sweep phases of the trace,
a) avoiding marking certain inherently acyclic objects and b) only
sweeping potentially cyclic garbage.
The remainder of the paper is structured as follows. Section 2

describes the background and related work, Section 3 describes the
MSCD algorithm, Section 4 describes our evaluation methodology,
Section 5 evaluates MSCD against trial deletion and conventional
backup tracing, Section 6 discusses future work, and Section 7 con-
cludes the paper.

2. Background and Related Work
In this section we discuss the key background work upon which
MSCD builds. First we briefly review reference counting and dis-
cuss various approaches to cycle detection. We then discuss the
lightweight snapshot write barrier used by MCSD. Finally, we give
an overview of concurrent garbage collection in the context of cycle
detection.

2.1 Reference Counting and Cycle Detection
Collins [10] first described reference counting garbage collection
in 1960. Naive implementations of reference counting required in-
crement and decrement operations to be performed at every pointer
mutation, which is extremely expensive. Sixteen years later, Deutsch
and Bobrow [11] addressed this source of inefficiency by deferring
(temporarily ignoring) mutations to frequently mutated pointers,
specifically those in registers and on the stack. The deferred point-
ers were accounted for at collection time when they were fully enu-
merated. More recently, Levanoni and Petrank [14] observed that
all but the first and last in any chain of mutations to a given pointer
could be coalesced. Only the initial and final states of the pointer
are necessary to generate correct increments and decrements since
the intervening mutations generate increments and decrements which
cancel each other out. Azatchi and Petrank [4] and Blackburn and
McKinley [8] concurrently and independently added generations to
reference counting. Blackburn and McKinley [8] did so in a gen-
eral framework of ulterior reference counting, which generalizes
Deutsch and Bobrow’s notion of deferral to include heap pointers
such as those within a copying nursery. Blackburn and McKin-
ley showed that with a copying nursery, ulterior reference count-

ing could achieve throughput matching the fastest tracing collectors
while still attaining good pause times.
Jones and Lins [13] give a good description of the various ap-

proaches that deal with cyclic data structures. Most approaches
are not general, being either language specific, or dependent on
programmer intervention. However, there exist two general ap-
proaches, backup tracing [11] and trial deletion [9, 16, 15, 5].
Backup tracing simply performs a mark-sweep trace of the whole

heap from time to time. It must trace all live objects in the heap
and sweep the entire heap for dead objects. Unless the tracing is
performed concurrently, reference counting’s advantages of prompt
reclamation and low pause times are lost. Concurrent mark-sweep
collection requires some form of synchronization to avoid races
with the mutator [20, 12, 3]. MSCD exploits its reference count-
ing context to a) require no synchronization above that which al-
ready exists in a state-of-the-art reference counting collector, b)
avoid marking certain objects statically identified as acyclic, and
c) only sweep potentially cyclic objects.
Trial deletion is also described as partial mark-sweep [13]. Intu-

itively, trial deletion determines which objects are being kept alive
only by virtue of reachability from some candidate object. If the
candidate is only alive by virtue of reachability from itself, then it
is part of a self-sustaining garbage cycle and should be collected. A
trial deletion collector works by ‘trialing’ the deletion of selected
candidate objects in three phases. Each phase performs a transi-
tive closure over the subgraph reachable from the candidates: 1)
The subgraph is traversed, adjusting reference counts on all objects
in the subgraph to reflect the hypothetical death of the candidates.
At the end of this phase the reference counts reflect only the ref-
erences from objects external to the sub-graph. Any object with a
count of zero is only reachable from within the subgraph. 2) The
second phase restores the counts of all externally reachable objects
and their referents. 3) The third phase again traces the subgraph,
sweeping any objects with a zero count.
The original implementation by Christopher [9] effectively ap-

plied this three-phase approach using all objects in the heap as the
candidate set. The advantage of the approach over simple mark-
sweep is that it does not require information about external roots,
which may be unavailable in some environments. However, it is
substantially less efficient. Martinez et al [16] noted that a garbage
cycle could only be created when a pointer to a shared object is
removed. They thus check for cyclic garbage whenever a refer-
ence count is decremented to a non-zero value. Lins [15] noted that
this could be prohibitively expensive, and performed cycle detec-
tion lazily, periodically targeting the set of candidate objects whose
counts experienced decrements to non-zero values. Bacon and Ra-
jan [5] made three key improvements to Lin’s algorithm. They ob-
served that by performing the three phases of trial deletion to each
candidate sequentially could exhibit worst case quadratic complex-
ity. They solved this by performing each phase over the candidates
en masse. Second, they observed that many objects can be stati-
cally identified as inherently acyclic and thus be ignored in many
phases of the algorithm. Finally, they extend the algorithm to al-
low it to run concurrently with the mutator. Our contribution is that
like Bacon and Rajan, we exploit elements of the reference count-
ing context in our algorithm, but we do so starting with a concurrent
tracing algorithm which we found to be substantially more efficient
than trial deletion.

2.2 A Lightweight Snapshot Write Barrier
We now describe a low-cost, low-synchronization snapshot-at-the-
beginning write barrier which is used in both reference counting
collectors and snapshot-at-the-beginning concurrent tracing collec-



1 public void writeBarrier(ObjectReference srcObj,
2 Address srcSlot,
3 ObjectReference tgtObj)
4 throws InlinePragma {
5 if (getLogState(srcObj) != LOGGED)
6 writeBarrierSlow(srcObj);
7 srcSlot.store(tgtObj);
8 }
9

10 private void writeBarrierSlow(ObjectReference srcObj)
11 throws NoInlinePragma {
12 if (attemptToLog(srcObj)) {
13 enumeratePointersToSnapshotBuffer(srcObj);
14 modifiedObjectBuffer.push(srcObj);
15 setLogState(srcObj, LOGGED);
16 }
17 }
18

19 private boolean attemptToLog(ObjectReference object)
20 throws InlinePragma {
21 int oldState;
22 do { /* perform conditional store */
23 oldState = object.prepare();
24 if (oldState == LOGGED) return false;
25 } while (oldState == BEING_LOGGED ||
26 !object.attempt(oldState, BEING_LOGGED));
27 return true;
28 }

Figure 1: A Low Overhead Coalescing RC Write Barrier.

tors. The semantics and performance of this barrier are key to
MSCD. The barrier is a slightly more efficient variation on one first
used by Levanoni and Petrank [14] in 2001 for on-the-fly reference
counting with backup mark-sweep, and since then has been used
for ulterior reference counting and simple reference counting with
trial deletion [8, 6], as well as on-the-fly mark-sweep collection [3],
among others [4, 17].
Naive reference counting barrier implementations perform ex-

plicit increment and decrement operations unconditionally at the
time of each pointer mutation. Better locality may be achieved by
buffering increment and decrement operations and applying them
en masse periodically [5]. In either case, if mutator parallelism
(ie multiple user threads) is to be supported, it is necessary that
the barrier operations be synchronized with the pointer store oper-
ation. The cost of performing atomic operations on every pointer
mutation is significant.
Figure 1 shows Java source code for the low synchronization bar-

rier implemented inMMTk [6]. The barrier allows ‘before’ and ‘af-
ter’ images of the pointers within each mutated object to be estab-
lished and ensures that each object is only ever remembered once.
It achieves this by a) taking a snapshot of the state of all pointer
fields of each object prior to its first mutation since a GC (line 13),
and b) recording the mutated object so that the ‘after’ state of its
fields may be enumerated at GC time (line 14).
In a reference counting GC, objects referenced in the ‘before’

state receive a decrement, and objects referenced in the ‘after’ state
receive an increment. It is essential to the correctness of reference
counting that a) the ‘before’ snapshot of an object is not exposed
to interleaving with a concurrent mutation, and b) that each object
is only enqueued once for enumeration of its ‘after’ value. The
synchronized guard in line 12 is therefore key to the correctness of
this barrier for reference counting.
In a snapshot-at-the-beginning tracing collector (described be-

low), only the ‘before’ image (line 13) is essential, so it may omit
line 14. Furthermore, the correctness of the barrier for the snapshot-
at-the-beginning tracing collector only depends on some thread cap-
turing a consistent before-image of the mutated object. Therefore,

the snapshot-at-the-beginning tracing collector may omit synchro-
nization altogether, removing the guard in line 12.
In line 5 a check is made to see whether the object being mutated

has already been logged. For both collectors, this requires only an
unsynchronized test of a bit in the object header. If the object has
not been logged since the last GC, an out of line call is made to the
write barrier slow path (lines 10-28) which may contain synchro-
nization code, as described in the preceding paragraphs. All subse-
quent mutations of the object fall straight through to line 7 and sim-
ply perform the (unsynchronized) pointer store. The common case
thus only involves an unsynchronized test of a bit in the source ob-
ject’s header in addition to performing the pointer store. Synchro-
nization only occurs in lines 22-26, where a prepare/attempt
idiom is used to perform a conditional store on the infrequently
taken slow path.

2.3 Concurrent Garbage Collection
An important attribute of MSCD is its capacity to run concurrently
without any synchronization overhead above that inherent in the
snapshot write barrier described in the previous section, which is
already employed by the underlying reference counter. There is
a substantial literature on concurrent garbage collection [13], with
seminal work dating back to the 70’s [20, 12]. Here we focus on
work that pertains to concurrent cycle detection and MSCD.

(a) t0 (b) t1 (c) t2

Figure 2: The Mutator-Collector Race.

Figure 2 illustrates the fundamental race that a concurrent tracing
collector must address. We use the standard tri-color convention:
Black represents a node which has been visited and need not be re-
visited by the collector. Grey represents a node which the collector
must visit. White represents unvisited nodes, which at the end of
collection will be garbage [13]. At t0, the collector marks A’s sole
referent, B, grey and enqueues it before marking A black (reach-
able). At t1, the mutator adds a pointer from A to C and deletes
the pointer from B to C. At time t2 the collector marks B as black
(reachable) and since it has no referents, does not enqueue any ob-
jects for marking. C is thus left white (unreachable) at the end of
the collection although it is live. The problem is due to the creation
of a pointer from a black node to a white node (A to C).

(a) t0 (b) t1 (c) t2
Figure 3: Adding an Extra Node to the Race.

The conditions for this race have been previously described as
follows [13]:
C1. A pointer from a black object to a white object is created.
C2. The original reference to the white object is destroyed.
However, when, as in Figure 3, we introduce an intervening

node, D, between A and B, it becomes clear that C2 needs to be



weakened to account for the white object becoming indirectly un-
reachable. We therefore postulate a weaker necessary condition:

C2.′ The original path to the white object is destroyed.
Of the many solutions to this problem, we will focus on those

that use a write barrier, namely those characterized by Wilson as
incremental update and snapshot-at-the-beginning [21], which are
predominant among contemporary concurrent non-copying tracing
collectors. The goal of all such approaches is to identify the cre-
ation of any (potential) black to white pointers (C1 above). Once
identified, the collector can visit the referent white objects, fixing
the problem generated by the race.
There are two seminal incremental update algorithms, both dat-

ing from the mid 70’s. The more conservative, due to Dijkstra et
al [12], marks the target of a new reference grey if it was white,
regardless of the color of the source. When new objects are cre-
ated during collection, they are marked grey.2 This ensures that
there are never black to white references. Steele [20] takes a less
conservative approach, marking the source grey if it was black and
the target was white. Steele has a less conservative, more complex
algorithm for determining the color of new objects than Dijkstra et
al. Abstractly, Steele’s algorithm retreats the grey wave-front while
Dijkstra’s algorithm advances it.
Intuitively, snapshot-at-the-beginning algorithms snapshot the state

of all edges in the heap prior to a concurrent collection and ensure
that any objects reachable in that snapshot and any newly allocated
objects are kept alive by the collector. This level of conservatism
means that objects which become garbage during the course of the
collection cannot be collected. In practice, it would be too expen-
sive to snapshot the whole heap. Yuasa’s algorithm [22] approxi-
mates this conservatively by marking grey the referent of any over-
written pointer. This requires a check of the referent every time a
pointer is overwritten. Azatchi et al [3] improve on this algorithm
substantially by using a variation of the lightweight snapshot bar-
rier described in the previous section. The first time an object is mu-
tated, its before image is logged and a pointer to the log is recorded
in an additional word in the object’s header. The existence of the
log pointer serves to mark the object as logged. The mark phase
ensures it always traces the logged copy of the object (the before
image), logging the object first if it is not already logged. Azatchi
et al’s algorithm is also ‘on-the-fly’, meaning that in addition to the
tracing algorithm being concurrent, they have a concurrent means
of establishing the roots for the concurrent trace.
Our algorithm is most similar to Azatchi et al’s with two ma-

jor differences. First, we avoid the one word overhead for storing
the log pointer. We ensure all before images are traced by adding
the before images to the set of grey objects. We may then treat all
logged objects as if they were marked, since their before image is
guaranteed to be traced. Second, we exploit the fact that our un-
derlying reference counting algorithm already uses the lightweight
snapshot barrier. We therefore incur no synchronization overhead
above that which is intrinsic to our underlying reference counting
collector. This means that unlike Azatchi et al, we never need to
perform a synchronized logging operation during our mark phase.
Furthermore, we substantially prune the set of objects which may

have been the subject of a race. We do this through the observa-
tion that any object that was the subject of such a race (object C
in Figure 2) must have incurred a reference count decrement to a
non-zero value. This observation is key to our algorithm and is de-
scribed and justified in the following section. Finally, we target our
tracing algorithm at cycle detection, and in doing so limit the scope
2More precisely, as an artifact of the freelist structure used by Di-
jkstra et al, in some instances new objects are marked black.

of our mark phase by avoiding tracing objects which are statically
known to be acyclic and limit the sweep phase to potentially cyclic
objects.
Bacon and Rajan’s [5] trial deletion algorithm operates concur-

rently with the mutator. Recently, Paz et al [17] implemented con-
current trial deletion using the snapshot barrier after identifying a
race condition in the Bacon and Rajan collector.

In summary, MSCD adapts an efficient concurrent tracing algo-
rithm to exploit its setting as a backup to a reference counting algo-
rithm. This allows us to perform concurrent tracing at no additional
synchronization overhead, and target the trace to discovering cyclic
garbage.

3. The MSCD Algorithm
MSCD is a snapshot-at-the-beginning mark-sweep collector that
will only collect cyclic garbage. We define cyclic garbage as any
unreachable data kept alive by a cycle. Only collecting cyclic garbage
is sufficient since the reference counting collector will promptly re-
claim acyclic garbage and only collecting cycles allows for greater
efficiency by limiting the collection scope. MSCD has three op-
timizations over a conventional snapshot-at-the-beginning. 1) By
using information gathered during reference counting, we signifi-
cantly reduce the set of objects that may have been subject to a mu-
tator race. 2) We limit the mark phase to avoid inherently acyclic
objects. 3) We limit the sweep phase to only sweep potentially
cyclic garbage.
The remainder of this section is structured as follows. First we

give an overview of the unoptimized base algorithm upon which
MSCD builds. Then we describe and argue for the correctness
of MSCD’s optimizations to concurrency, marking, and sweeping.
Finally we explain how an MSCD invocation may span multiple
phases of the underlying reference counter and the heuristics that
can be used to trigger MSCD.

3.1 The Base Algorithm
The foundation on which the MSCD algorithm is built, closely fol-
lows a conventional snapshot-at-the-beginning algorithm. At the
highest level the base algorithm – similar to that of Levanoni and
Petrank [14] – can be described in terms of three phases and a sin-
gle data structure, the mark queue. The mark queue is the algo-
rithm’s work queue, containing all grey (unvisited) objects. There
are two ways an object can be added to the mark queue: 1) when an
unmarked object is encountered during the trace, and 2) when a po-
tential mutator race is detected (via the write barrier). The phases
of the base snapshot-at-the-beginning algorithm are as follows:

1. Roots. All objects referenced by roots outside the collected
space are added to the initially empty mark queue.

2. Mark. The mark queue is exhaustively processed.
2.1 Process Each object is popped off the queue until the

queue is empty. If the object is not already marked, its
mark bit is set and each of its referents are added to the
mark queue.

2.2 Check. Any objects potentially subject to a collector-
mutator race not already been added to the mark queue
must be added. If this set is non-zero, return to step 2.1

3. Sweep. Any objects in the collected space that have not been
marked are swept into the free list.

Each of these phases is refined in the sections that follow, as
we add optimizations for concurrency (§3.2), marking (§3.3), and
sweeping (§3.4). In Step 1 of the base algorithm, roots are es-
tablished by coinciding the start of the algorithm with a reference



counting collection and using the same root set (deferred and ulte-
rior reference counting collectors must enumerate all external refer-
ences into the collected heap). In the base algorithm, all references
recorded by the snapshot barrier during the course of Steps 1 and
2 are added to the mark queue in Step 2.2. This is done by per-
forming Step 2.2 during a reference counting collection, when the
before image established by the snapshot barrier is enumerated for
decrements. In the base algorithm Step 3 is performed by walking
the heap and placing all unmarked objects on the free list.
Throughout the rest of this paper we will refer to this algorithm

as the base snapshot-at-the-beginning algorithm or simply the base
algorithm. This is the cycle detection algorithm used by Levanoni
and Petrank [14] (they use it with a reference counter that estab-
lishes its root set on-the-fly). We now describe each of the opti-
mizations we apply to the base algorithm.

3.2 Concurrency
Our first optimization is to exploit information at hand in our ref-
erence counting context to substantially reduce the conservatism of
the base algorithm. We begin by defining the fixup set as the set of
all objects added to the grey queue in the ‘check’ phase (Step 2.2).
Our optimization reduces the size of the fixup set from the set of all
objects which suffered overwritten pointers, to the subset of those
which also experienced a decrement to a non-zero reference count.
Recall the necessary conditions C1 and C2′ for a race, described

in Section 2.3: ‘C1. A pointer from a black object to a white ob-
ject is created.’, and ‘C2′. The original path to the white object is
destroyed’. We now make the following claims:

1. For C2′ to occur, either the white object or some object in
the original path still connected to the white object will be
subject to a reference count decrement to a non-zero value.

2. When C2′ arises, it is correct and sufficient to add to the fixup
queue either the white object or any object in the original
path still connected to the white object.

(a) t0 (b) t1 (c) t2
Figure 4: Adding a Cycle to the Mutator-Collector Race.

We justify our first claim as follows. For the path from A to C (in
Figures 2, 3, and 4) to have been broken, one of three cases must
have occurred:

a) A pointer to C was destroyed,
b) A pointer to some object X was destroyed, where X formed
part of an acyclic path from A to C (B or D in Figure 3, D in
Figure 4), or

c) A pointer to some object X was destroyed, where X formed
part of a cyclic path from A to C (E in Figure 4).

To understand case a), consider time t1 in Figure 2. The pointer
from A to C must be established before deleting the pointer from B
to C. Therefore C experiences a decrement to a non-zero reference
count. For case b), consider Figure 3. The deletion of the reference
to the acyclic path will cause the object(s) in the path to be transi-
tively reclaimed by the reference counter (ie B will be reclaimed,
deleting the pointer to C), reducing case b) to case a). For case c),
consider Figure 4. The deletion of the reference will cause some

object in the cyclic path to C to have its reference count reduced (ie
object E), and since it is also part of a cycle, it must experience a
decrement to a non-zero reference count (so object E will be added
to the fixup queue). Thus whenever condition C2′ arises, either
the white object or some object in the path to the white object will
experience a decrement to a non-zero reference count and thus be
added to the fixup set, satisfying our first claim.
Our second claim is trivial. Since any object in the fixup set will

be traced, it is sufficient to add any object that reaches the white
object to the fixup queue. Furthermore, once an object which forms
the original path to the white object is made unreachable, the path
cannot be changed by the mutator. We therefore claim that it is
sufficient and correct to use the set of objects which experienced a
decrement to a non-zero reference count as the fixup set.
NowMartinez et al and all trial deletion algorithms that followed

noted that a decrement to a non-zero reference count is a necessary
condition for the generation of cyclic garbage (Section 2.1). Three
interesting, previously established properties follow: 1) Decrements
to non-zero reference counts are empirically known to be uncom-
mon, which is why they are used to reduce the set of candidates
for trial deletion. 2) The condition is trivially identified by the
reference counter during batch-processing of decrements. 3) The
condition is robust to coalescing of reference counts (exploited by
Blackburn and McKinley [8] and discussed by Paz et al [17]).
MSCD therefore reduces its set of fixup candidates to just those

that experience decrements to non-zero reference counts, which
Bacon and Rajan referred to as purple objects [5]. It is impor-
tant to note that the correctness of this optimization to MSCD only
depends on purple object identification occurring during heap trac-
ing, while it is required at all times for trial deletion. In the results
section we will show that the overhead of continually maintaining
the purple sets is measurable, so performing the operation only on
demand may be sensible. However, the MSCD sweeping optimiza-
tion described below does depend on the purple set being continu-
ally maintained between each invocation of the cycle detector.

3.3 Marking
Our second optimization is to reduce the scope of the mark phase
by avoiding objects which were statically identified as being in-
herently acyclic. We use a simple method of determining acyclic
classes in Java proposed by Bacon and Rajan [5]. A class is said
to be acyclic if it contains no pointer fields, or if it can point only
to acyclic classes. Bacon and Rajan set a green bit in an object’s
header at allocation time if it is acyclic, and curtail the scope of
each trial deletion trace to avoid tracing green objects. We trivially
modify Step 2.2 above to consider an object marked if the object is
either marked or green. Since by definition a green object may not
point to a non-green object, only green objects will fail to be cor-
rectly marked by our optimized trace. As long as the sweep phase
considers objects marked whether they are marked or green, no ob-
jects can be incorrectly collected as a result of this optimization.
The effectiveness of the optimization depends on the proportion of
green objects in the heap. Table 1 shows that for many benchmarks
a large proportion of all objects are allocated green.

3.4 Sweeping
Our third optimization is to limit the scope of sweeping to sweep
only potentially cyclic objects and their children. We do this by us-
ing the same definition of potentially cyclic as used in Section 3.2:
objects subject to decrement to non zero reference counts, which
we refer to as purple. Rather than sweep the entire heap for un-
marked objects, we note that the collector need only collect cyclic
garbage, and therefore target our sweep at the potentially cyclic
garbage identified by the purple set. This optimization is complete



since all acyclic garbage will be collected by the reference counting
collector.

3.5 Interaction With The Reference Counter
To this point we have not discussed in detail the relationship be-
tween the operation of MSCD and the phases of the underlying
reference counter. In short, there are just three requirements. First,
the root set needs to be established atomically with respect to the
mutator – achieved by piggy backing on an invocation of the de-
ferred reference counter which must also establish roots. This may
be done in either a stop-the-world or on-the-fly manner [14]. Sec-
ondly, the fixup set must be added to the grey queue (Step 2.2
above) at a point where the set is known to be complete. This is triv-
ial when the reference counter operates in stop-the-world phases. If
all mutators are suspended, then it is sufficient to first process all
increments and then all decrements before determining the fixup
set. The third requirement is that the reference counter not free any
objects known to MSCD (which would make MSCD’s reference
a dangling pointer). Since MSCD only maintains a mark queue
(grey objects) and a fixup queue (purple objects), it is sufficient to
address these. The reference counter therefore does not free any
grey or purple objects. Instead it adds them to a ‘free buffer’ for
freeing at the completion of the MSCD invocation.

3.6 Invocation Heuristics
A detailed analysis of heuristics for invoking cycle detectors is out-
side the scope of this paper. The most simple policy is to invoke
the cycle detector whenever the underlying reference counter is un-
able to free as much memory as the user requires. More generally,
a heap fullness threshold could be used as a trigger for cycle de-
tection. Trial deletion and MSCD cycle detectors both depend on
the size of the purple set, so they may use the size of the purple set
as a cycle detection trigger. Significantly, since both trial deletion
and MSCD place exactly the same requirement upon the underlying
reference counter (the establishment of the purple set), the collec-
tors can be interchanged dynamically at runtime. Although backup
tracing does not require the establishment of the purple set, it is
always possible to switch to it from MSCD or trial deletion. It is
however only possible to switch from backup tracing immediately
after a complete cycle detection.

Finally, our implementation of MSCD will be publicly available as
a patch against Jikes RVM,3 and we hope will soon be properly
integrated into the standard MMTk/Jikes RVM release.

4. Methodology
This section first briefly describes Jikes RVM and MMTk which are
publicly available and provide a common implementation frame-
work for the collectors evaluated in this paper. We then present the
characteristics of the machines on which we do all experiments,
and some features of our benchmarks.

4.1 Jikes RVM and MMTk
We use MMTk in Jikes RVM version 2.3.4+CVS, with patches
to support pseudo-adaptive compilation. MMTk is a flexible high
performance memory management toolkit used by Jikes RVM [6].
Jikes RVM is a high-performance VM written in Java with an ag-
gressive optimizing compiler [1, 2]. We use configurations that
precompile as much as possible, including key libraries and the op-
timizing compiler and turn off assertion checking (the Fast build-
time configuration). The adaptive compiler uses sampling to select

3See the Jikes RVM Research Archive tracker at the Jikes RVM
web page, http://www.jikesrvm.org.

methods to optimize, leading to high performance but a lack of de-
terminism. Since our goal is to focus on application and garbage
collection interactions, our pseudo adaptive approach deterministi-
cally mimics adaptive compilation.4
By using the MMTk framework we are able to perform an apples-

to-apples comparison of the collectors, as all base mechanisms are
shared by the different collectors. MMTk accounts for all space
consumed by metadata as part of the overall memory consumption
(including work queues, free list metadata, snapshot buffers, and
decrement buffers).

Benchmark Green Cycle Alloc Min Heap
antlr 85% 13% 301MB 13MB
bloat 43% 12% 684MB 22MB

fop 69% 28% 66MB 24MB
hsqldb 65% 14% 592MB 21MB
jython 0.6% 4% 462MB 13MB

pmd 17% 24% 322MB 20MB
ps 46% 2% 572MB 9MB

xalan 89% 58% 77MB 99MB
201 compress 91% 93% 116MB 14MB

209 db 11% 1% 90MB 16MB
228 jack 72% 2% 271MB 8MB

213 javac 47% 23% 241MB 20MB
202 jess 8% 2% 300MB 9MB

222 mpegaudio 6% 45% 5MB 8MB
227 mtrt 21% 6% 173MB 16MB

205 raytrace 20% 4% 163MB 12MB
pseudojbb 47% 14% 315MB 36MB

Table 1: Benchmark Characteristics.

4.2 Experimental Platform
We use an 2.2GHz AMD 64 3500+ for our experiments. The data
and instruction L1 caches are 64KB 2-way set associative. It has
a unified, exclusive 512KB 16-way set associative L2 cache. The
Athlon has 2GB of dual channel 400 DDR RAM configured as 2 ×
1GB DIMMs with an nForce3 Ultra MSI K8N Neo2 motherboard
and 800MHz front side bus. It runs Linux 2.6.10.
We run each benchmark at a particular parameter setting five

times and use the second fastest of these. The variation between
runs is low, and we believe this number is the least likely disturbed
by other system factors and the natural variability of the adaptive
compiler.

4.3 Benchmarks
Table 1 shows key characteristics of each of the 17 benchmarks we
use. The DaCapo suite [7] is a recently developed suite of non-
trivial real-world open source Java applications. We use version
beta050224. We also use the SPECjvm98 suite and pseudojbb, a
variant of SPEC JBB2000 [18, 19] that executes a fixed number of
transactions to perform comparisons under a fixed garbage collec-
tion load. The first column shows the fraction of allocated objects
by volume which are statically determined to be green (acyclic) us-
ing the definition given in Section 3.3. The second column shows
the fraction of objects, by volume, which become cyclic garbage.
The third column shows the total volume of allocation. The final
column shows the minimum heap in which each benchmark will
run using MMTk’s default GenMS collector.

5. Results
This section compares the performance of three cycle detectors:
MSCD, backup mark-sweep and trial deletion. We explore per-
formance three ways: 1) First, we take a limit study of raw cycle

4Xianglong Huang and Narendran Sachindran jointly implemented
the pseudo adaptive compilation mechanism.



Backup Tracing MSCD Trial Deletion
CD Time Visits Visit Cost CD Time Visits Visit Cost CD Time Visits Visit Cost

Benchmark msec millions nsec /BT /BT /BT /BT /BT /BT
202 jess 89.98 11.62 7.74 0.81 0.88 0.93 1.76 1.17 1.51

205 raytrace 91.25 11.95 7.64 0.78 0.87 0.90 1.64 1.28 1.28
209 db 92.38 12.12 7.62 0.73 0.85 0.86 1.52 1.15 1.32

213 javac 118.33 14.59 8.11 0.94 0.92 1.02 1.94 1.99 0.98
222 mpegaudio 66.74 8.94 7.46 0.77 0.90 0.86 1.65 1.23 1.34

227 mtrt 99.75 12.90 7.73 0.80 0.87 0.92 1.65 1.32 1.25
antlr 95.78 11.84 8.09 0.91 0.90 1.01 1.86 1.40 1.33
bloat 116.56 14.12 8.25 0.81 0.91 0.89 1.65 1.55 1.07

fop 108.97 12.94 8.42 1.02 0.92 1.10 1.88 1.93 0.97
hsqldb 104.29 13.01 8.02 0.83 0.81 1.02 1.70 1.44 1.18
jython 105.62 13.24 7.98 0.81 0.90 0.90 1.70 1.30 1.30
xalan 108.82 13.23 8.23 0.86 0.90 0.95 1.73 1.49 1.16

pseudojbb 126.29 13.83 9.13 0.71 0.84 0.84 1.41 1.55 0.91
geomean 0.83 0.88 0.93 1.69 1.43 1.19
mean 101.9 12.64 8.03 0.83 0.88 0.94 1.70 1.45 1.20

Table 2: Throughput Limit Study, 8MB Collection Period, Average Costs Per Cycle Detection.

detection throughput, where the cycle detector is forced to run at
set intervals in a non-concurrent setting, 2) We then examine con-
currency, measuring the efficiency of the MSCD concurrency opti-
mization and 3) Finally, we compare overall performance in a more
natural setting, where the collectors are invoked only when deemed
necessary by a cycle detection heuristic.

5.1 Throughput Limit Study
We begin with a limit study where we analyze the fundamental effi-
ciency of three cycle collectors: the base snapshot-at-the-beginning
mark sweep, trial deletion, and MSCD. All three cycle detectors
are correct and complete, and are able to collect any cyclic garbage
present in a given heap. Abstractly, our approach is to expose each
collector to a large number of cycle detection opportunities and
measure the efficiency with which they process them. Concretely,
we achieve this by forcing the cycle detectors to collect a reference-
counted heap after a fixed volume of allocation. In each case the
cycle detector is invoked in a stop the world manner, factoring out
issues relating to concurrency. It should be clear that this is simply
an analytical tool, not a practical way to collect cycles. We will
examine the overall cost of the collectors in a natural setting with
more realistic invocation heuristics in the sections that follow.
Since all collectors execute in a stop the world setting, this anal-

ysis is limited to examining the effectiveness of the MSCD mark
and sweep optimizations (Sections 3.3 and 3.4). The effectiveness
of the MSCD concurrency optimization is addressed in Section 5.2.
Figure 5 shows the overall throughput of MSCD and trial dele-

tion algorithms normalized against the snapshot-at-the-beginning
base algorithm for cycle detection periodicities ranging from 128KB
to 128MB. Here we show the average time for each cycle detection,
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Figure 5: Throughput Limit Study, Varying Collection Period.

taking the geometric mean of this value for all 17 benchmarks. We
see that MSCD tends to outperform the base algorithm by around
20% and that trial deletion tends perform around 70% worse than
the base algorithm. Figure 5 suggests that for this set of bench-
marks, the overall throughput of the various collectors is fairly sta-
ble across a wide range of invocation frequencies. While we do not
discount the possibility of different trends beyond the scope of our
experiment, we note that our upper limit (128MB) is in the order of
the total volume of allocation for many benchmarks (see Table 1).
In Table 2 we see a breakdown of results for each of the 17

benchmarks at an 8MB invocation period (the middle point in our
128K to 128MB range). The first three columns show absolute
numbers for cycle detection time (msec), the number of nodes vis-
ited (millions), and the average node visit cost (msec/million visits
≡ nsec/visit) for the base algorithm. The remaining six columns
show the corresponding data for MSCD and trial deletion, normal-
ized against the results for the base algorithm. We see that for all
benchmarks, trial deletion is substantially and consistently slower
than the base algorithm. The best result we see is a 41% degrada-
tion for pseudojbb. By contrast, MSCD outperforms the base algo-
rithm on 16 of the 17 benchmarks, with a degradation of just 2%
on fop. On all other benchmarks we see consistent improvements
of around 10 to 30%.
The fifth column indicates that on average MSCD visits about

12% fewer nodes than the base algorithm, indicating the efficacy of
the MSCD mark optimization (Section 3.3). This reduction is not
as great as might be expected from the often very high proportion of
green objects shown in Table 1. There are two explanations for this.
First, we must still visit (but not scan) all green objects on the fringe
of a green subgraph in order to determine that they are green. These
non-scanning visits are included in our visit count. Secondly, the
numbers in Table 1 reflect the total proportion of allocated objects
which are green, whereas the results here depend on the proportion
of green objects present in the heap at any time. Thus if green
objects were disproportionately short lived, Table 1 would tend to
over-represent their significance in the heap.
The sixth column indicates that the average cost of a node visit

is also lower in MSCD than the base algorithm. This is due to two
factors. First, as mentioned above, the mark optimization means
that in MSCD, visits to green objects are cheap, as they do not
involve a scan. Second, since this figure is calculated by dividing
the total CD time by the number of nodes visited, the MSCD sweep
optimization (Section 3.4) reduces the overall CD time, and thus
reduces the average visit cost.

5.2 Concurrency



All of the experiments described in the previous section were per-
formed in a stop-the-world setting, and therefore precluded any
analysis of our concurrency optimization. Recall that the concur-
rency optimization (described in Section 3.2) allows us to prune the
fixup set, which is used by the snapshot-at-the-beginning collector
to account for any races with the mutator. Since the only effect of
the optimization is to prune the fixup set and thus reduce the total
number of nodes to be processed, we expected it to be a straight-
forwardly effective optimization.
It was our intention to measure the efficacy of our concurrency

optimization in the context of a symmetric multithreaded (SMT)
processor (specifically an Intel Pentium 4 with hyperthreading).
Our rationale is that this provides a reasonable opportunity for true
concurrency and an opportunity for the cycle detector to consume
potentially wasted instruction level parallelism without extravagantly
dedicating an entire CPU to the task of cycle detection. Unfortu-
nately, at the time of submission we are unable to resolve a con-
currency bug affecting both the base algorithm and MSCD, that is
only exposed in SMT and SMT settings.
Both algorithms performed correctly in a time-slicing context, so

we performed a preliminary analysis in that environment. To our
surprise (and disappointment!), the optimization had no measurable
impact. We observed a small slowdown and noticed that it was
due to the overhead of continuously maintaining the set of purple
objects (those that experience a decrement to a non-zero value).
Since the concurrency optimization only requires the purple set to
be maintained while the collection is in progress, we re-ran the
experiments with this further optimization. We were disappointed
to find that although we avoided the purple set slowdown, any net
advantage over the base algorithm was negligible.
After further analysis, we noted that since the mutator and col-

lector were executing in time slices, not truly concurrently, oppor-
tunities for data races were extremely small, so the fixup work was
generally a no-op. Therefore the utility of the optimization was
small. We hope to have more encouraging results for a final ver-
sion of this paper.

5.3 Overall Performance
Finally, we evaluate the performance of the collectors triggered
only when guided by straightforward heuristics. For all of these
experiments we used a simple heuristic which triggered a cycle
detection only when the reference counter was unable to reclaim
enough space in a fixed sized heap. Because we do not have a con-
current implementation of trial deletion, each of the cycle detectors
were invoked in a stop-the-world manner.
Figure 6 shows detailed performance of three representative bench-

marks, giving total time, overall GC time (inclusive of cycle detec-
tion), cycle detection time, and mutator time as a function of heap
size. We measure the performance of the base algorithm, MSCD
with mark and sweep optimizations, MSCD with just the mark op-
timization, and trial deletion. All of the graphs plot time in sec-
onds on a logarithmic scale. Recall that we use a naive heuristic
which triggers cycle detection on the basis of heap fullness. For
213 javac, cycle detection costs become noticeable at heap sizes
less than× 2.5, while for 202 jess and bloat cycle detection costs
are noticeable for heap sizes less than × 4 (Figures 6(g)–6(i)).
The most surprising result in Figure 6 is that the MSCD with

mark and sweep optimizations performs worse than MSCD with
just the mark optimization except in the tightest heaps. The sweep
optimization uses the purple set (potentially cyclic garbage) to tar-
get the sweep at just those objects, avoiding sweeping the whole
heap. Closer analysis reveals that any advantage in a more targeted
sweep is lost to purple set maintenance. The correctness of the

sweep optimization requires that the purple set contain all purple
objects identified since the last cycle detection. This is true of trial
deletion also.
Purple set maintenance costs both space and time. The space

overhead leads to heap pressure and consequently increased GC
load, evident in Figures 6(g) and 6(i). Here we see trial deletion
and MSCD with mark and sweep optimizations continue to per-
form measurable cycle detection work in large heaps while the oth-
ers perform none. The time overhead is due to the need to filter
the purple set periodically to remove objects which have been col-
lected by the reference counter. As the cycle detections become
less frequent, the size of the purple set accumulates over a longer
time, becomes larger, and requires more filtering, explaining why
at the tightest heaps the sweep optimization is not harmful. This re-
sult suggests a hybrid approach. Since the sweep optimization only
makes sense when the purple set is small, a cap could be placed
on the purple set size. Once the cap was exceeded, the purple set
could be discarded and not maintained until the next cycle detection
phase – where the cap would be reinstated and the process started
again. The hybrid would thus dynamically choose whether to use
the sweep optimization. We have not yet evaluated this hybrid. The
overhead of dealing with the purple object buffer could also be ad-
dressed by using a purple object bitmap. This would come at a
constant space overhead, but would avoid the need for filtering. A
combination of modest buffers and a bitmap updated by a single
thread would avoid the need for atomic bitmap updates. We have
not yet evaluated any of these alternatives.
There are two other notable results to be drawn from Figure 6.

The first is that in benchmarks such as 202 jess which allocate
large numbers of short lived objects, the overhead of setting the
grey bit on newly allocated objects is measurable. This is clear
in Figure 6(d), where trial deletion holds a clear mutator time ad-
vantage over the others. Our initial experience was that setting the
green bit in newly allocated acyclic objects was also expensive, but
we modified Jikes RVM’s optimizing compiler to ensure that the
state of the green bit was statically determined. The final result
is perhaps the most striking of all, and that is the need for good
heuristics for triggering of cycle detection. Our heuristic is ob-
viously naive, as 202 jess, which has very little cyclic garbage,
spends as much as half of its total running time performing cycle
detection in tight heaps. As has been noted previously [8, 6, 17],
generational reference counting can substantially reduce the cycle
detection load. It does so three ways. 1) Only mature objects are
exposed to time and space overheads associated with the reference
counted object header, such as the cost of setting the grey and green
bits. 2) Short lived cyclic garbage is efficiently collected in the
nursery. 3) Since nursery objects, which are heavily mutated, are
not subject to increments and decrements, the purple object main-
tenance load is significantly reduced.

6. Future Work
While the demands of scalability and responsiveness continue to
grow, we see reference counting, particularly when combined with
generational collection, as an increasingly important approach to
garbage collection. There are many clear avenues for future work,
some of which we wish to address in the final version of this pa-
per. First, we wish to apply our detailed approach and analysis of
the performance of cycle detection algorithms in a truly concur-
rent setting, as we had intended in Section 5.2. The widespread
availability of SMT processors is, to us, an obvious opportunity for
concurrent garbage collection. Second, heuristics for triggering cy-
cle detection are of utmost importance and yet, to our knowledge,
under-evaluated in the literature. Third, our analysis of the vari-
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Figure 6: Total, Mutator, GC and Cycle Detection Performance

ous approaches to concurrent cycle detection opens the door to a
number of hybrid approaches, both in the application of our opti-
mizations, and to the choice between mark-sweep and trial deletion.
Our infrastructure and the demands of the respective algorithms al-
low a choice to be made at the end of each cycle detection as to
which collector will be used next. Fourth, we plan to add ulterior
reference counting to our analysis in the final version of this pa-
per. Finally, we would like to explore parallelizing the concurrent

mark-sweep for use in large-scale SMP settings.

7. Conclusion
Recent major improvements to the performance of reference count-
ing [14, 8, 4] have renewed interest in reference counting and placed
renewed pressure on the need for efficient cycle detection. In this
paper we present a detailed analysis of concurrent cycle detection,
offer a base algorithm with minor improvements over the state of
the art snapshot-at-the-beginning collector [3], and present a new



algorithm, MSCD, which optimizes the base algorithm three ways.
We show that in the limit, MSCD is more efficient at detecting cy-
cles than the base algorithm and trial deletion. We also analyzed
the algorithms when triggered according to a naive heuristic and
noted that our sweep optimization degraded performance – unless
cycle detections occurred very frequently. Finally we proposed dy-
namic application of the optimizations and identified avenues for
future work.
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