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ABSTRACT
Use case diagrams (UCDs) are widely used to describe require-
ments and desired functionality of software products. However,
UCDs are loosely linked to source code, and maintaining traces be-
tween the source code and elements of UCDs is a manual, tedious,
and laborious process. These traces help programmers to under-
stand code that they maintain and evolve.

Our contribution is twofold. First, we offer a novel approach
for automating part of the process of recovering traceability links
(TLs) between types and variables in Java programs and elements of
UCDs. We evaluate our prototype implementation on open-source
and commercial software, and the results suggest that our approach
can recover many TLs with a high degree of automation and preci-
sion.

Second, we developed an Eclipse plugin that enables program-
mers to trace program types and variables to elements of UCDs and
vice versa using recovered TLs. We conducted a case study that
shows that programmers could maintain and evolve software more
efficiently with our plugin. These results demonstrate that modest
programmer effort to create TLs together with automated program
mining and analysis is a promising approach than can increase pro-
gram understanding while reducing programmer burden.

Categories and Subject Descriptors
D.2.1 [Software Engineering, Requirements/Specifications]: Tools;
D.2.9 [Software Engineering, Management]: Productivity

General Terms
Use case diagrams, machine learning, traceability links

Keywords
Use case diagrams, traceability links, LeanArt

1. INTRODUCTION
Use-case diagrams (UCDs) capture requirements for software

by describing scenarios in which users and system components
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communicate to perform desired operations [12]. Major software
design tools (e.g., Rational Software Architect from IBM and Vi-
sual Studio from Microsoft) support UCDs. Modelling with UCDs
is widely used in engineering large-scale enterprise-level software.
For example, analysts for the Bank of New York developed over
500 UCDs for a financial enterprise system, and GE Corp. has a
large database containing various UCDs [1]. Even though tracing
requirements expressed in UCDs to programs source code yields
various benefits [2], in practice it is rarely done because it is a man-
ual, tedious, and laborious process.

Our solution, called LEarning and ANAlyzing Requirements Trace-
ability (LeanArt), combines program analysis, run-time monitor-
ing, and machine learning to automatically propagate a small set of
initial traceability links (TLs), also called traces or links, between
program variables and types (program entities) and elements of
UCDs to additional unlinked program entities thereby recovering
new TLs. The input to LeanArt is program source code and UCDs.
The core idea of LeanArt is that after programmers initially link
a few program entities to elements of the UCDs, the system will
glean enough information from these links to recover TLs for much
of the rest of the program automatically.

LeanArt is a lightweight approach for recovering TLs that differs
fundamentally from other approaches since it uses runtime values
of program entities in conjunction with static information, and it
does not depend on exact matches between the names of elements
of UCDs and the names of program entities. In addition, LeanArt
uses program analysis and a compositional algorithm in a novel
way to improve the precision of the recovered TLs.

We evaluate our approach on open-source and commercial appli-
cations written in Java and obtain results that suggest it is effective.
Our results show that after users link approximately 6% of the pro-
gram entities to elements from UCDs, LeanArt correctly recovers
87% of TLs in the best case, 64% on average, and 34% in the worst
case, taking less than thirty minutes to run on an application with
over 20,000 lines of code.

TLs are especially important for programmers, who evolve and
maintain programs, to comprehend source code. Since program-
mers frequently ask questions about finding initial points and un-
derstanding the meaning of program entities when maintaining and
evolving software [18], tracing these entities to elements of UCDs
helps programmers to answer these questions. We built an Eclipse
plugin to visualize TLs that are recovered with LeanArt, and we
conducted a case study that shows that using this plugin to trace
program entities to elements of UCDs and vice versa significantly
improves the speed and the ability of programmers to comprehend
programs and subsequently to accomplish desired maintenance and
evolution tasks.



2. THE PROBLEM STATEMENT
We use the Vehicle Maintenance Tracker (VMT) project, an open

source Java application that manages maintenance records of ve-
hicles (http://vmt.sourceforge.net) as a running example. Frag-
ments of the VMT code from three different files are shown in
Figures 2(a)– 2(c), and a UCD for the VMT is shown in Figure 1.

UCDs show actors, depicted as human figure icons, and these
actors carry out actions that are depicted as ovals. We refer to actors
and actions collectively as elements of UCDs. Actors can be human
users or components of software products. Actors and actions are
connected in UCDs with lines symbolizing relationships between
them. In Figure 1, the actor Vendor represents vendors who can
be reached using Electronic Communications. In general,
the same elements can be used in different UCDs.

When recovering TLs programmers map classes and variables
shown in Figures 2(a)– 2(b) to the elements from the UCD shown
in Figure 1 by observing that the names of some program entities
are similar to the names of the corresponding elements of the UCD.
For example, the names of the fields in the class VendorEdit
partially match the names of the corresponding fields in the class
vendors and the names of the elements of the UCD (e.g., Pho –
PhoneText – Phone).

While some programmers use meaningful names, others name
program entities arbitrarily [3]. When names of program entities
are meaningless, like in the case of the variable S, which is the pa-
rameter to the method addMaintenanceEditor, that is shown
in Figure 2(c), programmers often run applications in order to ob-
tain runtime values of program variables. Then programmers look
for distinct structures in the values of these variables in order to
determine their meaning.

Our goal is to recover TLs between variables and types (entities)
in Java programs and elements from the corresponding UCDs with
a high degree of automation and precision. We do not attempt to
recover TLs between fragments of code (or lines of code or selected
statements) and elements of UCDs. In this paper, we are interested
in tracing such entities correctly to at most one element of some
UCD. If an element is used in many UCDs and a program entity is
traced to this element in one of these UCDs, then this entity should
be traced to this element in other UCDs too.

It is not possible to develop a sound and complete approach for
automatically recovering TLs between program entities and ele-
ments of UCDs. An approach is sound when program entities are
linked to elements from UCDs correctly or not linked at all. False
TLs (i.e., tracing program entities to elements from UCDs incor-
rectly) are not recovered by a sound approach. An approach for
recovering TLs is complete if it recovers links to some elements
from UCDs for all program entities. While a sound and complete
approach for automatic recovery of TLs is desirable, it is in gen-
eral an undecidable problem. (Suppose that values described by
some element from a UCD are strings generated by some context-
free grammar (CFG). One CFG generates strings for some element
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Figure 1: A UCD for the VMT project.

public class vendors {
private String Name,  Add, Pho, Email, Web;
……………. }

(a) File vendors.java.

public class VendorEdit extends InternalFrame {
private Text NameText;
private TextArea PhoneText;

……………. } 

(b) File VendorEdit.java.

public void addMaintenanceEditor(String[] S) {
addMaintenanceServices(new String[]{

((MaintenanceEdit)Desktop.getSelectedFrame()).
getName(),  S[4], S[5]});

……………. } };
(c) File VMT.java.

Figure 2: Code fragments from selected programs of the Java-
based VMT application.

of a UCD and some other CFG generates strings for some pro-
gram variable. If strings generated for the element from a UCD
and the program variable are identical, then the program variable is
described by, and consequently can be linked to this element. How-
ever, determining if two CFGs generate the same set of strings is
an undecidable problem.)

We want to design an automatic approach that mimics a human-
driven manual and laborious procedure for recovering TLs between
program entities and elements of UCDs with a high precision. That
is, our approach should automate the process of searching for pat-
terns in the names and the values of program entities, and use de-
tected patterns to match these entities to elements of UCDs thereby
recovering TLs. In addition, discarding incorrectly recovered TLs
will increase the precision of our approach. Our approach should
be lightweight and it should fit into a software development process
without introducing additional operations for programmers.

TLs bridge a gap between high-level concepts represented by
elements of UCDs and low-level implementation details such as
program entities. To ensure that programmers can use recovered
TLs effectively when evolving and maintaining applications, we
need to provide navigation assistance. Specifically, programmers
should be able to navigate to program entities linked to elements
of UCDs by selecting these elements, and conversely to navigate
to elements of UCDs by selecting program entities to which these
elements are linked.

3. OUR APPROACH
In this section, we describe the key ideas of and give intuition

into how our approach works.

3.1 Key Ideas
Our main idea is to mimic the human-driven procedure of search-

ing for common patterns and similarities between the names and
values of program entities and the names of elements of UCDs.
We realize this idea by using machine learning (ML) techniques
that classify program entities as belonging to elements of UCDs
based on the names of program entities, their runtime values, and
the names of elements of UCDs. ML techniques can also support
partial matches between names and values.



ML techniques are not 100% accurate. To improve the precision
of our approach, LeanArt determines relations between program
entities and compares them with corresponding relations between
elements in UCDs to which these entities are traced. If a relation
is present between two entities in the program code and there is
no relation in UCDs between elements to which these entities are
traced, our algorithm asks the user to validate these TLs.

We observe that relations between elements of UCDs are often
preserved in the program code. This observation is closely related
to the concept of the software reflexion models, formulated by Mur-
phy, Notkin, and Sullivan, where relations between elements of
high-level models (e.g., processing elements of software architec-
tures) are preserved in their implementations in source code [15].
We claim that it is possible to detect a large percentage of false
TLs automatically using this method, and we substantiate this claim
with the results of our experiments in Section 7.6.

3.2 Relations
A TL link set computation uses a set of relations α, γ, and δ. TLs

are pairs (t,c) ∈ α, where α is the traceability relation, t is a pro-
gram entity, and c is an element of some UCD. Relations between
elements in UCDs are expressed as pairs (cp,cq) ∈ γ, where cp and
cq are elements of some UCDs, and γ is the relation between these
elements. The δ–relation describes relations between program en-
tities, and it includes three relations: between types and types, be-
tween types and variables, and between variables and variables.
The type-type δ–relations exist between classes connected via in-
heritance or between classes and interfaces 1. The type-variable δ–
relations exist between variables and types to which these variables
are explicitly cast or declared. Finally, variable-variable δ–relations
specify that two variables are used in the same expression.

These relations are obtained using different techniques. TLs
or α–relations are specified by programmers when defining initial
links or when TLs are recovered using ML techniques. γ–relations
are extracted from UCDs. The type-type δ–relations are obtained
using type checking algorithms. Finally, the variable-variable δ–
relations are obtained by performing control and data flow analy-
ses.

3.3 Validation Algorithm
The validation algorithm guesses TLs for untraced program en-

tities using existing traces and δ– and γ–relations. Recall that γ is
the relation between elements in UCDs, δ specifies relations be-
tween program entities, and α is the traceability relation. Traces
are constructed by composing these relations. Relations δ and α are
composed if the second component of some pair in the δ–relation
matches the first component of some pair in the α–relation. Re-
lations α and γ can also be composed if the second component of
a pair from the α–relation matches the first component of some
pair from the γ–relation. We can write the composition rules as
σ = δ◦α, σ = α◦ γ, and σ = δ◦α◦ γ. Relation (t,c) ∈ σ suggests
that the program entity t may be traced to the element c of a UCD.
We use these suggested TLs are used only to validate traces deter-
mined by the ML techniques. The set α\σ is the set of flagged TLs
that should be reviewed by programmers, and the set α∩σ is the
set of validated TLs.

Our validation algorithm uses heuristics stating that for a δ–
relation between program entities in the source code there is a γ–
relation between the elements in UCDs to which these entities are
traced. Suppose a programmer determines that some program en-
tity tn should be traced to some element cp of some UCD. This
1We use the term type as a substitute for terms class and
interface, and vice versa.

trace can be written as the α–relation α(tn,cp). Suppose that there
are relations δ(tm, tn) and γ(cp,cq) specifying that program entities
tm and tn are related in a program, and elements cp and cq are also
related in some UCDs. By composing these relations δ(tm, tn) ◦
α(tn,cp) ◦ γ(cp,cq), we obtain the new relation σ(tm,cq) suggest-
ing that the program entity tm may be traced to the element cq.

The ML techniques may recover two TLs expressed as α–relations:
α(tm,cq) and α(tm,cw). Since there is a corresponding relation
σ(tm,cq), the recovered relation α(tm,cq) is validated. However,
the second recovered relation α(tm,cw) is flagged as possibly false
since there is no corresponding σ–relation. Programmers review
flagged traces and reject ones.

The algorithm InferValidate for inferring σ–relations and
validating TLs is given in Algorithm 1. Its inputs are δ–, α–, and
γ–relations. The algorithm iterates through all α– and δ–relations
in the first two for–loops to find pairs of α–relations whose first
component (program entity) is the same as the second component
in some δ–relation pair. The composition of α– and δ–relations
with matching components gives elements of the σ–relation. Then,
the inner for–loop iterates through all γ–relations to find pairs that
can be composed with the pair from the α–relation from the outer
for-loop.

This validation algorithm can recover TLs, however, its accuracy
is too low, and it performs much worse than the ML component.
Our experiments showed that without the ML component the val-
idation algorithm recovers many incorrect TLs and misses correct
TLs. The results of this experiment are described in Section 7.6.

4. LEANART ARCHITECTURE
The architecture for LeanArt is shown in Figure 3. The main

elements of the Lean architecture are the Mapper, the Learner, and
the Validator. TLs are stored in the Links database along with the
information about UCDs and program entities.

Initially, programmers create traces by linking a small percent-
age of program entities to elements of UCDs. Then LeanArt in-
struments the program to perform run-time monitoring of program
variables. LeanArt uses a Java compiler to compile this instru-
mented program. When this program is executed, LeanArt collects
the values of the program variables, and it uses these values along
with the initial traces and the names of program entities and ele-
ments of UCDs to train the Learner to identify entities with similar
values and names. LeanArt’s Learner then classifies the rest of pro-
gram entities by matching them with the names of the elements of

Algorithm 1 The InferValidate procedure
InferValidate( δ, α, γ )
σ 7→ /0
for all (a, b) ∈ α do

for all (s, t) ∈ δ do
if t = a then

σ 7→ σ∪ (s, b)
for all (p, q) ∈ γ do

if p = b then
σ 7→ σ∪ (s, q)

end if
end for

end if
end for

end for
print: α\σ are possibly false TLs
print: α∩σ are validated TLs
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Figure 3: LeanART architecture.

UCDs. Once a match is determined for an entity and approved by
the Validator, LeanArt links this entity with the matching element
from some UCD and stores it in the Links database.

The inputs to the system are (1) a UCD, (2) program source
code, and (3) a set of initial traces produced by the programmer.
The system’s component that accepts these inputs is the Mapper,
which is a tool whose components are a Java parser, program and
UCD analysis routines, and an instrumenter. The Mapper con-
structs δ and γ relations using its (4) program analysis routines,
and it enters initial TLs into (5) the Links database.

The Mapper instruments the source code to record run-time val-
ues of program variables. After instrumenting the source code, the
Mapper calls a Java compiler to produce (6) an executable pro-
gram. Then, the program runs, storing names and the values of
program variables in (7) the Program Data Table (PDT). PDT
serves as an input to (8) the Learner, which is based on WEKA, a
machine-learning Java-based open source system [21].

The Learner is trained on TLs from (13) the Links database and
the runtime data from (8) the PDT. The initial TLs used to train the
Learner should be correct. Once the Learner is trained, it classifies
untraced program entities that are supplied to the Learner in the
PDT by analyzing their runtime values and names. We discuss the
Leaner in Section 5.

The output of the Learner is (9) a set of Recovered Traceability
Links (RTLs). These RTLs are sent to (10) the Validator which
uses the compositional algorithm described in Section 3.3 to check
if these RTLs may be false. The Validator sends its recommenda-
tions to (11) the programmer who reviews them and approves or
rejects suspected TLs. Approved links are stored in (12) the Links
database . The Learner can improve its predictive capabilities by
using (13) the results of this validation. That is, if the Learner
recovers TLs incorrectly, then it can be retrained on these negative
examples to improve its performance. This continuing process of
recovering, validating, and learning from invalidated TLs makes
LeanArt effective for the long-term evolution and maintenance of
software systems.

5. LEARNING TRACEABILITY LINKS
In LeanArt, we use standard learning algorithms in the context of

recovering TLs. The problem of recovering TLs is a classification
problem: given elements of UCDs and a program entity, which el-
ement matches this entity the best? The Learner classifies program
entities with the probabilities that these entities can be traced to cer-

tain elements of UCDs based on the information learnt from initial
traceability links.

5.1 Learning Algorithm
The LeanArt learning algorithm consists of two phases: the train-

ing phase and the classifying phase during which TLs are recov-
ered. During the training phase, different learners are trained sep-
arately on the names of program entities and their runtime values.
Trained learners classify program entities as belonging to concepts
described by the elements of UCDs, and based on these classifica-
tions, the Leaner suggests TLs.

Initial TLs provide input data for training learners. Recall that
TLs are pairs whose first components are the names of program
entities and the second components are the names of elements of
UCDs. To disambiguate program entities that are given the same
names in different scopes (i.e., program text regions in which vari-
ables bindings are active), each entity is identified with its access
path. For example, if a variable named var is declared in the
method M of the class C which is defined in the package P, then
the access path to this variable is P.C.M.var. The learners are
trained on this input data, and when given the name of an untraced
program entity they can compute the probabilities with which this
entity can be traced to each element of UCDs.

When the instrumented program runs, it outputs the values of the
variables specified in the initial TLs as strings and integers. This
data is stored in a Weka file that contains columns for access paths,
and the cells for these columns are filled with values that these vari-
ables take during program runs (i.e., the PDT). After tokenizing
these value strings into bags of words, these words are used as fea-
tures to train learners.

LeanArt uses the cross-validating approach to avoid overfitting
training data. In cross-validation, the training data is divides into
few pairs of training and testing sets. Then, each learner is trained
for each pair of training and testing data sets, and the results are
averaged to produce a more accurate estimate.

5.2 Multistrategy Learning Approach
Since it is difficult to find a learning algorithm that can deliver

consistently good results for different types of input data, LeanArt
employs the Multistrategy Learning Approach (MLA) which or-
ganizes multiple learners in layers [14]. The learners located at
the bottom layer are called base learners, and their predictions are
combined by metalearners at the upper layers.

In the MLA, each base learner issues predictions that a pro-
gram entity matches a UCD element with some probability. A
metalearner combines these predictions by multiplying these prob-
abilities by weights assigned to each base learner and taking the
average for the products for the corresponding predictions for the
same program entity. These weights characterizes learners’ accu-
racy in predicting TLs for program entities. Our choice of the MLA
allows us to plug into LeanArt a variety of learning algorithms that
have different and complementary properties, thereby improving
the precision of recovering TLs.

We illustrate the MLA with the following example. One base
learner BL1 may issue a prediction that the variable Pho from
the example shown in Figures 2 matches the name of the UCD
element Specify Address with the probability 0.3, the ele-
ment Email with the probability 0.1, and the element Phone
with the probability 0.7. We write these matches as the variant
〈Specify Address:0.3,Email:0.1,Phone:0.7〉BL1

Pho,
where the field labels are the names of the elements of UCDs
(shown in Figure 1) and field values are the probabilities of match-
ing the variable Pho, which is specified as a subscript to the variant.



The superscript of the variant shows the name of the learner used
to classify the given variable.

The other base learner BL2 may issue a different prediction 〈Specify
Address:0.2,Email:0.3,Phone:0.9〉BL2

Pho. A metalearner
combines these predictions by multiplying the probabilities by weights
assigned to each learner and taking the average for the products for
the corresponding labels of the predictions for the same program
variable. Thus, the resulting prediction issued by a metalearner in
our example is 〈Specify Address:0.25,Email:0.2,Pho-
ne:0.8〉MLA

Pho with weights equal to 1 for both learners. Based on
this prediction, the element name Phonematches the variable Pho
with the highest probability 0.8, and based on this result the met-
alearner traces the element Phone to this variable.

5.3 Learners
Base learners match the names and the values of program enti-

ties with the names of elements of UCDs. In LeanArt, we exper-
iment with well-known and proven algorithms such as Whirl [8]
and Naïve Bayes classifier (NBC), however, many other classifiers
are available and can be used in LeanArt.

NBCs are studied extensively, so we only state what they do in
the context of the problem that we are solving here. The variable
var j contains runtime values or names of program entities as bags
of words. Given elements of some UCD, {c1, . . . ,cm}, the NBC
assigns var j to some element of a UCD, ck, 1 ≤ k ≤ m, such that
the probability that p(ck|var j) that the variable var j belongs to the
element ck, is maximized. In LeanArt, NBCs are used with strings
and integers.

Whirl computes the similarity distance between the name of a
program entity and the name of an element of some UCD, both
strings. This distance should be within some threshold value that is
determined when the learner is trained. Whirl-based name match-
ers work well for meaningful names especially if large parts of
them coincide or they are synonyms. They do not perform well
when names are meaningless or consist of combinations of num-
bers, digits, and some special characters (e.g., underscore or caret).
For example, Whirl is unable to correctly classify the variable S
shown in Figure 2(c). While Whirl-based matchers work well for
text data, specifically the names of program entities, NBCs per-
form well when classifying numerical as well as string data, and
they compensate for the deficiencies of the Whirl algorithm.

6. NAVIGATING TRACEABILITY LINKS
Our goal is to design an intuitive point-and-click graphical in-

terface that enables programmers to navigate to program entities
linked to elements of UCDs by selecting these elements, and con-
versely to navigate to elements of UCDs by selecting program en-
tities to which these elements are linked.

We developed a plugin for the Eclipse Java Integrated Devel-
opment Environment (IDE)2. The input to this plugin is an XML-
based file that contains descriptions of UCDs along with recovered
TLs that map program entities to elements of the UCDs. The plugin
creates a tab called Use Cases in the IDE, and the plugin draws a
selected UCD in the client area of this tab. Figure 4 shows a UCD
for the application VMT in the tab Use Cases of the IDE, and the
Java code is described in Section 2.

Recall that the most frequently asked questions are about find-
ing initial focus points and understanding the meaning of program
entities [18]. When finding initial points, programmers try to find
program entities that correspond to domain concepts specified by

2http://www.eclipse.org

Figure 4: Eclipse plugin for Leanart.

elements of these UCDs. When understanding the meaning of pro-
gram entities, programmers ask questions about domain concepts
that specific program entities represent. Answering these questions
involves navigating between elements of UCDs and program enti-
ties of software projects that these UCDs describe.

In our approach, programmers navigate from elements of some
UCD to program entities by selecting an element of the UCD and
by clicking on it. The element changes its color and a frame is
drawn around it indicating this selection. Then, the plugin deter-
mines to what program entities this element is linked by retrieving
TLs from the XML-based input file. Each TL is a map, linking
elements of UCDs with some program entities by specifying what
Java projects these UCDs describe and by giving exact positions
of these program entities within Java files of these projects. The
plugin loads all Java files that contain program entities linked to
selected elements of the UCD in the project space, and it highlights
program entities with the color of the selected elements.

To navigate from program entities to elements of UCDs, pro-
grammers right-click on the program entity which is highlighted.
A context menu presents the programmer with a selection of menu
items, one of which shows the TLs. When the programmer selects
this menu item, a listbox describing relevant UCDs is presented,
and the programmer selects a subset of the UCDs from this list-
box. Each selected UCD is loaded into a separate tab labeled Use
Case, and elements of these UCDs that are traced to the high-
lighted program entity are painted with the same highlighting color.

Recall that each program entity is traced to a single element of
some UCD, but each element of some UCD may be traced to many
program entities. It makes it easy to answer questions about the
meaning of program entities since only one element of some UCD
will be linked to a selected program entity. However, when finding
initial points, many program entities in different Java files may be
linked to a selected element of some UCD, which may confuse
programmers.

We determined that handling multiple links is not an issue in
practice, since programmers can easily verify whether these links
lead to program entities that represent correct initial points. In gen-
eral, evolution and maintenance tasks specify how programs should



Program LOC # of # of # of # of
Name UCDs elem γ–rels δ–rels
Megamek 23,782 4 25 76 16,263
SCMS 16,332 5 22 68 12,811
ASM 12,294 3 23 117 18,033
FreeCol 6,855 2 17 83 13,672
Jetty 4,613 2 6 12 540
VA 3,484 3 11 23 2,417
PMD 3,419 3 12 51 913
VMT 2,926 3 8 24 1,739
IHIS 1,883 4 14 35 1,208

Table 1: Characteristics of the subject programs and UCDs.

be changed using high-level domain concepts. If programmers are
not familiar with the source code, finding program entities that rep-
resent these high-level domain concepts is a laborious and manual
process. However, with our approach, programmers are directed
to program entities that represent elements of UCDs, which in turn
represent these high-level domain concepts (see Section 7.7).

7. EXPERIMENTAL EVALUATION
In this section we describe the results of experimental evaluation

of LeanArt on open-source and commercial Java programs. We
also report a case study that shows that our visualization and navi-
gation Eclipse plugin enables programmers to evolve and maintain
software more efficiently.

7.1 Subject Programs
We experiment with seven open-source and two commercial Java

programs that belong to different domains. Our selection of subject
programs is influenced by several factors. Since participants are
students, our goal was to find programs of manageable sizes whose
domains are general and easy to understand. To avoid biasing our
study towards programs that are easy to comprehend, we chose pro-
grams written by different programmers for different domains, and
with which participants did not have any prior experience.

We selected seven open source subject programs. MegaMek is
a networked Java clone of BattleTech, a sci-fi boardgame for
two or more players. PMD is a Java source code analyzer which,
among other things, finds unused variables and empty catch blocks.
FreeCol is an open version of the Civilization game in
which players conquer new worlds. Jetty is an open source
HTTP server. The Vehicle Maintenance Tracker (VMT)
tracks the maintenance of vehicles. The Animal Shelter Ma-
nager (ASM) is an application for animal sanctuaries and shel-
ters that includes document generation, full reporting, charts, in-
ternet publishing, pet search engine, and web interface. Finally,
Integrated Hospital Information System (IHIS)
is a program for maintaining health information records.

We selected two commercial subject programs. Smart card
management system (SCMS) is an application developed by
the department of information security of Schlumberger Corp. to
issue and manage smart card in enterprise environments. Viewpoint
Administrator (VA) is a network PC management tool which
is developed by Boundless Corp.

Table 1 contains characteristics of the subject programs, their
UCDs, and relations. The first column shows the names of the sub-
ject programs, followed by the number of noncommented lines of
code, LOC. Other columns show the number of UCDs, number of

elements of UCDs, and the numbers of γ– and δ–relations com-
puted from the source code and the UCDs.

7.2 Selecting Input Data
Input data for the AMS application were extracted from the world-

wide animal shelter directory. Input data for the VMT application
were taken from the database of the Cobalt Group company that
builds solutions for the automotive retail marketplace. PMD source
code analyzer was run on Java programs taken from samples sup-
plied with the Java Development Kit. Jetty served web pages from
news information web sites. IHIS used data from the American
Hospital Directory and other hospital databases available from the
Internet. Input data for the MegaMek and FreeCol games were
supplied with the applications as well as generated when playing
these games. SCMS and VA come with test cases.

7.3 Creating UCDs
Subject programs, with the exception of SCMS and VA do not

come with UCDs. Two groups of graduate students created UCDs
based on the available source code and documentation for these
programs. They did this work as part of taking two different gradu-
ate software engineering courses. These students were not familiar
with the subject programs, and acquired information about them
by reading their source code, and running these programs under
debuggers to study the values of program variables. Then, these
students recovered TLs for program entities for each program man-
ually based on their analysis of debugging information and their
understanding of the source code. This process took approximately
four and a half months for twenty-three graduate students.

7.4 Threats to Validity
A threat to the validity of this experimental evaluation is that stu-

dents might make mistakes when recovering TLs manually, and we
did not have a control group to verify these TLs due to the difficulty
to find students for this laborious and tedious process. Even if this
control group existed, it would be difficult to make sure that they
did a better job than the original group. This uncertainty reflects a
real-world environment when programmers, who write source code
using UCDs, may also make mistakes when providing TLs.

Our subject programs are of small to moderate size because it is
difficult to find a large number of graduate students or programmers
who would spend significant amount of time recovering TLs man-
ually for large-scale software projects. Large applications whose
creation is guided by UCDs may have different characteristics com-
pared to our small to medium size subject programs. Increasing the
size of applications to millions of lines of code may lead to a non-
linear increase in the analysis time and space demand for LeanArt.
Future work could focus on making LeanArt scalable.

A threat to the validity of this study is that UCDs for open-source
subject programs were created after these programs had been writ-
ten. In our experiments students created UCDs by reverse engineer-
ing subject programs, and these UCDs may not be identical to ones
that would be created as part of the forward engineering process.

Since UCDs capture the requirements of a system based on the
understanding of a problem domain and the desired functional-
ity, implementing these requirements entails design decisions and
knowledge that is not captured in the code. Thus, reverse engi-
neered UCDs are usually more implementation oriented than those
produced during requirement gathering. Therefore reverse-engineered
UCDs may match the source code better since they are closely
based on the names of their elements as well as relations between
them may match program entities with a higher precision than the
elements of the UCDs created before subject programs are written.



Program Run PE ITL RTL CTL WTL BTL DTL ATL GTL BTLR VPR ACC
Name min
Megamek 26 328 20 308 92 21 113 17 178 195 0.07 0.81 0.58
SCMS 18 296 18 278 26 5 31 19 228 247 0.01 0.89 0.82
ASM 28 218 13 205 22 8 30 38 137 175 0.04 0.85 0.67
FreeCol 20 527 31 496 113 15 128 80 288 368 0.03 0.43 0.58
Jetty 6 96 6 90 12 4 16 10 64 74 0.04 0.55 0.71
VA 12 119 7 112 10 9 19 8 85 93 0.08 0.83 0.76
PMD 9 176 11 165 47 22 69 40 56 96 0.13 0.26 0.34
VMT 14 143 9 134 16 2 18 30 86 126 0.01 0.92 0.87
IHIS 11 225 14 211 25 4 29 24 158 182 0.02 0.86 0.75

Table 2: Results of the experimental evaluation of LeanArt with the initial TLs (ITL)≈6%.

Additional threats to validity of this study is that our approach
depends on the user finding acceptable initial TLs. Specifically, the
user may make bad choices of initial TLs, or they can be clustered
towards certain concepts, i.e., nonuniformly distributed across all
program entities and elements of UCDs. As shown in Figure 7,
in some cases of randomly selecting initial TLs the accuracy of
LeanArt may be low. Currently, we do not provide any support for
helping programmers to make right choices.

7.5 Response Variables
We observe and measure a number of response variables. PE is

the number of program entities, and the ITL is the number of ini-
tial TLs, ITL < PE. The number of TLs that should be recovered,
RTL = PE - ITL, RTL > 0. The Learner issues predictions
for TLs, some of which may be incorrect. Thus RTL is the sum of
Good Traceability Links (GTL) and Bad Traceability Links (BTL),
RTL = GTL + BTL. BTL is the sum of CTL, which is the num-
ber of correct TLs that are mistakenly discarded by the Validator,
and WTL, which is the number of wrong TLs that the Validator ac-
cepts, BTL = CTL + WTL. GTL is the sum of the DTL, which
is the number of correctly discarded TLs and ATL, which is the
number of correctly accepted TLs, GTL = DTL + ATL.

The quality of LeanArt is measured using three ratios: ACC,
VPR, and BTLR. Learner’s accuracy ratio is computed as ACC=ATL

RTL ,
and the Validator’s precision ratio is computed as VPR=GTL - BTL

2×RTL +
1
2 . The ACC variable is the ratio of correctly recovered TLs, and the
VPR ratio shows how mistaken the Validator is when analyzing re-
covered TLs. Constants are used in the formula for the VPR in
order to normalize its values, VPR∈ [0,1], where VPR=0 means
that all recovered TLs are incorrect, and VPR=1 means that they
are correct.

The idea behind computing the precision VPR is to evaluate
the difference between good and bad TLs, i.e., GTL and BTL.
If all recovered TLs are good, i.e., GTL=RTL and BTL=0, then
VPR= RTL

2×RTL + 1
2=1. If all recovered TLs are bad, i.e., BTL=RTL

and GTL=0, then VPR= -RTL
2×RTL + 1

2=0.
The difference between the ACC and VPRmeasures is that ACC is

used to evaluate the performance of the Learner while VPR shows
the combined performance of the Learner and the Validator. The
variable ACC is analogous to the recall parameter in information
retrieval, which is the ratio of the number of relevant documents
retrieved to the total number of documents.

The intuition behind the variable VPR is that the benefits of
program comprehension obtained through recovering TLs may be
negated by incorrect TLs mixed up with correct ones since pro-
grammers will use them to make decisions [20]. The ratio VPR can

be used in conjunction with the variable BTLR, which stands for
Bad Traceability Links Ratio and it is computed as BTLR = WTL

RTL .
The closer the VPR ratio to 1 and the closer the BTLR to 0, the
more correct LeanArt is and the fewer wrong TLs are recovered.

7.6 Experiments
The goal of the first experiment is to determine how effective

LeanArt is in recovering TLs for subject programs. Since all pro-
gram entities are traced to elements of UCD manually, we compare
TLs recovered and validated by LeanArt with the links manually
determined by graduate students. Ideally, if all recovered TLs co-
incide with manually recorded traces, then the LeanArt accuracy
ACC is 1.0, the VPR is 1.0, and the BTLR = 0.

Table 2 contains results of the experimental evaluation of Lea-
nArt on the subject programs with the number of initial TLs (ITL)
selected at approximately 6%. These ITLs were selected based
on close similarities between the names of program entities and the
names of elements of UCDs. The columns of this table contain the
names of subject programs, the LeanArt running time in minutes
for each subject program, the number of program entities, PE, the
number of initial TLs, ITL, and other control variables described in
the previous section. The last three columns show the BTLR ratio,
LeanArt’s precision, VPR, and the accuracy, ACC.

The highest accuracy is achieved with programs ASM and VMT
which are written for specific domains with well-defined terminolo-
gies, and whose entity names are easy to interpret and classify. The
lowest level of accuracy was with the program PMD which analyzes
Java programs whose code does not use terminologies from any
specific domain. Our experiment shows that the Validate algo-
rithm performs well in practice for the majority of cases achiev-
ing the VPR = 0.92 for the VMT application with the BTLR =
0.01, which means that this algorithm accepts correctly recovered
TLs while discarding most wrong TLs.

Next, we used the Learner trained for the VMT application to re-
cover TLs for other applications. This methodology is called true-
advice versus self-advice which uses the same program for train-
ing and evaluation. Figure 6 shows the accuracy ratio ACC with
which the LeanArt recovers TLs correctly with self-advice (left
bar) versus the true-advice (right bar) when the Learner is trained
on the VMT application. This experiment shows that LeanArt can
be trained on one application and used to recover TLs for other pro-
grams if they operate on similar data. ASM and IHIS share some
names and data with the VMT application, and it allows learners to
be trained and used interchangeably thus achieving the high degree
of automation.

The goal of the next experiment is to evaluate whether the val-
idation algorithm can be used to recover TLs without using the
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Figure 5: LeanArt’s precision, VPR, when using the Learner
(left bar) versus no Learner used (right bar).

Learner. Recall that the validation algorithm suggests possible TLs
based on composing relations. We hypothesize that many TLs sug-
gested by the validation algorithm are incorrect. When used with
the Learner, these incorrect traces do not affect the results since
they are discarded when there are no matching links recovered by
the Learner. To carry out this experiment we turned off the Learner
and used the Validator instead of it. The results are shown in Fig-
ure 5 where the measurements for the LeanArt’s precision, VPR,
are depicted when running LeanArt with the Learner (left bar) ver-
sus no Learner used (right bar). The precision is five to ten times
worse when Learner is not used, that is, the validation algorithm
recovers many additional incorrect TLs and it misses correct ones.

Finally, we determine how choosing different program entities
for initial TLs randomly and increasing their number affects Lea-
nArt’s accuracy and precision. In general, programmers tend to
choose familiar program entities for specifying initial TLs. The
names of these entities match the names of elements from UCDs,
and it eases the selection process for initial TLs. However, we are
interested to see how LeanArt performs if initial TLs were cho-
sen at random. While increasing the number of entities chosen for
initial TLs may lead to better accuracy of the Learner, choosing
more entities for initial TLs makes the LeanArt process more ex-
pensive. The goal of this experiment is to provide a guideline to
what percentage of the total program entities should be chosen for
initial TLs to give an acceptable accuracy when recovering addi-
tional TLs.

The results of this experiment are shown in Figure 7. The hor-
izontal axis shows the percentage of the total number of program
entities chosen randomly for initial TLs, and the vertical axis shows
the accuracy of the Learner, ACC. For each percentage of initial
traces we run a series of experiments in which program entities
were chosen randomly for these traces. The vertical lines on this
graph show the maximum and minimum ACC for running the ex-
periment on the same number of different initial TLs, and the av-
erage ACC for this experiment is shown by the horizontal mark on
the vertical lines. While the gap between the minimum and the
maximum ACCs is large, the average shows that in order to get a
good accuracy it is sufficient to create initial TLs for less than seven
percent of program entities.

7.7 Case Study
In order to determine whether LeanArt and the Eclipse plugin

enable programmers to evolve and maintain applications efficiently,
we undertook a case study to answer the following to determine:
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Learner is trained on the VMT application.

• How difficult is it for programmers to find initial focus points
from high-level descriptions during the evolution and main-
tenance tasks;

• Does LeanArt with the Eclipse plugin help the programmers
to determine what concepts are represented by program enti-
ties?

7.7.1 Methodology
Participants of the case study were undergraduate and graduate

students (hereafter, “programmers”) all of which had an interme-
diate level of experience with Java. Programmers were not famil-
iar with the subject programs and their UCDs, which were created
by other students as part of their course assignments. In this case
study, we tried to create a situation when programmers were asked
to evolve and maintain programs with which they did not have any
prior experience.

7.7.2 Controlled Experiment
In this controlled experiment, programmers were asked to an-

swer questions about subject programs, and to make changes to the
programs source code in order to perform specified evolution and
maintenance tasks. We divided subjects in two groups, each con-
sisted of eleven programmers. Programmers from the test (treat-
ment) group were given a thirty-minute presentation on how to use
the Eclipse plugin to navigate between program entities and ele-
ments of UCDs, and students from the control group were given a
presentation informing them about different manual techniques to
recover TLs.

Participants from both groups were given a list of twenty ques-
tions for evolving and maintaining software [18]. We told par-
ticipants that answering these questions will increase their course
grade. Both groups were given two hours and thirty minutes to an-
swer questions. We provide generalized versions of these questions
below.

Questions for finding initial focus points included:

• What types represent domain concept Y?

• How is the concept Y related to the concept Z in the source
code?

• Is there any code in the program that implements or uses the
concept Y?
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• Add a new attribute called X to classes that implement con-
cept Y (i.e., an element of some UCD), and pass the values
from program entities that implement the concept Z to this
attribute;

Questions about the meanings of program entities include:

• What is the concept that this program entity represents?

• What is the meaning of the relation between these program
entities?

The response variables in our study are the time that program-
mers spend to answer the questions about evolution and mainte-
nance of software, and the number of questions that they answer
correctly. Our goal is to disprove the null hypothesis that there is
no difference between the treatment and control groups and support
the alternative hypothesis that states that using LeanArt, program-
mers from the test group spend less time and answer more ques-
tions correctly than programmers from the control group who use
conventional techniques.

7.7.3 Results
The results of the controlled experiments support the alternative

hypothesis, showing that LeanArt and the Eclipse plugin enable
programmers to evolve and maintain applications more efficiently.
Nineteen programmers from the test group were able to answer
all twenty questions correctly (one programmer answered nineteen
questions correctly) within one and a half hours and taking as few
as forty minutes. In contrast, only three out of eleven program-
mers from the control group answered all questions correctly, with
the minimum amount of time taking close to two hours. In post-
experiment interviews programmers from the test group said that
answering questions was more a mechanical than intellectual exer-
cise since all they had to do was to navigate TLs using our Eclipse
plugin.

Similar to the test group, programmers from the control group
said that they performed mechanical activities; however, their ex-
perience was bad. The complexity of ad-hoc operations that they
had to perform in order to answer questions stressed them, made
them tired and prone to errors, and subsequently less productive.

We performed separate two-sample t-tests on the time and cor-
rect answers data for the test and control groups. The two-tailed
p-value for the time data is less than 0.0001, which is by conven-
tional criteria is statistically significant. The mean of the test group

Time, mins Correct answers
Subject Test Control Test Control
Programmer1 82 150 20 6
Programmer2 41 150 20 3
Programmer3 89 150 20 8
Programmer4 58 150 20 1
Programmer5 43 122 20 20
Programmer6 65 150 20 0
Programmer7 84 150 20 11
Programmer8 71 136 20 20
Programmer9 63 150 20 20
Programmer10 48 150 19 0
Programmer11 85 127 20 18

Table 3: Experimental data from the controlled experiment.

minus the control group equals -77.82; the 95% confidence in-
terval of this difference is from -91.02 to -64.62. The mean for
the test group is 66.27 minutes versus 144.09 minutes for the
control group with the standard deviation 17.45 versus 10.61.

The two-tailed p-value for the correctly answered questions data
is less than 0.0023, which also is statistically significant. The
mean of the test group minus the control group equals -10.18;
the 95% confidence interval of this difference is from 4.58 to
15.79. The mean for the test group is 19.91 correctly answered
questions versus 9.73 correctly answered questions for the control
group with the standard deviation 0.3 versus 8.45.

We also computed Pearson product moment correlation coeffi-
cients for the test and control groups between the times that pro-
grammers spent to understand the code and the numbers of their
correct answers to questions. The correlation coefficient for the
control group is -0.7, suggesting that programmers spend more
time to understand code while being less capable of providing cor-
rect answers to the questions. These results confirm that when us-
ing LeanArt, program understanding is improved, i.e., program-
mers spend less time to answer questions about maintenance and
evolution of software correctly.

8. RELATED WORK
ARTS is one of the earliest systems for automating requirements

traceability [9]. While ARTS allows users to enter programs and re-
quirements manually, LeanArt automates the process of recovering
TLs between source code and requirements expressed as UCDs.

TOOR is a tool based on a template-based approach for trac-
ing requirements between different software development artifacts
[16]. Like LeanArt, TOOR exploits relations between software ar-
tifacts. However, LeanArt is mostly concerned with automating the
part of process of recovering TLs between requirements and pro-
gram entities, and this activity is performed manually in TOOR.

TraceAnalyzer is a tool that detects TLs between test and usage
scenarios, models (e.g., use cases or class diagrams), and classes
in the source code by collecting and analyzing runtime information
about class methods [10][11]. Like in LeanArt, programmers spec-
ify a small number of TLs, and TraceAnalyzer recovers additional
links between requirements and program classes. However, Trace-
Analyzer requires test and usage scenarios be linked to classes, and
it does not support TLs at a finer granularity (e.g., to program vari-
ables and other types besides classes).

A goal centric traceability (GCT) approach uses Information Re-
trieval (IR) techniques in order to establish TLs between nonfunc-
tional requirements and software artifacts expressed using UML



diagrams [7]. A main difference between LeanArt and GCT ap-
proaches is that LeanArt is designed to recover TLs between UCDs
and programs source code while GCT is designed to work solely
with class diagrams.

A requirement-to-object-model recovers TLs between textual parts
of requirement documents and UML class diagrams [19]. In con-
trast, LeanArt is designed to recover TLs between programs source
code and UCDs.

Latent Semantic Indexing (LSI) is an IR-based approach for re-
covering documentation-to-source code traceability links [13]. It
utilizes comments and identifier names within the source code to
match them with sections of corresponding documents. In con-
trast, LeanArt does not depend on similarities between names of
identifiers in program source code and words in requirements doc-
uments.

Antoniol et al apply both a probabilistic and a vector space in-
formation retrieval model in two case studies to trace C++ source
code onto manual pages and Java code to functional requirements
[4]. Unlike LeanArt, this approach is dependent on programmers to
use meaningful names for program items, such as functions, vari-
ables, types, classes, and methods.

Our work is directly related to research in the concept assignment
problem (CAP) [5], namely, to identify how high-level concepts are
associated with their implementations in source code. While Lea-
nArt is concerned with linking concepts that are represented by el-
ements of UCDs to program entities, other CAP-based approaches
use machine learning to identify and locate concept implementa-
tions in programs. Poshyvanyk et al uses LSI for static analysis of
the source code and probabilistic ranking for dynamic traces of exe-
cution to identify concepts in the source code. This approach could
enhance LeanArt and improve its precision and usability [17]. In
addition, an approach for using procedure dependence graphs to
locate concepts in program source code [6] can improve the Lea-
nArt’s validation algorithm by finding relations between program
entities with higher precision.

9. CONCLUSION
We offer a novel approach for automating part of the process of

recovering traceability links (TLs) between the source code of Java
programs and elements of use case diagrams (UCDs). We evalu-
ate our approach on open-source software projects written in Java
and obtain results that suggest it is effective. Our results show that
after users link approximately 6% of program entities to elements
from UCDs, LeanArt correctly recovers 87% TLs in the best case,
64% on average, and 34% in the worst case, taking less than thirty
minutes to analyze an application with over 20,000 lines of code.

Our additional contribution is a visualization mechanism for re-
covered TLs that enables programmers to answer important ques-
tions when evolving and maintaining software. We conducted a
case study to evaluate LeanArt and the visualization plugin, and
the results of this study suggest that our approach is effective and
that it can aid in program understanding and software evolution and
maintenance.
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