
1

1

The ParaScope Parallel Programming EnvironmentKeith D. Cooper Mary W. Hall Robert T. Hood Ken KennedyKathryn S. McKinley John M. Mellor-Crummey Linda TorczonScott K. WarrenSeptember 11, 1992

�This research was supported by the CRPC (Center for Research on Parallel Computation, a National Science FoundationScience and Technology Center), DARPA through ONR grant N0014-91-7-1989, the State of Texas, IBM corporation, and aDARPA/NASA Research Assistantship in Parallel Processing, administered by the Institute for Advanced Computer Studies,University of Maryland. Keith D. Cooper, Ken Kennedy, Kathryn S. McKinley, John M. Mellor-Crummey, and Linda Torczonare with the Department of Computer Science, Rice University, Houston, TX 77251-1892. Mary W. Hall is with the Center forIntegrated Systems, Stanford University, Stanford, CA 94305. Robert T. Hood is with Kubota Paci�c Computer, Inc., 2630Walsh Avenue, Santa Clara, CA 95051-0905. Scott K. Warren is with Rosetta, Inc., 2502 Robinhood, Houston, Texas 77005.2

AbstractThe ParaScope parallel programming environment, developed to support scienti�c programming of shared-memory multiprocessors, includes a collection of tools that use global program analysis to help users developand debug parallel programs. This paper focuses on ParaScope's compilation system, its parallel programeditor, and its parallel debugger. The compilation system extends the traditional single-procedure com-piler by providing a mechanism for managing the compilation of complete programs. Thus ParaScope cansupport both traditional single-procedure optimization and optimization across procedure boundaries. TheParaScope editor brings both compiler analysis and user expertise to bear on program parallelization. Itassists the knowledgeable user by displaying and managing analysis and by providing a variety of interac-tive program transformations that are e�ective in exposing parallelism. The debugging system detects andreports timing-dependent errors, called data races, in parallel program executions. The system combinesstatic analysis, program instrumentation, and run-time reporting to provide a mechanical system for isolat-ing errors in parallel program executions. Finally, we describe a new project to extend ParaScope to supportprogramming in Fortran D, a machine-independent parallel programming language intended for use withboth distributed-memory and shared-memory parallel computers.

3

1 IntroductionComputation is assuming a key role in the practice of science and engineering. Mathematical models runningon today's most powerful computers are replacing physical experiments. Wind tunnels have yielded toaerodynamic simulation. Automotive design relies on computer graphics rather than on clay prototypes.Computer-based models are at the heart of current work in climate modeling, oil recovery, gene sequencing,and bio-remediation.In large part, this computational revolution is the result of the dramatic increases in available computerpower over the last �fteen years. Increased computing power helps in two ways. First, it makes new problemsamenable to computer modeling. Second, it allows better solutions to existing problems. For example, two-dimensional models can be replaced with three-dimensional versions. Between these two trends, the demandfor ever faster computers to support scienti�c applications will continue unabated into the next century.The technology used to fabricate the processing elements used in high-performance machines is approach-ing physical device limits. To get signi�cant improvements in computing speed, system designers are turningto parallelism. Already, the most powerful scienti�c computers, like the Thinking Machines CM-5 and theIntel Paragon XP/S, rely on aggregating together many hundreds or thousands of processors. At the sametime, parallelism is appearing on the desk-top. Several companies have introduced multiprocessor UNIXworkstations; more will appear. Within several years, we expect to see small-scale multiprocessors on asingle chip, perhaps four processors and a shared cache.Parallel machines have been around for more than two decades. In the last ten years, commercialmultiprocessors have become common. Yet, surprisingly few applications have been implemented on thesemachines. Why? Because parallel machines are di�cult to program. As with a classical sequential computer,the programmermust specify precisely how to perform the task. Additionally, the programmer must considerthe impact of concurrent execution on the program's correctness. Finally, the e�ciency of the resultingprogram depends on many complex and machine-speci�c facts.If parallel machines are to be successful, we must �nd better ways to program them. Ideally, no addi-tional programming would be needed|the compiler would automatically translate programs written in aconventional language like Fortran 77 so that they execute e�ciently on a parallel machine. In pursuit of thisgoal, several research projects and prototypes have been built to investigate automatic parallelization. Theseinclude Parafrase at the University of Illinois [1], PFC at Rice University [2], PTRAN at IBM Research [3]and SUIF at Stanford University [4]. In addition, several commercial systems, such as Vast by Paci�c Sierra,KAP by Kuck and Associates, and compilers by Alliant, Convex, and Cray, perform automatic paralleliza-tion. While these systems achieve impressive results for some programs, they fail to �nd parallelism thatexists in others. 4

The parallelizing compiler fails because it must take a conservative approach. If, for some loop nest,the compiler cannot prove that parallel execution produces the same results as sequential execution, it mustgenerate the sequential version. Often, the compiler is unable to prove the safety of parallel executionbecause it cannot determine the values of variables used in subscript expressions. For example, the variablesmight be passed in as parameters or read in as data. Frequently, the programmer knows the values of thesevariables, either exactly or approximately. Thus, the compiler often fails to �nd parallelism in loops thatthe programmer knows to be parallelizable. For this reason, it seems unlikely that automatic techniquesby themselves will provide a comprehensive solution to the parallelization problem. It will be necessary forprogrammers to be involved in the speci�cation of parallelism.Given the need for programmer involvement, we need a language for explicit speci�cation of parallelism.Usually, these take the form of extensions to standard Fortran. For shared-memory parallel computers,a typical extension permits the programmer to specify one or more loops that should execute in parallelwithout synchronization between iterations. Parallel Computer Forum (PCF) Fortran is an example of thiskind of extension [5]. It lets the programmer asserts that a loop is to run in parallel, even if the compiler'sanalysis does not support this decision.Unfortunately, programmer-speci�ed parallelism can be incorrect. The programmer can specify parallelexecution for a loop that does not have independent iterations. For example, di�erent iterations of the loopcan share a variable, with at least one iteration writing to the variable. The result of executing this loopdepends on the run-time scheduling of the iterations. With one schedule, it may get the same results assequential execution; another schedule might produce di�erent values. Such schedule-dependent problems,or data races, are extremely di�cult to �nd. This phenomenon makes debugging parallel programs hard.Because it is easy to make mistakes in parallel programs and hard to �nd them, programmers will needsubstantial help to write and maintain correct parallel programs. One way to provide this help is to makethe deep program analysis of parallelizing compilers available to the programmer in an understandable form.With such information, the programmer can concentrate on those program areas that the compiler leftsequential but the programmer knows are parallel. The tool can provide precise information about the factsthat prevented it from generating parallel code. Automatic vectorization systems rely on this idea. Theyprovide the user with comments about which loops can not be vectorized and suggestions on how to overcomethe problems. This frees users from analyzing every detail and allows them to focus on the speci�c problemsbeyond the compiler's abilities.Taken together, these forces are creating a marketplace for parallel applications and the tools to createthem. The ParaScope programming environment is designed to present the results of deep compiler analysisto the programmer. It provides three kinds of assistance, It helps determine whether a parallelization strategypreserves the meaning of a program. It helps correctly carry out a parallelization strategy. It helps �nd5

errors introduced during parallelization. These functions are embedded in the three major components ofthe ParaScope environment.(1) The ParaScope compilation system is designed to permit compiler analysis of whole programs ratherthan single modules. It provides more precise information about program variables and carries outcross-procedural optimizations without sacri�cing all of the bene�ts of separate compilation.(2) The ParaScope editor is an intelligent Fortran editor designed to help the user interactively parallelizea program. It presents the user with the results of sophisticated compiler analysis and o�ers a varietyof useful correctness-preserving transformations. Since it permits the user to consider alternative par-allelization strategies and override the results of analysis, it can be thought of as a tool for exploratoryparallel programming.(3) The ParaScope debugging system is a complete source-level debugger. It includes a mechanical methodfor locating all data races in a program with respect to a given data set. It can be used for programswritten in a useful subset of PCF Fortran.Although several research and production systems provide some features found in the ParaScope environment[6, 7, 8], ParaScope is unique for its integration of these functions into a uni�ed system.The next three sections of this paper provide an overview of the issues, problems, and methods that havearisen during the implementation of the three ParaScope components described above. The �nal sectiondescribes several directions for further work, much of it aimed at providing adequate support for Fortran D,a language for machine-independent parallel programming.2 The ParaScope Compilation SystemThe overall goal of the ParaScope project is to support the development and compilation of parallel programs.The system provides an environment where each tool has access to the results of sophisticated programanalysis and transformation techniques. In particular, the tools have been designed for e�cient analysis andoptimization of whole programs.Traditionally, compiler-based analyzers have limited their attention to single procedures. This kind ofanalysis, called global or intraprocedural analysis, yields substantial improvement on scalar machines. Asthe architecture of high-performance machines has shifted toward large-scale parallelism, the compiler's taskhas become more complex. To mitigate the overhead of startup and synchronization of processes on modernparallel machines, the compiler must �nd large program regions that can be run in parallel. Striving for largegranularity parallelism has a natural consequence | the compiler must look for parallelism in regions of theprogram that span multiple procedures. This kind of analysis is called whole program or interproceduralanalysis. 6

2.1 Dependence AnalysisFrom a compiler's perspective, the key to understanding the behavior of parallel programs lies in under-standing the patterns of reference to data. For this reason, the compiler performs dependence analysis tolocate the potential data and control dependences within a program [9, 10, 11, 12]. A data dependence ex-ists between two memory references if they can access the same location. In the following code fragment,dependence analysis would show that the value stored into a on iteration i is used in both iteration i anditeration i + 2.do i = lb to ub by 1a[i] = � � �� � �� � � = a[i] + a[i-2]endFor scalar variable references, the results of data-dependence analysis are equivalent to those produced byclassical data-
ow analysis techniques. For subscripted variable references, dependence analysis providesmuch sharper information.Control dependences provide a concrete representation for the relationship between control
ow tests in aprogram and the execution of individual statements. For example, in the following code fragment, statementS1 is control dependent on the if statement, while S2 is control dependent only on the loop header.do i = lb to ub by 1if b[i] 6= 0 thenS1: c[i] = c[i] / b[i]S2: c[i] = 0.5 * c[i] + c[i+1]endControl dependences are a compact and precise way of representing the relationship between the values ofcontrol-
ow expressions and the execution of individual statements.To provide a concrete representation, compilers build a dependence graph. Nodes in the graph representindividual references in the code. Edges correspond to individual dependences. Edges are directed. Thus, avalue produced at the source is used at its sink.Dependences play a critical role in the construction, compilation, and debugging of parallel programs.The dependences in a program de�ne a partial order on the execution of its statements; a correct executionof the parallel program must preserve that order. If the endpoints of a dependence appear in concurrentlyexecuting threads, then the corresponding memory accesses may occur out of order, resulting in incorrectprogram execution. Compilers use control and data dependences to prove the safety of transformations thatchange the control-
ow in a program.To perform dependence analysis, pairs of references are tested to determine if they can access the samememory location. ParaScope's dependence analysis applies a hierarchy of tests on each reference [13]. It7

starts with inexpensive tests that can analyze the most commonly occurring subscript references. Moreexpensive tests are applied when the simpler tests fail to prove or disprove dependence.Automatic parallelizers try to transform the program so that the iterations of a loop execute in parallel.Loop-level parallelism is attractive for two reasons. First, in many loops, the amount of work per iterationis approximately �xed; this characteristic produces a roughly balanced workload inside a parallel region.Second, loop-based parallelism is often scalable; that is, as the number of processors increases we canincrease the program's problem size proportionately and expect roughly the same processor utilization.The compiler uses the computed dependence information to determine if a loop's iterations can safelyexecute in parallel. A dependence is loop-carried if its endpoints lie in di�erent iterations of the loop. Loop-carried dependences inhibit parallelization of the loop. Dependences that are not loop-carried are termedloop-independent; such dependences would exist without the surrounding loop nest. In the �rst example,the dependence between a[i] and a[i-2] is loop-carried, while the dependence between the two referencesto a[i] is loop-independent.Dependence analysis was originally developed to help compilers automatically discover opportunities forvectorization. These early dependence-based compilers were limited to intraprocedural analysis. For vector-ization, intraprocedural techniques were usually su�cient; good vectorizing compilers produce substantialimprovements by discovering a single parallel loop and making it the innermost loop in a loop nest.Unfortunately, pro�table parallelism is harder to �nd. To o�set the increased startup and synchronizationcosts of parallel execution requires larger and deeper loop nests that contain more computation. Thiscomplicates program analysis in several ways.1. The compiler may need to combine the bodies of several procedures to get the critical size required toamortize overhead.2. The likelihood that one or more loops in a loop nest contain a procedure call rises with the size of theregion being considered.3. As the region grows larger, so do the chances for discovering one or more dependences that would ruleout parallel execution.The answer to each of these problems is the same { the compiler needs analytical techniques that enable itto reason about the behavior of regions larger than a single procedure. A combination of whole programanalysis and transformation can supply additional information and context about the program that allowsthe dependence analyzer to compute sharper information. For example, loop bounds are often passed asparameters, particularly in libraries of numerical code. Knowing the constant value of the loop bound maylead to more precise dependence information. 8

compositioneditorParaScopeeditor programrepository programcompilermodulecompilerFigure 1 The ParaScope compilation system.2.2 The Program CompilerThe design of the ParaScope compilation system has been shaped by the decision to perform whole programanalysis and optimization. The compiler has been divided into two distinct components: the programcompiler and the module compiler. The program compiler deals with issues that are interprocedural in theirscope; in contrast, the module compiler handles the detailed job of tailoring individual procedures to thetarget machine. Through ParaScope's central repository, the program compiler has access to a description ofthe entire program being compiled, to the abstract syntax tree (AST) for any of its constituent procedures,and to annotations associated with either the program or its procedures. Example annotations are theprocedure's symbol table, the set of call sites that occur within a procedure, and a representation of the loopnesting structure and its relationship to call sites. More complex annotations include a data-dependencegraph for each procedure and information about interprocedural constants.Figure 1 shows the relationships between the various components of the ParaScope compilation system.Cooperation between the tools, coordinated through a central repository where the tools store derivedinformation, leads to a more e�cient implementation of interprocedural techniques [14]. The ParaScopeeditor derives information about individual procedures. The composition editor lets the user specify theindividual procedures to be included in a program; it produces information that describes the set of possibleprocedure invocations. Using this information as input, the program compiler1. computes interprocedural data-
ow information,2. decides where to perform interprocedural optimizations (see Section 2.4), and3. determines which procedures must be recompiled in response to an editing change.It employs two rules in the recompilation analysis:1. If some procedure p has been changed since its last compilation, it will be recompiled.9

2. If the interprocedural environment in which p was last compiled has changed in a way that couldinvalidate an optimization performed, p will be recompiled.Finally, the module compiler is invoked to produce optimized object code for modules that must be recom-piled.The analysis performed by the program compiler produces information that relates the entire programto each of its component procedures. Thus, the code and some of the annotations are a function of theprogram that provided the context for the compilation. In the database, program-speci�c objects must beassociated with the program. Only objects and annotations that are independent of any context programare associated with the procedure.Building on this framework, we plan to build a prototype source-to-source parallelizer for shared-memorymultiprocessors [15]. Using the information produced by the program compiler and a performance estimator,it will apply a combination of interprocedural transformations and parallelism-enhancing transformations toprovide an initial parallel program [16, 17, 18].The next two subsections describe how the program compiler computes interprocedural data-
ow infor-mation and how it applies interprocedural transformations. Recompilation analysis is handled using methodsdescribed by Burke and Torczon [19].2.3 Interprocedural AnalysisInterprocedural data-
ow analysis addresses several distinct problems. These include discovering the pro-gram's dynamic structure (call graph construction), summarizing side-e�ects of executing a procedure call(summary analysis, regular section side-e�ect analysis, and kill analysis), understanding the interplay be-tween call-by-reference parameter passing and the mapping of names to memory locations (alias analysis),and discovering when a variable has a value that can be derived at compile time (constant propagation andsymbolic value analysis). This section presents a high-level overview of the methods used in ParaScope toaddress these problems.Call graph construction. The fundamental structure used in interprocedural data-
ow analysis is theprogram's static call graph. Its nodes represent procedures; it has an edge from x to y for every call sitein procedure x that invokes procedure y. In the absence of procedure-valued variables, the call graph canbe built in a single pass over the program. However, most programming languages include some form ofprocedure-valued variables; this feature complicates the construction process.The program compiler uses an algorithm due to Hall and Kennedy to construct an approximate call graphfor languages with procedure-valued parameters [20]. For such languages, the procedure variables may onlyreceive their values through the parameter passing mechanism. Building the call graph involves locating thepossible bindings for the procedure parameters, a problem similar to constant propagation (see below).10

To provide information about loop nests that span procedure calls, it augments the call graph with nodesand edges that represent loops in a program. If x calls y from within some loop l, there will be an edge fromthe node for x to a node for l and from there to the node for y.Summary analysis. The program compiler annotates each edge in the call graph with summary sets thatdescribe the possible side e�ects of executing that call. In particular, each edge e has two associated sets:1. MOD(e) contains those variables that might be modi�ed if the call is taken, and2. REF(e) contains those variables that might be referenced if the call is taken.ParaScope computes
ow-insensitive summary information; that is, the MOD set computed for a call containsall variables modi�ed along some path from the call. (In contrast, a
ow-sensitive version of MOD wouldcontain only those variables modi�ed along every path from the call.) The program compiler derives MODand USE sets by solving a set of simultaneous equations posed over the call graph or one of its derivatives [21].Regular section side-e�ect analysis. Classical summaryanalysis techniques treat array elements naively| they deal only with the entire array. For example, a 2 MOD(p) asserts that one or more elements ofthe array a may be modi�ed by a call to p. It might be that every element of a is always assigned by p.Alternatively, p might assign only to a[1,1]. Classical side-e�ect analysis does not distinguish between thesecases. Because of this lack of precision, classical MOD and REF sets produce only limited improvement inthe precision of dependence information for array subscripts.To provide better information about side e�ects to arrays, the program compiler can compute a morecomplex form of summary information known as regular sections [22]. The basic idea is to replace thesingle-bit representation of array side e�ects with a richer lattice that includes the representation of entiresubregions of arrays. A regular section is simply a subregion that has an exact representation in the givenlattice.The following example illustrates this idea. Figure 2 displays a lattice of reference patterns for an arraya. Here, the regular sections are single elements, whole rows, whole columns, and the entire array. Note thati, j, and k are arbitrary symbolic input parameters to the call. Thus, for a procedure that modi�ed columni of a, the regular section MOD set would contain a descriptor a[*,i].We are implementing regular section side-e�ect analysis in the program compiler. It has been implementedin the PFC system since 1989; our experience with that implementation shows that the analysis is bothe�cient and e�ective [23].Kill analysis. An important part of determining whether a loop can be run in parallel is the identi�cationof variables that can be made private to the loop body. In the following example, the index variable i canbe made private in the do loop, while a must be shared.11

a[i,j] a[k,j] a[k,l]a[*,j] a[k,*]a[*,*]Figure 2 A simple regular section side-e�ect lattice.do i=1,na[i]=f(a[i]-1)endModi�cations to private variables during one iteration of the loop do not a�ect other iterations of the loop.For this reason, dependences involving private variables do not inhibit parallelism.To locate private variables, the compiler can perform KILL analysis. We say that a value is killed ifit is rede�ned along every path that leads to a subsequent reference. For scalar variables, intraproceduralKILL analysis is well understood. The interprocedural problem is intractable in general [24]; methods thatcompute approximate solutions have been proposed and implemented [25].As with summary analysis, computing KILL information is more complex for arrays than for scalarvariables [26, 27, 28]. In practice, some simple cases arise in loops. These are easier to detect than thegeneral case. For example, many initialization loops have the property that they de�ne every element ofsome array a, and no element is referenced before its de�nition. In this case, the compiler can conclude thatthe loop kills a. If the loop contains a procedure call, interprocedural propagation of KILL information maybe necessary.Experience suggests that KILL information on arrays, both interprocedural and intraprocedural, is im-portant in parallelizing existing applications [29, 30]. We plan to explore methods for approximating KILLsets for both arrays and scalars. The program compiler will be our implementation vehicle.Alias analysis. To give the module compiler more information about the run-time environment in which aprocedure will execute, the program compiler annotates each node in the call graph with an ALIAS set [31].For a procedure p, ALIAS(p) contains pairs of names. Each pair (x; y), where x and y are either formalparameters or global variables, is an assertion that x and y may occupy the same storage location on some12

invocation of p. As with the summary sets, the program compiler computes a conservative approximationto the actual set of aliases that might hold at run-time. Because it uses a formulation of the problem thatignores control
ow within a procedure, the analysis may include some alias pairs that do not really occurat run-time.The ALIAS computation is formulated as a set of simultaneous equations posed over the call graph andits derivatives [32].Constant propagation. Interprocedural constant propagation tags each procedure p in the call graphwith a set CONSTANTS that contains (name, value) pairs. Each pair asserts that name contains value onentry to the procedure, along all paths leading to an invocation of p. Additionally, it tags each edge e witha CONSTANTS set that contains (name, value) pairs. These pairs represent variables that are known to beset to a constant value as a result of executing the call.The algorithm used by the program compiler to derive CONSTANTS works by iterating over the pro-gram's call graph. To model the way that values pass through procedures, it uses a set of jump functions.These functions describe the relationship between the values of parameters that p passes out at a call siteand the values that p itself inherits from the routines that call it. Similarly, reverse jump functions areconstructed for each variable visible in the caller whose value the callee sets. Using the jump functions foreach procedure to model the transmission of values along edges in the call graph, the algorithm e�cientlyconstructs a conservative CONSTANTS set for each node and each edge. The complexity of the jump functionimplementation a�ects the type of constants actually found by the algorithm [33].Symbolic value analysis. Experience with dependence analyzers embedded in both research and com-mercial compilers has shown the value of symbolic analysis as a way of improving the precision of dependenceanalysis. In practice, the analyzer can often prove independence for two array references without knowingthe value of some variables that arise in the dependence test. Cases that arise include expressions like(y - y)/x where the system knows a value for x but not y. Here, the value of the expression is independentof y's speci�c value.ParaScope contains an analyzer that performs intraprocedural symbolic analysis. An analyzer thatperforms interprocedural symbolic analysis is nearing completion. The analysis extends traditional inter-procedural constant propagation to include propagation of symbolic values around the call graph. It usesgated static single assignment graphs to �nd values that are provably equal | a notion similar to the classicvalue numbering technique [34, 35].When symbolic analysis is complete, the program compiler will discover variables that have consistentsymbolic values. This happens during the interprocedural analysis phase; the results are recorded with the13

program in the repository. When the dependence analyzer is invoked to examine a procedure, it will checkthe database for symbolic information and use that information as a natural part of its tests.2.4 Interprocedural TransformationsFuture versions of the program compiler will automatically employ both interprocedural code motion andprocedure cloning to improve the program. Interprocedural code motion is a general term used to describetransformations that move code across a procedure boundary. Names are translated to model the e�ects ofparameter binding and to merge the name spaces. Inline substitution is a simple form of interprocedural codemotion [36]; it replaces a procedure call with a copy of the code for the called procedure. Loop extractionand loop embedding are two other forms of interprocedural code motion that the program compiler willuse [16]. Loop extraction pulls an outermost enclosing loop from a procedure body into a calling procedure;it is a form of partial inlining. Loop embedding is the inverse operation; it pushes a loop surrounding acall site into the called procedure. Procedure cloning lets the compiler produce multiple versions of a singleprocedure [37, 38]. Each call site of the procedure is assigned to a speci�c version of the procedure; thatversion can be tailored to the calling environment. Call sites with similar calling environments can share asingle version.The program compiler will use these transformations to create additional opportunities for pro�tableparallel execution. In particular, it will target loop nests that either span procedures or are hidden in acalled procedure. In keeping with ParaScope's focus on transforming loop nests, it will try to create moreloops with su�cient granularity and the right dependence structure for pro�table parallel execution. Thiscan be accomplished as follows:1. increasing granularity { granularity can be increased by optimizations such as loop interchange andloop fusion (see Section 3.1.4). Unfortunately, it is problematic to apply these transformations whenthe loops lie in di�erent procedures. Thus, the program compiler uses interprocedural code motion torelocate these loops.2. improving dependence information { experience shows that interprocedural information can improvethe precision of dependence analysis for loops that contain procedure calls [23, 39, 40, 41, 42]. Procedurecloning can improve the precision of some kinds of interprocedural data-
ow information, particularlyinterprocedural CONSTANTS sets [37].Interprocedural code motion and procedure cloning can expose additional parallelism and improve the run-time behavior of the program [16]. Unfortunately, these interprocedural techniques can have negative sidee�ects.� A study by Cooper, Hall, and Torczon using commercial Fortran compilers showed that inline substi-tution often resulted in slower running code [43, 44]. When this happened, secondary e�ects in theoptimizer outweighed any improvements from inlining. Inline substitution introduces recompilationdependences and increases average procedure size. It can increase the overall source code size andcompilation time. 14

� Loop embedding and extraction are limited forms of inlining designed to avoid some of the secondarye�ects cited above. However, these transformations still introduce recompilation dependences betweenthe involved procedures. Furthermore, procedure cloning is often required to create the right conditionsfor their application.� Procedure cloning does not move code across a call site, avoiding some of the secondary e�ects of inlinesubstitution. However, it still introduces recompilation dependences, increases source text size, andincreases overall compile time.Despite these negative e�ects, the program compiler should include these techniques in its repertoire becausethey can improve code that de�es other techniques. In applying them, the program compiler should considerboth the positive and negative e�ects. It should only apply interprocedural transformations when thepotential pro�ts outweigh the potential problems [45]. To implement this notion, the program compilershould:1. Locate focus points in the program. A focus point must have two properties:(a) a target intraprocedural optimization would be pro�table, if only it could be applied, and(b) supplying more context from other procedures would make application possible.2. Use a combination of interprocedural data-
ow information, interprocedural code motion, and proce-dure cloning to transform the focus point in a way that makes it possible to apply the target optimiza-tion.3. Apply the target optimization.Thus, the interprocedural transformations will be used exclusively to enable application of pro�table tar-get optimizations | in this case, parallelizing transformations. We call this strategy goal-directed inter-procedural optimization [45]. The e�ectiveness of this strategy in the context of parallelizing transformationswas tested in an experiment with the PERFECT benchmark suite. A goal-directed approach to parallel codegeneration was employed to introduce parallelism and increase granularity of parallel loops [16]. Becausethe approach proved to be e�ective, we plan to use this strategy in the planned prototype source-to-sourceparallelizer mentioned in Section 2.2.2.5 Application of Interprocedural TechniquesSeveral of the techniques described are also implemented in the Convex Applications CompilerTM. It per-forms regular section analysis and constant propagation, as well as the classical summary and alias analysis.It clones procedures to improve the precision of its CONSTANTS sets, and performs limited inline substi-tution. Metzger and Smith report average improvements of twenty percent, with occasional speedups by afactor of four or more [41].3 ParaScope EditorUpon completion, the compilation system described in Section 2 will be capable of automatically convertinga sequential Fortran program into a parallel version. A substantial amount of work has been conducted on15

the viability of this approach by researchers at Rice and elsewhere [1, 2, 3, 15, 46]. Ideally, automaticallyparallelized programs will execute e�ciently on the target architecture and users will not need to intervene.Although such systems can e�ectively parallelize many interesting programs, they have not established anacceptable level of success. Consequently, advanced programming tools such as the ParaScope editor arerequired to assist programmers in developing parallel programs.At the core of automatic parallelization is dependence analysis (see Section 2.1), which identi�es aconservative set of potential data race conditions in the code that make parallelization illegal. In general,the compiler cannot parallelize a loop or make transformations if doing so would violate a dependence andpotentially change the sequential semantics of a program. Dependence analysis is necessarily conservative { itreports a dependence if there is a possibility that one exists, i.e. is feasible. In some cases, it is quite obviousto a programmer that a reported dependence is infeasible and will not ever occur. In a completely automatictool, the user is never given an opportunity to make this determination. Automatic parallelizing systemsmust also make di�cult decisions about how and where to introduce parallelism; evaluating performancetradeo�s can be highly dependent on run-time information such as symbolic loop upper bounds. Again,programmers might be able to provide such information if only there were a mechanism to communicate itto the compiler.The ParaScope editor, Ped, serves this purpose by enabling interaction between the compiler and theprogrammer. The compilation system, described in Section 2, computes a wealth of information about theprogram. The sheer volume of information dominates the program size; there is more information than theprogrammer can reasonably study. Ped acts as a sophisticated �lter; it provides a meaningful display ofthe program dependences calculated by the compiler. Furthermore, the tool assists the programmer withparallelization and the application of complex code transformations. The programmer re�nes conservativeassumptions by determining which dependences are valid and then selecting transformations to be applied.The editor updates dependence information and source code to re
ect any such programmer actions. Thecompiler may then use these modi�cations when generating code.Research on Ped began in the late 1980s. Its interface, design and implementation have been discussedin detail in other papers [47, 30, 48, 49]. This section describes a new version of the ParaScope editor fromthe user's point of view and discusses new research directions for Ped. We sketch also the design issuesinvolved in constructing such a tool and relate how it integrates with the compilation system.3.1 Ped FunctionalityPed supports a paradigm called exploratory parallel programming, in which the user converts an existingsequential Fortran program into an e�cient parallel one by repeatedly �nding opportunities for parallelismand exploiting them via appropriate changes to the program [48, 49]. This process involves a collaboration16

in which the system performs deep analysis of the program, the user interprets analysis results and thesystem helps the user carry out changes. Speci�cally, the user selects a particular loop to parallelize andPed provides a list of dependences that may prevent direct parallelization. The user may override Ped'sconservative dependence analysis. Otherwise, the user may consider applying a program transformationto satisfy dependences or introduce partial parallelism of the loop. On request, Ped gives the user adviceand information on the application of transformations. If the user directs, Ped performs transformationsautomatically and updates the dependence information.Ped uses three user interface techniques to manage and present the voluminous and detailed informationcomputed by the program compiler: (1) a book metaphor with progressive disclosure of details, (2) user-controlled view �ltering, and (3) power steering for complex actions. The book metaphor portrays a Fortranprogram as an electronic book in which analysis results are treated as annotations of the main source textanalogous to a book's marginal notes, footnotes, appendices, and indices [50]. Progressive disclosure presentsdetails incrementally as they become relevant rather than overwhelming the user with all details at once [51].View �ltering acts as an electronic highlighter to emphasize or conceal parts of the book as speci�ed by theuser [52]. The user can choose prede�ned �lters or de�ne new ones with boolean expressions over prede�nedpredicates. Power steering automates repetitive or error-prone tasks, providing unobtrusive assistance whileleaving the user in control.The layout of a Ped window is shown in Figure 3. The large area at the top is the source pane displayingthe main Fortran text. Beneath it are two footnotes displaying extra information, the dependence pane andthe variable pane. All three panes operate in basically the same way. Scroll bars can be used to bring otherportions of the display into view, prede�ned or user-de�ned view �lters may be applied to customize thedisplay, the mouse may be used to make a selection, and menu choices or keyboard input may be used toedit the displayed information. The Fortran text, the dependence information, and the variable informationare each described below in terms of the information displayed, the view �ltering, and the type of edits thatmay be performed. Section 3.1.4 describes Ped's transformations, which provide power steering for complexsource edits commonly encountered in parallelization. Section 3.1.5 presents Ped's approach to updatingdependence information.3.1.1 Fortran Source CodeFortran source code is displayed in pretty-printed form by the source pane. At the left are marginal anno-tations showing the ordinal number of each source line, the start of each loop, and the extent of the currentloop (see Section 3.1.2). In the program text, placeholders used in structure editing are shown in italics andsyntax errors are indicated with boldface messages. Manually controlled ellipsis enables the user to concealand later reveal any range of source lines. 17

Figure 3 The ParaScope editor.18

Source view �ltering can be based on either the text or the underlying semantics of each source line.For example, source view �lter predicates can test whether a line contains certain text, whether the linecontains a syntax or semantic error, whether the line is a speci�cation statement, an executable statement,a subprogram header, or a loop header.The source pane allows arbitrary editing of the Fortran program using mixed text and structure editingtechniques [53]. The user has the full freedom to edit character by character, or at any time to use the powersteering a�orded by template-based structure editing. During editing, Ped directly constructs an abstractsyntax tree (AST) representation of the procedure; this internal form for procedures is used throughout theenvironment. The AST representation of source means that the code is always parsed. This feature hasseveral important bene�ts. Analysis operates on the parsed trees, which maintain all appropriate semanticinformation needed by the analysis algorithms. Similarly, program transformations are straightforwardmanipulations of the tree. Incremental parsing occurs in response to editing changes, and the user is informedof any syntactic or semantic errors.3.1.2 Dependence InformationThe extensive compiler analysis described in Section 2 produces program dependence information that isrevealed in the dependence pane. The display contains a list of dependences in tabular form, showing eachdependence's source and sink variable references as well as some characterizations of the dependence usefulfor program transformations. Because Fortran programs may contain an unwieldy number of dependences,Ped uses progressive disclosure of dependences based on a current loop. When the user expresses interestin a particular loop by clicking on its loop marker in the source pane, that loop's dependences immediatelyappear in the dependence pane. In addition to the dependence pane's tabular view, the source pane o�ers agraphical view of dependences. Each dependence is shown as a red arrow from its source variable referenceto its sink variable reference, as illustrated in Figure 3. Showing arrows for all of a loop's dependencescan produce an unintelligible jumble of red, so Ped provides a second level of progressive disclosure. Forexample, the user can choose whether to see arrows for all listed dependences, for only the dependencesa�ecting a selected range of source code, or for just one dependence selected in the dependence pane. InFigure 3, the user has selected a single dependence which is re
ected in the source and dependence panes.Dependence view �lter predicates can test the attributes of a dependence, such as its type, source andsink variable references, loop nesting level, and its source and sink line numbers in the Fortran text. Inaddition, predicates can test the user-controlled mark and reason attributes described in the next paragraph.By �ltering the dependence list, the user may examine speci�c dependence relationships more clearly.Naturally the dependence pane forbids modi�cation of a dependence's computed attributes such as type,source, and sink, because these are implied by the Fortran source code. But the dependence pane does permit19

an important form of editing known as dependence marking. Because dependence analysis is conservative, thelist of dependences may include ones that are infeasible or that do not a�ect the program's meaning. Usersmay sharpen Ped's dependence analysis by classifying each potential dependence as accepted or rejected .Each dependence starts out as proven or pending .If Ped proves a dependence exists with exact dependence tests [13], the dependence is marked as proven;otherwise it is marked pending. When users mark dependences as rejected, they are asserting that the de-pendences are not feasible and that the system should ignore them. Therefore, rejected dependences aredisregarded when Ped considers the safety of a parallelizing transformation. However, rejected dependencesare not actually deleted because the user may wish to reconsider these at a later time. Instead, the classi�ca-tion of each dependence is stored in a special mark attribute which the user can edit. If desired, the user canuse the reason attribute to attach a comment explaining the classi�cation decision. A Mark Dependencesdialog box provides power steering for dependence marking by allowing the user to classify in one step anentire set of dependences that satisfy a chosen �lter predicate.3.1.3 Variable InformationIn Section 2.3, we highlighted the importance of locating variables that can be made private to the loop body.Brie
y, private variables do not inhibit parallelism. The program compiler locates many of these for scalarvariables using local KILL analysis. However, this classi�cation is conservative and may report a variable asshared even if it may legally be made private. The variable pane in Ped enables users to peruse the resultsof this analysis and to correct overly conservative variable classi�cations for array and scalar variables.The variable pane displays in tabular form a list of variables in the current loop, showing each variable'sname, dimension, common block if any, and shared or private status. As with dependences, progressivedisclosure is based on the current loop, �lter predicates can test any of the attributes of a variable, andmodi�cation of a variable's computed attributes is forbidden. However, the variable pane also provides animportant form of editing known as variable classi�cation.Variable classi�cation enables the user to edit a variable's shared/private attribute and attach a commentin its reason attribute. A Classify Variables dialog box (analogous to Mark Dependences) provides powersteering for variable classi�cation. In this way, the user may sharpen variable analysis by asserting a variableis private when appropriate. This reclassi�cation eliminates dependences from a loop and may enableparallelization.3.1.4 TransformationsPed provides a number of interactive transformations that can be applied to programs to enhance or exposeparallelism. Transformations are applied according to the power steering paradigm: the user speci�es the20

transformations to be made, and the system provides advice and carries out the mechanical details. Thesystem advises whether the transformation is applicable (i.e., make semantic sense), safe (i.e., preservesthe semantics of the program) and pro�table (i.e., contributes to parallelization). The complexity of thesetransformations makes their correct application di�cult and tedious. Thus, power steering provides safe,correct and pro�table application of transformations. After each transformation, the dependence graph isdirectly updated to re
ect the e�ects of the transformation.Ped supports a large set of transformations that have proven useful for introducing, discovering, andexploiting parallelism. Ped also supports transformations for enhancing the use of the memory hierarchy.These transformations are described in detail in the literature [36, 54, 55, 56, 49, 57, 58, 59]. Figure 4 showsa taxonomy of the transformations supported in Ped.Reordering transformations change the order in which statements are executed, either within or acrossloop iterations. They are safe if all dependences in the original program are preserved. Reordering trans-formations are used to expose or enhance loop-level parallelism. They are often performed in concert withother transformations to introduce useful parallelism.Dependence breaking transformations are used to satisfy speci�c dependences that inhibit parallelism.They may introduce new storage to eliminate storage-related dependences, or convert loop-carried depen-dences to loop-independent dependences, often enabling the safe application of other transformations. If allthe dependences carried by a loop are eliminated, the loop may be executed in parallel.Figure 4 Transformation taxonomy in Ped.ReorderingLoop Distribution Loop InterchangeLoop Skewing Loop ReversalStatement Interchange Loop FusionDependence BreakingPrivatization Scalar ExpansionArray Renaming Loop PeelingLoop Splitting AlignmentMemory OptimizingStrip Mining Scalar ReplacementLoop Unrolling Unroll and JamMiscellaneousSequential $ Parallel Loop Bounds AdjustingStatement Addition Statement Deletion21

Memory optimizing transformations adjust a loop's balance between computation and memory access tomake better use of the memory hierarchy and functional pipelines. These transformations have proven to beextremely e�ective for both scalar and parallel machines.3.1.5 Incremental ReanalysisBecause Ped is an interactive tool, e�cient updates to the program representations are essential to theusability of the tool. We have taken a simple approach to reanalysis in Ped that is based on the e�ect andscope of a change. After a change, Ped performs reanalysis as follows.1. If the e�ect of a change is known, Ped directly updates the e�ected dependence and program repre-sentations.2. If Ped can determine the scope of a change, Ped applies batch analysis to the e�ected region.3. If Ped cannot determine the scope of a change, Ped applies batch analysis to the entire procedure.For example, most of the structure program transformations in Ped have the advantage that their e�ectsare predictable and well-understood. Thus, after a transformation, Ped directly updates the dependencegraph and AST. These updates are very e�cient and fast in practice. However, they are speci�c to eachtransformation.Updates to the dependence graph after some simple edits, such as addition and deletion of assignmentstatements, are performed incrementally. In addition, if Ped can determine the scope of a change is limitedto a loop nest, then it performs batch analysis on just that nest. These strategies are incremental, but onlyin a very limited sense.After a complicated edit or large number of edits, reanalysis is di�cult because the e�ects can be extensive.As described in Section 2.1, the precision of dependence analysis relies on sophisticated data-
ow information.These updates may be very expensive in an interactive setting and in some cases, incremental analysis maybe more expensive than performing batch analysis for the e�ected procedures [28]. Therefore, after arbitraryprogram edits, Ped relies on e�cient batch algorithms rather than on a general incremental algorithm.Updates following edits must not only recalculate intraprocedural data-
ow and dependence information,but must also recompute interprocedural data-
ow information. Changes in interprocedural facts due to anedit in one procedure may cause the analysis of other procedures to be invalid. The program compilerdiscovers this type of inconsistency when it is invoked to analyze and compile a program (see Section 2.2).3.2 Ongoing ResearchThe ParaScope editor was originally inspired by a user workshop on PTOOL, a dependence and parallelprogram browser also developed at Rice [60, 61, 62]. Ped has in
uenced and been in
uenced by other22

parallel programming tools and environments, such as MIMDizer and its predecessor Forge by Paci�c Sierra[63, 64], Sigmacs in the Faust programming environment [65, 6], and Superb [8]. In addition, Ped hasbeen continually evaluated internally and externally by users, compiler writers, and user interface designers[66, 47, 30, 67].In the summer of 1991, we held a workshop on ParaScope to obtain more feedback from users andto further re�ne our tool [30]. Participants from industry, government laboratories, and supercomputingcenters used ParaScope to parallelize programs they brought with them. For the most part, these scienti�cprogrammers, tool designers, and compiler writers reported that the user interface and functionality wereappropriate to the task of parallelization. Their suggestions and experiences led us to target several areasfor future development.In the following three sections, we describe revisions to the ParaScope editor to further assist scienti�cprogrammers. We �rst present a method to assist users with the technology available from an automaticparallelizing system. Second, we discuss an alternative to the dependence deletion mechanism describedabove. This mechanism improves system response after editing changes. Finally, we describe improvementsto system response when interprocedural information changes.3.2.1 Combining Interactive and Automatic ParallelizationThe purpose of interactive tools like Ped is to make up for the shortcomings of automatic parallelization.However, the automatic parallelizer mentioned in Section 2.2 will contribute to knowledge about the e�ec-tiveness of transformation and parallelization choices that could be useful to the programmer. We plan tocombine the machine-dependent knowledge of the parallelizer and deep analysis of the program compilerwith the program-speci�c knowledge of the user.We propose the following approach for ParaScope [15]. The program is �rst transformed using theautomatic parallelizer. This source-to-source translation produces a machine-speci�c source version of theprogram. If the user is satis�ed with the resultant program's performance, then the user need not intervene atall. Otherwise, the user attempts to improve parallelization with Ped, incorporating information collectedduring parallelization. The parallelizer will mark the loops in the original version that it was unable toe�ectively parallelize. Using performance estimation information, it will also indicate to the user the loopsin the program where most of the time is spent, indicating to the user where intervention is most important.The user then makes assertions and applies transformations on these loops. In addition, the user may invokethe parallelizer's loop-based algorithms to �nd the best combinations of transformations to apply, providinginteractive access to the parallelizer's decision process.23

3.2.2 User AssertionsIn Ped, the dependence and variable displays assist users in perusing analysis and overriding conservativeanalysis. For example, when a user reclassi�es a variable as private to a loop, subsequent transformationsto that loop will ignore any loop-carried dependences. In addition, any dependences that the user classi�esas rejected are ignored by the transformations. These mechanisms enable users to make assertions aboutspeci�c dependences and variables. Unfortunately, the current interface is not rich enough. Consider thefollowing example:read *, kdo i = 1, mdo j = 1, na[i,j] = a[i,k] + 1b[i,j] = b[k,j] * a[k,j]enddoenddoThe value of k is unknown at compile time. Therefore, Ped conservatively reports dependences betweena[i,j] and a[k,j] and between b[i,j] and b[k,j], re
ecting the possibility that i could equal k on someiteration of the i loop. Similarly, dependences between a[i,j] and a[i,k] are reported, in case j couldequal k on some iteration of the j loop. If the user knew that k was not in the range of 1 to m and also notin the range 1 to n, then all dependences could be deleted. There is no convenient way to express this withthe existing dependence �ltering mechanism. The best approximation is to delete all dependences on a andb, but the user would still have to examine each dependence to justify that it was infeasible.Another problem with explicit dependence deletion is that it fails to capture the reasons behind the user'sbelief that a dependence does not exist. While the user can add a comment accompanying the dependence forfuture reference, this information is unavailable to the system. After source code editing, it is very di�cultto map dependence deletions based on the original source and program analysis to the newly modi�edand analyzed program. As a result, some dependences may reappear and programmers will be given anopportunity to reconsider them in their new program context.For these two reasons, we intend to include a mechanism in ParaScope that will enable users to makeassertions that can be incorporated into dependence testing. The assertion language will include informationabout variables, such as value ranges. All the dependences in the code above could be eliminated with theappropriate assertion about the range of the variable k. The programmer could determine the correctnessand need for this assertion by examining at most two dependences rather than all of them. Furthermore,by making the assertions part of the program, the system can derive the necessary information to recoverdependence deletions following edits. The user will be responsible for maintaining the validity of the asser-tions. 24

3.2.3 Reanalysis for Global ChangesPed's current incremental analysis is designed to support updates in response to changes during a singleediting session. This approach does not address the more di�cult issue of updating after global programchanges. More precisely, a programmer might parallelize a procedure p using interprocedural information,put p away, and edit other modules. Later, changes to procedures in the program may a�ect the validity ofinformation used to parallelize p.Consider some ways in which the user might make decisions based on interprocedural information: theuser may (1) designate a loop as parallel; (2) apply transformations to the program; and, (3) add assertionsto be used by dependence testing. Below, we describe the consequences of these changes.Parallel loops. When the user speci�es a loop as parallel in Ped, it is either because the system reportsno dependences are carried by that loop, or because the user believes reported loop-carried dependences tobe infeasible. Later, a change elsewhere in the program may cause the system to reanalyze the procedurecontaining this loop. If this analysis reports no loop-carried dependences for the same loop, the user'sprevious speci�cation is still correct. However, if new loop-carried dependences have been introduced, theprogrammer will need to be warned that the change may have resulted in an erroneous parallel loop.Structure transformations. The correctness of transformations may also depend on interproceduralinformation. Safe transformations are guaranteed to preserve the semantics of the program. However, editsare not. To determine if an edit that follows a transformation preserves the information that was needed tosafely perform the transformation is very di�cult. It requires maintaining editing histories and a complexmapping between a procedure and its edited versions.Rather than addressing this general problem, we will provide a compromise solution. When a transfor-mation is applied, the system will record the interprocedural information used to prove the transformationsafe. After reanalysis due to editing, the system can compare the new interprocedural information withthat stored previously. The system will warn of any changes to interprocedural information that might haveinvalidated transformations. The programmer will be responsible for determining the e�ects of these changeson the meaning of their program.Assertions and arbitrary edits. The programmer may also rely on interprocedural facts in derivingassertions or in making arbitrary edits. To allow the system to track the information that the programmerused, we could include assumptions about interprocedural information in the assertion language. Then, thesystem could warn the user when this information changes.25

4 Parallel Debugging in ParaScopeIf during the development of a shared-memory parallel Fortran program, the programmer directs the compilerto ignore a feasible data dependence carried by a parallel loop or parallel section construct, a data race willoccur during execution of the program for some input dataset. A data race occurs when two or more logicallyconcurrent threads access the same shared variable and at least one of the accesses is a write1. Data racesare undesirable since they can cause transient errors in program executions.Ignoring feasible dependences during program development is a real concern. Since dependence analysis isinherently conservative, often the dependence analyzer will report parallelism inhibiting dependences that cannever be realized at run time. Using Ped, programmers can examine dependences that limit opportunitiesfor parallel execution and manually reclassify those thought to be infeasible. Since errors in this classi�cationprocess are evident only at run-time, programmers need run-time support for helping them determine whenthey have mistakenly classi�ed a dependence as infeasible.Traditional debugging tools designed to support state-based examination of executing programs are ill-equipped to help locate data races. Since transient behavior caused by data races is only evident in programexecutions on shared-memory multiprocessors, using tools for state-based examination to detect data races isonly appropriate in this context. Unfortunately, inspecting live executions of programs on parallel machinescan perturb the relative timing of operations and change the set of execution interleavings that occur. Thus,the act of trying to isolate a data race causing erroneous behavior by halting an executing program andexamining its state can make evidence of the race vanish.A promising approach for pinpointing data races is to instrument programs to monitor the logical concur-rency of accesses during execution [68, 69, 70, 71, 72, 73]. With such instrumentation, a program can detectand report data races in its own execution. The ParaScope debugging system uses such a strategy to detectdata races at run time and supports automatic instrumentation of programs for this purpose.Using the ParaScope debugging system to detect data races requires little e�ort from a programmer. Theprogrammer simply directs the compilation system to add data race instrumentation when it compiles theprogram. If a data race occurs during any execution of an instrumented program, diagnostic output fromthe run-time library reports the pair of references involved in the race and the parallel construct carryingthe dependence that caused the race. If an instrumented program is run under control of the ParaScopesource-level debugger, each race detected is treated as a breakpoint at which the programmer may inspectthe state of the program to determine the conditions that caused the race to occur.For a restricted (but common) class of programs, the ParaScope debugging system guarantees that ifany data race can arise during some execution with a particular input data set, then at least one race1We use the term thread to refer to an indivisible unit of sequential work.26

will be detected for any execution using that input. This is an important property since it makes paralleldebugging tractable and frees programmers from needing to consider all possible execution interleavings forany particular input.The support for parallel debugging in ParaScope consists of several components:� a run-time library of routines that can detect if a variable access is involved in a data race duringprogram execution,� an instrumentation system that adds calls to the run-time library routines where necessary so thatdata races will be detected during execution, and� a graphical user interface that decodes data race reports from the run-time library and presents themin the context of an interactive source-language debugger.In the following sections, we describe each of these components of in more detail.4.1 Run-time Detection of Data RacesRun-time techniques for detecting data races fall into two classes: summary methods [74, 72, 73] that reportthe presence of a data race with incomplete information about the references that caused it, and accesshistory methods [69, 70, 71] that can precisely identify each of a pair of accesses involved in a data race. InParaScope, we use an access history method for detecting data races at run time since precise race reportsare more helpful to programmers.To pinpoint accesses involved in data races, access history methods maintain a list of the threads thathave accessed each shared variable and information that enables determination of whether any two threadsare logically concurrent. When a thread t accesses a shared variable V , t determines if any thread in V 'saccess history previously performed an access that con
icts with t's current access, reports a data race foreach such thread that is logically concurrent with t, removes from the history list information about anythreads that are no longer of interest, and adds a description of t's access to the access history. In the mostgeneral case, the length of a variable's access history may grow as large as the maximum logical concurrencyin the program execution.An open question in the development of run-time techniques for detecting data races is whether the timeand space overhead they add to program executions may be too great for the techniques to be useful inpractice. For programs with nested parallel constructs that use event-based synchronization to coordinateconcurrent threads, the worst case time and space overhead is proportional to the product of the numberof shared variables and the number of logically concurrent threads. Such high overhead would often beunacceptable to users. For our initial investigation into the feasibility of using run-time techniques forautomatically detecting data races, we have chosen to focus our e�orts on developing a run-time library27

to support a common but restricted class of programs for which data race detection can be accomplishedparticularly e�ciently. Speci�cally, we limit our focus to Fortran programs that� use nested parallel loops and sections to explicitly denote parallelism, and� contain no synchronization other than that implied by the parallel loop and section constructs.Such programs are known as fork-join programs. In the next two sections, we describe a model of concurrencyfor such programs and the properties of an e�cient protocol for detecting data races in their executions atrun-time.4.1.1 Modeling Run-time Concurrency in Fork-join ProgramsUpon encountering a parallel loop or section construct, a thread terminates and spawns a set of logicallyconcurrent threads (i.e., one for each loop iteration or section in the parallel construct). We call this operationa fork. Each fork operation has a corresponding join operation; when all of the threads descended from afork terminate, the corresponding join succeeds and spawns a single thread. A thread participates in nosynchronization operations other than the fork that spawned it and the join that will terminate it.The structure of concurrency in an execution of a fork-join program can be modeled by a concurrencygraph which is directed and acyclic. Each vertex in a concurrency graph represents a unique thread executinga (possibly empty) sequence of instructions. Each graph edge is induced by synchronization implied by a forkor join construct. A directed path from vertex t1 to vertex t2 indicates that thread t1 terminated executionbefore thread t2 began execution.Figure 5 shows a fragment of parallel Fortran and the corresponding graph that models concurrency duringits execution. Each vertex in the graph is labeled with the sequence of code blocks that are sequentiallyexecuted by the thread corresponding to the vertex. In Figure 5, the concurrency graph for each parallelloop is formed by linking in parallel the concurrency graph for each loop iteration. The concurrency graphfor iteration I=2 of the outermost parallel loop is formed by linking in series of the concurrency graphs forthe two loops nested inside that iteration.Two vertices in a concurrency graph represent logically concurrent threads in an execution of a programif and only if the vertices are distinct, and there is no directed path between them. To detect if a pairof con
icting accesses is involved in a data race, the debugging run-time system must determine if thethreads that performed accesses are logically concurrent. Rather than explicitly building a concurrencygraph representation at run time to make this determination, the run-time system assigns each thread alabel that implicitly represents its position in the concurrency graph. For this purpose, the system useso�set-span labeling, an on-line scheme for assigning a label to each thread in an execution of a program withfork-join parallelism [70]. By comparing the o�set-span labels of two threads, their concurrency relationshipcan be deduced. 28

[code block A]parallel do i=2,4[code block B]if (i.eq.2) thenparallel do j = 1,2[code block C]enddoendif[code block D]parallel do j=1,i[code block E]enddo[code block F]enddo[code block G]
AB B,D B,DC CDE EF E E EF E E E EFGFigure 5 A fragment of parallel Fortran and its corresponding concurrency graph.4.1.2 A Protocol for Detecting Data RacesIn contrast to other access history protocols described in the literature [69, 71], the run-time protocol used byParaScope to detect data races bounds the length of each variable's access history by a small constant that isprogram independent [70]. Bounding the length of access histories has two advantages. First, it reduces theasymptotic worst-case space requirements to O(V N), where V is the number of monitored shared variables,and N is the maximum dynamic nesting depth of parallel constructs. Second, it reduces to O(N) theasymptotic worst-case number of operations necessary to determine whether a thread's access is logicallyconcurrent with any prior con
icting accesses. However, since the protocol only maintains information abouta bounded number of accesses to each shared variable, information about some accesses to shared variableswill have to be discarded so as not to exceed the space bound. A concern is that discarding this informationmay cause a data race to escape detection.To guarantee that the ParaScope debugging system always reports a data race if any is present in anexecution, the race detection protocol used must be insensitive to the interleaving of accesses in an execution.In a previous paper [70], the following assertion is proven about the run-time protocol used by ParaScope:If an execution of a program with nested fork-join parallelism contains one or more data races,at least one will be reported.Proof of this assertion establishes that a bounded access history is su�cient for detecting data races inprograms with fork-join parallelism regardless of the actual temporal interleaving of accesses in an execution.29

With this condition, an execution will never be erroneously certi�ed as race free. Furthermore, if no race isreported during a monitored execution for a given input, then the program is guaranteed to be deterministicfor that input.Because the ParaScope debugging system uses an access history protocol with this property, it cansupport the following e�ective debugging strategy for eliminating data races from a program execution fora given input:1. Run the program on the given input using the monitoring protocol to check for data races involvingaccesses to shared variables.2. Each time a data race is reported (the access history protocol precisely reports both endpoints of therace), �x the cause of the data race, and re-execute the program with the same input.Since the access history protocol used by ParaScope reports data races (if any exist) regardless of the inter-leaving order, the protocol can be used to check for races in a program that is executed in a canonical serialorder. Executing programs serially while debugging is convenient as it provides the user with deterministicbehavior which simpli�es the task of determining the origin of variable values that indirectly caused a datarace to occur.4.2 Compile-time Support for Data Race DetectionDuring an execution, the access history protocol used by the debugging run-time system determines if adata race exists between any two monitored accesses of a shared variable. The task of the compile-timeinstrumentation system is to guarantee that for each access potentially involved in a data race, there is acorresponding call to the proper run-time support routine to test for the presence of a race. Rather thaninstrumenting each access to a shared variable, the debugging instrumentation system is tightly integratedwith the ParaScope compilation system so that it can exploit compile-time analysis to signi�cantly reducethe number of run-time checks. Here, we �rst describe the task of the debugging instrumentation system,then we describe how the instrumentation system is integrated into the ParaScope compilation system.The instrumentation system has two main tasks: to allocate storage for access history variables andto insert calls to run-time support routines that perform access checks or concurrency bookkeeping. Tomaximize the portability of instrumented code, we have chosen to perform data race instrumentation at thesource code level. For any variable that may be involved in a data race at run time, the instrumentationsystem must allocate storage for an access history.For references that need to be checked at run time, the instrumentation system inserts a call to theappropriate run-time support routine which will determine if the access is involved in a race. Locating theaccesses that need to be monitored is conceptually easy. For variables local to a subprogram, only thoseaccesses that are the endpoints of dependences carried by parallel loops in that subprogram need run-time30

checks. Using dependence information computed under control of the ParaScope compilation system (seeSection 2.1) considerably reduces the amount of instrumentation necessary.The instrumentation process becomes somewhat more complicated in the presence of procedure calls.If a procedure is called from within a parallel construct, the instrumentation system must ensure that anyside-e�ects of the called procedure are appropriately checked for participation in data races. Adding thisinstrumentation requires two steps. First, the system expands the parameter list for each procedure toinclude a history variable for each formal parameter and adds a run-time check inside the procedure for eachaccess to a variable that appears as one of its original formal parameters. Next, the system expands anycommon block declarations inside each procedure to include a history variable for each common variable,and adds a run-time check for each access to a common variable.The instrumentation process as described thus far for programs with procedure calls in parallel loopsderives little or no bene�t from compile-time analysis to prune the amount of instrumentation needed. Toremedy this situation, we are in the process of incorporating interprocedural analysis into the instrumentationsystem. As currently envisioned, the interprocedural analysis to support data race instrumentation consistsof three passes. The �rst pass determines which accesses inside each procedure require run-time checks.The second pass allocates access history storage for variables as needed. A third pass is necessary to ensurethat the set of access history variables added to each declaration of a common block is globally consistent.The ParaScope program compiler directs the collection of this interprocedural information and coordinatesinstrumentation of the program.4.3 Reporting Data RacesThere are several ways that an instrumented program can be debugged. Simply running the program willproduce a collection of error messages that indicate all of the data races detected during execution. If theprogram is run under the control of a traditional interactive debugger such as dbx or gdb and a breakpoint isinserted at the appropriate place in the run-time support library, execution will halt as each race is detectedenabling the user to investigate the program state.One drawback of debugging this way is that the user is exposed to the instrumented code. The ParaScopedebugging system composes a map created by the instrumentation system with the standard compiler-provided symbol table to create a map between uninstrumented code and machine code. When debugginginstrumented code using the ParaScope source-level debugger (a window-based source level debugger withfunctionality similar to xgdb), a user sees the original code displayed on the screen. Debugging in terms ofthe original code uncluttered by instrumentation is usually preferable.The ParaScope debugger display shown in Figure 6 illustrates several points. The debugger windowshown is divided into three main panes. The top pane contains the source being debugged. The small pane31

Figure 6 The ParaScope debugger: isolating a race condition.below that has messages from the debugger, such as values of expressions. The pane at the bottom containsa list of all data races detected during execution.In the display shown, the underlining in the bottom pane indicates that the user has selected the lastdata race reported during the debugging session. This selection is re
ected in the source pane by underliningthe (temporally) �rst access of the data race and emboldening the second access. The loop carrying the raceis italicized. Examination of the source pane indicates that the �rst access is not currently being displayed.In fact, it is in the function value. Clicking the mouse on the data race in the bottom pane will cause thedisplay to shift so that the other endpoint of the selected race is visible.The ParaScope debugger supports view �ltering (see Section 3.1) which is useful in the debugging process.For example, it provides a view �lter predicate that matches source lines containing de�nitions (or uses) ofa particular variable. It also de�nes a predicate that matches lines found to have been involved in a data32

race. Thus, it is possible to tailor the display so that only those lines and their surrounding parallel loopsare shown. This can often simplify the process of viewing both ends of a race condition whose endpoints arewidely separated.4.4 Preliminary EvaluationOur experiences thus far with the data race detection support in ParaScope have been positive. The userinterface provides a convenient display of race reports that facilitates understanding how races have arisen.Although the implementation of the interprocedural components of the instrumentation system is not yetcomplete, we have produced a manual simulation of the analysis for a single test program and used it toprune conservative instrumentation generated using strictly local analysis. For our test program, the run-time overhead of the data race instrumentation was slightly less than 100%. This measurement providesevidence that by using an e�cient run-time protocol and aggressive compile-time analysis, the overhead ofautomatic data race instrumentation may well be tolerable in practice during a debugging and testing phase.5 Future Directions for ParaScopeThe current version of ParaScope is designed to assist in the development of programs for shared-memorymultiprocessors, the class of parallel architectures most widely used at the commencement of the projectin the mid 1980's. The principal challenge faced by scienti�c users of such machines was �nding enoughloop-based parallelism to make e�ective use of the available computation power. Over the past few years,a paradigm shift has occurred and distributed-memory parallel computers, such as the Intel Paragon andthe Thinking Machines CM-5, have become the dominant machines for large-scale parallel computation. Inthese machines, part of the memory is packaged with each of the individual processors and each processorcan access directly only its own portion of the memory. To access a remote data location requires that theowning processor send the value to the processor that wishes to use it, an expensive operation. The mostimportant optimization for these machines is minimizing the cost of communication. Data placement playsa central role in determining the extent to which communication can be optimized|good data placement isa prerequisite for optimum performance.Unfortunately, the shared-memory programming model does not provide the programmer with a mecha-nism for specifying data placement. Unless the compiler can choose the right data placement automatically|a formidable task|this model will not be very useful on distributed-memory machines. To address thisproblem, we have developed an extended version of Fortran, called Fortran D [75], which enables the pro-grammer to explicitly specify data distribution and alignment on a multiprocessor system. Furthermore,the speci�cation can be expressed in a machine-independent form, making it possible for the programmerto write a single program image that can be compiled onto di�erent parallel machines with high e�ciency.33

Machine-independent parallel programming is particularly important if application software developed for thecurrent generation of parallel machines is to be usable on the next generation of machines. We are currentlydeveloping compilers that translate Fortran D to run e�ciently on two very di�erent target architectures:the Intel iPSC/860 and the Thinking Machines CM-2.Once the data distribution is known, parallelism can automatically be derived by the Fortran D compilerthrough the use of the \owner computes" rule, which speci�es that the owner of a datum computes itsvalue [76]. Assignment to all locations in an array distributed across the processors can automatically beperformed in parallel by having each processor assign values for its own portion of the array, as long as thereare no dependences among the assignments. The compiler is also responsible for rewriting a shared-memoryFortran D program, which is simply a Fortran 77 or Fortran 90 program with distribution speci�cations, asa distributed-memory program that can be run on the target machine. For the Intel iPSC/860, this meansstrip mining all of the loops to run on a single node of the processor array and inserting message passingcalls for communication. The resulting message-passing Fortran program is quite di�erent from the originalsource.Since the appearance of the original technical report on Fortran D in December 1990, the language hasgained widespread attention. There is currently underway an e�ort to standardize many of the features ofFortran D into an extended version of Fortran 90, called \High Performance Fortran" (HPF). However, witha language and compiler technology as complex as those required by Fortran D or HPF, the user will need asigni�cant amount of program development assistance to use the machine e�ectively. To address this need,we have embarked on a project to build a programming environment for Fortran D. We will base it, in part,on ParaScope. The paragraphs below describe the extensions to ParaScope that will be found in the newenvironment.Compilation System. Fortran D semantics dictate that distribution speci�cations for a variable can beinherited from a calling procedure. In addition, the Fortran D distributions are executable, so a calledprocedure may redistribute a variable. To generate correct and e�cient code, the Fortran D compiler mustdetermine which distributions may hold at each point in the program and it must track these distributionsinterprocedurally. Hence the ParaScope program compiler must be signi�cantly enhanced to accommodatethe compilation of Fortran D [77, 78].Intelligent Editor. Most of the functionality in the current ParaScope editor will be useful in constructingFortran D programs. For example, users will still want to �nd loop nests that can be run in parallel.However, an important additional challenge to the user is the selection of distribution speci�cations that willyield good performance. The new ParaScope editor will permit the user to enter and modify distribution34

speci�cations. However, by itself, this will not be enough. Experience suggests that users will sometimes�nd the relationship between distributions and performance puzzling. The new ParaScope editor will makethis relationship clearer by statically predicting the performance of loop nests under speci�c collections ofFortran D distributions. To achieve su�cient precision while remaining machine-independent, we will employa \training set" strategy to produce a performance predictor for each new target machine [79].Debugger. Since Fortran D programs undergo radical transformations during compilation, source-leveldebugging tools for Fortran D will require signi�cant support to relate the run-time behavior of a trans-formed program back to its original source, which is considerably more abstract. Also, the de�nition ofFortran D currently includes a parallel loop construct, the forall statement, that permits a limited formof nondeterminism. We expect that programmers using this construct will need some assistance of the kindprovided by the shared-memory debugging system for pinpointing data races.Automatic data distribution tool. Once completed, the Fortran D compiler will provide a good plat-form for research on automatic data distribution. We intend to build an experimental system that auto-matically generates Fortran D distributions. To evaluate this system, we will compile and run the resultingprograms, comparing their e�ectiveness to programs written by hand in Fortran D. If the automatic systemproduces reasonable results, it will be incorporated into the new ParaScope editor and used to advise theprogrammer on initial distribution speci�cations for data.Performance visualization. The �nal step in parallel programming is performance tuning. It is imper-ative that the system provide e�ective tools to help the programmer understand program performance. Weplan to adapt the existing ParaScope analysis tools to provide input to performance visualization systemsunder development elsewhere, such as the Pablo system at the University of Illinois [80]. An importantcomponent of performance visualization for Fortran D will be relating performance data for a transformedprogram back to the more abstract original program source.The �nal result of this e�ort will be a collection of tools to support the development of machine-independent data-parallel programs. In addition, the environment will be generalized to handle a substantialpart of Fortran 90, particularly the array sub-language. At that point, it will be easy to adapt it for usewith the emerging High Performance Fortran standard.6 AcknowledgementsThe ParaScope system is the product of many years of labor. A large collection of students and sta� haveworked on its design and implementation. Researchers and users from outside the project have provided35

critical feedback and direction. We are deeply grateful to all these people.

36

References[1] D. Kuck, R. Kuhn, B. Leasure, and M. J. Wolfe, \Analysis and transformation of programs for par-allel computation," in Proceedings of COMPSAC 80, the 4th International Computer Software andApplications Conference, (Chicago, IL), pp. 709{715, Oct. 1980.[2] J. R. Allen and K. Kennedy, \PFC: A program to convert Fortran to parallel form," in Supercomputers:Design and Applications (K. Hwang, ed.), pp. 186{203, Silver Spring, MD: IEEE Computer SocietyPress, 1984.[3] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante, \An overview of the PTRAN analysissystem for multiprocessing," in Proceedings of the First International Conference on Supercomputing,Athens, Greece: Springer-Verlag, June 1987.[4] S. Tjiang, M. E. Wolf, M. S. Lam, K. L. Pieper, and J. L. Hennessy, \Integrating scalar optimizationand parallelization," in Proceedings of the Fourth Workshop on Languages and Compilers for ParallelComputing, Aug. 1991.[5] B. Leasure, ed., PCF Fortran: Language De�nition, version 3.1. Champaign, IL: The Parallel Com-puting Forum, Aug. 1990.[6] B. Shei and D. Gannon, \SIGMACS: A programmable programming environment," in Proceedings ofthe Third Workshop on Languages and Compilers for Parallel Computing, (Irvine, CA), Aug. 1990.[7] K. Smith and W. Appelbe, \PAT - an interactive Fortran parallelizing assistant tool," in Proceedingsof the 1988 International Conference on Parallel Processing, (St. Charles, IL), Aug. 1988.[8] H. Zima, H.-J. Bast, and M. Gerndt, \SUPERB: A tool for semi-automatic MIMD/SIMD paralleliza-tion," Parallel Computing, vol. 6, pp. 1{18, 1988.[9] U. Banerjee, Dependence Analysis for Supercomputing. Boston, MA: Kluwer Academic Publishers, 1988.[10] J. Ferrante, K. Ottenstein, and J. Warren, \The program dependence graph and its use in optimization,"ACM Transactions on Programming Languages and Systems, vol. 9, pp. 319{349, July 1987.[11] D. J. Kuck, The Structure of Computers and Computations, vol. 1. New York: John Wiley and Sons,1978.[12] M. J. Wolfe, Optimizing Supercompilers for Supercomputers. Cambridge, MA: The MIT Press, 1989.[13] G. Go�, K. Kennedy, and C. Tseng, \Practical dependence testing," in ACM SIGPLAN '91 Conferenceon Programming Language Design and Implementation, June 1991.37

[14] K. D. Cooper, K. Kennedy, and L. Torczon, \The impact of interprocedural analysis and optimizationin the Rn programming environment," ACM Transactions on Programming Languages and Systems,vol. 8, pp. 491{523, Oct. 1986.[15] K. S. McKinley, Automatic and Interactive Parallelization. PhD thesis, Rice University, Houston, TX,Apr. 1992.[16] M. W. Hall, K. Kennedy, and K. S. McKinley, \Interprocedural transformations for parallel code gen-eration," in Proceedings of Supercomputing '91, Nov. 1991.[17] K. Kennedy, N. McIntosh, and K. S. McKinley, \Static performance estimation in a parallelizing com-piler," Tech. Rep. TR91-174, Dept. of Computer Science, Rice University, Dec. 1991.[18] K. Kennedy and K. S. McKinley, \Optimizing for parallelism and memory hierarchy," in Proceedings ofthe 1992 ACM International Conference on Supercomputing, (Washington, DC), July 1992.[19] M. Burke and L. Torczon, \Interprocedural optimization: Eliminating unnecessary recompilation." Toappear in ACM Transactions on Programming Languages and Systems.[20] M. W. Hall, Managing Interprocedural Optimization. PhD thesis, Rice University, Houston, TX, Apr.1991.[21] K. D. Cooper and K. Kennedy, \Interprocedural side-e�ect analysis in linear time," in Proceedings ofthe ACM SIGPLAN '88 Conference on Programming Languages Design and Implementation, SIGPLANNotices 23(7), pp. 57{66, June 1988.[22] D. Callahan and K. Kennedy, \Analysis of interprocedural side e�ects in a parallel programming envi-ronment," Journal of Parallel and Distributed Computing, vol. 5, pp. 517{550, 1988.[23] P. Havlak and K. Kennedy, \An implementation of interprocedural bounded regular section analysis,"IEEE Transactions on Parallel and Distributed Systems, vol. 2, pp. 350{360, July 1991.[24] E. Myers, \A precise inter-procedural data
ow algorithm," in Conference Record of the Eighth AnnualACM Symposium on Principles of Programming Languages, Jan. 1981.[25] D. Callahan, \The program summary graph and
ow-sensitive interprocedural data
ow analysis," inProceedings of the ACM SIGPLAN '88 Conference on Programming Language Design and Implemen-tation, SIGPLAN Notices 23(7), pp. 47{56, July 1988.[26] E. Granston and A. Veidenbaum, \Detecting redundant accesses to array data," in Proceedings ofSupercomputing '91, (Albuquerque, NM), Nov. 1991.38

[27] Z. Li, \Array privatization for parallel execution of loops," in Proceedings of the 1992 ACM InternationalConference on Supercomputing, (Washington, DC), July 1992.[28] C. Rosene, Incremental Dependence Analysis. PhD thesis, Rice University, Houston, TX, Mar. 1990.[29] R. Eigenmann and W. Blume, \An e�ectiveness study of parallelizing compiler techniques," in Proceed-ings of the 1991 International Conference on Parallel Processing, (St. Charles, IL), Aug. 1991.[30] M. W. Hall, T. Harvey, K. Kennedy, N. McIntosh, K. S. McKinley, J. D. Oldham, M. Paleczny, andG. Roth, \Experiences using the ParaScope Editor," Tech. Rep. CRPC-TR91173, Center for Researchon Parallel Computation, Rice University, Sept. 1991.[31] J. P. Banning, \An e�cient way to �nd the side e�ects of procedure calls and the aliases of variables,"in Proceedings of the Sixth Annual ACM Symposium on Principles of Programming Languages, SanAntonio, TX, pp. 29{41, Jan. 1979.[32] K. D. Cooper and K. Kennedy, \Fast interprocedural alias analysis," in Conference Record of theSixteenth Annual ACM Symposium on Principles of Programming Languages, Jan. 1989.[33] D. Callahan, K. D. Cooper, K. Kennedy, and L. Torczon, \Interprocedural constant propagation," inProceedings of the ACM SIGPLAN '86 Symposium on Compiler Construction, SIGPLAN Notices 21(7),pp. 152{161, July 1986.[34] A. Aho, R. Sethi, and J. Ullman, Compilers, Principles, Techniques and Tools. Reading, MA: Addison-Wesley, 1986.[35] B. Alpern, M. N. Wegman, and F. K. Zadeck, \Detecting equality of variables in programs," in Con-ference Record of the Fifteenth ACM Symposium on Principles of Programming Languages, Jan. 1988.[36] F. E. Allen and J. Cocke, \A catalogue of optimizing transformations," in Design and Optimization ofCompilers (J. Rustin, ed.), Englewood Cli�s, NJ: Prentice-Hall, 1972.[37] K. D. Cooper, M. W. Hall, and K. Kennedy, \Procedure cloning," in Proceedings of the IEEE Interna-tional Conference on Computer Languages, pp. 96{105, Apr. 1992.[38] K. D. Cooper, K. Kennedy, and L. Torczon, \The impact of interprocedural analysis and optimizationin the IRn programming environment," ACM Transactions on Programming Languages and Systems,vol. 8, pp. 491{523, Oct. 1986.[39] M. Burke and R. Cytron, \Interprocedural dependence analysis and parallelization," in Proceedings ofthe ACM SIGPLAN '86 Symposium on Compiler Construction, SIGPLAN Notices 21(7), pp. 163{275,July 1986. 39

[40] Z. Li and P.-C. Yew, \E�cient interprocedural analysis for program restructuring for parallel programs,"in Proceedings of the SIGPLAN Symposium on Parallel Programs: Experience with Applications, Lan-guages and Systems, July 1988.[41] R. Metzger and P. Smith, \The CONVEX application compiler," Fortran Journal, vol. 3, no. 1, pp. 8{10,1991.[42] R. Triolet, F. Irigoin, and P. Feautrier, \Direct parallelization of call statements," in Proceedings of theACM SIGPLAN '86 Symposium on Compiler Construction, SIGPLAN Notices 21(7), pp. 176{185, July1986.[43] K. D. Cooper, M. W. Hall, and L. Torczon, \An experiment with inline substitution," Software {Practice and Experience, vol. 21, pp. 581{601, June 1991.[44] K. D. Cooper, M. W. Hall, and L. Torczon, \Unexpected side e�ects of inline substitution: a casestudy." to appear in Letters on Programming Languages and Systems, Mar. 1992.[45] P. Briggs, K. D. Cooper, M. W. Hall, and L. Torczon, \Goal-directed interprocedural optimization,"Technical Report TR90-148, Dept. of Computer Science, Rice University, Nov. 1990.[46] J. Singh and J. Hennessy, \An empirical investigation of the e�ectiveness of and limitations of automaticparallelization," in Proceedings of the International Symposium on Shared Memory Multiprocessors,(Tokyo, Japan), Apr. 1991.[47] K. Fletcher, K. Kennedy, K. S. McKinley, and S. Warren, \The ParaScope Editor: User interface goals,"Tech. Rep. TR90-113, Dept. of Computer Science, Rice University, May 1990.[48] K. Kennedy, K. McKinley, and C. Tseng, \Analysis and transformation in the ParaScope Editor," inProceedings of the 1991 ACM International Conference on Supercomputing, (Cologne, Germany), June1991.[49] K. Kennedy, K. McKinley, and C. Tseng, \Interactive parallel programming using the ParaScope Edi-tor," IEEE Transactions on Parallel and Distributed Systems, vol. 2, pp. 329{341, July 1991.[50] N. Yankelovitch, N. Meyrowitz, and A. van Dam, \Reading and writing the electronic book," IEEEComputer, vol. 18, pp. 15{29, Oct. 1985.[51] D. C. Smith, C. Irby, R. Kimball, B. Verplank, and E. Harslem, \Designing the star user interface,"BYTE, vol. 7, pp. 242{282, Apr. 1982.[52] D. C. Engelbart and W. K. English, \A research center for augmenting human intellect," in Proceedingsof AFIPS 1968 Fall Joint Computer Conference, pp. 395{410, Dec. 1968.40

[53] R. C. Waters, \Program editors should not abandon text oriented commands,"ACM SIGPLAN Notices,vol. 17, pp. 39{46, July 1982.[54] J. R. Allen and K. Kennedy, \Automatic translation of Fortran programs to vector form," ACM Trans-actions on Programming Languages and Systems, vol. 9, pp. 491{542, Oct. 1987.[55] D. Callahan, S. Carr, and K. Kennedy, \Improving register allocation for subscripted variables," in Pro-ceedings of the ACM SIGPLAN 90 Conference on Programming Language Design and Implementation,SIGPLAN Notices 25(6), pp. 53{65, June 1990.[56] K. Kennedy and K. S. McKinley, \Loop distribution with arbitrary control
ow," in Proceedings ofSupercomputing '90, (New York, NY), Nov. 1990.[57] D. Kuck, R. Kuhn, B. Leasure, and M. J. Wolfe, \The structure of an advanced retargetable vectorizer,"in Supercomputers: Design and Applications, pp. 163{178, Silver Spring, MD: IEEE Computer SocietyPress, 1984.[58] D. Loveman, \Program improvement by source-to-source transformations," Journal of the ACM, vol. 17,pp. 121{145, Jan. 1977.[59] M. J. Wolfe, \Loop skewing: The wavefront method revisited," International Journal of Parallel Pro-gramming, vol. 15, pp. 279{293, Aug. 1986.[60] J. R. Allen, D. B�aumgartner, K. Kennedy, and A. Porter�eld, \PTOOL: A semi-automatic parallelprogramming assistant," in Proceedings of the 1986 International Conference on Parallel Processing,(St. Charles, IL), IEEE Computer Society Press, Aug. 1986.[61] V. Balasundaram, D. B�aumgartner, D. Callahan, K. Kennedy, and J. Subhlok, \PTOOL: A system forstatic analysis of parallelism in programs," Technical Report TR88-71, Dept. of Computer Science, RiceUniversity, 1988.[62] L. Henderson, R. Hiromoto, O. Lubeck, and M. Simmons, \On the use of diagnostic dependency-analysis tools in parallel programming: Experiences using PTOOL," The Journal of Supercomputing,vol. 4, pp. 83{96, 1990.[63] \The MIMDizer: A new parallelization tool," The Spang Robinson Report on Supercomputing andParallel Processing, vol. 4, pp. 2{6, Jan. 1990.[64] D. Cheng and D. Pase, \An evaluation of automatic and interactive parallel programming tools," inProceedings of Supercomputing '91, (Albuquerque, NM), Nov. 1991.41

[65] V. Guarna, D. Gannon, D. Jablonowski, A. Malony, and Y. Gaur, \Faust: An integrated environmentfor parallel programming," IEEE Software, vol. 6, pp. 20{27, July 1989.[66] D. Cheng and K. Fletcher, \Private communication," July 1991.[67] J. Stein, \Private communication," July 1991.[68] A. Dinning and E. Schonberg, \An evaluation of monitoring algorithms for access anomaly detection,"Ultracomputer Note 163, Courant Institute, New York University, July 1989.[69] A. Dinning and E. Schonberg, \An empirical comparison of monitoring algorithms for access anomalydetection," in Second ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming(PPOPP), pp. 1{10, Mar. 1990.[70] J. M. Mellor-Crummey, \On-the-
y detection of data races for programs with nested fork-join paral-lelism," in Proceedings of Supercomputing '91, (Albuquerque, NM), Nov. 1991.[71] I. Nudler and L. Rudolph, \Tools for e�cient development of e�cient parallel programs," in First IsraeliConference on Computer Systems Engineering, 1986.[72] E. Schonberg, \On-the-
y detection of access anomalies," in Proceedings of the ACM SIGPLAN '89Conference on Programming Language Design and Implementation, SIGPLAN Notices 24(7), pp. 285{297, July 1989.[73] G. L. Steele, Jr., \Making asynchronous parallelism safe for the world," in Conference Record of theSeventeenth Annual ACM Symposium on the Principles of Programming Languages, Jan. 1990.[74] S. L. Min and J. Choi, \An e�cient cache-based access anomaly detection scheme," in Proceedings of the4th ACM International Conference on Architectural Support for Programming Languages and OperatingSystems, SIGPLAN Notices 26(4), pp. 235{244, Apr. 1991.[75] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M.Wu, \Fortran D languagespeci�cation," Tech. Rep. TR90-141, Dept. of Computer Science, Rice University, Dec. 1990.[76] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng, \An overview of the Fortran Dprogramming system," in Proceedings of the Fourth Workshop on Languages and Compilers for ParallelComputing, (Santa Clara, CA), Aug. 1991.[77] S. Hiranandani, K. Kennedy, and C. Tseng, \Compiler optimizations for Fortran D on MIMDdistributed-memory machines," in Proceedings of Supercomputing '91, (Albuquerque, NM), Nov. 1991.42

[78] S. Hiranandani, K. Kennedy, and C. Tseng, \Evaluation of compiler optimizations for Fortran D onMIMD distributed-memory machines," in Proceedings of the 1992 ACM International Conference onSupercomputing, (Washington, DC), July 1992.[79] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer, \A static performance estimator to guidedata partitioning decisions," in Proceedings of the Third ACM SIGPLAN Symposium on Principles andPractice of Parallel Programming, pp. 213{223, July 1991.[80] D. A. Reed, R. D. Olson, R. A. Aydt, T. M. Madhyastha, T. Birkett, D. W. Jensen, B. A. A. Nazief, andB. K. Totty, \Scalable performance environments for parallel systems," in Proceedings of DistributedMemory Computing Conference, (Portland), pp. 562{569, Apr. 1991.

43

