
Compiler Architectures for HeterogeneousSystemsKathryn S. McKinley, Sharad K. Singhai, Glen E. Weaver, Charles C. WeemsDepartment of Computer ScienceUniversity of MassachusettsAmherst, MA 01003-4610fmckinley, singhai, weaver, weemsg@cs.umass.edu(413) 545-1249 (fax)Abstract. Heterogeneous parallel systems incorporate diverse modelsof parallelism within a single machine or across machines and are bettersuited for diverse applications [25, 43, 30]. These systems are alreadypervasive in industrial and academic settings and o�er a wealth of un-derutilized resources for achieving high performance. Unfortunately, het-erogeneity complicates software development. We believe that compilerscan and should assist in handling this complexity. We identify four goalsfor extending compilers to manage heterogeneity: exploiting availableresources, targeting changing resources, adjusting optimization to suit atarget, and allowing programming models and languages to evolve. Thesegoals do not require changes to the individual pieces of existing compil-ers so much as a restructuring of a compiler's software architecture toincrease its exibility. We examine six important parallelizing compilersto identify both existing solutions and where new technology is needed.1 IntroductionHeterogeneous processingCurrent parallel machines implement a single homogeneous model of paral-lelism. As long as this model matches the parallelism inherent in an application,the machines perform well. Unfortunately, large programs tend to use severalmodels of parallelism. By incorporating multiple models of parallelism withinone machine (e.g., Meiko CS-2, IBM SP-2, and IUA [42]) or across machines,creating a virtual machine (e.g., PVM [38], p4 [9], and MPI [28]), heterogeneoussystems provide consistent high performance.Heterogeneous processing [36, 40, 41, 24, 18] is the well-orchestrated use ofheterogeneous hardware to execute a single application [24]. When an appli-cation encompasses subtasks that employ di�erent models of parallelism, theWe are designing a new compiler architecture to meet the needs of heterogeneity.Another paper [27] has a preliminary description of our design along with anexpanded survey section.This work was supported in part by the Advanced Research Projects Agency undercontract N00014-94-1-0742, monitored by the O�ce of Naval Research.

2 Appears in the 8th Workshop on Languages and Compilers for Parallel Computingapplication may bene�t from using disparate hardware architectures that matchthe inherent parallelism of each subtask. For example, Klietz et al. describetheir experience executing a single application, a simulation of mixing by turbu-lent convection, across four machines (CM-5, Cray-2, CM-200, and an SGI)[25].The four machines form a single virtual machine, and the authors leverage thestrengths of each machine for di�erent tasks to achieve high performance.Their experience illustrates that although heterogeneous processing o�ers im-proved performance, it increases the complexity of software development. Thecomplexity arises from three important features of heterogeneity: variety, vari-ability, and high performance. First, heterogeneous systems consist of a variety ofhardware. For an application to take advantage of heterogeneity, it must be par-titioned into subtasks, and each subtask mapped to a processor with a matchingmodel of parallelism. Variety also opens up opportunities to trade local perfor-mance for overall performance. Second, virtual heterogeneous systems experiencevariability as their makeup changes from site to site or day to day or based onload. This variability of hardware resources requires rapid adaptation of pro-grams to new con�gurations at compile and run time. Furthermore, variabilitydeters programmers from using machine speci�c code (or languages) to improveperformance. Third, heterogeneous systems can achieve high performance. If theexecution time of a program does not matter, it could run on a homogeneousprocessor with less trouble. The demand for high performance precludes simplesolutions such as adding layers of abstraction that obscure heterogeneity.Compilers for heterogeneous systemsDeveloping software for heterogeneous systems would be overwhelming if eachapplication needed to handle the complexity caused by variety, variability, andhigh performance. In Kleitz et al., they hand-parallelized each task speci�callyfor its target machine in that machine's unique language dialect. If the hardwarecon�guration changes, they must rewrite parts of the program. Instead of man-ually modifying programs, the variability of heterogeneous systems should beautomatically handled at least in part by a compiler. With certain modi�cationsto their software architecture, compilers can use transformations1 to adjust aprogram to execute e�ciently on a heterogeneous system.Extending compilers to manage heterogeneity must address four goals: ex-ploiting available resources, targeting changing resources, adjusting optimizationsto suit a target, and allowing programming models and languages to evolve.(Sect. 3 explains why these goals are important.) Meeting these goals does notrequire changes to the individual pieces of a compiler so much as a restructuringof the compiler's software architecture to increase its exibility. Current com-pilers, including retargetable compilers, tightly couple the compiler with boththe source language and the target machine. This coupling is natural for homo-geneous machines, where a single compilation can only target a single machine.However, this coupling limits the compiler's exibility in dealing with diversity intargets, optimization strategies, and source languages. Heterogeneity is the �rstcompiler application that requires and therefore justi�es this level of exibility.1 For brevity, \transformations" refers to both optimizations and transformations.

Appears in the 8th Workshop on Languages and Compilers for Parallel Computing 3OverviewThis paper surveys optimizing compilers and compiler frameworks for parallelmachines and examines their potential contributions to a compiler for heteroge-neous systems. In this section, we have motivated compiler support for hetero-geneous systems, and distilled the impact of heterogeneity into four goals for anideal compiler: exploiting available resources, targeting changing resources, ad-justing optimization to suit a target, and allowing programmingmodels and lan-guages to evolve. Sect. 2 reviews six well-known parallelizing compilers. Sect. 3discusses the applicability of techniques found in our survey to heterogeneityand the impact of heterogeneity on the overall architecture of the compiler. Foreach goal and compiler, we identify where existing technology can be adaptedto meet the needs of heterogeneity.We �nd that heterogeneity's variety and variability of available resourcesrequires a compiler architecture that is much more exible than current ones.2 High Performance Parallelizing Compiler SurveyThis section compares six existing compilers and frameworks: Parafrase-2, Para-Scope, Polaris, Sage++, SUIF, and VFCS. We selected these systems becauseof their signi�cant contributions to compiler architectures and because they arewell documented. Since it is not feasible to change each system to handle hetero-geneity and compare the e�orts, we instead describe each system's architecture,and discuss their potential bene�ts and drawbacks for compiling for heteroge-neous systems (see Section 3). This section describes the general approach, pro-gramming model, organization, intermediate representation, optimizations andtransformations of the six systems and summarizes them in Table 1.2System Overviews and GoalsParafrase-2 is a source-to-source translator from the University of Illinois [19,33]. Its design goal is to investigate compilation support for multiple languagesand target architectures. It easily adapts to new language extensions because itsIR emphasizes data and control dependences, rather than language syntax.Rice University's ParaScope is an interactive parallel programming environ-ment built around a source-to-source translator [12, 23]. It provides sophisti-cated global program analyses and a rich set of program transformations. Herewe concentrate on the D System which is a specialized version of ParaScopefor Fortran-D [17]. The output of the D System is an e�cient message-passingdistributed memory program [21, 22, 39].Polaris is an optimizing source-to-source translator from the University of Illi-nois [4, 31, 15]. The authors have two major goals for Polaris: to automaticallyparallelize sequential programs and to be a near-production quality compiler.The authors focus on parallelization for shared memory machines. Polaris iswritten in C++ and compiles Fortran 77. Programmers may convey extra infor-mation, such as parallelism, to the compiler by embedding assertions in sourcecode.2 We give more detailed descriptions in [27].

4Appearsinthe8thWorkshoponLanguagesandCompilersforParallelComputing
Table1.Comparisontableforsurveyedsystems.

Properties Parafrase-2 ParaScope/D System Polaris Sage++/pC++ SUIF VFCSGeneralGoals MultipleLanguages andTargetArchitectures,Extensibility Automatic andInteractiveParallelization ProductionQualityTranslator forAutomaticParallelization Frameworkfor BuildingSource-To-SourceTranslators Tool for Research inCompilationTechniques, especiallyAutomaticParallelization Compiling forDistributedMemorySystemsSource-to-Source p p p p p pSource Languages C, Fortran 77,Cedar Fortran Fortran 77,Fortran 903,Fortran D Fortran 77 C, C++,Fortran 77,Fortran 90,pC++ C, Fortran 774 Fortran 77,Fortran 903,HPF, ViennaFortranCode Generation Tuples Tuples | | MIPS Assembly |Programming ModelInput Sequential orControl Parallel Sequential orData Parallel Sequential NA Sequential Sequential orData ParallelOutput Task/LoopParallel SPMD, LoopParallel Loop Parallel NA Loop Parallel SPMDTargetArchitectures Multithreaded,SM, DSM Uniprocessor,SM and DM SM, DSM NotSpeci�ed Uniprocessor, SM,DSM DMIntermediateRepresentations HTG, LinearTuples AST AST5 AST Hybrid of AST andLinear Tuples6 ASTSM Shared Memory DSM Distributed Shared Memory p Yes | No or NoneDM Distributed Memory HTG Hierarchical Task Graph p+ Exceptional Implementation NA Not Applicable3 Language subset. 4 Preprocesses Fortran with f2c. 5 Has pattern matching language for6 Single IR has two levels of abstraction. manipulating IR.

Appearsinthe8thWorkshoponLanguagesandCompilersforParallelComputing5
Table1.Comparisontableforsurveyedsystems,continued...

Properties Parafrase-2 ParaScope/D System Polaris Sage++/pC++ SUIF VFCSAnalysesData Dependence p p p p p pControl Depend. p+ p p | p |Symbolic7 p+ p+ p | p pInterprocedural Alias, MOD,REF, ConstantPropagation Alias, MOD,REF, ConstantPropagation Inlining (foranalysis),ConstantPropagation | MOD, REF, GEN,KILL, ConstantPropagation, ArraySummary, ArrayReshape, Reductions8 ,Induction Variables,Cloning8 USE, DEF,Alias, Overlap,ConstantPropagation,Communica-tion, DynamicDistributionIncremental | p p | | |Optimizations and TransformationsTraditional p p p | p+ pLoop p p p p p pComm/Sync | p 9 p | p p+Interprocedural Inlining Inlining,Cloning Inlining,Cloning | Parallelization, DataPrivatization,Inlining,Cloning,Reductions Inlining,CloningData Partitioning | p In Progress | p pTask Partitioning p | | | | |ApplicabilityCriteria p p p | p pPro�t. Criteria Queries User Queries User Fixed for Arch. | Fixed for Arch. Static Measure7 Intraprocedural. 8 Used for both analysis and optimization. 9 Only for D System compiler.

6 Appears in the 8th Workshop on Languages and Compilers for Parallel ComputingSage++ is a toolkit for building source-to-source translators from IndianaUniversity [6]. The authors foresee optimizing translators, simulation of languageextensions, language preprocessors, and code instrumentation as possible appli-cations of Sage++ [7, 46, 26, 5]. Sage++ is written in C++ and provides parsesfor C, C++, pC++, Fortran 77, and Fortran 90. Because Sage++ is a toolkitinstead of a compiler, it is not limited to particular hardware architectures.SUIF from Stanford University is a compiler framework that can be used aseither a source-to-C translator or a native code compiler [44, 1, 20, 37]. SUIFis designed to study parallelization for both shared memory and distributedshared memory machines as well as uniprocessor optimizations. SUIF acceptssource code written in either Fortran 77 or C, however a modi�ed version off2c [16] is used to convert Fortran code to C code.The Vienna Fortran Compilation System (VFCS) from the University of Vi-enna is an interactive, source-to-source translator for Vienna Fortran [10, 11,48, 49]. VFCS is based upon the data parallel model of computation with theSingle-Program-Multiple-Data (SPMD) paradigm. VFCS outputs explicitly par-allel, SPMD programs in message passing languages, Intel features, PARMACS,and MPI.GeneralReecting their common mission of compiling for parallel machines, the sys-tems are similar in their general approach. All the systems (except Sage++) aredesigned for automatic parallelization, and Sage++ supports features necessaryfor building a parallelizing compiler (e.g., data dependence). All the systemsparse some variation of Fortran and half of them also handle C, the traditionallanguages for high performance computing. Except for Sage++, the systems inour survey can operate as source-to-source translators, and Sage++ facilitatesthe construction of source-to-source translators. In addition, SUIF compiles di-rectly into assembly code for the MIPS family of microprocessors, and Parafrase-2 and ParaScope generate tuples.Programming modelSUIF accepts only sequential C and Fortran 77 programs, and therefore mustextract all parallelism automatically. Polaris parses only Fortran 77 but inter-prets assertions in the source code that identify parallelism. ParaScope allowsprogrammers to use data parallel languages as well as sequential languages, andattempts to �nd additional loop and data parallelism. VFCS accepts data par-allel languages and requires that programmers supply the data distribution andthe assignment of computation to processors, following the owner-computes ruleas in ParaScope. Parafrase-2 inputs Cedar Fortran which o�ers vector, loop, andtask parallelism.Most of the compilers in our survey generate data parallel programs, butParafrase-2 produces control parallel code as well. SUIF and Polaris take a clas-sic approach to parallelization by identifying loop iterations that operate onindependent sections of arrays and executing these iterations in parallel. For sci-enti�c applications, loop-level parallelismhas largely equated to data parallelism.The D System and VFCS, on the other hand, output programs that follow the

Appears in the 8th Workshop on Languages and Compilers for Parallel Computing 7SPMD model; the program consists of interacting node programs. Parafrase-2 isunique in that it exploits task parallelism as well as loop parallelism.Most of the systems use an abstract syntax tree (AST) as an intermedi-ate representation. ASTs retain the source level syntax of the program whichmakes them convenient for source-to-source translation. SUIF's AST is uniquebecause it represents only select language constructs at a high-level; the remain-ing constructs are represented by nodes that resemble RISC instructions. Theselow-level nodes are also used in SUIF's linear tuple representation. Parafrase-2uses the hierarchical task graph (HTG) representation instead of an AST. HTGselucidate control and data dependencies between sections of a program and areconvenient for extracting control parallelism.AnalysesAll the systems in our survey provide the base analyses necessary for par-allelism, but beyond that their capabilities diverge. Data dependence analysisis central to most loop transformations and is therefore built into all the sys-tems. Instead of using traditional dependence analysis, Polaris builds symboliclower and upper bounds for each variable reference and propagates these rangesthroughout the program using symbolic execution. Polaris' range test then usesthese ranges to disprove dependences[3].Polaris, Parafrase-2, ParaScope, and SUIF perform control dependence anal-ysis, albeit in a ow-insensitive manner. Parafrase-2 has additional analyses toeliminate redundant control dependences.All the systems (except Sage++) perform intraprocedural symbolic analy-sis to support traditional optimizations, but ParaScope and Parafrase-2 haveextensive interprocedural symbolic analysis such as forward propagation of sym-bolics. VFCS provides intraprocedural irregular access pattern analysis basedon PARTI routines [35]. Parafrase-2, ParaScope, Polaris, SUIF, and VFCS pro-vide interprocedural analysis. Polaris recently incorporated interprocedural sym-bolic constant propagation [32]. Parafrase-2, ParaScope, and VFCS [47] performow-insensitive interprocedural analysis by summarizing where variables are ref-erenced or modi�ed. SUIF's FIAT [20] tool provides a powerful framework forboth ow-insensitive and ow-sensitive analysis [20].Optimizations and TransformationsThe organization of analyses and transformations varies among the systems.SUIF has a exible organization, with each analysis and transformation coded asan independent pass and the sole means of communication between passes beingthe annotations attached to the IR. Polaris also organizes its analyses and trans-formations as separate passes that operate over the whole program, but a passmay call the body of another pass to operate over a subset of the program. Pro-grammers can a�ect the operation of passes in both systems through commandline parameters. All of the systems support batch compilation and optimization.However, Parafrase-2, ParaScope, and VFCS also provide a graphical interfacethat enables users to a�ect their transformation ordering. Moreover, ParaScopeand Polaris support incremental updates of analysis data. Though incrementalanalysis is not more powerful than batch analysis, it dramatically increases the

8 Appears in the 8th Workshop on Languages and Compilers for Parallel Computingspeed of compilation and therefore encourages more extensive optimization.Transformations performed by uniprocessor compilers are termed traditional.Except Sage++, all the systems provide traditional optimizations. In addition,Polaris and SUIF perform array privatization and reductions [34]. Because SUIFgenerates native code, it also includes low-level optimizations such as registerallocation.All six systems provide loop transformations. ParaScope has a large set ofloop transformations. SUIF too has a wide assortment of traditional and looptransformations including unimodular loop transformations (i.e., interchange,reversal, and skewing) [45].All systems except Sage++, include inlining as one of their interproceduraloptimizations. ParaScope, Parafrase-2, SUIF and VFCS also perform cloning.SUIF exploits its strong interprocedural analyses to provide data privatization,reductions and parallelization.Communication and synchronization transformations, though not always dis-tinct from loop transformations, refer to the transformations speci�cally per-formed for distributed memory machines, like message vectorization, communi-cation selection, message coalescing, message aggregation, and message pipelin-ing. VFCS, designed exclusively for distributed memory machines, has a richerset of communication transformations than the others. SUIF is able to deriveautomatic data decompositions for a given program. ParaScope and VFCS dothis to some degree, however, the default computation partitioning mechanismfor them is the owner computes rule and data partitioning is speci�ed by pro-grammers (recent work in ParaScope addresses automatic data partitioning [2]).Parafrase-2 is unique in that it exploits control parallelism by partitioningprograms into separate tasks. The other compilers use only data parallelism.All compilers include applicability criteria for the transformations since atransformation may not be legal, (e.g., loop interchange is illegal when any de-pendence is of the form (� � � ; <;>; � � �)). Sage++ is unique in the respect thatalthough it has a few loop transformations, it does not have any applicabilitycriteria built in. Sage++ developers argue that in a preprocessor toolkit applica-bility should be de�ned by the compiler writer for individual implementations.Though a transformation may be applicable, it may not be pro�table. The sixcompilers surveyed in this article take varying approaches to this issue. Parafrase-2 and ParaScope rely on user input. ParaScope also o�ers a small amount offeedback to the user based on its analysis. SUIF and Polaris use a �xed orderingof transformations for each target, and therefore perform valid transformationsaccording to a prede�ned strategy. VFCS relies on static performance measure-ment by an external tool, P3T, to determine pro�tability [13, 14].Closely related to pro�tability is ordering criteria. Transformations applied indi�erent orders can produce dramatically di�erent results. In interactive mode,ParaScope and Parafrase-2 allow users to select any ordering of transformations.All support �xed transformation ordering via their command lines.Interaction with usersMost of the surveyed compilers have additional tools to assist users in writ-

Appears in the 8th Workshop on Languages and Compilers for Parallel Computing 9ing and understanding their parallel programs. ParaScope strives to provide aparallel programming environment, including an editor, debugger and an auto-matic data partitioner. Polaris allows programmers to provide instructions tothe compiler through source code assertions. Sage++ provides a rich set of toolsfor pC++ named Tuning and Analysis Utilities, TAU [8, 29]. TAU includes toolsfor �le and class display, call graph display, class hierarchy browsing, routine anddata access pro�le display, and event and state display. Almost all of these sys-tems are research tools that encourage user experimentation. Experimentation isfurther facilitated by having a graphical user interface in Parafrase-2, ParaScope,Sage++, and VFCS which display various aspects of the compilation process inwindows so the user can request more details or provide inputs to the compiler.3 Criteria of a Compiler for Heterogeneous SystemsIn Sect. 1, we introduced four goals that a compiler for heterogeneous systemsmust meet: exploiting available resources, targeting changing resources, adjust-ing optimization to suit a target, and allowing programming models and lan-guages to evolve. This section expounds upon these goals by determining theirimplications with respect to the compiler, and �nding where technology fromSect. 2 is applicable or new technology is needed.3.1 Exploiting Available ResourcesAs with any computer system, compilers for heterogeneous systems should gen-erate programs that take maximum advantage of available hardware. However,variability in resources complicates this task. To account for variability, programscould simply be recompiled. Recompiling whenever the hardware con�gurationchanges works well when the con�guration is stable but is ine�cient if the con-�guration changes frequently. Recompiling at runtime adjusts for the currentworkload of a heterogeneous system, but may negate performance bene�ts.Multiple object modules for di�erent targetsInstead of recompiling when the con�guration changes, the compiler couldprecompile for several machines. Hence, the compiler produces the buildingblocks for a program partitioning, but the linker assembles the �nal partitioning.The compiler generates alternate versions of subtasks (or routines), and passesalong enough information for the linker to select a �nal partitioning. None ofthe existing compilers provide this level of exibility. All the compilers performpartitioning and mapping within the compiler.Compiler communicates with run-time environmentAnother approach to exploiting varying resources is for the compiler to em-bed code that examines its environment at run time and dynamically decideshow to execute. For example, VFCS has transformations that dynamically de-cide their applicability at run-time. These transformations, along with delayedbinding of subtasks to speci�c processors, increase communication between the

10 Appears in the 8th Workshop on Languages and Compilers for Parallel Computingcompiler and the run time system. This approach can be adapted to accommo-date variations in hardware resources without the cost of recompilation.3.2 Targeting Changing ResourcesThe variety and variability of hardware complicates code generation for individ-ual components. Unlike existing compilers, a compiler for heterogeneous systemsmust generate code for diverse processors during a single compilation, whichnot only requires exible instruction selection but also exible transformationselection. The compiler must choose the transformations that suit the targetprocessor.IR supports code generation for diverse hardwareA compiler transforms a program through a series of representations fromsource code to object code. The �nal step, selection of object code instructions,is facilitated by an intermediate representation that resembles the target in-struction set. The more accurately the IR reects the hardware, the greaterthe opportunity for optimization. On the other hand, including more hardwarespeci�c detail in the IR decreases its generality. All of the surveyed systems,except SUIF, do a source-to-source translation and leave code generation to na-tive compilers, thus avoiding code generation issues. These compilers lose thebene�ts of intertwining their high-level transformations with machine-level op-timizations. SUIF's unique representation allows it to capture RISC hardwarespeci�c details (for most source language constructs) and still perform high-leveltransformations on the program.Compiler accepts an extensible description of the targetAnother concern for generating e�cient code is exploiting details of the targethardware. Even high-level transformations can bene�t from exploiting featuressuch as the number of registers, memory access latencies, and cache line size. Thevariety of hardware in a heterogeneous system precludes embedding hardwareknowledge in the compiler. Instead, there must be some way to provide targetdescriptions to the compiler. The Memoria compiler, which is part of ParaScopeand is only for uniprocessors, uses hardware parameters such as latency, butnone of the compilers for parallel machines accept hardware parameters as input.Memoria accepts only a limited hardware description, but this approach can beextended to accept a richer description.Compiler detects/accepts programming modelIn order to assign code to a processor with the appropriate model of paral-lelism, the compiler must know the model of parallelismused by the programmer.Programmers could annotate programs with this information, or analysis tech-niques might be able to detect the model of parallelism. None of the surveyedsystems automatically determine the source program's model of parallelism be-cause they assume it is one of a small set of models. For example, Polaris andSUIF assume a sequential model, and ParaScope assumes the program is eithersequential or data parallel. Thus, new technology is needed to both accept andextract the programming model.

Appears in the 8th Workshop on Languages and Compilers for Parallel Computing 11Compiler converts programming models with user assistanceBecause of the variability of resources in a heterogeneous system, a compilermust be able to target code that uses one model of parallelism for a machine thatimplements a di�erent model of parallelism. Thus, the compiler must convert, tosome extent, the model of parallelism that a code module uses. Extensive e�orthas gone into developing methods for converting sequential programs into par-allel programs (i.e., automatic parallelization), and some forms of parallel codecan be readily converted to other forms. All the compilers in our survey trans-form programs to execute on a di�erent model of parallelism, and they representthe state of the art in automatic parallelization. Their techniques should be in-cluded in a compiler for heterogeneous systems. Yet, automatic techniques havehad limited success because they make conservative assumptions. Parafrase-2and ParaScope address this issue with an interactive interface that allows pro-grammers to guide code transformation. Unfortunately for heterogeneous sys-tems, this approach requires programmers to edit their programs each time thesystem's con�guration changes because the programmer's deep understandingof a program remains implicit in the code. Instead programmers should conveytheir insights about the program to the compiler and allow it to determine howto apply these insights.Annotating source programs with additional semantic knowledge is appro-priate only when the algorithm changes slightly for a new target. Sometimes achange in the target requires a radical change in the algorithm to obtain goodperformance. Programmers currently have two choices: write generic algorithmswith mediocre performance on all processors or rewrite the algorithm when thetarget changes. A compiler for heterogeneous systems should provide a thirdchoice by managing multiple implementations of a routine.3.3 Adjusting optimization to suit a targetCurrent compilers have a limited number of targets and therefore apply theiranalyses and transformations in a �xed order (or under user control). Becauseof the variety of hardware in heterogeneous systems, a compiler must be able toreorder transformations to suit a particular target. Moreover, because heteroge-neous systems have variable con�gurations, new analyses and transformationsmay need to be added. Thus, a compiler for heterogeneous systems should encodeanalyses and transformations in a form that facilitates reordering and addition.Modular analyses, optimizations, and transformationsOne implication of needing to reorder analyses and transformations as wellas include new ones is that they should be modular. Parafrase-2, Sage++, andSUIF break transformations into individual passes which communicate throughthe IR. This approach to modularity works well if the entire program needs thesame ordering and is destined for the same model of parallelism. Because opti-mization strategies for subtasks vary depending on the target processor and aheterogeneous system has a variety of targets, the compiler must also be ableto apply an analysis or transformation to individual sections of code. Polaris

12 Appears in the 8th Workshop on Languages and Compilers for Parallel Computingsupports this capability directly; passes may call the bodies of other passes asneeded. ParaScope, Parafrase-2, and to some extent VFCS also provide thiscapability through their interactive interface. New technology should use theexibility these systems provide to automatically adapt the ordering of transfor-mations based on varying models of parallelism and a target's hardware features.Compiler maintains consistency of analysis dataThough the compilers in our survey have modular implementations of theiranalyses and transformations,most of them still have strong ordering constraints.Ideally, transformations would be written such that the compiler infrastructurewould manage these constraints by ensuring that necessary analysis data is accu-rate and up-to-date. Not only would this capability prevent errors, but it wouldalso simplify the addition of new transformations. Polaris already supports incre-mental update of ow information. ParaScope can identify when analysis datais not current, but incremental update is the responsibility of individual trans-formations. Extensions of these techniques can simplify the compiler developer'stask in ordering transformations.3.4 Allowing Programming Models and Languages to EvolveThe inherent complexity of a compiler for heterogeneous systems along with thevariety of targets favors a single compiler with multiple source languages andtargets. Because languages typically evolve in response to new hardware capa-bilities and virtual machines allow the introduction of new hardware, a compilershould include two capabilities to support changes in the source languages itaccepts. The �rst capability is already common: a clean break between the frontand back ends of the compiler. The second capability is much harder: despitethe separation, the front end must pass a semantic description of new languagefeatures to the back end.IR hides source language from back endThe separation of front and back ends protects the analyses and transforma-tions in the back end from details of the source language's syntax. Compilersseparate their front and back ends by limiting their interaction to an interme-diate representation. To the extent that the IR is una�ected by changes in thelanguage, the back end is insulated. Unfortunately, ParaScope, Polaris, Sage++,SUIF, and VFCS use an AST representation, which inherently captures the syn-tax of the source language. SUIF attempts to overcome the limitations of ASTsby immediately compiling language constructs it considers unimportant to RISC-like IR nodes. Parafrase-2 uses an HTG which does not necessarily represent thesyntax of the source language, and can therefore hide it. Extending this ap-proach of reducing source language syntax dependences in the IR can improvethe separation of front and back ends.IR is extensibleTo pass a semantic description of new language features through the inter-mediate representation, the IR must be extended. Some simple changes to a

Appears in the 8th Workshop on Languages and Compilers for Parallel Computing 13Table 2. Compiler Goals for Heterogeneous Systems.1. Exploiting available resources:{ Compiler generates multiple object code modules for di�erent targets to sup-port load balancing and maximize throughput.{ Compiler communicates with Run-time environment.2. Targeting changing resources:{ IR supports code generation for diverse hardware.{ Compiler accepts an extensible description of the target.{ Compiler detects (or accepts from user) the code's programming model.{ Compiler accepts user assistance in converting programming models.3. Adjusting optimization to suit a target:{ Modular analyses, optimizations, and transformations.{ Compiler maintains consistency of analysis data.4. Allowing programming models and languages to evolve:{ IR hides source language from back end.{ IR is extensible (via new constructs or annotations).language (e.g., a new loop construct) may be expressible in terms of the exist-ing IR, but others (e.g., adding message passing to C) require new IR nodes.Sage++, Parafrase-2, SUIF, and Polaris allow extension of their respective IRsthrough object-oriented data structures. Their IRs can be extended to includenew features of an evolving language or to reuse parts of the IR for a completelydi�erent language. Note that a new IR node may require new or enhanced trans-formations to process that node. Object-oriented features improve extensibilitybut they may not be su�ciently exible for unanticipated extensions.4 Summary and ConclusionsCompiling for heterogeneous systems is a challenging task because of the com-plexity of e�ciently managing multiple languages, targets and programmingmodels in a dynamic environment. In this paper, we survey six state-of-the-art high-performance optimizing compilers. We present four goals of an idealcompiler for heterogeneous systems and examined their impact on a compilersummarized in Table 2. Existing compilers satisfy some of these goals, but theylack the exibility needed by heterogeneous systems because homogeneous sys-tems do not require it. We identify areas from which existing technology can beborrowed and areas in which these compilers lack the necessary exibility forheterogeneity. Achieving this exibility does not require substantial changes tocore compiler technology, e.g., parsers and transformations, but rather the waythat they work together, i.e., the compiler's software architecture.Acknowledgements: We want to thank the development teams of each compilerin our survey for their comments and feedback, especially John Grout, Jay Hoe-inger, David Padua, Constantine Polychronopoulos, Nicholas Stavrakos, Chau-Wen Tseng, Robert Wilson, and Hans Zima.

14 Appears in the 8th Workshop on Languages and Compilers for Parallel ComputingReferences1. S. Amarasinghe, J. Anderson, M. Lam, and A. Lim. An overview of a compilerfor scalable parallel machines. In Proceedings of the Sixth Workshop on Languagesand Compilers for Parallel Computing, Portland, OR, August 1993.2. R. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using 0-1 integerprogramming. In International Conference on Parallel Architectures and Compi-lation Techniques (PACT), pages 111{122, Montreal, August 1994.3. W. Blume and R. Eigenmann. The range test: A dependence test for symbolic,non-linear expressions. CSRD 1345, Center for Supercomputing Research andDevelopment, University of Illinois at Urbana-Champaign, April 1994.4. W. Blume et al. E�ective Automatic Parallelization with Polaris. InternationalJournal of Parallel Programming, May 1995.5. F. Bodin et al. Distributed pC++: Basic ideas for an object parallel language.Scienti�c Programming, 2(3), Fall 1993.6. F. Bodin et al. Sage++: An object-oriented toolkit and class library for build-ing Fortran and C++ restructuring tools. In Second Object-Oriented NumericsConference, 1994.7. F. Bodin, T. Priol, P. Mehrotra, and D. Gannon. Directions in parallel program-ming: HPF, shared virtual memory and object parallelism in pC++. TechnicalReport 94-54, ICASE, June 1994.8. D. Brown, S. Hackstadt, A. Malony, and B. Mohr. Program analysis environmentsfor parallel language systems: the TAU environment. In Proceedings of the 2ndWorkshop on Environments and Tools For Parallel Scienti�c Computing, pages162{171, Townsend, Tennessee, May 1994.9. R. Butler and E. Lusk. Monitors, messages, and clusters: the p4 parallel program-ming system. Parallel Computing, 20(4):547{564, April 1994.10. B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scien-ti�c Programming, 1(1):31{50, Fall 1992.11. B. Chapman, P. Mehrotra, and H. Zima. Vienna Fortran - a Fortran language ex-tension for distributed memory multiprocessors. In J. Saltz and P. Mehrotra, edi-tors, Languages, Compilers, and Run-Time Environments for Distributed MemoryMachines. North-Holland, Amsterdam, 1992.12. K. Cooper et al. The ParaScope parallel programming environment. Proceedingsof the IEEE, 81(2):244{263, February 1993.13. T. Fahringer. Using the P 3T to guide the parallelization and optimization e�ortunder the Vienna Fortran compilation system. In Proceedings of the 1994 ScalableHigh Performance Computing Conference, Knoxville, May 1994.14. T. Fahringer and H. Zima. A static parameter based performance prediction toolfor parallel programs. In Proceedings of the 1993 ACM International Conferenceon Supercomputing, Tokyo, July 1993.15. K. Faigin et al. The polaris internal representation. International Journal of Par-allel Programming, 22(5):553{586, Oct. 1994.16. S. Feldman, D. Gay, M. Maimone, and N. Schryer. A Fortran-to-C converter.Computing Science 149, AT&T Bell Laboratories, March 1993.17. G. Fox et al. Fortran D language speci�cation. Technical Report TR90-141, RiceUniversity, December 1990.18. A. Ghafoor and J. Yang. A distributed heterogeneous supercomputing manage-ment system. Computer, 26(6):78{86, June 1993.

Appears in the 8th Workshop on Languages and Compilers for Parallel Computing 1519. M. B. Girkar and C. Polychronopoulos. The hierarchical task graph as a universalintermediate representation. International Journal of Parallel Programming, 22(5),1994.20. M. Hall, B. Murphy, and S. Amarasinghe. Interprocedural analysis for paralleliza-tion. In Proceedings of the Eighth Workshop on Languages and Compilers forParallel Computing, Columbus, OH, August 1995.21. S. Hiranandani, K. Kennedy, and C. Tseng. Compiler support for machine-inde-pendent parallel programming in Fortran D. Technical Report TR91-149, RiceUniversity, Jan. 1991.22. S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran D for MIMDdistributed-memory machines. Communications of the ACM, 35(8):66{80, August1992.23. K. Kennedy, K. S. McKinley, and C. Tseng. Analysis and transformation inan interactive parallel programming tool. Concurrency: Practice & Experience,5(7):575{602, October 1993.24. A. Khokhar, V. Prasanna, M. Shaaban, and C. Wang. Heterogeneous computing:Challenges and opportunities. Computer, 26(6):18{27, June 1993.25. A. E. Klietz, A. V. Malevsky, and K. Chin-Purcell. A case study in metacomput-ing: Distributed simulations of mixing in turbulent convection. In Workshop onHeterogeneous Processing, pages 101{106, April 1993.26. A. Malony et al. Performance analysis of pC++: A portable data-parallel program-ming system for scalable parallel computers. In Proceedings of the 8th InternationalParallel Processing Symposium, 1994.27. K. S. McKinley, S. Singhai, G. Weaver, and C. Weems. Compiling for heteroge-neous systems: A survey and an approach. Technical Report TR-95-59, Universityof Massachusetts, July 1995. http://osl-www.cs.umass.edu/�oos/papers.html.28. Message Passing Interface Forum. MPI: A message-passing interface standard,v1.0. Technical report, University of Tennessee, May 1994.29. B. Mohr, D. Brown, and A. Malony. TAU: A portable parallel program analysisenvironment for pC++. In Proceedings of CONPAR 94 - VAPP VI, University ofLinz, Austria, September 1994. LNCS 854.30. H. Nicholas et al. Distributing the comparison of DNA and protein sequencesacross heterogeneous supercomputers. In Proceedings of Supercomputing '91, pages139{146, 1991.31. D. A. Padua et al. Polaris: A new-generation parallelizing compiler for MPPs.Technical Report CSRD-1306, Center for Supercomputing Research and Develop-ment, University of Illinois at Urbana-Champaign, June 1993.32. D. A. Pauda. Private communication, September 1995.33. C. Polychronopoulos et al. Parafrase-2: An environment for parallelizing, parti-tioning, synchronizing, and scheduling programs on multiprocessors. InternationalJournal of High Speed Computing, 1(1), 1989.34. W. Pottenger and R. Eigenmann. Idiom recognition in the Polaris parallelizingcompiler. In Proceedings of the 1995 ACM International Conference on Supercom-puting, Barcelona, July 1995.35. J. Saltz, K. Crowely, R. Mirchandaney, and H. Berryman. Run-time schedulingand execution of loops on message passing machines. Journal of Parallel andDistributed Computing, 8(2):303{312, 1990.36. L. Smarr and C. E. Catlett. Metacomputing. Communications of the ACM,35(6):45{52, June 1992.

16 Appears in the 8th Workshop on Languages and Compilers for Parallel Computing37. Stanford Compiler Group. The SUIF library. Technical report, Stanford Univer-sity, 1994.38. V.S. Sunderam, G.A. Geist, J. Dongarra, and P. Manchek. The PVM concur-rent computing system: Evolution, experiences, and trends. Parallel Computing,20(4):531{545, April 1994.39. C. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory Ma-chines. PhD thesis, Rice University, January 1993.40. L. H. Turcotte. A survey of software environments for exploiting networked com-puting resources. Technical Report MSSU-EIRS-ERC-93-2, NSF Engineering Re-search Center, Mississippi State University, February 1993.41. L. H. Turcotte. Cluster computing. In Albert Y. Zomaya, editor, Parallel andDistributed Computing Handbook, chapter 26. McGraw-Hill, October 1995.42. C. Weems et al. The image understanding architecture. International Journal ofComputer Vision, 2(3):251{282, 1989.43. C. Weems et al. The DARPA image understanding benchmark for parallel proces-sors. Journal of Parallel and Distributed Computing, 11:1{24, 1991.44. R. Wilson et al. The SUIF compiler system: A parallelizing and optimizing re-search compiler. SIGPLAN, 29(12), December 1994.45. M. E. Wolf and M. Lam. A loop transformation theory and an algorithm tomaximize parallelism. IEEE Transactions on Parallel and Distributed Systems,2(4):452{471, October 1991.46. S. Yang et al. High performance fortran interface to the parallel C++. In Pro-ceedings of the 1994 Scalable High Performance Computing Conference, Knoxville,TN, May 1994.47. H. Zima. Private communication, September 1995.48. H. Zima and B. Chapman. Compiling for distributed-memory systems. Proceed-ings of the IEEE, 81(2):264{287, February 1993.49. H. Zima, B. Chapman, H. Moritsch, and P. Mehrotra. Dynamic data distributionsin Vienna Fortran. In Proceedings of Supercomputing '93, Portland, OR, November1993.

