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Abstract

Memory leaks compromise availability and security by cliipgp
performance and crashing programs. Leaks are difficulegridise
because they have no immediate symptoms. Online leak aetect
tools benefit from storing and reporting per-objsites(e.g., allo-
cation sites) for potentially leaking objects. In programith many
small objects, per-object sites add high space overheadtjrg
their use in production environments.

This paper introduce8it-Encoding Leak Locatior{Bell), a
statistical approach thancodeger-object sites to a single bit per
object. A bit loses information about a site, but given sigfic
objects that use the site and a known, finite set of possitas, 8ell
uses brute-forcdecodingto recover the site with high accuracy.

We use this approach to encode object allocation and last-us
sites inSleigh a new leak detection tool. Sleigh detestale ob-
jects (objects unused for a long time) and uses Bell decotiing
report their allocation and last-use sites. Our implenténateals
four unused bits in the object header and thus incurs no Ipiecb
space overhead. Sleigh’s instrumentation adds 29% eredithe
overhead, which adaptive profiling reduces to 11%. Sleights
put is directly useful for finding and fixing leaks in SPEC JBB2
and Eclipse, although sufficiently many objects must ledkree
Bell decoding can report sites with confidence. Bell is dl@dor
other leak detection approaches that store per-objest, sitel for
other problems amenable to statistical per-object megadat
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1. Introduction

Memory bugs are a notorious source of errors that compromise
the availability and security of mission-critical systervdemory
bugs dominate US-CERT and CERT/CC vulnerability reports [9
32], and the business cost of downtime due to software csdashe
substantial [29]. Memory-related bugs include danglinghfews,
double frees, buffer overflows, and leakdemory leaksoccur
because of

1. Lost objectsa program neglects to free a heap-allocated object
that subsequently becomes unreachable, and

2. Useless objectsa program keeps a reference to an object but
never uses the object again.

Leaks degrade performance, and growing leaks crash pregram
Leaks may occur only in production environments and takedjou
days, or weeks to manifest. Malicious users can exploit nmgmo
leaks to launch denial-of-service attacks. Memory leaksharder

to detect than other memory errors because they have no iateed
symptoms [18].

Managed languages such as Java and C# are increasingly pop-
ular [16] in part because garbage collection and type saietye
many memory errors including lost objects, but they do nbteso
leaks due to useless objects. Leaks occur in practice inaral/&#,
and many tools exist for detecting leaks in these languadjea2],
24,27, 28].

Existing approaches to finding leaks in managed and unman-
aged programs have serious limitations that include higtep
and time overhead, limiting their usefulness in productamiron-
ments, or they trade accuracy and utility for lower overhgid
10, 18, 22, 24, 25, 26, 27, 28]. Many leak detection appraache
track per-object source information such as allocatioa [§t 10,

18, 25, 28]. These approaches impose space overhead of &s muc
as 75% [10], which is undesirable when the end goal is to coase
memory.

In this paper, we introducBit-Encoding Leak LocatiofBell),

a novel approach for correlating object instances siteb(source
locations such as allocation sites) with extremely low spawer-
head. Bell encodes the site for an object in a single bit uaimg
encodingfunction f(site object that takes the site and the object
address as input and returns zero or one. Bell thus losesriafo
tion, but with sufficiently many objects and a known, finit¢ e&
sites, Bell cardecodesites with high confidence. Decoding uses a
brute-force application of the encoding function for atesiand a
subset of objects. Bell can assist with a variety of tasksréguire
per-object information, such as leak detection, both inagad and
unmanaged languages.

We use Bell to implement a new leak detector for Java called
Sleigh Sleigh, like SWAT from previous work [10], adds instru-
mentation at allocations and reads to idensifglememory (mem-
ory the program has not used in a while), and reports theatlmt
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Figure 1. (a) An object’s encoded site is stored in its site bit. (b) fadent site matches the object wighprobability.

and last-use site(s) of stale objects. Sleigh (1) insedsumen-
tation at each allocation and use site that performs Belbéing;
(2) clocks object staleness using a two-bit saturatoggarithmic
counterthat it zeroes at use sites and increments ffoto k& + 1
everyb”® garbage collections for a user-defined basand (3) pe-
riodically decodes stale objects’ sites. Sleigh uses fasrger ob-
ject: one for allocation site, one for last-use site, and fovcstal-
eness. Our implementation steals unused bits in the obgexten
and thus adds no per-object space overhead. Sleigh'’s imestiia-
tion increases execution time by 29% on average, which agapt
profiling [10] reduces to 11%. Sleigh uses a mark-sweep garba
collector because Bell does not support moving objectepatih
we describe how to implement Sleigh with a generational mark
sweep collector.

Sleigh finds and helps fix memory leaks in SPEC JBB2000 and
Eclipse [15, 31], which have known memory leaks. The fix for
SPEC JBB2000 was previously known while the Eclipse leak was
unfixed. Sleigh outputs the allocation and last-use sitgsamsible
for stale objects, and for the subset of objects on the baynda
between in-use and stale objects. This information is tireseful
for fixing the leaks, although the programs need to run loraygh
to leak enough objects to be reported by Bell decoding.

The primary contribution of this paper is the novel Bell mech
anism that efficiently encodes per-object information iatsingle
bit, and decodes it with high confidence. The secondary iontr
tion is Sleigh, a new memory leak detector that uses Bell to en
code sites and a logarithmic counter to represent stalerezhisc-
ing space overhead to just four bits per object and incurriag
per-object space overhead and average time overhead of20P% (
without adaptive profiling).

2. Bit-Encoding Leak Location

This section presents Bit-Encoding Leak Location (Bellhoxel
approach for encoding per-object information into a sirgite

2.1 Encoding

Bell encodesper-object information from a known, finite set in a
single bit. In this paper, we use Bell to encaiessuch as source
locations that allocate and use objects. A site can be a @mogr
counter (PC) value or a unique number that identifies a line in
source file. Bell'ssncoding functiortakes two parameters, the site
and object address, and returns zero or one:

f(site objec) = 0or1

Bell computesf (site object) and stores the result in the object’s
site bit and we say the site wasncoded together witthe object.
We say a sitenatchesan object iff (site, objec) equals the object’s
site bit. An object always matches the site it was encodeethay
with, but it may or may not match other sites. We chogsm it is
unbiased (1) with % probability, a site matches an object encoded

together with a different site, and (2) whether an object sitel
match is independent of whether another object matchesitthe s
Figure 1 shows an example of the first property of an unbiased
function. Section 2.3 presents several encoding functibasare
unbiased and inexpensive to compute.

Since many sites (about half of all sites) may match an object
Bell loses information by encoding to a single bit. Howeweith
enough objects, Bell can decode sites with high confidence.

2.2 Decoding

Bell decodeghe sites for a subset of all objects. In this section, all
mentions of objects refer to objects in this subset. In a ttlkec-
tion tool, for example, Bell would decode the subset of disj¢ice
tool identified as potential leaks. Decoding reports sitesoded
together with a significant number of objects, as well as than
ber of objects each site encodes (within a confidence ifjeae
key to decoding is as follows (recall that a sitatchesan object if

f (site, object equals the object’s site bit).

A site thatwas notencoded together with a significant num-
ber of objects will match about half the objects, whereas a
site thatwasencoded together with a significant number of
objects will match significantly more than half the objects.

In general, we expect a site encoded together withie objects
(out of n objects in the subset) to match abeugjie = ngjie +
1(n — ngjte) Objects, since the site matches (1) all of the:.
objects thatvereencoded together with it and (2) about half of the
n—ngjte ODjects that weraotencoded together with it. Solving for
ngjte We find that aboutgjie = 2mgjte— n Objects were encoded
together with the site given that it matchesje Objects.

Bell decodes per-object sites using a brute-force apprtsath
evaluatesf for every object and every site:

foreach possiblesite
msite <= 0
foreach objectin the subset
if f(site object = objects site bit
 Mgjte < Mgjte + 1 )
print sitehas abouRmgjie — n Objects

Because of statistical variabilit§ngjie— n only approximates the
number of objects encoded together with the site. Bell difiéates
between sites that were actually encoded together witlctshjend
those that were not, by weeding out the latter witlalae positive
thresholdmpp:

if m > mpp
print sitehas abouRmgjte — n Objects

The appendix describes how we compuigp so that decoding
avoids false positives with high probability (99%). By wéeeglout
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Figure 2. Sleigh's components(a) Sleigh uses four bits per object. (b) Sleigh has severaponents that live in different parts of the VM.

sites, Bell misses sites that were encoded together withpégwiot
many objects. We can compute the minimum number of objects
nmin that need to be encoded together with a site, in order for Bell
to report the site with very high probability (99.9%). Thepapdix
describes how we computgy,;,. The following table reporta ,in

for various numbers of sites and objects:

| n=10" | n=10° | n=10" | n=10°

10° sites 68 232 736 2,326
10* sites 72 248 784 2,480
10° sites 74 260 828 2,622
10° sites 78 272 868 2,752
107 sites 80 286 910 2,874

The table shows thaty,;, scales sublinearly witln (at a rate
roughly proportional ta,/n). Thus, an increase im requires more
objects—but amaller fractionof all objects—be encoded together
with a site for Bell to report it. The table shows thgty;, is not
affected much by the number of sites, so Bell's precisiolesca
well with program size.

2.3 Choosing the Encoding Function

This section presents the encoding functions we use. Aipect
encoding function should be both unbiased and inexpensive t
compute, since applications of Bell will compute it at ram. We
find that taking a bit from the product of the site and the abjec
address, meets both these criteria fairly well:

fsingleMul{(site object := bits, (site x object)

fsingIeMuIt returns the middle bit of the product of the site iden-
tifier and object address, assuming both are 32-bit integ#es
find via simulation that for object addresses chosen rangloml
with few constraints, this function is unbiased (i.e., d#ing does
not report false positives or negatives more than expeckéaly-
ever, our Sleigh implementation uses a segregated freallist
cator (Section 3.6), yielding non-arbitrary object addess Using
fsingIeMuIt causes decoding to report a few more false positives
than expected.

We find that the following encoding function eliminates unex
pected false positives because the extra multiply permhbgebits
enough to randomize away the regularity of object addresiées
cated using a segregated free list:

fdoubleMulfSite object := bits; (site x objectx objech

We also experimented with
fparity(SitQ object := parity(site A object

which returns the parity of the bitwis&ND of the site and object
address. Whilefpayity is unbiased if we choose object addresses
randomly, site decoding returns many false positives ibpesgated
free list allocates objects singgyity does not permute the bits of
its inputs.

3. Sleigh

This section describeSleigh a new memory leak detector that
tracks staleness (time since last use) to find leaks, andReles

to identify sites associated with stale objects. We implersdeigh

on top of Jikes RVM 2.4.2, a high-performance Java-in-Javaal
machine. We have made Sleigh publicly available on the Jikes
RVM Research Archive [20].

3.1 Overview

Sleigh finds memory leaks in Java programs and reports thesall
tion and last-use sites of leaked objects, using just fasrg@r ob-
ject. It inserts Bell instrumentation to encode objectedtion and
last-use sites in a single bit each, tracks obgtalenesgtime since
last use) in two bits using a logarithmic counter, and oaresly
decodes the sites for stale objects. Sleigh borrows fousathbits
in the object header in our implementation, so it adds naopgget
space overhead. Other VMs such as IBM’s J9 [17] have freedread
bits. Without free header bits, Sleigh could store its bitssime the
heap, efficiently mapping every two words (assuming objexsat
least two words long) to four bits of metadata, resulting .2586
space overhead.

Figure 2(a) shows the four bits that Sleigh uses in each tbjec
header. Figure 2(b) shows the components that Sleigh adtie to
VM. Sleigh uses the compiler to insert instrumentation & #p-
plication at object allocations (calls tew) and object uses (field
and array element reads). It uses the garbage collectorcte-in
ment each object’s stale counter at a logarithmic rate. Enbage
collector invokes decoding periodically or on demand. DRixg
identifies allocation and last-use sites of potentiallkézhobjects.

3.2 Encoding Allocation and Last-Use Sites

Sleigh uses Bell to encode the allocation and last-use fites
each object using a single bit each. Sleigh adds instrurtientat



object allocation that computegisite, objec) and stores the result
in both the allocation bit and the last-use bit. If an objschéver
used, its last use is just its allocation site. Similarlyei@h adds
instrumentation at object uses (field and array elementjetadt
computesf (site object and stores the result in the last-use bit.
Figure 2(b) shows how the compiler inserts this instruntéma
into application code.

Sleigh defines a site to be a calling context consisting ohmet
ods and line numbers (from source files), much like an exoepti
stack trace in Java. For efficiency, Sleigh uses onlyiritieed por-
tion of the calling context, which is known at compile timéheveas
the rest of the calling context is not known until runtime eTfol-
lowing is an example site (the leaf callee comes first):

spec.jbb.infra.Factory.Container.deallocObject () :352
spec.jbb.infra.Factory.Factory.deleteEntity() :659
spec. jbb.District.removeOldestOrder () :285

Sleigh assigns a unigue random identifier to each uniqueasite
maintains a mapping from sites to identifiers.

3.3 Tracking Staleness Using Two Bits

In addition to inserting instrumentation to maintain péjext allo-
cation and last-use sites, Sleigh inserts instrumentati@ach site
that tracks object staleness using a two-bit saturatialg counter
The stale counter i®garithmic its value is approximately the log-
arithm of the time since the application last used the objetbg-
arithmic counter saves space without losing much accuracg>
resenting low stale values with high precision and highestalues
with low precision.

Sleigh resets an object’s stale counter to zero at allatatiwl
at each object use. Periodically, during garbage colleciaC),
Sleigh updates all stale counters (Figure 2(b)). Sleigtatgxistale
counters by incrementing a counter frénto k£ + 1 only if the cur-
rent GC number divides® evenly, wheré is the base of the log-
arithmic counter (we usk = 4). k saturates at 3 because the stale
counter is two bits. Stale counters implicitly divide olgimto four
groups: not stale, slightly stale, moderately stale, agtilizistale.

In our experiments, we consider the highly stale objectstpd
tential leaks. We find Sleigh is not very sensitive to the dedin
of highly stale objects since most objects are stale brieflpoa
long time. Our Sleigh implementation fixes the logarithmedaat
4, but a more flexible solution could incredsever time to adjust
to a widening range of object staleness values.

Sleigh updates objects’ stale counters at GC time for effayie
and convenience. It measures staleness in terms of numBCof
but could measure staleness in terms of execution timeadste
by using elapsed time to determine whether and how much to
increment stale counters.

3.4 Decoding

Sleigh occasionally performs Bell decoding to identify #ig(s)
that allocated and last used (highly) stale objects. Theassecon-
figure Sleigh to trigger decoding periodically (e.g., evlaour or
every thousand GCs), or the user could trigger it on demaad vi
remote signal (not currently implemented). Decoding csdurring
the next GC after being triggered. Figure 2(b) shows how G&a-oc
sionally invokes decoding, and it shows pseudocode fordiago
based on the decoding algorithm from Section 2.2. Decodbng-c
putes the number of objects that match each possible sitbpth
the object’s allocation and last-use bits. It reports altmn and
last-use sites that match more thajp objects (Section 2.2), and
it reports the number of objects for each site, within a canrfod
interval.

Decoding is potentially expensive because its executioe ts
proportional to both the number of possible sites and nurober

highly stale objects. However, several factors mitigaie potential
cost. First, we expect decoding to be an infrequent proocessyr-
ring only occasionally as needed on runs that last hourss, day
weeks and take as long to manifest significant memory leads. S
ond, the vast majority of decoding’s work can occur separétem
the VM executing the application, on a different CPU or maehi
(currently unimplemented). The VM would need to send thélig
stale object addresses and the possible sites (or a dete thia
last decoding), and the separate execution context woufdrpe
the brute-force application of the encoding function. @hit is not
necessary to perform decoding on all stale objects: a rarsdom
ple of them suffices, although using fewer objects increasgs,
and widens confidence intervals. Fourth, decoding couldyse
constraints (e.g., an object can only encode allocati@s sitat al-
locate the object’s type) to significantly decrease the remu
times Sleigh computeg(site objec) (currently unimplemented).
Decoding runs in reasonable time in our experiments, and-occ
sionally paying for decoding offers memory efficiency as paned
with the all-the-time space overhead from storing un-eedaakr-
object sites.

Sleigh decodes allocation and last-use sites separatdlyit b
could find and report allocation and last-use sites coedlatith
each other, as suggested by an anonymous reviewer.

3.5 Decreasing Instrumentation Costs

The instrumentation Sleigh adds at object uses (field araly arr
element reads) can be costly because it executes frequsleigh
removes redundant instrumentation and uses adaptiveipgdfio]

to reduce instrumentation overhead.

Removing Redundant Instrumentation Instrumentation at ob-
ject uses is required only at tiest use of any object because the
instrumentation at each use clears the stale counter angutesn
a new last-use bit. Sleigh can thus eliminate instrumeoradi a
use if it can determine that the use is followed by anotheraise
the same object. A use fslly redundantf the same object is used
later on every path. A use gartially redundantif the program
uses the same object on some path. We use a backward, non-SSA,
intraprocedural data-flow analysis to find partially redamdand
fully redundant uses. Our analysis is similar to partialurethncy
elimination (PRE) analysis [8], but is simpler because ipates
redundant uses rather than redundant expressions.

We donot add instrumentation at fully redundant uses because
they do not need it. Wdo add instrumentation at partially redun-
dant uses, although we could remove it and add instrumentati
along each path that does not use the object again. We have not
implemented this optimization, but Section 5.4 evaluatesgper
bound on its benefit.

Removing redundant instrumentation may cause Sleigh to re-
port some in-use objects as stale if a long time passes betaree
uninstrumented use and an instrumented use. However,floct e
can only happen to an object pointed at by a local (stackpkbei
continuously from the uninstrumented use to the instrustbose.

We do not see inaccuracy in practice.

Adaptive Profiling Sleigh as described so far adds no per-object
space overhead, but it does add 29% time overhead on average
(Section 5.4). This time overhead is low compared to othenme

ory leak detection tools (Section 6), but may be too expenfiv
online production use. To reduce this overhead, we boadap-

tive profiling from Chilimbi and Hauswirth [10], which samples
instrumented code at a rate inversely proportional to iecetion
frequency. This approach maintains bug coverage whileciadu
overhead by relying on the hypothesis that cold code cant
disproportionately to bugs.



Sleigh uses adaptive profiling to sample instrumentatiarbat
jectuses. Since Bell decoding needs a significant numbéesjetts
to report a site, Sleigh uses all-the-time instrumentagicasite un-
til it takes 10,000 samples. It progressively lowers thegarg rate
by 10x every 10,000 samples until reaching the minimum sengpl
rate of 0.1%.

3.6 Memory Management

Since Bell's encoding function takes the object addresspust;
objects cannot move, or decoding will not work correctly. Wge
Jikes RVM’'s mark-sweep collector [5], which allocates gsin
segregated free list and does not move heap objects.
Mark-sweep is not considered to be among the best-perfgrmin
collectors. Sleigh could be modified to use a high-perforregen-
erational mark-sweep (GenMS) collector, which allocates objects
in a smallnurseryand moves them to a mark-sweeldler space
if they survive a nursery collection. A GenMS-compatiblei§h
would (1) storeun-encodedhllocation and last-use sites (as extra
header words) for nursery objects, (2) stereodedsites for older
objects, and (3) when promoting objects from the nursenhéo t
older space, encode each object’s allocation and lastieseus-
ing the object’s new address in the older space and the &hjgct
encoded sites from the nursery. If the nursery were bounithed,
space overhead added by un-encoded sites would be bounded.
Bell is incompatible with compacting collectors, which aagp-
ular in commercial VMs (e.g., JRockit [2]) because they é&ase
locality and decrease fragmentation. However, in some ymrod
tion environments it might be worthwhile to switch to gerernaal
mark-sweep in order to take advantage of Bell's space-gaém-
efits. Bell works with C and C++ memory managers, since they do
not move objects.

3.7 Miscellaneous Implementation Issues

Sleigh adds instrumentation to both application methods lan
brary methods (the Java API) to reset objects’ stale cosindeigh
encodes allocation and last-use sites in application misthut not
in library methods since these sites are probably not hielpfine
user and may obscure Sleigh’s report. Slaigiesencode sites for
library methods when they are inlined into application roeith
Because Jikes RVM is written in Java, the VM allocates its
own objects in the heap together with the application’s ciisje
These VM objects are not of interest to application develmpmnd
thus Sleigh differentiates VM and application objects &iction
time using a fifth bit in the object header (a more eleganttsmiu
would put application and VM objects in separate heap spaces
Bell decoding then ignores these VM objects.

4. Finding and Fixing Leaks

This section evaluates Sleigh’s ability to find leaks ang luglvel-
opers fix leaks.

4.1 Methodology

Execution We execute Sleigh by running a production build of
Jikes RVM (FastAdaptive for two hours. We use a variable-sized
heap (Jikes RVM automatically and dynamically adjusts thaph
size) since leaks cause live memory to grow over time. In Sec-
tions 4.2 and 4.3, Sleigh inserts all-the-time instrumioaat ob-
ject uses and removes instrumentation from fully but notigiér
redundant uses (this configuration is cal®éigh defaulin Sec-
tion 5). In Section 4.4, Sleigh samples object uses usingtaga
profiling (Sleigh ARN Section 5). We show just one trial per exper-
iment since averaging Sleigh'’s statistical output overtipld runs
makes its accuracy seem unfairly high, but we have verifiattte
presented results are typical from run to run.
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Figure 3. Sleigh implicitly divides the heap into in-use and stale
objects.

Decoding Decoding can process every (highly) stale object in
the heap. However, we have found that many stale objects are
pointed at by only other stale objects, i.e., they are jutrior
members of stale data structures. Sleigh’s stalenesstbageoach
implicitly divides the heap into two parts: in-use and stagects.
Figure 3 shows in-use and stale objects in a cross-sectitneof
heap. Conceptually, aim-use/stale bordedivides the in-use and
stale objects; this border consists of references fronsata stale
objects. We define a stale object pointed at by an in-use igea
stale border objectand an in-use object that points to a stale object
as anin-use border objectStale border objects are effectively the
“roots” of stale data structures, and decoding these abggets the
allocation and last-use sites for these data structurassérborder
objects point to stale data structures, so decoding thieis shay
help answer the question, “Why is the stale data structurbeing
used anymore?” We note we had the idea to investigate stdle an
in-use border objectafter examining the output from decoding
all stale objects and fixing the Eclipse leak. Limiting deiogdto
border objects may be more important in Java since datagtesc
typically consist of many objects, whereas Chilimbi and siainth
report success using sites for all stale objects in C [10].

We configure Sleigh to execute decoding every 20 minutes.
Decoding processes and reports sites for three differdrstess of
objects: (1) all stale objects, (2) stale border objects, @) in-
use border objects. Whenever one of these subsets has mare th
100,000 objects, decoding processes a sample of 100,06erof t

We plot reported object counts for reported sites with resfee
time, which shows the sites that are growing. (Identifyingvging
sites is currently a manual process, but Sleigh could auioatly
find growing sites by analyzing the plotted data.) In thistise¢
we are primarily interested in growing sites, since they aiten-
tually crash programs. However, program developers migbttze
interested in non-growing sites, since unused memory ndigaie
poor memory usage.

Platform We perform our experiments on a 3.6 GHz Pentium
4 with a 64-byte L1 and L2 cache line size, a 16KB 8-way set
associative L1 data cache, a 12¢ps L1 instruction trace cache,



Decoding | Growing (all) reported sites

Objects | Possible siteg§ time (s) | Allocation Last use
All-the-time All stale objects 60,610-73,175 4,412-4,476] 2.0-2.5 3(8) 3(10)
instrumentation| Stale border objects 24,454-28,639 4,412-4,476| 0.8-1.0 1(2) 2(4)
In-use border objects 239,603—420,128 4,412-4,476| 3.4-3.4 3(6) 3(14)
Adaptive All stale objects 103,228-127,917 4,302-4,384] 3.2-3.2 1(7) 3(14)
profiling Stale border objects 50,905-60,008 4,302-4,384| 1.6-2.0 04 3 (10)
In-use border objects 225,876-459,393 4,302-4,384| 3.2-3.2 3(6) 2(11)

Table 1. Decoding statistics for Sleigh running SPEC JBB2D *Decoding processes at most 100,000 objects.
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Figure 4. Reported allocation sitesfor SPEC JBB2000 when
decoding processestale border objectsnly.
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spec.jbb.infra.Factory.Container.deallocObject():352
—{1— spec.jbb.infra.Factory.Factory.deleteEntity():659
spec.jbb.District.removeOldestOrder():285
—O— spec.jbb.infra.Collections.longBTreeNode.Split():654
—>— spec.jbb.infra.Collections.longBTreeNode.SearchGt():355
spec.jbb.infra.Factory.Container.deallocObject():352
—+— spec.jbb.infra.Factory.Factory.deleteEntity():659
spec.jbb.infra.Collections.longBTree.removeEntry():1640

Figure 5. Reportedlast-use sitegor SPEC JBB2000 when de-
coding processestale border objectsnly.

a 2MB unified 8-way set associative L2 on-chip cache, and 2GB
main memory, running Linux 2.6.12.

Benchmarks We evaluate Sleigh on two leaks in SPEC JBB2000
and Eclipse 3.1.2 [15, 31].

4.2 SPEC JBB2000

SPEC JBB2000 simulates an order processing system and is in-
tended for evaluating server-side Java performance [3REG
JBB2000 contains a known, growing memory leak that marsfest
when it runs for a long time without changing warehouses.|&ak
occurs because SPEC JBB2000 adds but does not correctlygemo
orders from an order list that is supposed to have zero nettro

We use Sleigh to find and help fix the leak. Table 1 presents
statistics from running Sleigh on SPEC JBB2000 for threessts
of stale and in-use objects. The first three labeled colunives g
the size of the object subset, the number of program siteb, an
decoding’s execution time; the data are ranges over themsest
decoding executes during a two-hour run. As expected, thiéoeu
of stale objects grows over time as the leak grows (the nurober
stale objects starts high due to unuSeding andchar [1 objects
that appear to be SPEC JBB2000’s “data”). The number of sites
increases as dynamic compilation adds more sites. Theviast t
columns show how many allocation and last-use sites degodin
reports, and how many of these sites’ object counts grow tower
(based on manual inspection of plots with respect to time).

Figures 4 and 5 plot the sites for stale border objects (thkath
line is the minimum object county,;y,). In general, we expect the
plots for stale border objects to be most useful becausesthey
site(s) where the roots of stale data structures were afildand
last used. Figure 4 reports one growing and one non-growiag a
cation site; the growing site is the geneticass .newInstance (),
which is not very useful information. Last-use sites are enase-
ful in this case, and we expect them to be more useful in génera
for pinpointing an unintentional leak’s cause. Figure 5Svehidwo
growing and two non-growing last-use sites with enoughesvat
jects to be reported by decoding. One of the two growing sites
Sleigh reports is the following:

spec. jbb.infra.Factory.Container.deallocObject () :352
spec.jbb.infra.Factory.Factory.deleteEntity() :659
spec.jbb.District.remove0ldestOrder () :285

This site is the key to fixing SPEC JBB2000’s leak: the fix repka
SPEC JBB2000’s only call teemove0ldestOrder () with two
different lines that properly remove orders from SPEC JBEPS)
order list. Thus the three lines of inlined calling contendttSleigh
provides are enough to pinpoint the exact line responsiiehie
leak. We believe a SPEC JBB2000 developer could quickly fx th
leak based on Figure 5. The key site takes some time (about an
hour) to manifest since decoding requires abog}j, = 1200
objects (dashed line) to report the site. The last-use pioiafl
stale objects (not shown) also includes the key site, as all
several other sites, including two growing sites fawn-border
stale objects. The key site takes longer to manifest in thisec
sincenm;n increases wit (Section 2.2). The last-use plot for in-
use border objects (not shown) does not show the key siteeabov
which is not surprising since decoding operates on an éntire
different subset of objects. At this time we do not undemta8REC



Decoding | Growing (all) reported sites

Objects| Possible siteg  time (s) | Allocation Last use

All-the-time All stale objects 1,616,736-8,936,357 31,733-32,574] 24.2-24.9 7 (14) 10 (17)
instrumentation| Stale border objects 40,492-43,360| 31,733-32,574 10.0-10.9 1(3) 2(3)
In-use border objects 40,572-454,975 31,733-32,574] 10.3-24.7 1(7) 0(10)

Adaptive All stale objects 1,683,898-9,022,732 31,151-32,000] 23.1-23.8 7(7) 7(12)
profiling Stale border objects 34,093-36,241 31,151-32,000, 8.0-8.6 1(3) 1(2)
In-use border objects 37,440-361,703 31,151-32,000, 9.0-23.5 0(7) 0(5)

Table 2. Decoding statistics for Sleigh running EclipsetDecoding processes at most 100,000 objects.
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—— org.eclipse.core.internal.watson.ElementTree.getDataTree():354

JBB2000 well enough to know if the plot for in-use objectsssful
for fixing the leak.

SPEC JBB2000’s heap growth is due to both stale and in-use ob-
jects:0rders grow in number but are used, wher€aatainers
become stale. The fix described above eliminates only heaytigr
due to in-use objects, which contribute the vast majorityper-
haps all) of the heap growth in terms of bytes. Sleigh repibes
offending last-use site because the in-use and stale sljeetre-
lated (orders point to containers). At this time we do notersthnd
SPEC JBB2000 well enough to determine if the stale contaiber
jects are a leak or how to fix this potential leak, althoughftke
described above appears to eliminate all sustained heagtgro

4.3 Eclipse

—_—0 org.ecIipse.compare.CompareEditorlnput.removePropertyChangeListener()Eaipse 3.1.2 is a popular integrated development enviesiim

—>¢— org.eclipse.core.internal.registry.ReferenceMap$SoftRef.getKey(): 146

Figure 6. Reported last-use sitedfor Eclipse when decoding
processestale border objectenly.
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org.eclipse.core.internal.resources.Resource.getFullPath():855
—0O— org.eclipse.core.internal.resources.Resource.getResourcelnfo():973

org.eclipse.core.internal.localstore.FileSystemResourceManager.read():5.

org.eclipse.core.runtime.Path.segment():831
org.eclipse.core.internal.dtree.DeltaDataTree.lookup():666
—>— [VM_Array.arraycopy -- touch]
—+— org.eclipse.compare.ResourceNode.createStream():178
org.eclipse.core.runtime.Path.lastSegment():701
—aA— org.eclipse.core.internal.resources.Resource.getName():903
org.eclipse.compare.ResourceNode.getName():87
org.eclipse.core.internal.resources.Resource.getName():903
org.eclipse.compare.ResourceNode.getName():87
org.eclipse.core.runtime.Path.lastSegment():701
org.eclipse.core.internal.resources.Resource.getName():903
—&— org.eclipse.core.internal.resources.Resource.getName():903
—a— org.eclipse.ui.internal.NavigationHistory.createEntry():527
—@— org.eclipse.ui.internal.NavigationHistory$1.updateNavigationHistory():97

0

Figure 7. Reported last-use sitesfor Eclipse when decoding
processesn-use border objectsnly.

(IDE) written in Java [15]. Eclipse is a good target becauss i
a large, complex program (over 2 million lines of source ¢gode
The Eclipse bug repository reports several unfixed memaysle
We pick unfixed bug #115789, which reports that repeatedty pe
forming a structural (recursivaliff leaks memory that eventually
exhausts available memory. We automate the GUI behaviar tha
performs a repeated structural diff on MMTk source code ] b
fore and after implementing Sleigh (17 of 250 files differttel
diff is 350 lines).

The leak occurs in EclipselfavigationHistory component,
which allows a user to step backward and forward through beow
editor windows. This component keeps a list dvigation-
HistoryEntry (Entry) objects, each of which points toMav-
igationHistoryEditorInfo (EditorInfo) object. In our test
case, eacBditorInfo points to aCompareEditorInput object,
which is the root of a data structure that holds the resultthef
structural diff. ThelavigationHistory component maintains the
number ofEntry objects that point to eachditorInfo object.

If an EditorInfo’s count drops to zeroNavigationHistory
removes the object. HowevefavigationHistory erroneously
omits the decrement in some cases, maintaining unnecqgssaty
¢fs toEditorInfo objects. BecausBavigationHistory regu-
larly iterates through alEditorInfo objects but not pointed-to
CompareEditorInput objects, the former are in-use border ob-
jects, and the latter are stale border objects.

Table 2 shows information about running Eclipse using 3leig
in the same format as Table 1. Decoding all objects retunsnse
growing allocation and 10 growing last-use sites (plot raiven),
most of which are for stale descendant€ofipareEditorInput
objects (i.e., the data for the structural diff).

Decodingstale borderobjects gives one growing allocation and
two growing last-use sites. Figure 6 shows the last-uss.sltee
first growing last-use site, frorBlementTree, iS a red herring:
this site’s count grows and shrinks over time. It does notseau
the sustained growing leak, but it may be of interest to dgpesis.
The second growing last-use site, fr@mpareEditorInput, IS
in fact the last-use site for leaki@mpareEditorInput objects.



Unfortunately, the last-use site for these objects is norirelated
to theNavigationHistory component.

We next try decoding sites fan-useborder objects. Figure 7
plots the last-use sites for in-use border objects. It isatedr to
us why the object counts of most reported sites decreasdimesr
perhaps Eclipse performs clean-up of pointers to unuseectsj
as time passes. Almost two hours pass before Sleigh repaots t
sites fromNavigationHistory, both of which are involved with
NavigationHistory's iteration through the list oEditorInfo
objects. These sites do not have time to grow since the erpati
ends after two hours, but a longer run shows that these sites d
in fact grow. The plot ofallocation sitesfor in-use border objects
(not shown) also reports a site withitavigationHistory (the
allocation site ofEditorInfo objects) shortly before two hours
pass.

Fixing the leak requires modifying a single line of code desi
NavigationHistory.java to correctly decrement the reference
count of eaclEditorInfo object. After determining that théav-
igationHistory component was causing the leak by holding on
to EditorInfo objects, we fixed the leak within an hour. Thus we
believe Sleigh’s output would help an Eclipse developertfixieak
quickly, although enough in-use border objects must leak fitle
posted the leak’s fix as an update to the bug report.

4.4 Adaptive Profiling

The results so far use all-the-time instrumentation ataihjses.
This section evaluates Sleigh’'s accuracy using adaptigélipg
at object uses (Section 3.5). Adaptive profiling affectsigbis
accuracy by (1) identifying some in-use objects as statesé#iinples
all the use sites of an in-use object at a too-low sampling aat
(2) reporting false positive or negative last-use sitessaimples a
leaking last-use site at a too-low sampling rate. TablesdRahow
results for adaptive profiling (lower three rows). Adaptprefiling
causes Sleigh to identify more stale objects and to repore sites
than all-the-time instrumentation. Figure 8 shows lagtgites for
stale border objects from SPEC JBB2000. This plot is notbkian
Figure 5, which shows the same data collected using altithe-
instrumentation. However, the adaptive profiling graphvehthe
key leaking siteremoveOldestOrder (), which appears in both
graphs after about an hour and grows after that.

Sleigh with adaptive profilingloesreport the key leaking sites
for SPEC JBB2000 and Eclipse since these sites’ executies ra
are comparable with the rates they leak objects. We believeld
opers could fix the leaks using Sleigh’s output from adappre
filing.

4.5 Discussion

This section discusses Sleigh’s benefits and drawbacksagk dé-
tection tool. Allocation and last-use sites help us find $eakhich
agrees with Chilimbi and Hauswirth’s experience that theites
are useful [10]. Last-use sites are particularly usefulgiopoint-
ing leaks, although allocation sites may be useful to dpern
who understand their own code well. Limiting decoding toecls
on the in-use/stale border is particularly useful for réipor sites
directly involved in leaks.

At the same time, border objects may be few in number com-
pared with all stale objects. For example, each structufaper-
formed in Eclipse yields one in-use border object and onke sta
border object—as well as a stale data structure whose side-is
pendent on the size of the diff. Bell needs hundreds or thulssa
of these objects to definitely report the leaking site (Se&cf.2).
By decoding all stale objects, Sleigh can generally repmaking
sites for any nontrivial leak, but it is unclear if sites famborder
stale objects are useful in general. Thus, Sleigh may notle a
to find some leaks in other programs, but we have not encahter
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java.lang.String.getChars():631
—— spec.jbb.infra.Util.DisplayScreen.privText():259
spec.jbb.infra.Util.DisplayScreen.putText():290
spec.jbb.ltem.getBrandinfo():116
spec.jbb.Orderline.process():367
java.lang.String.<init>():210
spec.jbb.Stock.getData():265
spec.jbb.Orderline.process():372
spec.jbb.infra.Collections.longBTreeNode.Split():654
spec.jbb.infra.Collections.longBTreeNode.SearchGt():355
spec.jbb.infra.Factory.Container.deallocObject():352
spec.jbb.infra.Factory.Factory.deleteEntity():659
spec.jbb.District.removeOldestOrder():285
spec.jbb.Stock.getld():244
spec.jbb.StockLevelTransaction.process():208
spec.jbb.Stock.getQuantity():211
spec.jbb.StockLevelTransaction.process():240
spec.jbb.infra.Factory.Container.deallocObject():352
spec.jbb.infra.Factory.Factory.deleteEntity():659
spec.jbb.DeliveryTransaction.process():206
spec.jbb.Stock.incrementRemoteCount():236
spec.jbb.Orderline.process():382

Figure 8. Reportedlast-use sitegor SPEC JBB2000 when de-
coding processestale border objectsnly, using adaptive profil-
ing.
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such leaks (SPEC JBB2000 and Eclipse are the only programs fo
which we have tried to find leaks due to time constraints aratla |

of available long-running Java programs). While Sleigh rzalyto

find some leaks, it is unlikely to report erroneous leakséglos-
itives) since (1) its staleness approach precisely idestifiemory

not being used by the application, and (2) the false positikesh-

old mgp (Section 2.2) avoids reporting incorrect sites for stale ob
jects.

Another drawback of Sleigh'’s sites, and per-object sitegein-
eral, is that calling context is limited to the inlined porti which
may not be enough to understand the behavior of the code caus-
ing the leak. Eclipse in particular is a complex, highly aje
oriented program with deep calling contexts. Unfortunateffi-
ciently maintaining and representidgnamiccalling context is an
unsolved problem.

5. Sleigh's Runtime Performance
This section evaluates Sleigh’s space and time overheads.

5.1 Methodology

Execution Jikes RVM runs by default usingdaptivemethod-
ology, which dynamically identifies frequently executedthoels
and recompiles them at higher optimization levels. Becausses
timer-based sampling to detect hot methods, the adaptivpiber
is non-deterministic. To measure performance, weregky com-
pilation methodology, which is deterministic. Replay compilation
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Figure 9. Components of Sleigh runtime overhead.

forces Jikes RVM to compile the same methods in the same atder
the same point in execution on different executions andakogls
high variability due to the compiler.

Replay compilation useadvice filesproduced by a previous
well-performing adaptive run (best of 10). The advice filpecs
ify (1) the optimization level for compiling each method) (e
dynamic call graph profile, and (3) the edge profile. Fixingsth
inputs, we execute two consecutive iterations of the apfitio.
During the first iteration, Jikes RVM optimizes code using #u-
vice files. The second iteration executes only the appdioatiith a

compilation time from the first run of replay compilation.efjh

with all-the-time instrumentation and with adaptive piiafil add
43% and 122% average compilation overhead, respectivkly, a
though an adaptive VM might respond to these increases by op-
timizing less code and by scaling back bloating optimizatisuch

as inlining. Compilation overhead is not a primary concexoduse
Sleigh targets long-running programs, for which compilatiime
represents a small fraction of execution time.

5.4 Time Overhead

realistic mix of optimized code. o . Sleigh adds time overhead to maintain objects’ stale cosiated to

We execute each benchmark with a heap size fixed at two times gncoge objects’ allocation and last-use site bits. Figupee8ents
the minimum possible for that benchmark. Because decodiilg i he execution time overhead added by Sleigh. We use the decon
frequent and not part of steady-state performance, we devabt iteration of replay compilation, which measures only thelaa-
uate decoding’s performance here (Section 4 evaluatesitiets tion (not the compiler). Each bar is the minimum of five trialde
performance). take the minimum because it represents the run least pednyp
external effects. The striped bars represent the portitimefspent

I . in garbage collection (GCBaseis execution time without Sleigh;
?S&%hsmgéﬁhxqurzal%ifeoilgghos t?:r:g;]rm:gée (ij)zltr;%g(]gzsglztr?atthe bars are normalized Base The following configurations add
’ P Sleigh features monotonically:

execute on Jikes RVM, and a fixed-workload version of SPEC

Platform We use the platform described in Section 4.1.

JBB2000 calledpseudojbb [6, 30, 31]. We omit the DaCapo
benchmark&isqldb andps because we could not get them to run
correctly with Jikes RVM, with or without Sleigh; both havedwn
issues addressed in version 1.0 of the DaCapo benchmarks [6]

5.2 Space Overhead

Sleigh uses four bits per object to maintain staleness andden
allocation and last-use sites (Section 3.1). It commarsdémir
available bits in the object header, so it effectively addsper-
object space overhead. Sleigh adds some space overheaépto ke
track of the mapping from sites to unique identifiers. The pirags

size is equal to the number of unique sites, which is propoatito
program size. Sleigh could forego this mapping by using fznog
counters (PCs) for sites (Jikes RVM supports obtaining sour
locations from the PC).

5.3 Compilation Overhead

Sleigh adds compilation overhead because it inserts msinta-
tion at object allocations and uses, increasing compiaki@d.
Adaptive profiling duplicates code, so it also adds significm-
pilation overhead. We measure compilation overhead byetitrg

e Sleigh w/o instis execution time including updating stale coun-
ters during GC and marking VM objects at allocation time (Sec
tion 3.7) but without any instrumentation. This configupati
adds no detectable overhead.

Sleigh alloc onlyadds instrumentation at each allocation to
initialize the stale counter and encode and set the allmtamd
last-use bits, incurring only 1% overhead on average.

Sleigh stale simpladds simple instrumentation at object uses
that resets the stale counter but does not encode the sttes
This instrumentation occurs frequently and reads and siifite
object header, and it adds 22% overhead &leigh alloc only

Sleigh one muladds instrumentation that compui&gnglemult
(Section 2.3) at object uses and encodes the result in teethj
last-use bit. This configuration adds just 5% o®eigh stale
simple demonstrating that computing the encoding function
itself is not a large source of overhead in Sleigh.

Sleigh defaultuses the more robugygplemult Which adds
1% over the single-multiply encoding function, for totatsage
overhead of 29%.
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Figure 11. Sleigh runtime overhead with and without redundant instrumentation optimizations.

Adaptive Profiling Sleigh uses adaptive profiling to lower its
instrumentation overhead at object uses (Section 3.5ur&ig0
shows the overhead of Sleigh with adaptive profiliBaseand
Sleigh defaultare the same as in FigureSleigh AP miris the ex-
ecution overhead of Sleigh using adaptive profiling, bufigomed
so control flow never enters the instrumented code. This gora}
tion measures just the switching code, which adds 10% ogerhe
This overhead is higher than the 4% switching code overheatd t
Chilimbi and Hauswirth report [10], which is apparently agibrm
and implementation difference (e.g., C vs. JaGigigh APis the
overhead of Sleigh using fully functional adaptive profitiit adds
just 1% on average ov&leigh AP mirsince adaptive profiling ex-
ecutes instrumented code infrequently, for a total of 11%rlosad.

Redundant Instrumentation All Sleigh configurations presented
so far remove fully redundant but not partially redundarstrim-
mentation (Section 3.5). Figure 11 shows the overhead agisle
with various redundant instrumentation optimizatioBase and
Sleigh defaulare the same as in Figure Sleigh elim nonés exe-
cution time including both fully and partially redundansirumen-
tation (i.e., no redundant instrumentation removalgigh default
saves 7% of total execution time on average by removing felly

dundant instrumentatiorSleigh elim allremoves both fully and
partially redundant instrumentation, providing an opsitia lower

bound of 22% average overhead for redundant instrumentegio
moval.

6. Related Work

This section compares Bell and Sleigh to previous work in orgm
leak detection.

Static Analysis Static analysis finds memory leaks in programs
without runtime overhead (e.g., [19]) but reports falseitpes
since it must make conservative assumptions about conawl fl
Dynamic class loading in Java complicates static analyisises
some classes may not be available at testing time. Currafit st
analysis tools find lost objects but not useless objectsdifiin
useless objects statically seems inherently very chaligng

Dynamic Monitoring and Per-Object Information Dynamic
monitoring tools find leaks at runtime, and many maintain and
report per-object source information such as allocatit[§, 10,
18, 25, 28]. This information helps fix leaks but adds sigaific
per-object overhead. These tools could benefit from Belbeimg,



as long as sufficiently many objects leak. If just a few olgjdebk,
Bell cannot decode per-object source information acclyrabeit
the most problematic leaks are usually large and/or growing

An alternative to Bell's statistical approach is to stare-
encodedper-object information for a sample of objects (e.g., dy-
namic object sampling [21]). Sampling avoids Bell encodamgl
decoding but still adds some space overhead and requirgs-ins
mentation that checks whether an object is in the sampled set

Pre-Release Testing ToolsValgrind [25] and Purify [18] find
memory leaks, as well as many other memory errors. They add
heavyweight instrumentation at every memory access, atltot,

and free, and use conservative garbage collection to firicblps
jects. These tools have overheads from 2x to 20x, couplédhigh
per-object space overhead. They are too expensive for gtiodu
runs; they target testing runs and provide high accuracyarsh-
tility. Sleigh finds only leaks while these tools find many nuyn
errors, but Sleigh has low enough space and time overheazhto c
sider using in production runs.

SWAT SWAT finds leaks in C and C++ programs by guessing that
stale objects are leaks [10]. Sleigh borrows SWAT's staderap-
proach to find leaks. SWAT and Sleigh may report false pastiv
(stale memory that will be used eventually), although theperts
probably indicate poor memory usage. Both tools track [geat
staleness and maintain per-object allocation and lassitsg, but
SWAT adds several words of space overhead per object, while
Sleigh saves space but cannot report sites that do not lealt ma
objects because of its statistical nature. For C programusatio-

instrumentation at object uses (reads) is calledaal barrier [7].
Prior work studies the overheads of a variety of read bariaed
finds lightweight barriers can be cheap (5 to 8% overhead en av
age), but more complex barriers are expensive (15 to 20% on av
erage) [1, 7, 33]. Bacon et al. use common subexpressioineim
tion to remove fully redundant read barriers, which red@esage
overhead from 6 to 4% on the PowerPC [1]. Since our barrier in-
cludes a load, store, and two multiplies, redundancy ektidm

still does not reduce its overhead to the levels in previoosw

Information Theory and Communication Complexity Bell en-
coding and decoding are related to concepts in informatien t
ory and communication complexity [13, 23]. For example, d-we
known idea in communication complexity is that two bitsggrcan
share just one bit with each other to determine if they areséimee
string: they both hash against the same public key, and aaioh
indicates they are different, while a match is inconclu§2a. Ex-
tracting random bits from two weakly random input sourcesl(8
encoding function) is a well-studied area in communicatom-
plexity [11]. We are not aware of any work that probabiliatig
encodes and decodes program behavior as Bell does.

7. Conclusions

Bit-Encoding Leak Location (Bell) is a novel approach foced-
ing per-object information from a known, finite set in a segit
and decoding the information accurately given enough thj&de
use Bell in Sleigh to find the program sites that allocated lastl

cate and custom-manage large chunks of memory [4], SWAT has used leaked memory. We show Sleigh’s output is directly ulsef

low space overhead. On the C benchmak1f, which allocates

many small objects, SWAT adds 75% space overhead. Many pro-

grams heap-allocate many small objects (24-32 bytes pecobpn
average) [14], where Bell's space-efficient mechanismreféeib-
stantial space advantages.

Leak Detection for Managed LanguagesJRockit [3], .NET
Memory Profiler [28], JProbe [27], LeakBot [24], and Cork]22e
among the many tools that find memory leaks in Java and C# pro-
grams. These tools use heap growth and heap differencingdo fi
objects that cause the heap to grow. JRockit provides lcevh@ad
trend analysis, which reports growing types to the userhAtdost
of more overhead, JRockit can track and report the instaacds
types that are pointing to growing types, as well as objdotat
tion sites. LeakBot takes heap snapshots and uses an offiése p
to compare the snapshots. It uses heuristics based on coteaton
paradigms to insert instrumentation at runtime.

These tools use growth as a heuristic to find leaks, which may
result in false positives (growing data structures or typasare not
leaks) and false negatives (leaks that are not growing)omtrast,
Sleigh uses staleness (time since last use) to find memokg lea
and thus finds all memory the application is not using. Sleigly
report false positives if non-leaking memory is not usedsfamile,
although these reports probably indicates poor memoryausag

SafeMem SafeMem employs a novel use of error-correcting code
(ECC) memory to monitor memory accesses in C programs, in or-
der to find leaks and catch some types of memory corruptioh [26
For efficiency, ECC memory monitors only a subset of objects,
which SafeMem finds by grouping objects into types and us-
ing heuristics that identify potentially leaking types.f&dem
requires some hardware and operating system support, agere
Sleigh’s software approach offers comparable overheadigsam-
plemented in the compiler and virtual machine.

Instrumentation Optimization Sleigh uses data-flow analysis to
find partially and fully redundant instrumentation at objeses,
and it removes fully redundant instrumentation (Sectid).3The

for fixing a leak in SPEC JBB2000 and a previously unfixed leak
in Eclipse, although enough objects must leak before Slesgh
ports key sites. Sleigh incurs no per-object space overtreadr
implementation and has low time overhead, making it sugtddn
production runs.

Bell solves a general problem and can be applied to othei-appl
cations amenable to statistical per-object informatioell Bould
encode per-object allocation sites in a growth-based les&cd
tor for just 1% overhead (Figure 9). It could be applied toeoth
forms of profiling that use per-object information, such exfifing
lifetimes of allocation sites for pretenuring [21]. WhileBneeds
many object instances to identify a site accurately, it catermnine
that a single object hasot been encoded together with a partic-
ular site: an object and site that do not match were definitety
encoded together, while a match is inconclusive. Bell efiecom-
promise between accuracy and overhead that may be appéaling
some applications.

A. Avoiding False Positives and Negatives

Section 2.2 describes how Bell avoids false positives byejrt-

ing sites that match less thangp objects, and how weeding out
some sites requires that a site have been encoded togetheatwi
leastnpip objects to be almost certainly reported. This section de-
scribes how we computegp andnmin.

To computenpp, we use the fact that.gjq (the number of ob-
jects that match a site) for a site encoded together with fectd)
can be represented with a binomially-distributed randoniaisée
X with n trials and% probability of success.X is binomially dis-
tributed since whether a particular object matches thesae in-
dependent event.) Solving fetpp in the following equation gives
the threshold needed to avoid reporting a single site ase fasi-
tive with high probability (99%):

1—-Pr(X > me) > 99%

We want to avoid reportingnyfalse positive sites, so we solve for
mpgp in the following equation:



[1— Pr(X > mpp)]'S€% > 99%

where|siteg is the number of possible sites.

Usingmpgp, we computeymin as follows. Given a site encoded
together withn i objects, we model the number of matches for
the site as a binomially-distributed random variablevith n trials
and probability of succes§(n + nmin)/n (because the expected
value ismgjte = nmin + 37 — 7min) = 3(7 + nmip)). We
solve fornm,in in the following equation (note thabpp is fixed,
andnm;n, is implicitly in the equation as part af’s probability of
success):

1—-Pr(Y > me) > 99.9%

Before decoding, Sleigh solves fongp and mpjn using the
Commons-Matlibrary [12].
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