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Abstract. In theory, increasing alias analysis precision should improve compiler
optimizations on C programs. This paper compares alias analysis algorithms on
scalar optimizations, including an analysis that assumes no aliases, to establish
a very loose upper bound on optimization opportunities. We then measure opti-
mization opportunities on thirty-six C programs. In practice, the optimizations are
rarely inhibited due to the precision of the alias analyses.Previous work finds sim-
ilarly that the increased precision of specific alias algorithms provide little benefit
for scalar optimizations, and that simple static alias algorithms find almost all dy-
namically determined aliases. This paper, however, is the first to provide a static
methodology that indicates that additional precision is unlikely to yield improve-
ments for a set of optimizations. For clients with higher alias accuracy demands,
this methodology can help pinpoint the need for additional accuracy.

1 Introduction

An enormous amount of research develops compiler alias analysis for C programs,
which determines if two distinct variables may reference the same memory location [1,
5, 9, 16, 23, 28, 29, 34, 35]. The literature shows an essential tradeoff: improving the pre-
cision of alias analysis increases the cost of performing it, and this increase can be sub-
stantial. In theory, a more precise alias analysis improvesthe clients’ results. The clients
of alias analysis are numerous, and include improving program performance [17, 34],
finding bugs [18], and pinpointing memory leaks [19]. In somecases the theory holds
true. For instance, automatic parallelization [34] and error detection [18] benefit from
the judicious application of precise alias analysis.

This paper studies alias analysis on scalar compiler optimizations designed to im-
prove performance. We implement three analyses: address-taken, Steensgaard [29], and
Shapiro-Horwitz [27]. We also introduce an upper bound methodology that assumes
there are no alias relations, and thus the compiler is never inhibited by an alias when
applying optimizations. Previous alias analysis evaluation typically counts the static
number of aliases and assumes fewer is better. This upper bound is not guaranteed to
be tight, and is useful only for static evaluation.

We use nine scalar optimizations to compare the alias analyses to this static upper
bound on thirty-six C programs from popular benchmark suites. The optimizations are



sparse conditional constant propagation, global variablereplacement, loop unrolling,
loop invariant code motion, global value numbering, copy propagation, useless copy
removal, array strength reduction, and scalar replacement. We measure optimization
applications individually and as a group. Experiments showthere is only a very small
gap between Shapiro-Horwitz and the static upper bound. Theincreased precision of
Shapiro-Horwitz attains minor improvements over Steensgaard with respect to opti-
mization, and both are somewhat better than address-taken.The largest difference is for
loop invariant code motion, for which the upper bound methodology detects on average
six percent more loop invariant computations than the best analysis.

A few other studies on the effect of alias analysis on scalar optimizations also sug-
gest that a simple alias analysis will suffice [3, 12, 14, 15, 21]. For example, Hind and
Pioli show that few additional scalar analysis opportunities come from increasing alias
precision on twenty-three C programs [21]. Diwan et al. measure dynamically the ad-
ditional opportunities for two optimizations on Modula-3 programs and find that im-
proving alias analysis will not benefit these optimizationsmuch, if at all [14]. Das et al.
measure aliases dynamically, without respect to an optimization, and find that a simple
analysis misses 5% of independent memory accesses in nine C programs [12].

Das et al. suggest the following [12]: “Ideally, we would like to repeat their study
[Diwan et al.] for every conceivable optimization and everypointer analysis.” Although
we of course do not study “every conceivable optimization,”the range here is more
numerous than previous work. The most important contribution of this paper, however,
is obviating the need for evaluating all pointer analyses. For thirty-six C programs, no
matter how much additional precision an alias analysis provides over Steensgaard or
Shapiro-Horwitz, that extra precision is unlikely to benefit scalar optimizations. Other
clients with higher precision needs can also use this methodology to pinpoint opportu-
nities for improvement.

The remainder of this paper is organized as follows. Section2 compares our method-
ology to previous pointer analysis research. Section 3 overviews the alias analyses:
address-taken, Steensgaard [29], Shapiro-Horwitz [27], and the no aliases upper bound.
Section 4 and 5 introduces theScalecompiler framework and optimizations. Section 6
presents the experimental methodology. Section 7 shows measurements of optimization
opportunities and compile times, demonstrating that additional alias precision will not
yield many, if any, improvements to scalar optimizations and thus performance.

2 Related Work

This section describes comparative studies of alias analyses. We focus on the closest
related work that use the clients of the alias analyses for evaluation. The evaluation of
most new alias or points-to analysis algorithms reports thesize of the static points-to
information they compute. For example, Emami et al. [16], and Wilson and Lam [34]
introduce new context-sensitive interprocedural points-to algorithms and evaluate them
using the size of the points-to sets.

Other researchers evaluate alias analysis algorithms by reporting changes to the size
of the static points-to information when the precision of the algorithm changes. Ruf
evaluates the effect of context-sensitivity on the precision of alias analysis [25]. Ruf



concludes that adding context-sensitivity does not improve the precision for the bench-
marks he examines. Liang and Harrold introduce a context-sensitive flow-insensitive
algorithm, and they compare their algorithm to three other algorithms [23]. Yong et al.
present a tunable pointer analysis framework that distinguishes fields structures [35].

Hind and Pioli focus on the client and compare five alias analysis algorithms us-
ing scalar analyses and optimizations [21]. They use Mod/Ref analysis, live variable
analysis, reaching definitions analysis, and interprocedural constant propagation. We
corroborate their results, but we do so within the context ofa new compiler and with a
focus on a more comprehensive selection of client optimizations, rather than analyses.
In earlier work, Hind and Pioli present an empirical comparison of four alias analysis
algorithms with different levels of flow sensitivity [20]. They measure the precision of
the analysis results, and the time and space to compute the results. They do not study
the effect of analysis quality on optimizations in this work.

Shapiro and Horwitz compare the precision of four flow and context-insensitive
pointer analysis algorithms [27, 28]. They test the precision of the pointer analyses us-
ing GMOD analysis, live variable analysis, truly live variable analysis, and an inter-
procedural slicing algorithm. Shapiro and Horwitz conclude that more precise analysis
does improve the results of some, but not all of the clients. Stocks et al. compare the
flow-sensitive and context-sensitive analysis on Mod analysis [30]. They conclude that
more precision helps improve the precision of Mod analysis.These two papers are fo-
cused on analysis clients rather than the optimization clients we use.

Diwan et al. evaluate three alias analysis algorithms usingstatic, dynamic, and up-
per bound metrics [13–15]. They demonstrate the effect of the three analyses using
redundant load elimination and method invocation resolution. They show that a fast
and simple alias analysis is effective for type-safe languages. Bacon and Sweeney find
similar results for C++ method resolution [3].

Cooper and Lu use pointer analysis to perform register promotion, which is an op-
timization that converts references to scalar values in memory to a register [10]. Iden-
tifying aliases is important for this optimization, but Cooper and Lu do not show how
the precision of the analysis affects optimization opportunities.

Ghiya and Hendren empirically show that their points-to analysis and connection
analysis can improve loop-invariant removal and common subexpression elimination,
array dependence testing, and program understanding [17].They do not experiment
with the precision of the analysis, and they concede that a conservative analysis may
provide the same benefits for the scalar optimizations.

Das et al. measure the effect of pointer analysis on optimizations [12]. Their goal is
to evaluate whether flow-insensitive pointer analysis is sufficient for compiler optimiza-
tions. Das et al. do not use any specific optimization or compiler, but instead develop a
new metric for evaluating the precision of pointer analysis.

Our work is in the spirit of the last four studies, all of whichfocus on the client
optimizations. We are, however, broader in scope in terms ofthe range of optimizations
and the number of programs. In addition, we use a new methodology that computes a
static upper bound that shows, for our programs and optimizations, that no additional
precision is needed.



3 Alias Analysis

We study the following alias analysis algorithms (1) Address-taken, (2) Steensgaard [29],
(3) Shapiro-Horwitz [28], and (4) Assume no aliases. Address-taken is very simple and
is linear in the size of the input program. The compiler assumes all heap objects are po-
tential aliases of each other, and includes in this set all variables for which the program
explicitly takes their address. The address-taken algorithm produces the most conserva-
tive set of alias relations.

Steensgaard’s algorithm is interprocedural and flow-insensitive. It has almost lin-
ear running time and linear space complexity, but does not necessarily produce precise
results [29]. It is based upon type-inference methods usingalias relations. It results in
alias sets that are symmetric and transitive. The Shapiro-Horwitz algorithm [28] ex-
tends and increases the precision of Steensgaard’s algorithm without a significant ef-
fect on running time. A parameter specifies the precision between the lowest precision
(Steensgaard) to the highest precision (Andersen’s algorithm [1]). The analysis time
varies inversely with precision. We choose an intermediatepoint for our evaluation.

Assuming no aliases serves as a static metric for evaluatingthe effect of alias in-
formation on clients. It simply communicates the empty set of alias relations to the
optimizations. Since the compiler makes the sometimes false assumption that there are
no aliases, the generated executable can be incorrect. The purpose of this analysis is
thus not to generate a working executable, but to establish aloose upper bound for the
maximum number of optimizations the compiler could perform.

4 The Scale Compilation System

This section outlines the Scale compilation framework, andits representation of aliases.
The subsequent section enumerates the client optimizations and how they use aliases.

Scale is a flexible, high performance research compiler for Cand Fortran, and
is written in Java [24, 32]. Scale transforms programs into acontrol flow graph, per-
forms alias analysis, and uses the results to build a static single assignment (SSA) [11],
machine-independent intermediate representation (IR) that we callScribble. Scale per-
forms optimizations on Scribble, and then transforms Scribble to a low-level, more
machine dependent RISC style IR on which it performs a variant of linear scan register
allocation [31]. It outputs C or assembly for the Alpha and Sparc processors.

Scale transforms the control flow graph (CFG) to SSA form after it performs alias
analysis. SSA form ensures that each use of a scalar variable, or a virtual variable cre-
ated during pointer analysis, gets its value from a single definition [11]. Scale utilizes
Chow et al.’s technique for representing pointers, which makes a distinction between
definitions that must occur and may occur [7]. Chow et al. define virtual variables to
represent indirect variables (e.g., *p). Chow et al. createa unique virtual variable for all
indirect variables that have similar alias characteristics. They perform alias analysis on
the virtual variables and the scalar variables. Scale’s analysis has a subtle difference; it
performs alias analysis prior to creating the virtual variables. After alias analysis, Scale
defines a unique virtual variable for each alias group, whichare sets of variables that
share the same aliases.



In Scale, the SSA form thus includes may and must definitions that are linked to uses
by corresponding edges. Optimizations traverse these edges to find definitions, recur-
rences, etc. All scalar optimizations (except useless copyremoval) manipulate the SSA
form of the control flow graph. The precision of disambiguation information derived
from alias analysis thus directly impacts the quality of theSSA graph, and consequently
optimization opportunities and results.

5 Scalar Optimizations

This section describes each optimization and the optimization successcriteria that we
measure and report. Scale performs scalar optimizations onSSA Scribble form except
for useless copy removal. The optimizations target scalar variables, loads, scalar expres-
sions, array address arithmetic, and heap allocated arrays. We expect that alias analysis
will have more effect on additional optimizations that specifically target heap pointers.

Loop Invariant Code Motion (LICM) LICM finds computations (including loads)
in loops that produce the same value on every iteration and moves them to appropri-
ate locations outside the loop. For nested loops, it moves computation out of as many
inner-loops as possible without destroying program semantics. LICM thus reduces the
number of instructions executed. In Scale, SSA use-def links indicate where the CFG
node gets its definitions, and LICM moves computations to theouter-most basic block
in which the definition is available. More precise alias information can reveal additional
invariant expressions. To preserve program semantics, Scale only moves stores for local
variables. It never moves procedure calls or expressions involving global variables.

Criteria: number of expressions moved.

Sparse Conditional Constant Propagation (SCCP) SCCP discovers variables and
expressions that are constant and propagates them throughout the program. SCCP cor-
rectly propagates constants even in the presence of conditional control flow. It speeds
up program execution by evaluating expressions at compile time instead of run time and
improves the effectiveness of other optimizations, such asvalue numbering. Scale uses
Wegman and Zadeck’s SCCP algorithm on SSA-form [33]. Scale uses alias analysis to
obtain variable values in the presence of pointer operations. More precise alias analysis
can thus reveal more constants.

Criteria: number of constants propagated.

Copy Propagation (CP) CP discovers assignments of the formx  y and replaces
any later use of variablex by y when no intervening instruction changesx or y. CP
then removes the original assignment statement. Scale doesnot propagate a copy if (1)
the right-hand-side variable of the assignment statement contains May-Use information
indicating that it may be involved in an alias relationship,or (2) if either argument in
the assignment is a global variable.

Criteria: number of copies propagated.

Global Value Numbering (GVN) GVN determines whether two computations are
equivalent and if so, removes one of them. Scale uses the dominator tree-based value
numbering technique by Briggs et al. [4]. It assigns avalue numberto each computation



and exposes equivalences when it assigns distinct computations the same value number.
SSA form simplifies this process. GVN works on entire procedures instead of single
basic blocks, as in traditional value numbering. It improves program running time by
removing redundant computations.

Criteria: number of expressions removed.

Loop Unrolling (LU) LU replaces the body of a loop by several copies of the body
and adjusts the loop control code accordingly. Aliases inhibit loop unrolling only if
the loop control variables may be aliased with loop varying variables. LU reduces the
number of instructions executed during run time at the cost of increased code size, and
may improve the effectiveness of other optimizations, suchas common-subexpression
elimination and strength reduction.

Criteria: number of loops unrolled.

Scalar Replacement (SR) Register allocators usually do not allocate subscripted vari-
ables to registers. Scalar Replacement tricks the allocator by replacing subscripted vari-
ables with scalars and thus making them available for register allocation. Dependence
analysis locates reuse of array elements and then SR replaces them with assignments
and uses of scalar temporaries. SR reduces the number of loads and stores in programs
and is very effective in reducing execution times.

Criteria: number of array loads replaced.

Global Variable Replacement (GVR) GVR replaces references to global variables
with references to local variables by copying the global into a local only when the
global is not aliased to another variable that the proceduremodifies.

Criteria: number of loads to global variables replaced.

Array Access Strength Reduction (AASR) AASR uses themethod of finite differ-
encesto replace expensive operators in array element address calculations with cheaper
ones. Scale targets array index calculations in the inner-most loops, and replaces multi-
plications with additions when possible. It moves any resulting loop invariants outside
the loop and folds constant expressions as part of this process.

Criteria: number of array index calculations replaced.

Useless Copy Removal - (UCR) UCR removes copy statements of the formx x in
the CFG form. Scale creates these statements when transitioning to and from SSA and
via other optimizations. Because transitioning out of SSA form introduces copies and
new temporary variables based on the SSA edges, UCR is sensitive to edges induced
by alias analysis and other optimizations.

Criteria: number of useless copies removed.

6 Methodology

Table 1 enumerates our test suite programs from the following benchmark suites: SPEC
95, SPEC 2000, Austin from Todd Austin [2], McCAT from McGill[16], and Landi-
PROLANGS from Rutgers [22, 26, 25]. Our test suite closely follows Hind and Pi-
oli’s [21], and all but two of their programs appear in our study. We omit 052.alvinn



Abbr. Benchmark suite
A Austin’s
MC McCAT
LP Landi-PROLANGS
S95 SPEC 95
S00 SPEC 2000

Table 1. Benchmark suites

Abbr. Algorithm
AT Address-taken analysis

ST
Steensgaard’s interprocedural
algorithm

SH-4
Shapiro-Horwitz’s interprocedural
algorithm with 4 categories

NA Assume no aliases

Table 2. Alias analysis algorithms

Abbr.
Scale
option

Optimization

AASR a
Array Access Strength
Reduction

SCCP c
Sparse Conditional Constant
Propagation

GVR g Global Variable Replacement
LU j Loop Unrolling
LICM m Loop Invariant Code Motion
GVN n Global Value Numbering
CP p Copy Propagation
UCR u Useless Copy Removal
SR x Scalar Replacement

Table 3. Optimizations

from SPEC 92 because the SPEC 2000 versions subsume them. We omit 17.bintr from
McCAT because of a Scale compilation bug.

We use the October 2003 development version of Scale with thedefault parameters
except as noted. We specify the alias analysis from Table 2. (Shapiro-Horwitz with one
category behaves the same as Steensgaard although the implementations are distinct).
We select four categories as the input parameter to Shapiro-Horwitz so that it behaves
as an intermediate point that is more precise than Steensgaard, but not as expensive
as Andersen [1]. We either select a fixed sequence of optimizations or choose a single
optimization and turn off the others. Table 3 enumerates theoptimizations, their Scale
option letter, and our abbreviation.

Scale also implements Partial Redundancy Elimination (PRE) using Chow et al.’s
algorithm for SSA [6]. This algorithm requires SSA form, butdoes not produce SSA,
which makes it difficult to measure and use in Scale. Furthermore, our PRE results
show more optimization opportunities with Steensgaard andShapiro-Horwitz than with
no aliases. We believe this anomaly results from either a bugin Scale or an interaction
with SSA. We omit the PRE results here since we believe the underlying problem is
orthogonal to alias analysis. A companion technical reportcontains these results [8].

We measure compile times on a 502 MHz UltraSPARC-IIe Sun Blade 100 running
SunOS 5.8 with 256 MB of RAM. Since our compiler is written in Java, we specify
an initial heap size of 100 MB and a maximum heap size of 1000 MBfor Sun’s Java
virtual machine running Scale.

7 Results

We vary the alias analysis and compare compilation times foreach benchmark. For
scalar optimization opportunities, the results summarizeacross benchmarks; a compan-
ion technical report [8] contains complete per program results.



7.1 Compile Time

Table 4 describes some characteristics of the 36 benchmark programs. The column
marked “Src” identifies the benchmark suite to which the program belongs. The col-
umn marked “NCLC” reports the number of non-blank and non-commented lines of
code in the program. The column marked “CFG Nodes” shows the number of nodes
in the control flow graph created by Scale for the program. This number more accu-
rately represents the program size as experienced by the compiler. The table arranges
the programs in ascending order of the number of CFG nodes. The next three columns
list the compile times (in seconds) of the program with all optimizations turned on
in order “jgcamnpxnmpu”. The first column uses address-taken analysis, the second
uses Steensgaard’s interprocedural algorithm, and the third uses Shapiro-Horwitz’s in-
terprocedural analysis with 4 categories. Each compile time is the smallest among 5
independent compiles of the same program with the same parameter values. Figure 1
shows the compile times from Table 4 as a bar graph.

The last two rows of Table 4 report the normalized average compile times over
all the programs. We divide the compile time of the program for each alias analysis
algorithm by the compile time of the program using address-taken analysis. Then, we
take the arithmetic and geometric means (AM & GM) of those normalized compile
times. The geometric mean reduces the effect of extreme values. The means suggest
that using Steensgaard instead of address-taken increasesthe compile time by 5-6%
on the average while the average increase in compile time dueto the use of Shapiro-
Horwitz is 20-30%. For large programs (like 186.crafty, 300.twolf, and 099.go), these
percentages may grow to 150-200% and 350-400%, respectively. We believe this result
is due to paging.

7.2 Optimization Opportunities

We measure the optimization opportunities utilized by eachof the 9 scalar optimizations
over each of the 36 benchmark programs over each of the 4 aliasanalyses based on the
selectedcriteria (see Section 5). For each optimization, we report this criteria counter.
Higher criteria counter values indicate more effective optimization results.

For a given optimization, we report the criteria counter using each of the 4 alias anal-
yses and normalize the counters by dividing by the value obtained for NA (no aliases).
To avoid dividing by zero ifnumerator = denominator = 0, we assume the nor-
malized value is 1. Ifnumerator = 0 6= denominator, we set thenumerator to 0:5
and proceed with the division. Although the case “numerator = denominator = 0”
occurs many times in our experiments, the case “numerator = 0 6= denominator”
occurs only once: in 01.qbsort for LICM in Table 6. We take thegeometric mean of the
normalized counters for all programs for each alias analysis.

We perform two sets of experiments. In the first set, we enableall 9 optimizations
in the order “jgcamnpxnmpu” (see Table 3) during each compilation. In the second set,
we enable only one optimization per compilation. Table 5 summarizes the results for
all optimizations enabled, and Table 6 for each one individually. Table 5 contains one
row for each of the 9 optimizations and one column for each of the 4 alias analyses.
In each optimization row, the each alias analysis column reports the geometric mean of



Program Src NCLC
CFG
nodes

Compile time (sec)
AT ST SH-4

15.trie MC 311 197 5.0 5.1 5.5
fixoutput LP 368 206 6.0 5.7 5.9
allroots LP 155 272 10.0 9.9 10.2
01.qbsort MC 200 294 6.9 7.5 8.0
04.bisect MC 217 331 11.1 11.8 12.0
06.matx MC 191 439 7.9 7.8 7.9
anagram A 352 532 9.9 9.4 9.3
lex315 LP 598 658 8.2 8.1 9.0
ul LP 472 773 11.2 11.0 11.2
129.compressS95 1457 923 12.1 12.4 12.9
ks A 585 987 11.6 10.9 10.9
09.vor MC 984 1031 12.0 12.0 12.6
loader LP 802 1082 15.8 16.0 17.0
ansitape LP 1203 1113 17.0 16.1 17.1
08.main MC 990 1115 12.0 11.7 12.6
ft A 1113 1116 12.1 12.9 13.1
compress LP 1071 1119 10.3 9.8 10.7
05.eks MC 575 1498 22.0 21.9 23.0
xmodem LP 1392 1718 19.0 19.6 20.0
181.mcf S00 1482 1722 24.3 29.9 29.5
compiler LP 2073 1789 19.0 18.1 19.0
assembler LP 1891 2052 21.0 22.9 23.9
unzip LP 2808 2637 26.1 29.1 29.7
patch LP 2461 3248 24.1 24.4 27.2
simulator LP 2881 3532 29.8 30.1 30.7
yacr2 A 2710 3753 27.2 27.8 31.5
256.bzip2 S00 3236 4888 38.0 35.4 39.8
flex LP 4841 5405 42.5 44.1 48.2
bc A 5449 5618 36.1 40.1 48.8
football LP 1975 5765 143.1 140.4 149.7
agrep LP 3434 8185 74.5 70.0 73.2
197.parser S00 7921 15418 72.0 81.9 99.8
175.vpr S00 11301 17935111.0 144.2 238.8
186.crafty S00 12985 22379388.1 595.9 691.4
300.twolf S00 17934 31414209.3 365.9 788.1
099.go S95 25895 35018232.2 256.4 814.6

AM of norm. comp. times (wrt AT)1.000 1.062 1.271

GM of norm. comp. times (wrt AT)1.000 1.052 1.190

Table 4. Lines of code, CFG nodes, and com-
pile times (in seconds).
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the normalized optimization counters of all 36 programs. Each mean is subscripted by
the average deviation of the counter values from that mean. For a given optimization,
the column marked “Total for NA” contains the summation of the NA counter values
for that optimization over all programs. The bar graph in Figure 2 graphs this table. To
explain these results, we first define a sequence anomaly.

Sequence Anomaly: When the compiler applies a sequence of optimizations, the ef-
fectiveness of the optimizations later in the sequence is influenced by the type and
number of opportunities exposed by earlier optimizations.Since optimizations interact
with each other in a non-linear fashion, it is possible for a more precise alias analysis
to have a negative impact on optimizations that come later inthe sequence. We refer to
these effects assequence anomalies. Sequence anomalies cannot occur when only one
optimization is applied to a program.



Opt. Criteria AT ST SH-4 NA
Total

for NA
LU loops unrolled 0:999 (0:002) 0:999 (0:002) 0:999 (0:002) 1:000 (0:000) 1004
GVR loads replaced 0:999 (0:001) 0:999 (0:001) 0:999 (0:001) 1:000 (0:000) 16825
SCCP constants propagated0:967 (0:046) 0:970 (0:043) 0:970 (0:043) 1:000 (0:000) 25258
AASR calculations replaced0:992 (0:006) 0:999 (0:003) 0:999 (0:003) 1:000 (0:000) 7996
LICM expressions moved 0:912 (0:123) 0:940 (0:086) 0:940 (0:086) 1:000 (0:000) 2136
GVN expressions removed0:979 (0:030) 0:992 (0:010) 0:992 (0:010) 1:000 (0:000) 24054
CP copies propagated 0:978 (0:032) 0:987 (0:020) 0:987 (0:020) 1:000 (0:000) 21247
SR array loads replaced0:999 (0:002) 0:999 (0:001) 0:998 (0:003) 1:000 (0:000) 8143
UCR useless copies removed1:017 (0:025) 1:007 (0:012) 1:006 (0:012) 1:000 (0:000) 101543

Table 5. Effectiveness of alias analysis on optimizations with all of them enabled in order “jg-
camnpxnmpu” (Geometric mean of normalized (w.r.t. NA) criteria counts with avg. deviation
from the mean as subscript)

Opt. Criteria AT ST SH-4 NA
Total

for NA
LU loops unrolled 0:999 (0:002) 0:999 (0:002) 0:999 (0:002) 1:000 (0:000) 1004
GVR loads replaced 1:000 (0:000) 1:000 (0:000) 1:000 (0:000) 1:000 (0:000) 10701
SCCP constants propagated0:948 (0:069) 0:948 (0:070) 0:948 (0:070) 1:000 (0:000) 9357
AASR calculations replaced0:993 (0:013) 0:993 (0:013) 0:993 (0:013) 1:000 (0:000) 2675
LICM expressions moved0:924 (0:101) 0:924 (0:101) 0:924 (0:101) 1:000 (0:000) 1236
GVN expressions removed0:953 (0:061) 0:985 (0:020) 0:985 (0:020) 1:000 (0:000) 13273
CP copies propagated0:968 (0:041) 0:968 (0:041) 0:968 (0:041) 1:000 (0:000) 9203
SR array loads replaced0:998 (0:003) 0:999 (0:002) 1:000 (0:001) 1:000 (0:000) 5135

Table 6. Effectiveness of alias analysis on optimizations with onlyone optimization enabled at
a time (Geometric mean of normalized (w.r.t. NA) criteria counts with avg. deviation from the
mean as subscript)

7.3 Optimizations in Sequence

We first summarize the average effect of AT, ST, and SH-4 usinga fixed sequence of
optimizations, and then summarize the results for each particular optimization.
Address-taken: For LU, GVR, and SR, the effectiveness of address-taken analysis
is within 0.1% of that of any alias analysis, no matter how precise it is. For AASR,
it is within 1%, and for SCCP, GVN and CP it is within 3% of the most precise alias
analysis. It is least effective on LICM, but still within 9% of the effectiveness of the
best possible analysis.
Steensgaard and Shapiro-Horwitz (SH-4): Steensgaard and Shapiro-Horwitz (SH-
4) perform essentially the same on all the optimizations. For LU, GVR, AASR, and SR,
they are within 0.1% of the most precise analysis. For GVN, they are within 1%, for
CP, within 1.5%, and for SCCP, within 3% of the best possible analysis. Again, they are
least effective on LICM, but still within 6% of the most precise alias analysis.

LU: Very little opportunity (only 0.1%) is left for improving LUbeyond what AT, ST,
or SH-4 already achieve. We find that for each program, exactly the same number of



loops were unrolled when using AT, ST and SH-4. LU unrolled a few more loops when
“no aliases” (NA) is assumed on only 3 programs (175.vpr, 300.twolf and 099.go).

GVR: GVR behaves exactly like LU.

SCCP: ST and SH-4 already achieve about 97% of what NA achieves. In our experi-
ments, ST and SH-4 behave identically with respect to SCCP onall programs. For only
4 programs (loader, simulator, flex and 175.vpr), ST and SH-4trigger more constant
propagation than AT does. However, for about 40% (14 out of 36) of the programs,
there is still a little room to improve SCCP.

AASR: The room for improvement is less than 1% and is, in fact, about0.1% with
respect to ST and SH-4. For each program, AASR behaves identically with respect to
ST and SH-4 and for only 3 programs (04.bisect, simulator, and 175.vpr) does applying
ST or SH-4 instead of AT have any positive impact. NA improvesover ST and SH-4
on ASSR for only 2 programs (04.bisect and simulator). However, a sequence anomaly
occurs for 099.go with NA.

LICM: The room for improvement is about 9% with respect to AT and 6% with respect
to ST and SH-4. However, the large improvement opportunity with respect to AT is
slightly misleading because for half of the programs (3 out of 6) on which LICM im-
proves when assuming NA instead of AT, the number of expressions LICM removes is
quite low (AT vs. NA: 1 vs. 3 for 01.qbsort, 2 vs. 6 for loader, 1vs. 2 for 181.mcf). For
LICM, ST and SH-4 behave identically for all programs and only 2 programs (compress
and simulator) improve using AT. However, NA again producesa sequence anomaly for
099.go.

GVN: The room for improvement is about 2% with respect to AT and about 1% with
respect to ST and SH-4. Again, ST and SH-4 behave identicallyon all programs. For
15 programs ST and SH-4 improve over AT, and for 14 programs NAimproves over
ST and SH-4. NA, ST, and SH-4 produce sequence anomalies for 099.go and 04.bisect
when compared to AT.

CP: The room for improvement is slightly more than 2% with respect to AT and
about 1.5% with respect to ST and SH-4. For 3 programs (129.compress, simulator and
175.vpr) ST improves over AT, for one program (197.parser) SH-4 improves over ST
and for 11 programs NA improves over SH-4. For CP, five sequence anomalies occur.
For 099.go, AT is the most effective alias analysis for CP andNA is the least effective
one. For 197.parser, SH-4 is the most effective analysis andboth ST and NA are the
least effective. For 300.twolf, AT is the most effective analysis and the rest are identical
to each other. A similar pattern occurred with ST on 256.bzip2. For 186.crafty, AT was
better than ST and SH-4, but using NA propagates the largest number of copies.

SR: Alias analysis has very little impact on SR and the only room for improvement,
if any, is around 0.1%. NA slightly influences only 4 programs(256.bzip2, 197.parser,
175.vpr and 099.go), but none of AT, ST, and SH-4 provide a trend.

UCR: Alias analysis influences UCR in a very complex fashion because the resulting
SSA graph and changes made by other optimizations both add and remove copies. In
these experiments, a more precise alias analysis creates fewer useless copy statements
than a less precise one.
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Fig. 2. Effectiveness of alias analysis on opti-
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Fig. 3. Effectiveness of alias analysis on opti-
mizations (one optimization enabled at a time).

7.4 Optimizations Enabled Independently

Table 6 summarizes the results obtained by performing each optimization indepen-
dently. This table is structured almost identically to Table 5. It does not include UCR
since Scale UCR is only applicable after other optimizations. Fig. 3 graphs this data.
The last column of Table 6 indicates that optimization opportunities are, in general,
greatly reduced when the compiler applies each optimization independently. This re-
duction is reflected in higher percentages when the alias analysis does influence indi-
vidual optimization opportunities in isolation. For all optimizations except Scalar Re-
placement, ST and SH-4 behave identically on all programs. We first summarize the
trends, and then examine each optimization.

Address-taken: For GVR, address-taken analysis is as good as any alias analysis.
For LU and SR, its effectiveness is within 0.2%, for AASR, within 1%, and for SCCP,
GVN, and CP, within 5% of that of the most precise analysis. For LICM, it is within
8% of the best possible analysis.

Steensgaard and Shapiro-Horwitz (SH-4): Steensgaard and Shapiro-Horwitz (SH-
4) essentially have the same effect on all these optimizations. For GVR, they are as good
as the most precise analysis. For LU and SR, they are within 0.1%, for AASR, within
1%, for GVN, within 1.5%, and for SCCP and CP, within 5% of the effectiveness of the
best possible alias analysis. Again, they are least effective on LICM, but still within 8%
of the best possible analysis.

LU: This optimization behaves exactly in the same way in all aspects when the compiler
enables all optimizations. This similarity results because LU is the first optimization in
the sequence of optimizations applied on programs in the previous set of experiments.



GVR: Alias analysis precision does not have any effect.

SCCP: For SCCP, the improvement opportunity is slightly more than5%. For 13 pro-
grams, NA has a more positive impact on SCCP compared to ST andSH-4. ST and
SH-4 provide a benefit to SCCP compared to AT for only one program (175.vpr).

AASR: AT, ST, and SH-4 behave identically for every program. For only 2 programs
(04.bisect and simulator) further improvements (less than1%) are possible.

LICM: About 8% improvement is possible for LICM. For each program,AT, ST, and
SH-4 identically influence LICM. NA exposed more optimization opportunities than
did AT, ST or SH-4 for 7 programs.

GVN: The margin for improvement is about 5% with respect to AT and about 1.5%
with respect to ST and SH-4. For 10 programs, ST and SH-4 proved more effective
than AT and for 13 programs, NA exposed more optimization opportunities than did ST
or SH-4.

CP: The room for improvement is slightly more than 3%. For each program, the impact
of AT, ST and SH-4 on CP were identical. For 12 programs, thereis a gap between
ST/SH-4 and NA.

SR: Alias analysis precision has very little effect.

8 Conclusion

The “assume no aliases” methodology provides upper bound analysis that is surpris-
ingly tight for scalar optimizations and easy to implement.Our results are for the do-
main of scalar optimizations, and show that there is little room to improve scalar opti-
mization by improving alias analysis. For this client, a fast and less precise analysis is
good enough. Within other domains, such as parallelization, error detection, and mem-
ory leak detection, precise pointer disambiguation is moreoften required for correctness
or critical for good performance [34, 18, 19]. However, by studying the upper bound for
these clients, researchers can explore the limits of alias analysis. When the bound and
analysis match, there is no need to test more precise analyses and the methodology ob-
viates an entire class of iterative testing. When they do notmatch, the mismatch can
reveal where and how to apply more precise and costly analysis.
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