
Compiling for Heterogeneous Systems: A Survey and anApproachKathryn S. McKinley, J. Eliot B. Moss, Sharad K. Singhai, Glen E. Weaver, Charles C. WeemsCMPSCI Techincal Report 95-59September 1995Department of Computer ScienceUniversity of MassachusettsAmherst, MA 01003-4610fmckinley, moss, singhai, weaver, weemsg@cs.umass.edu(413) 545-1249 (fax)Abstract. Large applications tend to contain several models of parallelism, but only a few of thesemap e�ciently to the single model of parallelism embodied in a homogeneous parallel system. Hetero-geneous parallel systems incorporate diverse models of parallelism within a single machine or acrossmachines. These systems are already pervasive in industrial and academic settings and o�er a wealth ofunderutilized resources for achieving high performance. Unfortunately, heterogeneity complicates soft-ware development. We believe that compilers can and should assist in managing this complexity. Weidentify four goals for extending compilers to assist with managing heterogeneity: exploiting availableresources, targeting changing resources, adjusting optimization to suit a target, and allowing program-ming models and languages to evolve. These goals do not require changes to the individual pieces of acompiler so much as a restructuring of a compiler's software architecture to increase its
exibility. Weexamine the features and
exibility of six important parallelizing compilers to �nd existing solutionsfor
exibility. Where no solutions exist, we propose architectural changes to compilers.1 IntroductionThis paper surveys existing optimizing compilers and compiler frameworks for parallel machines and ex-amines their potential contributions to a compiler for heterogeneous systems. The variety and variabilityof available resources in a heterogeneous system demands a compiler that is much more
exible than cur-rent compilers. This paper identi�es where existing technology can meet these demands and where newtechniques must be developed. We begin by discussing the original goals and features of several important,existing compilers. We then distill the impact of heterogeneity into four goals that an ideal compiler mustaddress: exploiting available resources, targeting changing resources, adjusting optimization to suit a target,and allowing programming models and languages to evolve. For each goal, we isolate applicable technologythat can be borrowed from existing compilers. Finally, we describe a compiler architecture that meets theneeds of heterogeneity by incorporating this borrowed technology along with our own proposals in a
exibleframework.Heterogeneous processingCurrent parallel machines implement a single homogeneous model of parallelism. As long as this modelmatches the parallelism inherent in an application, the machines perform well. Unfortunately, large programstend to use several models of parallelism. Therefore, heterogeneous systems are being developed to provideconsistent high performance by incorporating multiple models of parallelism within one machine or acrossmachines, creating a virtual machine. Tightly-coupled heterogeneous computers integrate di�erent parallelThis work was supported in part by the Advanced Research Projects Agency under contract N00014-94-1-0742,monitored by the O�ce of Naval Research.

architectures together within a single machine (e.g., Meiko CS-2, IBM SP-2, and IUA [W+89]). Virtualheterogeneous machines treat a network of machines as a single virtual computer. This processing model issometimes called metacomputing or, when the machines are similar, cluster computing. A virtual machineis often connected via message passing interfaces such as PVM [SGDM94], p4 [BL94], and MPI [Mes94].Heterogeneous processing [SC92, Tur93, Tur95, KPSW93, GY93] is the well-orchestrated use of hetero-geneous hardware to execute a single application [KPSW93]. When an application encompasses subtasksthat employ di�erent models of parallelism, the application may bene�t from using disparate hardware ar-chitectures that match the inherent parallelism of each subtask. For example, Klietz et. al. describe theirexperience executing a single application, a simulation of mixing by turbulent convection, across four ma-chines (CM-5, Cray-2, CM-200, and an SGI)[KMCP93]. The four machines form a single virtual machine,and the authors leverage the strengths of each machine for di�erent tasks. Unfortunately, each task had tobe hand parallelized speci�cally for the appropriate target machine, and each machine has a unique languagedialect. If more machines became available or if the availability of machines changed, the application wouldhave to be rewritten.This example illustrates that although heterogeneous processing o�ers improved performance, it increasesthe complexity of software development. The complexity arises from three important features of heterogene-ity: (1) variety, (2) variability, and (3) high performance. First, heterogeneous systems consist of a varietyof hardware. For an application to take advantage of heterogeneity, it must be partitioned into subtasks,and each subtask mapped to a processor with a matching model of parallelism. The selection of availableprocessors a�ects not only the mapping but also the partitioning, because subtasks should be chosen so thateach uses a model of parallelism found in the set of available processors. Moreover, variability opens up theopportunity to trade local performance for overall performance of an application. If an application taxescertain components more than others, the overall execution time may be reduced by moving some subtasksto suboptimal component machines. Second, virtual heterogeneous systems experience variability as theirmakeup changes from site to site or day to day or based on load (e.g., when component machines are highlyutilized, added, or removed.) This variability of hardware resources requires rapid adaptation of programsto new con�gurations at compile and run time. The ability to adjust to di�erent con�gurations will enablean application to further improve its performance by adjusting its partitioning and mapping at run time,according to the current work load of the heterogeneous machine. Furthermore, variability deters developersfrom using machine speci�c code (or languages) to improve performance. Third, heterogeneous systems canachieve high performance. If the execution time of a program did not matter, then it could probably run ona homogeneous processor with less trouble. The emphasis on high performance suggests that heterogeneoussystems will be constantly updated with the latest hardware which programs will need to use. The demandfor high performance also precludes simple solutions such as adding layers of abstraction that obscure theheterogeneity.Compilers for heterogeneous systemsDeveloping software for heterogeneous systems would be overwhelming if each application needed to handlevariety in its targets and variability of targets between executions. However, the variety, variability, andperformance concerns inherent in heterogeneity are similar to the concerns of portability, where developerswish to move programs from platform to platform with minimal e�ort and no loss of e�ciency. On currentsystems, portability is largely the result of using compilers. Developers write programs in source languagesthat present an abstract machine signi�cantly simpler than the real machine. Compilers not only convertsource code into object code, but through optimization and transformation they also manage the details oftailoring an application to speci�c hardware. Compilers can also assist in managing the variety and variabilityof heterogeneous systems.Extending compilers to manage heterogeneity must address four goals: exploiting available resources,targeting changing resources, adjusting optimizations to suit a target, and allowing programming modelsand languages to evolve.{ Variability in a heterogeneous system's con�guration a�ects how a compiler ensures e�cient use ofresources. With a static con�guration the compiler knows exactly what hardware the program can use,but a changing con�guration requires the compiler to leave some decisions to run time (or to recompile2

the application), much like existing systems resolve some addresses in the linker. For example, if a subtaskcan exploit multiple models of parallelism, the compiler may choose to create alternate compiled versionsof the module and leave the decision of which version to use until link or run time.{ The variety and variability of target machines for which a compiler for heterogeneous systems generatesobject code suggests that the compiler should not have a �xed set of targets. Instead, the compilershould be structured so that a new target can be added to the compiler's repertoire without signi�cantlydisturbing the rest of the compiler. Because heterogeneity implies variety in the models of parallelismas well as instruction sets, the compiler would ideally make provision for adapting to new models ofparallelism.{ The variety of component processors in heterogeneous systems impacts the strategies and technology usedin optimization. Compilers use optimization technology (analyses, optimizations, and transformations)to specialize code to a speci�c machine or component processor. On a homogeneous machine, compilersuse a static ordering (strategy) of analyses, optimizations, and transformations, which are themselvesdrawn from a �xed set. However, heterogeneity requires that compilers adjust their strategy to suit thetarget. Moreover, di�erent component processors may need new optimizations and di�erent orderings ofoptimizations to exploit their unique hardware.{ As new processors with new hardware features are developed, source languages typically evolve to giveprogrammers access to these features. Some hardware features (e.g., instruction pipelining) can be han-dled within the compiler, but other features (e.g., a new interconnection network) may need languagesupport to get the maximum bene�t. It is possible to simply build a new compiler or modify an existingcompiler, but current monolithic compilers make these changes a costly endeavor for a small languageextension.These goals do not require changes to the individual pieces of a compiler so much as a restructuring ofthe compiler's software architecture to increase the compiler's
exibility. It may not be feasible to build acompletely
exible compiler, but the burden of developing software for heterogeneous systems is diminishedto the extent that a compiler can meet these goals. Researchers already have made some steps towardsincreasing compiler
exibility.The extensions to compilers necessary for heterogeneity are not totally new. Retargetable compilersgenerate code for several machines and often accept multiple source languages. However, they are limited intheir range of target hardware and source languages, and their internal structure is rigid. Current compilers,including retargetable compilers, tightly couple the compiler with both the source language and the targetmachine. Source-to-source translators couple the translator with a language and a model of parallelism, andrely on other compilers to couple the translator's output with a physical machine. If either the target or thesource language changes, the compiler must either be substantially altered or simply rewritten. This couplingis natural for homogeneous machines, where a single compilation can only target a single machine. However,this coupling limits the compiler's
exibility in dealing with diversity in targets, optimization strategies, andsource languages. Heterogeneity is the �rst compiler application that requires and therefore justi�es this levelof
exibility.The purpose of this paper is to �nd existing compiler technology that can be used in a compiler forheterogeneous systems and identify where new techniques must be developed. Therefore, we begin in Section 2with a review of six important parallelizing compilers. Section 3 considers which of their features can beborrowed. Because adding
exibility largely impacts the compiler's structure, Section 4 proposes a newcompiler architecture.2 High Performance Parallelizing Compiler SurveyThis section compares six existing compilers and frameworks: Parafrase-2, ParaScope, Polaris, Sage++, SUIF,and VFCS. We selected these systems because of their signi�cant contributions to compiler architectures andbecause they are well documented. ParaScope and SUIF are mature compilers with a wide assortment offeatures; Parafrase-2, Polaris, and VFCS are more recent systems. Sage++ is the only compiler develoment3

framework. Since it is not feasible to change each system to handle heterogeneity and compare the e�orts,we instead describe each system's architecture, and discuss their potential bene�ts and drawbacks for com-piling for heterogeneous systems (see Section 3). This section describes the general approach, facilities forinteracting with users, programming model, organization, intermediate representation, and optimizationsand transformations of the six systems. Table 1 summarizes this information and Table 2 lists speci�c opti-mizations and transformations.2.1 Parafrase-2Parafrase-2 is a source-to-source translator from the University of Illinois [P+89, GP94]. The goal of Para-frase-2 is to be a research tool for investigating compiler support for multiple languages and target architec-tures. Rather than try to build everything into Parafrase-2 from the beginning, the authors strive to makeit
exible enough for later additions. Parafrase-2 currently accepts C, Fortran 77, and Cedar Fortran.System architectureThe overall architecture of Parafrase-2 is typical for source-to-source translators. Language speci�c parsersconvert source programs into a common intermediate representation. Transformations operate over the IRand then a postprocessor generates source code in the original language using a language speci�c prettyprinter. Parafrase-2 has an optional graphical user interface (GUI) for selecting and applying transformations.Programming modelParafrase-2 is unique among these systems in that it focuses on control parallelism as well as data parallelism.Parafrase-2 �rst partitions the program into separate tasks, such that the dependencies between tasks areminimized. A task may be executed as soon as the dependencies, for which it is a sink, are satis�ed. Then,Parafrase-2 parallelizes the execution of loops. The optimizations used for this are the same as those usedby compilers to generate loop parallelism and data parallel code (e.g., loop interchange).Intermediate representationThe authors of Parafrase-2 have designed their own intermediate representation data structure: HierarchicalTask Graphs (HTG). The HTG hierarchy is built by repeated substitution of a single node for each stronglyconnected region in the CFG. The leaves in an HTG represent simple statements and subroutine calls.Interior nodes represent loops and basic blocks in the
ow graph. In addition, the control
ow and datadependence graphs are included as subgraphs of the HTG. The HTG representation obscures the syntax ofa program, but it highlights dependencies between sections of the program. The emphasis on dependenciesaids program decomposition, because a natural way to select tasks is to �nd highly interdependent clumpsof nodes. The hierarchical organization of HTGs facilitates choosing tasks at a granularity appropriate forthe target architecture. The HTG representation is largely immune to extensions of the source language;calls and loops are the only language constructs with distinct nodes in an HTG. Much of the semantics ofloops and calls are captured by the dependence and control information, further separating the programminglanguage from the representation and thereby making the HTG language independent.OptimizationsParafrase-2 has a large set of analyses, optimizations, and transformations (see Table 2). Parafrase-2 hasthe base analyses (data dependence and control dependence) necessary for handling parallelism, as wellas, symbolic analysis and interprocedural analysis. For each routine, Parafrase-2's interprocedural analysisrecords summary information of aliases, modi�ed variables (MOD), and referenced variables (REF) andpropagates interprocedural constants. In addition to an assortment of traditional optimizations, Parafrase-2has loop blocking, distribution, interchange, and task and loop parallelization for high-level transformations,and inlining for interprocedural optimization. Parafrase-2 also has an optional graphical user interface thatallows programmers to manually alter dependence information and guide optimization. In batch mode, Para-frase-2 uses a �xed order of optimizations for a given target architecture.Parafrase-2 structures its analyses and optimizations into separate passes that can be reordered. Thismodularity largely insulates other passes from changes made to just one (or a few) passes. Parafrase-2'smodularity also means that adding new analyses and optimizations to the system is easy. The major di�culty4

will be that as the number of potential passes increases, so does the burden on the user to ensure that analysesare rerun when an optimization pass invalidates analysis data. Unfortunately, Parafrase-2 neither supportsincremental updates to analysis data nor supplies a mechanism for ensuring that analysis passes are rerunwhen necessary. Parafrase-2 does, however, automatically invoke an analysis pass, when it is needed but notyet executed.SummaryParafrase-2 has several powerful features that make it an interesting system. First, Parafrase-2 easily adaptsto new language extensions. Accommodating language extensions is relatively easy because the IR empha-sizes data and control dependences rather than source language syntax. Hence, the impact from extending anexisting language should be largely localized in the front end parser and the back end pretty printer. Second,Parafrase-2 supports interprocedural analysis and transformation (i.e., inlining) via summary based tech-niques. Third, Parafrase-2 tackles the automatic identi�cation of control parallelism which, when combinedwith techniques for �nding loop parallelism, gives the compiler more choices in transforming a program tomatch a particular target architecture.2.2 ParaScopeRice University's ParaScope is an interactive parallel programming environment built around a source-to-source translator [C+93, KMT93]. It provides sophisticated global program analysis and a rich set of programtransformations. ParaScope is a research tool and has been specialized for several Fortran derivatives. Thissection concentrates on the Fortran-D version of the ParaScope called the D system. Fortran-D enhancesFortran 77 and 90 with data decomposition speci�cations [F+90]. The output of the D System is an e�cientmessage-passing distributed memory program [HKT91, HKT92, Tse93].System architectureThe D System accepts programs written in either a subset of Fortran 77D or Fortran 90D and convertsthem into an abstract syntax tree (AST) representation. The Fortran-D back end uses loop transformationsand communication optimizations to build e�cient message-passing, SPMD node programs. These nodeprograms can be compiled and further optimized by scalar compilers.Programming modelThe D System implements the data-parallel SPMD programming model. The programmer speci�es datadecompositions using language constructs of Fortran-77D and Fortran-90D (and hence in a sense also detectsparallelism.) The D System uses these data decompositions to partition computation into node programsand assign these programs to processors. The assignment of computation to processors follows the owner-computes rule. The compiler analyzes communication to �nd non-local data accesses that would requiremessage passing, and then optimizes the communication.Intermediate representationParaScope uses an abstract syntax tree (AST) as its intermediate representation. Various modules of Para-Scope use auxiliary data structures associated with the AST to represent and manipulate data and controldependence information. Unfortunately, ParaScope's implementation of the AST does not use data abstrac-tion; therefore, changes to the AST potentially impact the entire ParaScope system.OptimizationsParaScope o�ers an unusually large selection of analyses, optimizations, and transformations. The Para-Scope developers have built a whole suite of analyses over the years including the following: scalar analyses,symbolic analyses (using static single assignment form), interprocedural analyses and synchronization anal-yses. Users can interactively change the results of dependence analysis. ParaScope also has an extensivepalette of interactive transformations (loop distribution, fusion, strip mining, interchange, reversal, skewing,array privatization, scalar replacement, scalar expansion, unroll-and-jam, and loop peeling). Descriptions ofthe applicability and safety of these transformations are built into ParaScope, and it interactively advisesabout the pro�tability of transformations. The Fortran-D compiler adds communication transformations such5

as message vectorization, communication selection, message coalescing, message aggregation, and messagepipelining. In addition, recent work addresses automatic data partitioning [BKK94].SummaryParaScope is a mature system for automatic and interactive parallelization which provides a wide selectionof analyses, optimizations, and transformations. As a source-to-source translator, it is not tightly coupled toany particular machine. Unfortunately, it is di�cult to modify or extend because the internal structure ofthe AST is exposed to the entire system. Changing the IR to support new languages or models of parallelismrequires modi�cations throughout ParaScope. The Fortran-D compiler has a monolithic structure whichmakes it di�cult to extend.2.3 PolarisPolaris from the University of Illinois, is an optimizing source-to-source translator [B+95, P+93, F+94].The authors goal for Polaris is automatic parallelization of sequential Fortran programs for a variety ofarchitectures. The authors have thus far focused on parallelization for shared-memory machines. Polaris iswritten in C++, and it compiles Fortran 77.System architecturePolaris organizes its analyses and optimizations as separate passes that operate over the whole program, buta pass may call the body of another pass to operate over a subset of the program. Programmers can a�ectthe operation of passes through command line parameters. Programmers may also convey extra information,such as parallelism, to the compiler by embedding assertions in source code. Polaris outputs Fortran 77 codeaugmented with annotations indicating parallelism for several dialects of parallel Fortran. In most cases, Po-laris leaves the actual transforming of code to the platform-speci�c, backend compiler. The annotations tellthe backend compiler where to apply speci�c transformations, but the backend compiler is free to performadditional transformations of its own (e.g., at least one of their backend compilers performs loop coallesc-ing [Gro95b]). For its internal IR, Polaris exploits the data abstraction of a C++'s class hierarchy to improvethe quality of Polaris code. The IR may only be updated via method calls which ensure the consistency ofthe IR with respect to the syntax of the source language, the structure of the internal representation, andthe accuracy of analysis information.Intermediate representationPolaris uses an AST as its internal intermediate representation. Polaris has �ve classes that correspond tothe major syntactic elements of a Fortran program: the Program class represents the entire program, theProgramUnit class corresponds to top-level units (programs, subprograms or block data), the Statement classrepresents a single statement, the StmtList class holds a series of statements (e.g., a loop body), and theExpression class corresponds to expressions. Polaris also provides classes for symbols, symbol tables, andvarious generally useful data structures. All of these classes may be specialized, via inheritance, for a speci�cpurpose. For example, headers for Fortran DO loops are represented by a subclass of Statement that hasadditional �elds for items such as the end of the loop and the index variable.OptimizationsThe authors of Polaris performed a study in which they parallelized the Perfect Club benchmark byhand [EHLP91]. They found that a few new analyses and optimizations, in addition to ones already prevalentin commercially available parallelizing translators, would signi�cantly improve a translator's ability to par-allelize code. For analysis, they added constant propagation, inlining (also used for optimization), and theirown version of symbolic data dependence analysis. Polaris performs auto-inlining, which is the automaticinlining of subroutines that are �fty lines or less. In their experience, auto-inlining is su�cient for Polaristo carry out
ow-sensitive analysis [Gro95a, Gro95b]. Instead of using traditional dependence analysis, Po-laris builds symbolic lower and upper bounds for variable references and propagates these ranges as neededthroughout the program using a demand driven algorithm [BE95b, BE95a]. Polaris's range test then usesthese ranges to disprove dependences[BE94]. For optimization, Polaris includes scalar and array privatiza-tion, induction variable substitution, and reduction recognition and replacement. When Polaris recognizes6

a reduction, it replaces accesses to the reduction variable to one of blocked (variable access is in a criticalsection), privatized (each processor has its own copy of the variable), and expanded (processors build partialsums in disjoint sections of a global array)[PE95].SummaryBecause Polaris's authors focus on automatic parallelization rather than multiple source languages or diversearchitectures, it parses only Fortran 77 extended with assertions. The inclusion of consistency checks in the IRaccess methods supports correct and quick optimization development. The automatic, incremental update ofanalysis data needed ensures the accuracy of this information but requires that knowledge about the analysisroutines be included in the IR. Modifying the IR to support additional languages may require changes tothe consistency checks and analysis routines, but adding new nodes for an existing language should be easybecause of Polaris's object-oriented design.2.4 Sage++Sage++ from Indiana University is a toolkit for building source-to-source translators [B+94]. The authorsforesee optimizing translators, simulation of language extensions, language preprocessors, and code instru-mentation as possible applications of Sage++. Sage++ is written in C++ and provides parses for C, C++,pC++, Fortran 77, and Fortran 90. Because Sage++ is a compiler toolkit instead of a compiler, it is notlimited to any hardware architectures.System architectureSage++ assumes that a source-to-source transformation will proceed in three phases. Sage++ provides the�rst and last phases, parsing and unparsing (i.e., pretty printing) respectively. Between phases, the programis stored on disk in a Sage++ supplied intermediate representation. The middle phase that actually analyzesand transforms the program is the responsibility of the Sage++ user, but Sage++ supplies several basicanalysis and transformation routines as building blocks. In Sage++ parlance, a speci�c middle phase iscalled a restructuring tool.Intermediate representation (IR)Like many other source-to-source translators, Sage++'s intermediate representation resembles an abstractsyntax tree. Sage++ uses a C++ class hierarchy for de�ning the nodes in its IR, where each class corre-sponds to a syntax component of the source language. Sage++ has �ve major classes that represent wholeprograms and �les (SgProject and SgFile), statements (SgStatement), and expressions (SgExpression), sym-bols (SgSymbol), and types (SgType).Sage++ emphasizes extensibility by providing a single, simple intermediate representation that userscan extend to represent new languages. Sage++ IR currently supports C, C++, pC++, Fortran 77, andFortran 90.OptimizationsSage++ provides a general framework for data dependence and
ow analysis for Fortran 77. A separate class,depGraph stores results of dependence analysis using the Omega test. A basic framework for data
ow analysisis provided, but the compiler writer is responsible for writing
ow routines. Sophisticated interprocedural oralias analyses are not performed.Sage++ provides a basic set of loop transformations like loop interchange, fusion, tiling and distribution.However, these transformations do not check the legality of the transformation. The rationale being thatSage++ is a toolkit, not a complete compiler. Using Sage++, a compiler writer can implement tests forlegality and a richer set of transformations and optimizations. The compiler writer is responsible for writingthe code to update the dependence graph after program changes.Applications of Sage++Sage++ has been used to support new language extensions [BPMG94, Y+94, M+94, B+93]. Sage++ is usefulnot only for building source-to-source translators but also other tools that depend on programs as input.Some traditional uses of Sage++ include optimizing expressions in scienti�c library code, instrumenting usercode, and preprocessing user annotations in Fortran-S. But, Sage++ has also been used to construct a suit7

of programming environment tools: tuning and analysis utility (TAU), �le and class display (Fancy), callgraph extended display (Cagey), class hierarchy browser (Classy), routine and data access pro�le display(Racy) and event and state display (Easy) [MBM94, BHMM94].SummarySage++ is a convenient tool for building source-to-source translators. It is not tied to any particular hardwarearchitecture which makes it portable, and it provides basic routines needed by compilers. Though Sage++has been extended to accept new source languages several times, the process is, unfortunately, somewhattedious. It also lacks many of the sophisticated analyses, optimizations, and transformations because of itscompiler framework nature.2.5 SUIFStanford University Intermediate Format (SUIF) is a compiler framework designed for research in com-pilation techniques, especially automatic parallelization [W+94, AALL93, Sta94]. SUIF functions as eithera source-to-C translator or a native code compiler. SUIF has been used to study parallelization for bothshared-memory and distributed shared-memory machines [W+94]. SUIF accepts source code written in ei-ther Fortran 77 or C, but a modi�ed version of f2c [FGMS93] is used to convert Fortran code to C code.The modi�cations to f2c retain some Fortran speci�c information that further aids in analysis.System architectureSUIF has a
exible organization, with each analysis and optimization coded as a separate, independent pass.Because passes are independent, they can execute in any order, but pragmatically, analysis passes must runprior to passes that use the analysis data. SUIF does not check that the ordering of passes is valid, but atransformation pass can easily determine that prerequisite analysis passes have not yet executed. The solemeans of communication between passes is attaching annotations to the intermediate representation. Anannotation consists of a name �eld which identi�es the type of the annotation and a body whose structuredepends on the annotation's type. Hence, an analysis pass will attach annotations of a certain type, andoptimization passes search for these annotations. The annotation mechanism does not ensure consistency oraccuracy of information; when a transformation pass corrupts analysis information, the analysis pass mustbe rerun.Intermediate representationThe design of SUIF's intermediate representation re
ects the needs of code generation. Source-to-sourcetranslators generally use a single, high-level representation that is appropriate for loop transformations.However, because high-level representations (such as ASTs) do not totally order instructions, they are in-appropriate for certain low-level optimizations (e.g., instruction scheduling). SUIF's IR (which is also calledSUIF) includes both high- and low-level representations. SUIF initially represents programs as a forest ofASTs using high-SUIF nodes (a combination of high- and low-level nodes). SUIF's AST is unique in that itrepresents only a few language constructs (i.e., for loops, general loops, if statements, and array references)with high-level nodes; the remainding constructs are represented by low-level nodes that resemble RISCinstructions (e.g., load, store and add). These low-level nodes are known as low-SUIF. When the AST islowered to a linear form, SUIF translates high-level nodes into low-level nodes, i.e., low-SUIF. Hence, SUIFshares low-SUIF nodes between the AST and linear representations.SUIF is implemented in C++ and uses a class hierarchy for its IR. SUIF has three major classes forrepresenting programs: the �le set class collects all the �les composing a single program, the �le set entryclass represents a single source �le, the tree node class de�nes nodes in the AST. In SUIF, an AST representsa single procedure and has three parts that divide the tree horizontally. The top part is simply the rootof the tree, and the second part consists of high-level nodes representing source language constructs. Thebottom part is made up of low-level nodes (e.g., the nodes common to low-SUIF and high-SUIF). Thus,converting from high-SUIF to low-SUIF is essentially compiling away the middle part of an AST. In additionto the three major classes for representing programs, SUIF also has classes for symbols, symbol tables, types,annotations, and generic data structures. 8

OptimizationsSUIF does not rely on another compiler to perform traditional optimizations, and therefore has a full com-plement of compiler analyses and optimizations. For analysis, SUIF can compute data dependence, controldependence, symbolic constants, and interprocedural information. The data dependence analyzer uses a suiteof tests of varying complexity to obtain accurate results quickly. The interprocedural information is computedby an unusually extensive collection of analyses [HMA95]. SUIF structures its interprocedural analyses as abottom-up pass that summarizes the behavior of each subroutine, followed by a top-down pass that appliescalling contexts to each subroutine's summary description to compute its �nal analysis result. For optimiza-tion, SUIF has a wide assortment of traditional and loop optimizations (see Table 2), including unimodularloop transformations (i.e., interchange, reversal, and skewing) [WL91]. SUIF also has an extensive collectionof interprocedural transformations: parallelization, data privatization, inlining, cloning, and reduction recog-nition. Lastly, SUIF includes a code generator which allows it to not only transform a sequential program toa parallel program, but also immediately generate assembly code for the parallel program.SummarySUIF is most unique for the two distinct levels of abstraction in its intermediate representation. With twolevels, SUIF can generate optimized assembly code as well as perform source-to-source transformations.The de�nition of high-SUIF as a combination of low- and high-level representations eases the developmentof passes that work on both levels of abstraction, and allows the interleaving of loop-level and low-leveloptimizations. Because the authors focus on loop-level parallelism for MIMD machines, SUIF's IR has a high-level representation for only a few source language constructs, which may limit SUIF's ability to target otherarchitectures. Fortunately, SUIF's IR is relatively easy to extend because it uses object-oriented techniques;new IR nodes will have little e�ect on existing ones. Adding new analyses and optimizations is also easybecause they are independent, and new annotations (with new names) do not impact existing annotations.SUIF's other major strength is its
exible ordering of compiler passes. Though this
exibility facilitatesexploration of optimization ordering for di�erent architectures, SUIF neither assists in dynamically selectingpasses nor provides guards against inappropriate orderings.2.6 Vienna Fortran Compilation System (VFCS)The Vienna Fortran Compilation System (VFCS) from the University of Vienna is an interactive, source-to-source translator for Vienna Fortran [CMZ92a, CMZ92b, ZC93, ZCMM93]. VFCS is based upon thedata parallel model of computation with the Single-Program-Multiple-Data (SPMD) paradigm. The ViennaFortran language extends Fortran with constructs for distributing data across the processors of a distributed-memory multiprocessing system (DMMP). The language features focus mainly on the issue of distributingdata across a virtual processor structure based on the default rule of owner computes. VFCS is written in Cand generates explicitly parallel, SPMD programs.System architectureInput languages accepted by VFCS are Vienna Fortran, Fortran 77, HPF and a subset of Fortran 90. Thecompiler outputs message passing programs in Intel features, PARMACS, or MPI. VFCS allows users towrite programs for distributed-memory systems using global addresses. It allows the data distributions ofarrays to change dynamically, based upon runtime conditionals. Sophisticated memory management andbu�ering schemes are used to optimize communication.VFCS operates in both interactive and batch modes. In interactive mode, users have access to a set ofanalyses and a catalog of transformations via graphical user interface. In batch mode, a batch commandlanguage enables the creation of batch �les which may be automatically applied to a Fortran program.Alternatively, the sequence of transformations executed during an interactive session can be protocolled. Theprotocol can then be automatically executed in batch mode.Intermediate representation (IR)VFCS uses abstract syntax trees for intermediate representation, and a program database for communicationamong components of the compiler. The program database contains syntax trees, call graphs, interprocedural9

information, dependence graphs, and data partitioning information. Optimizations work directly on theprogram database, and transformations are guided by an interactive kernel.OptimizationsVFCS performs traditional data
ow and data dependence analyses. It also has interprocedural communica-tion and dynamic distribution analysis. It optimizes irregular access pattern using PARTI routines [SCMB90].VFCS was speci�cally designed for distributed-memory machines and has an extensive set of communi-cation optimizations besides loop optimizations. It performs overlap analysis to determine which non-localelements of a partitioned array are used in a processor and inserts communication primitives based on theanalysis. To reduce communication overhead VFCS aggregates communication primitives within a loop when-ever appropriate. It performs further optimizations to simplify or eliminate communicationmasks in SPMDprograms.Vienna Fortran has many optimizations in common with Fortran D. However, Vienna Fortran has aricher set of data distributions. In particular, it has static distributions, dynamic distributions, user-de�neddistribution functions, and run-time selectable conditional distributions. Similar to HPF, it allows conditionalcode execution based on run-time data distribution. However, dynamic data distribution is quite expensiveand Vienna Fortran does not provide mechanisms to measure the trade-o� between the cost of redistributionand the additional communication cost. Some recent work uses static performance measurements to guideoptimization process [Fah94, FZ93].SummaryThe design goal of Vienna Fortran is to generate optimized code for distributed-memory machines. ViennaFortran borrows upon SUPERB, a predecessor of VFCS [ZBG88]. In turn, many features of Vienna Fortranhave been incorporated into HPF. VFCS is an interesting system because many other supporting tools havebeen developed besides the compiler. Some recent work addresses task and data parallelism in Vienna Fortranand HPF [CMRZ94, HHM+94]. It is not readily adaptable to other languages because the optimizations aretoo tightly coupled with the rest of the system.2.7 System ComparisonThis section compares and contrasts the systems we have just reviewed and summarized in Table 1 onpage 13 and Table 2 on page 15. We compare their general approach, programming model, organization,intermediate representation, analyses, optimizations and transformations, and interaction with users. Thegoal of this section is to better understand the contributions of these systems, especially with respect to theirsoftware architecture.ParaScope has several di�erent compilers built on top of its core routines. Where noted, we refer toa speci�c compiler, e.g., the D System; otherwise, we refer to the ParaScope system as a whole. Similarly,Sage++ is a framework for assembling compilers, so where noted, we refer speci�cally to the pC++ compiler.GeneralRe
ecting their common mission of compiling for parallel machines, the systems are similar in their generalapproach. All the systems (except Sage++) are designed for automatic parallelization, and Sage++ sup-ports features necessary for building parallelizing compilers (e.g., data dependence). Nevertheless, they haveslightly di�erent emphases, e.g., Polaris targets shared-memory machines, and VFCS emphasizes targetingdistributed memory machines. All the compilers can operate as source-to-source translators and Sage++facilitates the construction of source-to-source translators. SUIF also compiles directly into assembly codefor the MIPS family of microprocessors. All the systems parse some variation of Fortran, and half of themalso handle C. These are the traditional languages for high performance computing.Programming modelThe compilers in our survey expect to receive and generate a variety of programming models. SUIF acceptsonly sequential C and Fortran 77 programs, and therefore must extract all the parallelism automatically.Polaris parses only Fortran 77 but interprets assertions in the source code that identify parallelism. Para-Scope allows programmers to use data parallel languages as well as sequential languages, and attempts to10

�nd additional loop and data parallelism. Though VFCS accepts data parallel languages, it requires thatprogrammers supply the data distribution. VFCS then �nds opportunities to apply data parallel operations.Parafrase-2 accepts Cedar Fortran which includes vector, loop, and task parallelism and generates programswith control and data parallelism.Most of the compilers in our survey generate data parallel programs, but Parafrase-2 extracts controlparallelism as well. SUIF and Polaris take a classic approach to parallelization by identifying loop iterationsthat operate on independent sections of arrays and executing these iterations in parallel. For scienti�capplications loop level parallelism has largely been equated to data parallelism. The D System and VFCS,on the other hand, output programs that follow the SPMD model; the program consists of interactingnode programs. Parafrase-2 identi�es non-loop sections of a program that can be executed in parallel andtransforms these sections into tasks. Parafrase-2 also �nds loop level parallelism.OrganizationThe organization of analyses and optimizations varies slightly between the systems. All of the systemssupport batch compilation and optimization. However, Parafrase-2 and ParaScope also provide a graphicalinterface that enables users to interact with the compiler and a�ect its optimization. Moreover, ParaScopeand Polaris support incremental updates of analysis data. Though incremental analysis is not more powerfulthan batch analysis, it dramatically increases the speed of compilation and therefore encourage more extensiveoptimization.Most compilers have additional tools to assist users in writing and understanding their parallel programs.ParaScope strives to provide a complete parallel programming environment, including an editor, debuggerand an automatic data partitioner. Sage++ provides a rich set of tools for pC++ named Tuning and AnalysisUtilities (TAU). TAU includes utilities for �le and class display, call graph display, class hierarchy browsing,routine and data access pro�le display, and event and state display. Almost all of these systems are researchtools that encourage user experimentation. Experimentation is further facilitated by having graphical userinterfaces in Parafrase-2, ParaScope, Sage++, and VFCS which display various aspects of the compilationprocess in windows that the user can interact with to get more details or provide inputs to the compiler.Intermediate representationMost of the systems use an abstract syntax tree (AST) as an intermediate representation. ASTs retain thesource level syntax of the program which makes them convenient for source-to-source translation. SUIF usesa mixed-level AST which allows both a broader range of transformations and the sharing of nodes betweenthe AST and linear representations.Parafrase-2 uses the hierarchical task graph (HTG) representation instead of an AST. HTGs elucidatethe control and data dependencies between sections of a program and are convenient for extracting controlparallelism.AnalysesAll the systems in our survey provide the base analysis necessary for parallelism, but beyond that theircapabilities diverge. Data dependence analysis is central to most loop transformations and is therefore builtinto all the systems. However, Parafrase-2, ParaScope, and SUIF perform control dependence analysis, albeitin a
ow-insensitive manner. All the systems (except Sage++) perform intraprocedural symbolic analysis tosupport traditional optimizations, but ParaScope and Parafrase-2 have extensive interprocedural symbolicanalysis such as forward propagation of symbolics. VFCS provides intraprocedural irregular access patternanalysis based on PARTI routines [SCMB90]. Parafrase-2, ParaScope, Polaris, SUIF, and VFCS provide in-terprocedural analysis. Polaris recently incorporated interprocedural symbolic constant propagation [Pau95].Parafrase-2, ParaScope, and VFCS [Zim95] perform
ow-insensitive interprocedural analysis by summariz-ing where variables are referenced or modi�ed. SUIF's FIAT tool provides a powerful framework for both
ow-insensitive and
ow-sensitive analysis [HMA95].OptimizationsA wide range of optimizations is supported by these compilers. Optimizations performed by uniprocessorcompilers are termed as traditional. Except Sage++, all compilers provide traditional optimizations as listedin Table 2. Notice that SUIF generates native code with two levels of IR and has additional low level11

optimizations such as register allocation. Again all six provide loop transformations, but ParaScope has anunusually large set of independent loop transformations.Communication and synchronization optimizations, though not always distinct from loop optimizations,refer to the optimizations speci�cally performed for distributed memory machines, like bunching messagestogether. The VFCS system, which is designed exclusively for distributed memory machines, has a richer setof communication optimizations than the others. SUIF is able to derive automatic data decompositions for agiven program. ParaScope and VFCS do this to some degree, however, the primary computation partitioningmechanism for them is the owner computes rule and the data partitioning is programmer-speci�ed.Parafrase-2 is unique in that it exploits control parallelism. It includes the partitioning of a program intoparallel tasks as a transformation.All compilers include applicability criteria for the transformations since a transformation may not belegal, e.g., loop interchange is illegal when any dependence is of the form (� � � ; <;>; � � �). Sage++ is uniquein this respect; though it has a few loop transformations, it does not have any applicability criteria built in.The Sage++ developers argue that in a preprocessor toolkit like Sage++ applicability should be de�ned bythe compiler writer for individual applications.Though an optimization may be applicable, it may not be pro�table. The six compilers surveyed in thisarticle take varying approaches to this issue. Parafrase-2 and ParaScope rely on user input. ParaScope alsoo�ers a small amount of feedback to the user based on its analysis. SUIF and Polaris use a �xed orderingof transformations for each target, and therefore perform valid optimizations according to a prede�nedstrategy. VFCS performs static performance measurement and dynamic performance measurements basedupon external tools P3T [Fah94] and MEDEA [CPZ95] respectively, to determine pro�tability.Closely related to the pro�tability issue is ordering criteria. Optimizations applied in di�erent orders mayproduce dramatically di�erent results. In interactive mode, ParaScope, Parafrase-2, Polaris and VFCSallowthe user to select any ordering of optimizations. All support �xed optimization ordering via their commandlines as well.3 Criteria for a Compilation System in a Heterogeneous EnvironmentIn Section 1 we introduced four goals that a compiler for heterogeneous systems must meet: exploitingavailable resources, targeting changing resources, adjusting optimization to suit a target, and allowing pro-gramming models and languages to evolve. This section expounds upon these goals by determining theirimplications on the compiler and examining the existing systems from Section 2 for applicable technology.3.1 Exploiting Available ResourcesAs with any computer system, compilers for heterogeneous systems should generate programs that takemaximumadvantage of the available hardware. However, the variability in resources complicates this task. Toaccount for variability, programs could simply be recompiled whenever the hardware con�guration changes.Recompilation works well when the con�guration is stable but is ine�cient if the con�guration changesfrequently. Recompilation at runtime to adjust to the current workload of the heterogeneous machine defeatsthe purpose of high performance.Multiple object modules for di�erent targetsInstead of recompiling when the con�guration changes, the compiler could precompile for several machines.Hence, the compiler produces the building blocks for a program partitioning, but the linker assembles the�nal partitioning. The compiler generates alternate versions of subtasks (or routines), and passes alongenough information for the linker to select a �nal partitioning. If the con�guration changes slightly, thelinker may simply recompute the partitioning and mapping without the program experiencing a completerecompile. It may also be possible to account for the system's workload by relinking at run time. None ofthe existing compilers provide this level of
exibility. Excluding Sage++ which is a framework, all of thecompilers perform partitioning and mapping within the compiler.12

Table1.Comparisontableforsurveyedsystems.

Properties Parafrase-2 ParaScope/D System Polaris Sage++/pC++ SUIF VFCSGeneralGoals MultipleLanguages andTargetArchitectures,Extensibility Automatic andInteractiveParallelization AutomaticParallelizationof FortranPrograms Frameworkfor BuildingSource-To-SourceTranslators Tool for Research inCompilationTechniques, especiallyAutomaticParallelization Compiling forDistributedMemorySystemsSource-to-Source p p p p p pSource Languages C, Fortran 77,Cedar Fortran Fortran 77,Fortran 901,Fortran D Fortran 77 C, C++,Fortran 77,Fortran 90,pC++ C, Fortran 772 Fortran 77,Fortran 901,HPF, ViennaFortranCode Generation Tuples Tuples | | MIPS Assembly |Programming ModelInput Sequential orControl Parallel Sequential orData Parallel Sequential orData Parallel NA Sequential Sequential orData ParallelOutput Task/LoopParallel SPMD, LoopParallel Loop Parallel NA Loop Parallel SPMDTargetArchitectures Multithreaded,SM, DSM Uniprocessor,SM and DM SM, DSM NotSpeci�ed Uniprocessor, SM,DSM DMOrganizationImplementationLanguages C C, C++ C++ C++ C, C++ CIncrementalAnalysis | p p | | |BatchOptimization p p p p p pInteractiveOptimization p+ p+ | NA | pUser Interface CLI, GUI GUI CLI, Assertions CLI, GUI CLI CLI, GUISupporting Tools | PED, D Editor Delta TAU3 Sharlit, Fiat P3T, MEDEAIntermediate RepresentationForms HTG, LinearTuples AST AST4 AST Hybrid of AST andLinear Tuples5 AST

13

Table1.Comparisontableforsurveyedsystems,continued...

Properties Parafrase-2 ParaScope/D System Polaris Sage++/pC++ SUIF VFCSAnalysesData Dependence p p p p p pControlDependence p+ p p | p |Symbolic6 p+ p+ p | p pInterprocedural Alias, MOD,REF, ConstantPropagation Alias, MOD,REF, ConstantPropagation,Symbolic Inlining (foranalysis),ConstantPropagation | MOD, REF, GEN,KILL, ConstantPropagation, ArraySummary, ArrayReshapes,Reductions7 , InductionVariables, Cloning7 Alias, USE,DEF, Const.Propagation,Overlap, Com-munication,DynamicDistributionOptimizations and TransformationsTraditional p p p | p+ pLoop p p p p p pCommunication/Synchronization | p8 p | p p+Data Partitioning | p In Progress | p pTask Partitioning p | | | | |Interprocedural Inlining Inlining,Cloning Inlining,Cloning | Parallelization, DataPrivatization, Inlining,Cloning, Reductions Inlining,CloningApplicabilityCriteria p p p | p pPro�tabilityCriteria Queries User Queries User,CLI Fixed for Arch. | Fixed for Arch. Static/DynamicPerformanceMeasureOrdering Criteria Fixed for Arch.,InteractivelySelected byUser Fixed for Arch.,InteractivelySelected byUser Fixed for Arch. | Fixed for Arch. Fixed for Arch.

14

Table2.Summaryofoptimizationssuppliedbysurveyedcompilers

Optimizations Parafrase-2 ParaScope/D System Polaris Sage++/pC++ SUIF VFCSTraditional Scalar Expansion,Induction Var.Subst.,(Symbolic)Const.Propagation,Dead Code,Forward Subst.,VariableLocalization Scalar Expansion,Loop InvariantCode Recog., ScalarPrivatization,Induction Var.Recog., Const.Propagation, Expr.Folding (Symbolic)ConstantPropagation,Dead Code,InductionVar. Subst.,ExpressionFolding | CSE, ConstantPropagation, DeadCode, ForwardPropagation, InductionVar. Subst., RegisterAllocation ScalarReplacement,Scalar Expansion,StrengthReduction,Induction Var.Subst., Const.PropagationLoop, MemoryHierarchy, andParallelization Blocking,Distribution,Interchange, TaskParallelization,LoopParallelization Fusion, Interchange,Distribution, StripMinining, Skewing,Peeling, Unrolling,Unroll-and-Jam,Reversal, ScalarReplacement, LoopParallelization DataPrivatization,ReductionRecog. andReplacement9 ,Loop Paral-lelization Fusion,Interchange,Tiling,Distribution,Loop Paral-lelization Interchange, Reversal,Skewing, Tiling,Reduction Recog. andReplacement, LoopParallelization Reductions,Unroll-and-jam,Interchange,Distribution,Fusion, StripMining,Unrolling, LoopParallelizationCommunication | CommunicationVectorization,Overlap ofCommunication andComputation | | Latency Hiding,Message Aggregation,Redundant MessageElimination, DataPrivatization Elimination ofRedundantCommunication,AggregateCommunicationInterprocedural Inlining Inlining, Cloning Inlining,Cloning,SymbolicConstantPropagation | Parallelization, DataPrivatization, Inlining,Cloning, Reductions Inlining, Cloning15

Table 3. Abbreviations for Table 1.CLI: Command Line Interface DM: Distributed MemoryDSM: Distributed Shared Memory GUI: Graphical User InterfaceHPF: High Performance Fortran HTG: Hierarchical Task GraphP3T: Parameter-based Performance Prediction Tool PED: ParaScope EditorSM: Shared Memory TAU: Tuning and Analysis Utilitiesp: Yes p+: Exceptional Implementation| No or None NA Not ApplicableCompiler communicates with run-time environmentAnother approach to exploiting varying resources is for the compiler to embed code that examines itsenvironment at run time and dynamically decides how to execute. For example, VFCS has optimizationsthat dynamically decide their applicability at run-time. These optimizations along with delaying the bindingof subtasks to speci�c processors increase communication between the compiler and the run time system.This increased cooperation allows compiler-level information to be used in adjusting to variations in hardwareresources without the cost of a recompilation.3.2 Targeting Changing ResourcesThe variety and variability of hardware complicates code generation for individual components. Unlikeexisting systems, a compiler for heterogeneous systems must generate code for diverse processors duringa single compilation, which not only requires
exible instruction selection but also
exible optimizationselection. The compiler must choose the optimizations that suit the target processor. When the programmingmodel does not match the model of parallelism implemented by the hardware, the compiler must adapt thecode to the hardware's model. One of heterogeneity's main bene�t is that it should eliminate most of theneed for this adaptation, but some subtasks may still bene�t when no appropriate hardware is available orthe appropriate hardware is busy.IR supports code generation for diverse hardwareA compiler transforms a program through a series of representations from source code to object code. At eachstep the intermediate representation resembles the source language less and the target machine more. The�nal step, selection of object code instructions, is facilitated by an intermediate representation that resemblesthe target instruction set. The more accurately the IR re
ects the hardware, the greater the opportunity foroptimization. On the other hand, including more hardware speci�c detail in the intermediate representationdecreases its generality. All of the surveyed systems, except SUIF, do a source-to-source translation and leavethe �nal code generation to the native compilers thus avoiding code generation issues. These compilers arelosing the bene�t of intertwining their high-level optimizations with machine level optimizations. While low-and high-level optimizations may be interleaved in SUIF, it targets only RISC-like processors.Compiler accepts an extensible description of the targetAnother concern for generating e�cient code is knowing the details of the target hardware. Hardware featuressuch as the number of registers, number of functional units, memory access latencies, and cache line sizeare important concerns during optimization. Even high-level optimizations can bene�t from exploiting these1 Language subset.2 Preprocesses Fortran with f2c.3 Includes Fancy, Classy, Cagey, Racy, Easy.4 Has Pattern Matching Language for Manipulating IR.5 Single IR has two levels of abstraction.6 Intraprocedural.7 Used for both analysis and optimization.8 Only for D System compiler.9 Relies on KAP for many optimizations. 16

features. The variety of hardware in a heterogeneous system precludes embedding hardware knowledge in thecompiler. Instead, we expect to provide target descriptions to the compiler. The Memory Compiler, which ispart of ParaScope and is only for uniprocessors, uses hardware parameters such as latency, but none of thecompilers for parallel machine accept hardware parameters as input.Compiler detects/accepts programming modelIn order to assign code to a processor with the appropriate model of parallelism, the compiler must know themodel of parallelism used by the programmer. Programmers could annotate programs with this information,and analysis techniques might be able to detect the model of parallelism. For example, a simple analysisroutine might use the source language constructs that appear in a section of code to estimate its model ofparallelism. None of the surveyed systems bother to determine the model of parallelism used by the sourceprogram because they assume the input program is one of a small set of models. For example, Polaris andSUIF assume a sequential model, and ParaScope assumes the source program is either sequential or dataparallel.Compiler converts programming models with user assistanceBecause of the variability of resources in a heterogeneous system, a compiler must have the ability to targetcode that uses one model of parallelism for a machine that implements a di�erent model of parallelism. Thus,the compiler must convert, to some extent, the model of parallelism that a subtask uses. Extensive e�ort hasgone into developing methods for converting sequential programs into parallel programs, and some formsof parallel code can be readily converted to other forms such as running data parallel programs on controlparallel hardware. All the compilers in our survey transform programs to execute on a di�erent model of par-allelism. For example, SUIF exclusively convert sequential programs to a parallel model, and though VFCSinputs and outputs data parallel programs, its input model (SPMD) is more tightly coupled than its outputmodel (Message-Passing MIMD). Collectively, the compilers in our survey represent the state of the art inautomatic parallelization (i.e., model conversion), and their techniques should be included in a compiler forheterogeneous systems. Yet, automatic techniques have had limited success because compilers must makeconservative assumptions. Parafrase-2 and ParaScope address this issue with their interactive interface thatallows programmers to guide code transformation. Unfortunately, for heterogeneous systems, this approachwould require programmers to edit their programs each time the system's con�guration changes. With inter-active editors, the programmer's deep understanding of a program remains implicit. Instead programmersshould convey their insights about the program to the compiler and allow the compiler to determine how touse these insights to improve optimization. In other words, the programmer should annotate the programwith knowledge that current analyses cannot discover, but that enables optimizations and transformations.This approach allows the same facts to be used in di�erent ways, depending on the target.Annotating source programs with additional semantic knowledge is appropriate only when the algorithmchanges very slightly for a new target. However, sometimes a change in the target requires a radical changein the algorithm to obtain good performance. If an algorithm extensively exploits the features of a processor,it is unlikely to be e�cient on a substantially di�erent processor. The two simplest solutions are, either onlywrite generic algorithms that have mediocre performance on all processors, or rewrite the algorithmwhen thetarget changes, which is what currently happens. Neither of these solutions is acceptable for heterogeneoussystems. Instead, the compiler should manage multiple implementations of a routine10. Programmers wouldnot have to write alternative versions but probably will for routines that are critical to performance. Noneof the compilers in our survey support multiple versions of a routine.3.3 Adjusting optimization to suit a targetCompilers have a set of tools that they use to tailor code to exploit unique features of a speci�c processor andto adjust the code's model of parallelism. These tools (analyses, optimizations, and transformations) give a10 This approach is related to our earlier discussion (see Section 3.1) about compilers generating alternative objectcode modules but di�ers in that here the programmer speci�es alternatives. Each of these capabilities is usefulindependent of the other. 17

compiler its power to understand and alter a program. The strategy for using these tools (i.e., ordering andparameterization) depends upon the target. Because current compilers have a limited number of targets,their analyses, optimizations, and transformations are applied in a �xed order, or else controlled by theuser. A compiler for heterogeneous systems must target a variety of hardware within a single compilation,and therefore must be able to alter its strategy according to the particular hardware. Moreover, becauseheterogeneous systems have variable con�gurations, new analyses, optimizations, and transformations mayneed to be added. Hence, a compiler for heterogeneous systems should encode analyses, optimizations, andtransformations in a form that facilitates reordering and addition.Modular analyses, optimizations, and transformationsOne implication of needing to reorder analyses, optimizations, and transformations as well as include newones is that they should be modular. Parafrase-2, Sage++, and SUIF break optimizations into individualpasses which communicate through the IR. This approach to modularity works well if the entire programneeds the same ordering and is destined for the same model of parallelism. Because optimization strategiesfor subtasks vary depending on the target processor and a heterogeneous system has a variety of targets,the compiler must also be able to apply an analysis, optimization, or transformation to individual sectionsof code. Polaris supports this capability directly; passes may call the bodies of other passes as needed. Para-Scope, Parafrase-2 and to some extent VFCS provide this capability through their interactive interface, butnone of the compilers automatically select optimizations based on a varying model of parallelism and thehardware features of the target.Compiler maintains consistency of analysis dataThough the compilers in our survey have modular implementations of their analyses, optimizations, andtransformations, most of them still have severe ordering constraints. Despite their modularity, the passeshave implicit ordering concerns that compiler developers must manage. SUIF, for example, divides its anal-yses, optimizations, and transformations into reorderable passes where each pass may modify the IR andannotate it with information for future passes. No mechanism exists to ensure that annotations are up-to-date when used, or even available when needed. Compiler developers must intimately know the annotationsproduced and consumed by each pass before they can assign an order. A �xed ordering of optimizationsworks when a compilation has a single target but has drawbacks even for a single target. Compilers forheterogeneous systems must vary the order of optimizations and transformations to suit a variety of targets.Polaris supports incremental update of
ow information (and data dependence information is in progress).ParaScope can identify when analysis data is not current, but incremental update is the responsibility of in-dividual transformations. Ideally, optimizations and transformations would be written in such a way that thecompiler infrastructure would handle ensuring that the necessary analysis data is accurate. Not only wouldthis prevent errors, but it would greatly simplify the addition of new optimizations and transformations.3.4 Allowing Programming Models and Languages to EvolveLanguages typically evolve to support new hardware features, and the variability in heterogeneous systemsdictates that their compilers should support changes in source languages. For example, HPF extends Fortranwith structured comments and a few constructs to allow programs to specify SPMD parallelism. A compilerneeds two capabilities to support evolving languages. The �rst capability is already common: a clean breakbetween the front and back ends of the compiler. The second capability is much harder: despite the separation,the front end must still pass a semantic description of new language features to the back end.IR hides source language from back endThe separation of front and back ends of a compiler protects the analyses, optimizations, and transformationsin the back end from details of the source language's syntax. This separation of the front and back ends isrealized by limiting their interaction to an intermediate representation. To the extent that the IR is una�ectedby changes in the source language, the back end is insulated. Unfortunately, ParaScope, Polaris, Sage++,SUIF, and VFCS use an AST intermediate representation, which inherently captures the syntax of the sourcelanguage. However, SUIF attempts to overcome the limitations of ASTs by immediately compiling source18

language constructs it considers unimportant to a RISC-like IR nodes. Parafrase-2 uses a HTG which doesnot necessarily represent the syntax of the source language, and therefore can hide the source language.IR is extensibleTo pass a semantic description of new source language features through the intermediate representation, theIR must be extended. Some simple changes to a language (e.g., a new loop construct) may be expressible interms of the existing IR, but others (e.g., adding message passing to C) require new IR nodes. Sage++, SUIF,and Polaris allow extension of their respective IRs through object-oriented data structures. Their IRs canthen be extended to include new features of an evolving language or to reuse parts of the IR for a completelydi�erent language. Note that when a node is added to the IR, most likely new or enhanced optimizationsand transformations will also be needed to process that node.3.5 SummaryThis section has examined the impact of our four goals on a compiler for heterogeneous systems (see Table 4).Though the impact is signi�cant, it is important to note that the impact is primarily on a compiler's softwarearchitecture, and much less so on the core compiler technology. For example, we have not discussed speci�c,new optimizations or transformations, but we have considered how existing ones must be coordinated forheterogeneity. The basic technology such as parsers, analyses, and transformations (that is in all of oursurveyed compilers) remains important and largely unchanged for heterogeneity; it is the way they worktogether that must change. We have also seen that the existing compilers often o�er partial solutions, butthey lack the
exibility needed by heterogeneous systems because homogeneous systems did not require it.Table 4. Compiler Goals for Heterogeneous Systems.1. Exploiting available resources:{ Compiler generates multiple object code modules for di�erent targets to support load balancing and maximizethroughput.{ Compiler communicates with Run-time environment.2. Targeting changing resources:{ IR supports code generation for diverse hardware.{ Compiler accepts an extensible description of the target.{ Compiler detects (or accepts from programmer) the source code's programming model.{ Compiler accepts user assistance in converting code from one programming model to another.3. Adjusting optimization to suit a target:{ Modular analyses, optimizations, and transformations.{ Compiler maintains consistency of analysis data.4. Allowing programming models and languages to evolve:{ IR hides source language from back end.{ IR is extensible (via new constructs or annotations).All of the goals of a compiler for a heterogeneous system still have signi�cant unmet challenges. Thenearest to being met is the fourth goal: allowing programming models and languages to evolve. Yet, meetingthis goal requires the combination of IR features from Parafrase-2 with those from Polaris or SUIF, and eventhese could be improved upon to support a wider array of hardware or ease the addition of new analyses,optimizations, and transformations. Therefore, in Section 4 we propose a compiler architecture with su�cient
exibility to support heterogeneity. 19

4 Proposed Compiler ArchitectureSection 3 shows that existing compilers lack the
exibility necessary for heterogeneous systems. This lackof
exibility is not the fault of the compilers, but rather a by product of their goals. These compilers weredesigned to target only a few models of parallelism, and then only for homogeneous targets. Because heteroge-neous systems have di�erent, more rigorous requirements, the simpli�cations used for homogeneous systemsare no longer appropriate. This section presents a compiler architecture with the
exibility necessitated byheterogeneity.4.1 Architecture OverviewFigure 1 shows a high-level diagram of our proposed compiler architecture. It consists of three major pieces:Translation Director, Compilation Library, and Persistent Store. The translation director provides the in-telligence for deciding upon appropriate program partitioning and planning optimization strategies. Thetranslation director uses the compiler tools in the compilation library to carry out its plans. The persistentstore holds a variety of information for use by the compiler and other tools.
Translation

Director

Planner

Dispatcher

 Persistent
Store

Source Code

with Annotations

Obect

Code
Compiler

Parser1
Parser2
...

Analyzer1
Analyzer2
...

Transform1
Transform2
...

Compilation
Library

Hardware
DescriptionsFig. 1. Architecture of a
exible compiler for heterogeneous systems.Translation directorAn noted in Section 3, heterogeneity requires more
exibility in the compiler. Some of this
exibility needsto be in the form of additional intelligence within the compiler, so it can reason about how to exploit varietyand adapt to variation. For example, given a subtask the compiler must decide for which target(s) to generatecode (see Section 3.1) and must plan the optimization strategies which depend upon the speci�c target (seeSection 3.2 and 3.3). These decisions are implicit for homogeneous processors but must be made dynamicallyfor heterogeneous systems. The appropriate target and translation plan for a subtask depends not only onthe subtask itself, but also on the target and plans for other subtasks. The intelligence needed to handlethese complexities is collected into the translation director, which is responsible for making these decisionsand capturing them in the form of a translation plan. The entire program has a translation plan, and whenit is decomposed into subtasks, each subtask has its own translation plan. The translation director is alsoresponsible for controlling the execution of plans by dispatching routines from the compilation library.20

Compilation librarySection 3.3 points out that the variety inherent in heterogeneity demands more
exibility in the orderingof analyses, optimizations, and transformation. The compilation library serves as a tool box or repositoryfor compiler components (e.g., parsers, optimizations, and code generators). The compilation library ensures
exibility by explicitly maintaining the information the translation director needs to reason about a librarymember. This information can be thought of in general terms as preconditions and postconditions. A trans-formation may have, for example, applicability criteria and required analysis data as preconditions, and adescription of its impact on the program and its a�ect on analysis data as its postconditions.AnnotationsSection 3.2 discusses how programmers could augment the compiler's analysis data with annotations. An-notations enable additional optimization. Given the limited success of automatic parallelization, we believethat programmer supplied information is essential for generating e�cient code, especially when the modelof parallelism used in the source code does not match the one the hardware implements. Annotations alsoprovide an alternative to language extensions for accessing new hardware features, though for code with along lifetime, language extensions may be preferable.Persistent storeThough current compilers generally use the �le system provided by the operating system, compilers forheterogeneous systems bene�t from a more structured stable storage mechanism for several reasons:{ As in other planning systems, the translation plan produced by the translation director may need tobe corrected during compilation. If the plan is updated, the compiler may need to roll back some of itsoptimizations and transformations. A persistent store facilitates the preservation of intermediate versionsof the IR as well as recording of modi�cations to the IR (i.e., reverse transforms).{ Having the intermediate representation on disk is also a �rst step towards incremental compilation.Compilers for heterogeneous systems are likely to use incremental compilation to o�set the compile timecost of handling multiple versions of source code and object code as well as the dynamic planning ofoptimization.{ Managing source �les for large software projects is already cumbersome for programmers, and hetero-geneity exacerbates this problem by requiring additional information such as alternative object codemodules and hardware target descriptions. With a persistent store, the compiler can manage these �lesand protect against version problems.{ The persistent store allows tools outside the compiler to communicate with the compiler and accessits internal structures (e.g., the intermediate representation) in a controlled manner. Examples of thesetools are the linker, the run time system, debuggers, and performance tools. The linker is particularlyimportant because it is the main user of the compiler's output and because it must be able to select fromamong several object code modules that have equivalent functionality.The persistent store holds an assortment of items such as the translation plan, a description of each target'shardware features (i.e., Hardware Descriptions), the intermediate representation with annotations, objectcode, and reverse transforms for debuggers.Linker/run time systemTo support variability of resources in heterogeneous systems, the compiler should maintain alternate versionsof object code so that the linker can handle minor variations itself (see Section 3.1). This approach, however,implies a closer association between the compiler and the linker. Not only does the linker have to �nish whatis normally the compiler's job, but the linker will have to notify the compiler when the existing object codemodules are no longer adequate.4.2 Compilation ProcessThis section describes the compilation process, which is controlled by the translation director by invokingroutines in the compilation library to carry out its plans. The compiler accepts three major inputs: the source21

code, descriptions of targets, and (optionally) program annotations. The descriptions of a heterogeneousmachine's component processors are likely to be maintained centrally and therefore are an implicit input tothe compiler. The programmer may, however, indicate that only a subset of the available processors shouldbe used. Programmers may convey information not captured by the source language through annotations orpossibly using structured comments or pragmas. Annotations are created by an Annotation Tool, which isseparate from the compiler.1. When the compiler is invoked, the translation director immediately takes control because it is respon-sible for coordinating compilation. The translation director begins by determining the program's sourcelanguage(s), examining the annotations, and �nding the target descriptions.2. After identifying source language(s), target descriptions, and annotations, the translation director buildsan initial plan. This plan is not detailed but has enough information to evaluate the feasibility of compilingthe given program for the indicated component processors. Because the IR is extensible, feasibility is notsimply a matter of having the correct parsers and code generators. Some parsers may generate IR nodesthat cannot (directly or indirectly) be translated into code for any of the speci�ed targets. The compiler,therefore, checks the feasibility of transforming the IR produced by the parsers to a form that the codegenerators can consume.3. For the remainder of the compilation, the translation director carries out and improves the translationplan. The �rst step in every translation plan is to invoke the appropriate parsers to build an intermediaterepresentation and place it in the persistent store.4. After the program is parsed, the compiler extracts models of parallelism used within the program. Thetranslation director uses the annotations and may also invoke analyses, to isolate models of parallelism.Di�erent sections of the program may use di�erent models, so this process �nds a combination of user-speci�ed and natural boundaries for decomposing the program into subtasks.Source languages themselves follow a model of parallelism, and when a program matches that model itcompiles to e�cient code. When a program uses a di�erent model or a more specialized model (e.g.,wave front parallelism in a loop parallel language), compilers for heterogeneous machines are no moreable to recognize this di�erent model than are current compilers. So at least initially, annotations willbe important for identifying alternative models of parallelism.5. When it has enough information, the translation director divides the program into subtasks, where asubtask executes as a single unit on a single machine of the heterogeneous system. The translationdirector uses the description of the heterogeneous system's con�guration from the target informationstore to guide its selection of subtasks. Note that though the mapping of subtasks is not performed untillink or run time, each subtask may initially be associated with one or more component processors toenable speci�c optimizations.6. For each subtask, the translation director builds a more detailed translation plan. The translation directorwill probably start with an initial plan and re�ne it to better suit the individual needs of the code. Theadvantage of actually formulating a plan is that the translation director can use the preconditions andpostconditions (maintained by the compilation library) to group optimizations and transformations sothat reanalysis is minimized.7. During compilation, the translation director may decide that its attempts to translate a section of codeis not yielding the expected performance bene�ts. The translation director may further decide to seekgreater bene�ts by reversing an earlier decision. This reversal requires rolling back some number ofoptimizations and transformations. For example, when compiling a data parallel subtask, the translationdirector may discover or suspect that its original data decomposition can be improved. The translationdirector may choose to rollback the transformations performed on the subtask after the decompositionwas chosen.8. The last step of the translation director's plan is to invoke an appropriate object code generator for eachsubtask-machine pair. The resulting object code is stored in the persistent object store.22

4.3 Extending the Intermediate RepresentationAn IR intended to support heterogeneity should avoid language and hardware dependencies, so that it isuna�ected by minor changes in source languages or hardware. Nevertheless, changes to the IR are inevitable.This section roughly describes the impact of extending the IR, but it is necessarily vague because we havenot discussed any one IR in su�cient detail.Creating new intermediate representation nodesOccasionally, the intermediate representation will be extended with new nodes that represent new modelsof parallelism, new language constructs, or new machine features. Besides de�ning a data structure for thenew node itself, compiler developers must modify or create routines in the compilation library, because theseroutines must produce and consume an IR node in order for it to be useful. On the other hand, many librarymembers will be uninterested in the presence of the node and so should not have to be modi�ed. For example,dead code elimination is largely uninterested in the function represented by an IR node; it simply needs toknow its parameters and result. Adding a new arithmetic operator should not impact dead code elimination.As noted in Section 4.2, a compiler that expects its IR to evolve cannot be certain that it can compile allof its source languages to all of its targets. The translation director accounts for this uncertainty by verifyingthe feasibility of its plans. Uncertainty arises because it is possible that given a language, no series of parsers,optimizations, and transformations can generate a particular IR node, or conversely given a target, no seriesof optimizations, transformations, and code generators can translate the new node to object code for thetarget. For example, when compiling a program in a sequential language, a node representing a parallel actioncan only occur in the IR if a transformation (or series of transformations) exists to convert the program touse this parallel action.Creating new annotationsAn alternative to extending the IR is creating a new type of annotation. Annotations and IR nodes are closelyrelated and can often represent the same concept. For example, the compiler could represent a parallel loopwith a parallel loop node or with a sequential loop node that is tagged as parallel. Generally, IR nodesrepresent information expressed in the source language, and annotations represent information gleaned fromother sources such as analyses and the annotation tool.A compiler developer that extends a compiler to handle a new concept (i.e., new language, model, orhardware feature) may choose which approach (i.e., new IR node or new annotation type) seems best.Creating a new type of annotation is preferable for experimentation because the annotation tool can beeasily extended to generate the annotation. Then only a consumer of the annotation needs to be written forthe compilation library. When the new concept is re�ned, the developer may wish to replace the annotationtype with a new IR node. The developer will also have to add routines to the compilation library thatgenerate the new node.5 Summary and ConclusionsCompiling for heterogeneous systems is a challenging task because of the complexity of e�ciently managingmultiple languages, targets and programming models in a dynamic environment.In this paper, we reviewed six state-of-the-art high performance optimizing compilers with respect to theirprogrammingmodels, organizations, intermediate representations, analyses and optimizations. We identi�edthe areas in which these compilers lack the necessary
exibility to be successful in a heterogeneous environ-ment and the areas from which the existing technology can be borrowed.We presented four important goals of an ideal compiler for heterogeneous environment, namely, exploit-ing available resources, targeting changing resources, adjusting optimization to suit a target, and allowingprogramming models and languages to evolve. In light of these requirements, we concluded that a more
exible, open compiler architecture is needed which promotes reuse of existing software, enables the additionof new programming paradigms and targets, and makes e�cient use of resources. We proposed an architec-ture which resembles a re
ective planning system composed of several interacting components rather than a23

passive, monolithic piece of software. This architecture is extensible, i.e., various supporting tools for editing,debugging, performance analysis, etc. can be added as needed.This paper o�ers a �rst step in understanding what an ambitious compiler for achieving high performanceon heterogeneous systems will entail.Acknowledgements: We want to thank the development teams of each compiler in our survey for theircomments and feedback, especially John Grout, Jay Hoe
inger, David Padua, Constantine Polychronopoulos,Nicholas Stavrakos, Chau-Wen Tseng, Robert Wilson, and Hans Zima.References[AALL93] S. Amarasinghe, J. Anderson, M. Lam, and A. Lim. An overview of a compiler for scalable parallelmachines. In Proceedings of the Sixth Workshop on Languages and Compilers for Parallel Computing,Portland, OR, August 1993.[B+93] F. Bodin et al. Distributed pC++: Basic ideas for an object parallel language. Scienti�c Programming,2(3), Fall 1993.[B+94] F. Bodin et al. Sage++: An object-oriented toolkit and class library for building Fortran and C++restructuring tools. In Second Object-Oriented Numerics Conference, 1994.[B+95] W. Blume et al. E�ective Automatic Parallelization with Polaris. International Journal of Parallel Pro-gramming, May 1995.[BE94] W. Blume and R. Eigenmann. The range test: A dependence test for symbolic, non-linear expressions.CSRD 1345, Center for Supercomputing Research and Development, University of Illinois at Urbana-Champaign, April 1994.[BE95a] Bill Blume and Rudolf Eigenmann. Demand-driven, symbolic range propagation. Proceedings of theEighth Workshop on Languages and Compilers for Parallel Computing, August 1995.[BE95b] William Blume and Rudolf Eigenmann. Symbolic range propagation. Proceedings of the 9th InternationalParallel Processing Symposium, April 1995.[BHMM94] D. Brown, S. Hackstadt, A. Malony, and B. Mohr. Program analysis environments for parallel languagesystems: the TAU environment. In Proceedings of the 2nd Workshop on Environments and Tools ForParallel Scienti�c Computing, pages 162{171, Townsend, Tennessee, May 1994.[BKK94] R. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using 0-1 integer programming. In In-ternational Conference on Parallel Architectures and Compilation Techniques (PACT), pages 111{122,Montreal, August 1994.[BL94] R. Butler and E. Lusk. Monitors, messages, and clusters: the p4 parallel programming system. ParallelComputing, 20(4):547{564, April 1994.[BPMG94] F. Bodin, T. Priol, P. Mehrotra, and D. Gannon. Directions in parallel programming: HPF, shared virtualmemory and object parallelism in pC++. Technical Report 94-54, ICASE, June 1994.[C+93] K. Cooper et al. The ParaScope parallel programming environment. Proceedings of the IEEE, 81(2):244{263, February 1993.[CMRZ94] B. Chapman, P. Mehrotra, J. Van Rosendale, and H. Zima. A software architecture for multidisciplinaryappications: Integrating task and data parallelism. Technical Report 94-18, ICASE, March 1994.[CMZ92a] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scienti�c Programming,1(1):31{50, Fall 1992.[CMZ92b] B. Chapman, P. Mehrotra, and H. Zima. Vienna Fortran - a Fortran language extension for distributedmemory multiprocessors. In J. Saltz and P. Mehrotra, editors, Languages, Compilers, and Run-TimeEnvironments for Distributed Memory Machines. North-Holland, Amsterdam, 1992.[CPZ95] B. Chapman, M. Pantano, and H. Zima. Supercompilers for massively parallel architectures. In AizuInternational Symposium on Parallel Algorithms/Architectures Synthesis (pAs '95), pages 315{322, Aizu-Wakamatsu, Fukushima, Japan, March 1995.[EHLP91] R. Eigenmann, J. Hoe
inger, Z. Li, and D. Padua. Experience in the automatic parallelization of fourPerfect benchmark programs. In Proceedings of the Fourth Workshop on Languages and Compilers forParallel Computing, Santa Clara, CA, August 1991.[F+90] G. Fox et al. Fortran D language speci�cation. Technical Report TR90-141, Rice University, December1990.[F+94] K. Faigin et al. The polaris internal representation. International Journal of Parallel Programming,22(5):553{586, Oct. 1994. 24

[Fah94] T. Fahringer. Using the P 3T to guide the parallelization and optimization e�ort under the ViennaFortran compilation system. In Proceedings of the 1994 Scalable High Performance Computing Conference,Knoxville, May 1994.[FGMS93] S. Feldman, D. Gay, M. Maimone, and N. Schryer. A Fortran-to-C converter. Computing Science 149,AT&T Bell Laboratories, March 1993.[FZ93] T. Fahringer and H. Zima. A static parameter based performance prediction tool for parallel programs.In Proceedings of the 1993 ACM International Conference on Supercomputing, Tokyo, July 1993.[GP94] M. B. Girkar and C. Polychronopoulos. The hierarchical task graph as a universal intermediate represen-tation. International Journal of Parallel Programming, 22(5), 1994.[Gro95a] J. Grout. Inline expansion for the polaris research compiler. Master's thesis, University of Illinois atUrbana-Champaign, 1995.[Gro95b] J. Grout. Personal communication, September 1995.[GY93] A. Ghafoor and J. Yang. A distributed heterogeneous supercomputing management system. Computer,26(6):78{86, June 1993.[HHM+94] M. Haines, B. Hess, P. Mehrotra, J. Van Rosendale, and H. Zima. Runtime support for data paralleltasks. Technical Report 94-26, ICASE, April 1994.[HKT91] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler support for machine-independent parallel program-ming in Fortran D. Technical Report TR91-149, Rice University, Jan. 1991.[HKT92] S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran D for MIMD distributed-memory ma-chines. Communications of the ACM, 35(8):66{80, August 1992.[HMA95] M. Hall, B. Murphy, and S. Amarasinghe. Interprocedural analysis for parallelization. In Proceedings ofthe Eighth Workshop on Languages and Compilers for Parallel Computing, Columbus, OH, August 1995.[KMCP93] A. E. Klietz, A. V. Malevsky, and K. Chin-Purcell. A case study in metacomputing: Distributed simula-tions of mixing in turbulent convection. In Workshop on Heterogeneous Processing, pages 101{106, April1993.[KMT93] K. Kennedy, K. S. McKinley, and C. Tseng. Analysis and transformation in an interactive parallel pro-gramming tool. Concurrency: Practice & Experience, 5(7):575{602, October 1993.[KPSW93] A. Khokhar, V. Prasanna, M. Shaaban, and C. Wang. Heterogeneous computing: Challenges and oppor-tunities. Computer, 26(6):18{27, June 1993.[M+94] A. Malony et al. Performance analysis of pC++: A portable data-parallel programming system for scal-able parallel computers. In Proceedings of the 8th International Parallel Processing Symposium, 1994.[MBM94] B. Mohr, D. Brown, and A. Malony. TAU: A portable parallel program analysis environment for pC++.In Proceedings of CONPAR 94 - VAPP VI, University of Linz, Austria, September 1994. LNCS 854.[Mes94] Message Passing Interface Forum. MPI: A message-passing interface standard, v1.0. Technical report,University of Tennessee, May 1994.[P+89] C. Polychronopoulos et al. Parafrase-2: An environment for parallelizing, partitioning, synchronizing, andscheduling programs on multiprocessors. International Journal of High Speed Computing, 1(1), 1989.[P+93] D. A. Padua et al. Polaris: A new-generation parallelizing compiler for MPPs. Technical Report CSRD-1306, Center for Supercomputing Research and Development, University of Illinois at Urbana-Champaign,June 1993.[Pau95] D. A. Pauda. Personal communication, September 1995.[PE95] W. Pottenger and R. Eigenmann. Idiom recognition in the Polaris parallelizing compiler. In Proceedingsof the 1995 ACM International Conference on Supercomputing, Barcelona, July 1995.[SC92] L. Smarr and C. E. Catlett. Metacomputing. Communications of the ACM, 35(6):45{52, June 1992.[SCMB90] J. Saltz, K. Crowely, R. Mirchandaney, and H. Berryman. Run-time scheduling and execution of loopson message passing machines. Journal of Parallel and Distributed Computing, 8(2):303{312, 1990.[SGDM94] V.S. Sunderam, G.A. Geist, J. Dongarra, and P. Manchek. The PVM concurrent computing system:Evolution, experiences, and trends. Parallel Computing, 20(4):531{545, April 1994.[Sta94] Stanford Compiler Group. The SUIF library. Technical report, Stanford University, 1994.[Tse93] C. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory Machines. PhD thesis,Rice University, January 1993.[Tur93] L. H. Turcotte. A survey of software environments for exploiting networked computing resources. Tech-nical Report MSSU-EIRS-ERC-93-2, NSF Engineering Research Center, Mississippi State University,February 1993.[Tur95] L. H. Turcotte. Cluster computing. In Albert Y. Zomaya, editor, Parallel and Distributed ComputingHandbook, chapter 26. McGraw-Hill, October 1995.25

[W+89] C. Weems et al. The image understanding architecture. International Journal of Computer Vision,2(3):251{282, 1989.[W+94] R. Wilson et al. The SUIF compiler system: A parallelizing and optimizing research compiler. SIGPLAN,29(12), December 1994.[WL91] M. E. Wolf and M. Lam. A loop transformation theory and an algorithm to maximize parallelism. IEEETransactions on Parallel and Distributed Systems, 2(4):452{471, October 1991.[Y+94] S. Yang et al. High performance fortran interface to the parallel C++. In Proceedings of the 1994 ScalableHigh Performance Computing Conference, Knoxville, TN, May 1994.[ZBG88] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD parallelization.Parallel Computing, 6:1{18, 1988.[ZC93] H. Zima and B. Chapman. Compiling for distributed-memory systems. Proceedings of the IEEE,81(2):264{287, February 1993.[ZCMM93] H. Zima, B. Chapman, H. Moritsch, and P. Mehrotra. Dynamic data distributions in Vienna Fortran. InProceedings of Supercomputing '93, Portland, OR, November 1993.[Zim95] H. Zima. Personal communication, September 1995.

26

