Generating Object Lifetime Traces with Merlin

MATTHEW HERTZ

University of Massachusetts, Amherst
STEPHEN M BLACKBURN
Australian National University

J ELIOT B MOSS

University of Massachusetts, Amherst
KATHRYN S McKINLEY

University of Texas at Austin

and

DARKO STEFANOVIC

University of New Mexico

Programmers are writing a rapidly growing number of programs in object-oriented languages, such
as Java and C#, that require garbage collection. Garbage collection traces and simulation speed
up research by enabling deeper understandings of object lifetime behavior and quick exploration
and design of new garbage collection algorithms. When generating perfect traces, the brute-force
method of computing object lifetimes requires a whole-heap garbage collection at every potential
collection point in the program. Because this process is prohibitively expensive, researchers often
use granulated traces by collecting only periodically, e.g., every 32K bytes of allocation.

We extend the state of the art for simulating garbage collection algorithms in two ways. First, we
develop a systematic methodology for simulation studies of copying garbage collection and present
results showing the effects of trace granularity on these simulations. We show that trace granularity
often distorts simulated garbage collection results compared with perfect traces. Second, we
present and measure the performance of a new algorithm called Merlin for computing object
lifetimes. Merlin timestamps objects and later uses the timestamps of dead objects to reconstruct
when they died. The Merlin algorithm piggybacks on garbage collections performed by the base
system. Experimental results show that Merlin can generate traces over two orders of magnitude
faster than the brute-force method which collects after every object allocation. We also use Merlin
to produce visualizations of heap behavior that expose new object lifetime behaviors.
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2 . Hertz, Blackburn, Moss, McKinley, Stefanovic

1. INTRODUCTION

While languages such as LISP and Smalltalk have always usdxdge collection (GC),
the dramatic increase in the number of programs written va,J&#, and other modern
languages has prompted a corresponding surge in GC resdancimber of these studies
use garbage collection traces and simulations to examéneftbctiveness of new GC algo-
rithms [Hirzel et al. 2003; Stefanovit et al. 1999; Zorn P8 ther research uses traces to
tune garbage collection via profile feedback [Blackburri.e2@01; Cheng et al. 1998; Sha-
ham et al. 2000; Ungar and Jackson 1992]. A perfect tracedidragye collection includes
the birth and death time of all objects, measured in bytexaled. (The memory man-
agement community uses memory rather than operations teurelifetime.) Computing
perfect lifetimes can be a very time-consuming process. ifkgiance, dracing collec-
tor must determine all the reachable objects in the heapeay @llocation by computing
reachability from the stacks, global variables, and loeaiables:

n

Z|Iive objects ata

wheren is the number of objects the program allocates, anid an allocation event.
This cost is prohibitive even for modest programs that allecmn the order of 100MB
and have an average live size on the order of 10MB, such asitleywsed SPECjvm98
benchmarks [SPECjvm98 1998]. On current processors, nmiatmgse programs execute
in under a minute, but brute-force trace generation takes ®months. Costs are similar
even for a reference counting collector because it alsoimegja form of tracing to handle
cycles. While future technology advances will reduce timet these same trends inspire
programmers to use larger data sets.

To avoid this cost, previous research often ug@siulatedtraces which estimate object
lifetimes periodically (e.g., after evekybytes of allocation). However, researchers have
not studied the effects of granularity on the accuracy obgge collection simulations
or measures computed from them. While Zorn and Grunwald4JL@2amined better
methods of approximating traces, no one has studied whedtefthese approximations
have either. In this work, we run simulations using grareddtaces on a variety of copying
garbage collection algorithms and metrics for evaluathregrt. The results demonstrate
that granulated traces can produce significantly differesailts and thus that conclusions
drawn from research based on simulations of granulatedgnaay be problematic.

We introduce the Merlin object lifetime algorithm which eféntly computes object
lifetimes. The Merlin algorithm timestamps live objectsemhthey lose an incoming ref-
erence and later uses the timestamps to reconstruct theatimkich the object became
unreachable. By using timestamps rather than tracing tdifgiehe time of death, the new
algorithm does not require frequent collections nor doesguire whole-heap collections.
Rather, it makes use of those collections that the systeru@imachine) normally per-
forms to identifywhich objects have died, and then uses the timestamps to idevitién
they died. Ordering the dead objects from the latest tinesta the earliest, the algorithm
works from the current collection time backwards. Merlingtonly processes each object
once to compute its death time after it knows that the obgedead. Merlin’s execution
time is proportional to the total allocations plus the numiifdimes each object loses an
incoming referencen.
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Experimental results on SPECjvm98 and other programs shatirt practice the Merlin
algorithm can improve performance by more than a factor 6f@ger brute-force tracing,
thoughiitis 70 to 300 times slower than an untraced prograartlivthus makes producing
perfect traces much more attractive.

This paper extends our prior work [Hertz et al. 2002a] whistraduced the Merlin
algorithm with (1) a better description of the Merlin algbr, (2) qualitative as well as
guantitative analysis of the effects of trace granulat{@),a more detailed performance
analysis, (4) an algorithm that uses Merlin to generategeded traces, and (5) results
and analysis of Merlin heap lifetime visualizations.

As a demonstration of the usefulness of perfect traces, esept heap lifetime visual-
izations. Stefanovic [1999] used brute-force traces tmlpce similar visualizations for a
set of small programs to explore garbage collection perémre. By reducing the time to
generate traces, we examine here much larger and mordioetisgrams. These graphs
reveal lifetime behaviors and trends that enhance the stad®ting of object lifetimes and
design of garbage collection algorithms, and we offer sonadyais here.

The remainder of the paper analyzes the effects of traceufgndty on garbage collection
simulation fidelity for a number of collectors, introducks Merlin trace generation algo-
rithm, and describes additional uses of lifetime traces:ti&e 2 gives some background
on garbage collection, lifetime traces, and trace graityl@ection 3 describes our exper-
imental methodology for analyzing the effects of trace gtarity. Section 4 and 5 present
and discuss the results of our granularity analysis. Sedimtroduces the Merlin trace
generation algorithm and describes how it improves on tbeipus approaches. Section 7
presents and analyzes results from the new algorithm.d@e8fpresents additional uses of
perfect lifetime traces. Finally, Section 9 presents eglatork and Section 11 summarizes
this study.

2. BACKGROUND

This section explains three background conceg#sbage collection (GC)garbage col-
lection traces and their use in simulatigrdgarbage collection trace granularity

2.1 Garbage Collection

Garbage collection automates the reclamation of heap tshileat are no longer needed
[Jones and Lins 1996]. While a wide variety of systems usbage collectors, we assume
a system that uses an implicit-free environment, i.e., teayshat defines an expligitew
command for object allocation, but not aee command. Since garbage collectors cannot
know which objects the program will use in the future withadiditional information,
collectorsconservativelyapproximate liveness with reachability; all reachablesoty are
assumed live, and all unreachable objects may be reclaiined & is not possible for
the program to access them agiro determine reachability, a collection begins at a
program'’s roots. Theootscontain all the pointers from outside of the heap into thephea

1systems with finalization must maintain pointers to thegeats until they perform the finalization operations,
at which point the collector can reclaim them.
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4 . Hertz, Blackburn, Moss, McKinley, Stefanovic

such as the program stacks, static (global) variables, acal variables in the current
procedure. The collector then finds the live objects by figdih objects in the transitive
closure over the points-to (reachability) relationship.

Whole-heap collectors compute the reachability of evejgattand remove all unreach-
able objects on every collection. Many collectors (e.gnggational collectors [Lieberman
and Hewitt 1983; Ungar 1984]) often collect part of the hdampiting the work at a col-
lection. Because the collector reclaims only unreachabjeats, it must conservatively
assume that the regions of the heap not examined contaidiealgbjects. If objects in
the unexamined region point to objects in the examined redie target objects must re-
main in the heap. Collectors typically uaeite barriersto find pointers into the collected
region. A write barrier is code executed by the system inwoction with each pointer
store operation. A write barrier typically tests if the p@intarget is in a region that will
be collected before the region containing the pointer sguand records such pointers in
some data structure.

2.2 Copying Garbage Collection Algorithms

We use four copying GC algorithms for evaluating trace glanity: a semi-space collec-
tor, a fixed-size nursery generational collector [Liebemraad Hewitt 1983; Ungar 1984],
a variable-sized nursery generational collector [Appe89]9and an Older-First collec-
tor [Stefanovi€ et al. 1999; Stefanovit et al. 2002]. Wetly describe each of these here
and refer the reader to previous work for more details [JamesLins 1996].

A semi-space collector (SS) allocates iff@m space using a bump pointer. A bump
pointer defines a boundary between allocated and free menithiy a larger contiguous
region. It allows simple and efficient allocation by incrarting the pointer by the size of
the allocated object. When SS runs out of space, it colle@sentire space by finding all
reachable objects and copying them into a second spaceddalspace. The collector
then reverseBrom andTo space and continues allocating. Since all object&am space
may be live, it must conservatively reserve half the totaphfor theTo space, as do the
generational collectors that generalize this collector.

A fixed-size nursery (FG) two-generation collector dividesFrom space of the heap
into a nursery and an older generation. It allocates intativeery. When the nursery is
full, it collects the nursery and copies the live object®itite older generation. It repeats
this process until the older generation is also full. It tketiects the nursery together with
the older generation and copies survivors intoThepace of the older generation.

A variable-size nursery two-generation collector (VG)aidvides the=rom space into
a nursery and an older generation, but does not fix the boyrmdween them. In the
steady state, the nursery is some fractiorF@m space. When the nursery is full, VG
copies live objects into the older fraction. The new nursgre is reduced by the size of
the survivors. When the nursery becomes too small, VG dslleit of From space. The
obvious generalization of these variantsitgenerations apply.

The Older-First collector (OF) organizes the heap in ordeslject age. It collects a
fixed-size window that slides through the heap from olderdanger objects. When the
heap is full in the steady state, OF collects the window/retthe free space to the nursery,
compacts the survivors, and then positions the window n#xt collection at objects just
younger than those that survived. If the window bumps ingoattocation point, OF resets
the window to the oldest end of the heap. OF need only resgraeesthe size of one
window for collection (as opposed to half the heap for theeptigorithms).
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2.3 Garbage Collection Traces and Simulations

Given the typical difficulty of implementing a known garbagslector, implementing and

debuggingnewgarbage collection algorithms and optimizations can beuatifag process.

Especially when a collector is designed to take advantagewfor unavailable hardware
(e.g., a 64-bit address space [Stefanovic 1999]) or canpiptimizations (e.g., [Hirzel

et al. 2003]), researchers have often used simulators taerepid prototyping and eval-
uation before investing in a full implementation. By loosenrestrictions on the knowl-

edge available to a collector and what a GC algorithm may idwlators are also useful
for oracle-driven limit studies [Hertz and Berger 2004;f&t@vic 1999]. A final value of

simulators is their ability to support evaluations of a #nignplementation of a garbage
collector with input from any number of different progranmgilanguages or virtual ma-
chines. As a portion of our study is an examination of sinarléitielity, here we provide

the reader a basic description of GC simulators and thedithet drive them.

A garbage collection tracés a chronological record of every object allocation, heap
pointer update, and object death (object becoming unrédehaver the execution of a
program. Following common practice, traces measure tini®yias of allocation and not
number of operations. Each event includes the informatiaha memory manager needs
for its processing. Processiofpject allocationrecords requires an identifier for the new
object and the object’s sizepinter updaterecords include the object and field being up-
dated and the new value of the pointebject deathrecords indicate which object became
unreachable. These events constitute the minimum amountosfation that GC simu-
lations need. Depending on the algorithm and detail of stinh, other events, such as
procedure entry and exit, field reads, or root pointer enati@r may also be necessary
and/or useful.

Simulators then apply one or more GC algorithms and optiticiza to a given pro-
gram trace. The trace must contain all the information ttgardage collection algorithm
would actually use in a live execution and all of the eventsrughich the collector may
be required to act, independent of any specific GC implentientaTraces do not record
all aspects of program execution, but only those which asxleé to recreate collector
performance accurately. While even single-threaded garballection may not be deter-
ministic, simulations return deterministic results sitice trace file is fixed. With repre-
sentative trace files, researchers can rely upon thesdsesuking simulation attractive
and accurate traces critical.

GC trace generators must be integrated into the memory reaoéghe interpreter or
virtual machine in which the program runs. If the programdmpiled into a stand-alone
executable, the compiler back end must generate traceagemecode in addition to the or-
dinary memory management code at each object allocatiort and pointer update. The
generator can log pointer updates by instrumenting posttee operations; this instru-
mentation is particularly easy if the language and GC impgletation use write barriers,
since the generator can simply piggyback its instrumesniainto existing code.

The common brute-force method of computing object lifeBrdetermines reachability
by performing a whole-heap GC after every allocation. Thedforce method incurs the
expense of collecting thentireheap prior to allocatingachobject. In current technology,
brute-force accurate trace generation for a small micreebmark at all allocation points
takes days; traces of simple single-threaded programs$ECjvm98 can require several
months.
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Even though objects may die between allocations, the memarnagement literature
uses bytes of allocation to measure object lifetimes. MafyaBorithms only trigger
collection when they need additional space in the heapjmeediately before allocating
a new object, and thus this measurement is fully accurateal@&@ithms such as deferred
reference counting [Deutsch and Bobrow 1976; Blackburmacidinley 2003] can initiate
collections at other GC safe points as well, such as a proeedll or return. A GGsafe
point requires that the garbage collector correctly enumeratoat pointers. Although
we do not consider these additional points here, such a waoéd include markers for
all such points, and a brute-force trace generator woultbparadditional reachability
analyses at all these points as well.

2.4 Garbage Collection Trace Granularity

To reduce the prohibitive cost of brute-force trace gef@maprevious work often performs
object lifetime analysis only periodically, e.g., aftereeyk bytes of allocation. It also
guarantees the trace to be accurate only at those specifitsptie rest of the time the
trace may overestimate the set of live objects. For coreastrany simulation must assume
that objects become unreachable only at the accurate pdinggranularity of a trace is
the period between these moments of accurate death knosvledg

3. EFFECTS OF TRACE GRANULARITY

This section evaluates the effects of trace granularityonlsition accuracy using copying
garbage collectors as the set of client algorithms. We festdbe our simulator and pro-
grams. To our knowledge, all previous GC simulation workl(iding our own) neglected
to consider precisely the question of information accuedifferent points in a trace with
a given granularity. We explore a variety of methods for Hiagcyranularity in simulation.

We find that although some methods yield better results thtzars, all methods introduce
inaccuracies into GC algorithm simulations, even withtreddy modest trace granularity.

3.1 Simulator Suite

For our trace granularity experiments, we ugeesim a GC simulator suite from the Uni-
versity of Massachusetts with front-ends for Smalltalk dada traces. In our simulator,
we implemented four different GC algorithms: SS, FG, VG, @¥j as described in Sec-
tion 2.2. The first three collectors are in widespread use. elagh collector, we use a
number of fixed heap sizes to explore the inherent spacettade off in garbage collec-
tion. We simulate eight differerffrom space sizes, from 1.25 to 3 times the maximum
size of the live objects within the heap, at 0.25 incremefts.FG and VG we simulated
each heap size with five different nursery sizes, and for @&vindow sizes. These latter
parameters ranged frognto 2 of Fromspace, in increments.

3.2 Granularity Schemes

We designed and implemented four different schemes to barate granularity. Each
of these schemes is independent of the simulated GC alguoriBy affectingwhenthe
collections occur, they explore the limits of trace granitya

3.2.1 UnsynchronizedWhen we began this research, our simulator used this naive
approach to handling trace granularity: it did nothing. Vel this methodUnsynchro-
nized Unsynchronized simulations allow a GC to occur at any timie trace; simulated
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collections occur at the natural collection points for telgge collection algorithm (such
as when the heap or nursery is full). This scheme allows thalsitor to run the algorithm
as itis designed and does not consider trace granularitp wbtermining when to collect.
Unsynchronized simulations may treat an object as reaehaddause the object death
record was not yet reached in the trace, even though thetabjenreachable. However,
they allow a GC algorithm to perform collections at theirurat points, unconstrained by
the granularity of the input trace.

3.2.2 Synchronized Schemeghree other schemes, which we caiinchronizedsim-
ulate collections only at those points in the trace with aatiknowledge of unreachable
objects. The schemes check if a GC is needed, or will be nesatad only at the accu-
rate points and simulate a collection only at these poiritpurE 1 shows how each of the
Synchronized schemes makes collection decisions. In datlese figures, the solid line
labeled N is the natural collection point for the algorithfime triangles denote points with
perfect knowledge and the shaded region indicates one Igrahthe trace. Each scheme
performs the collection at the point in the trace with perferwledge within the shaded
region. This point is shown by the arrow labeled C.

SyncEarly. The first scheme we cayncEarly Figure 1(a) shows how SyncEarly de-
cides when to collect. If, at a point with perfect knowledtes simulator determines that
the natural collection point will be reached within the &mlling granule of the trace, Sync-
Early forces a collection. SyncEarly always performs aemibnat or beforethe natural
pointis reached. Even assuming there are no effects frama tnanularity, SyncEarly sim-
ulations may still perform extra garbage collections,,expen the last natural collection
point occurs between the end of the trace and what would bedkepoint with perfect
knowledge. But SyncEarly ensures that the simulated heime&vier grow beyond the
bounds it is given.

SyncLate.The second scheme &/nclLate Figure 1(b) shows how SyncLate decides
when to collect. At a point with perfect knowledge, if Synée@aomputes that the natural
collection point occurred within the preceding granuleod trace, SyncLate invokes a
garbage collection. SyncLate colleesor after the natural point is reached. SyncLate
simulations may collect too few times, e.g., when the lastina collection point occurs
between the last point with perfect knowledge and the entetriace. SyncLate allows
the heap and/or nursery to grow beyond their nominal bouatigden points with perfect
knowledge, but enforces the bounds whenever a collectioanmgpleted.

SyncMid. The last Synchronized schemeSgncMid Figure 1(c) shows how SyncMid
decides whento collect. SyncMid forces a GC invocation atiatpvith perfect knowledge
if a natural collection point is within half of a granule inettpast or future. SyncMid
requires a collection at the point with perfect knowledtmsestto the natural collection
point. SyncMid simulations try to balance the times theyokw®s collections too early and
too late to achieve results close to the average. SyncMidlations may, like SyncEarly,
perform more or may, like SyncLate, perform fewer garbadkctions. Between points
with perfect knowledge, SyncMid simulations may also reguhe heap and/or nursery
to grow beyond their nominal bounds. However, heap boungleaforced immediately
following a collection.
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(a) SyncEarly

(c) SyncMid

Fig. 1. These figures show points with perfect knowledgartries) and the natural collection point (N) (where
the collector runs out of space). The shaded region higtsliglyranule-sized region of the trace and contains the
collection point (C) where the Synchronization scheme agtually simulate a collection.

4. TRACE GRANULARITY RESULTS

Using our simulator suite, we performed a number of expeninéo determine if trace

granularity affects garbage collection simulations. Waraied the performance of each
combination of collector and trace granularity scheme desd above on a variety of

Java and Smalltalk benchmarks across several commonlyG@&eahetrics. Our results

show that even small trace granularities produce diffezeriic simulator results and that
algorithm choice could help limit, but not eliminate, thiooplem. The remainder of this

section describes in more detail the metrics we considénedxperiments we performed,
and presents an overview of these results.

4.1 GC Simulation Metrics

Each GC simulation measures the following: the number olukted collections, the
markiconsratio, the number ofvrite-barrier stores and thespace-time productFor a
given trace, these metrics are deterministic.

The mark/cons ratio is the number of bytes that the collectpied (marked divided
by the number of bytes allocatedons’ed in LISP terminology). The ratio approximates
the amount of work done by a collector. Higher mark/con®eaguggest an algorithm will
need more time, because it must process and copy more oajettaore bytes.

Another metric we report is the number of write-barrier sfoduring a program run.
Since many garbage collectors do not collect the entire ,lthay use a write barrier to
find pointers between collection regions (as discussed @ticde2.1). The write barrier
instruments pointer store operations to determine if thatpocrosses from one collec-
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tion region to another. Depending on the GC algorithm, mwstrossing particular region
boundaries in particular directions must be recorded (&nernered”) so that they can sub-
sequently be examined at GC time; these stores are ealitdbarrier stores The number
of pointer stores, and the cost to instrument each of thess dot vary in a program run,
but the number of write-barrier stores varies between GGratgns at run time and affects
their performance.

We measure the space-time product, computing the sum ofuimber of bytes used
by objects within the heap at each allocation point mukiglby the size of the allocation,
i.e., the integral of the number of bytes used by objectsiwithe heap with respect to
bytes of allocation (time). Since the number of bytes aledaloes not vary between al-
gorithms, this metric captures how well an algorithm masaggues such as fragmentation
throughout the program execution.

None of these metrics is necessarily sufficient in itselfébedmnine how well an algo-
rithm performs. Algorithms can perform better in one or mafrthe metrics at the expense
of another. The importance of considering the totality efdata can be seen in models de-
veloped that combine the data to determine the total time elgorithm needs [Stefanovit
et al. 1999].

4.2 GC Traces

We used 15 GC traces in this study. Nine of the traces are fhrendikes RVM [Alpern
et al. 1999; Alpern et al. 2000], a compiler and run-time eysfor Java in which we
implemented our trace generator. Because it is writtenya,Xaese traces include heap
allocations from both the application and the Jikes RVM. Thee Java traces are: bloat-
bloat (Bloat [Nystrom 1998] using its own source code as fhpgwo different configu-
rations of Olden health (5 256 and 4 512) [Cahoon and McKi2i@91], and compress,
jess, raytrace, db, javac, and jack from SPECjvm98 [SPEE#/f998]. We also have six
GC traces that we generated previously using the Univea$itassachusetts Smalltalk
Virtual Machine. The Smalltalk traces are: lambda-facmbda-fact6, tomcatv, heapsim,
tree-replace-random, and tree-replace-binary [Hoskilad) 992; Stefanovi€ et al. 1999].
More information about the programs appears in Table I. &lpesgrams are widely used
in the garbage collection literature.

We implemented a filter that accepts a perfect trace andttaayee, and outputs the
trace with the targeted level of granularity. From our petffeaccurate traces for each
of the programs we generated 7 granulated versions of each with trace granularities
ranging from 1KB to 64KB. To examine the effects of very latgeee granularity, we use
granularities of 512KB, 1024KB and 2048KB. We selected th@mum 1KB granularity
to be smaller than most prior traced-based research Huasgié enough to provide some
savings in trace generation time. Table 1l shows an exanfglecsimulator output where
|GC]| is the number of collectiongcopy bis the number of excess copied bytes (unreach-
able bytes copied), anchut. i/sis the number of write-barrier stores that occur during
program execution.

4.3 Analysis

We began our experiments by simulating all combinationsoichmark, trace granularity,
granularity scheme, GC algorithm, aktbm space and nursery (window) size, recording
the four metrics from above for each combination. This pitedius with 600 OF, VG, and
FG simulation runs and 120 SS simulation runs for each coatioim of trace granularity
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Table I. Traces used in the experiment. Sizes are expresssdes.

Program Description Max. Live | BytesAlloc | ObjsAlloc
bloat-bloat Bytecode-Level Optimization and 3207 176 | 164 094 868| 3653 255
Analysis Tool 98 using its own
source code as input
Olden Health (5 256)| Columbian health market simulatgr 2 337 284 | 14 953 944 662 395
from the Olden benchmarks, recoded
in Java

(4512) | A smaller run of Olden health 1650 444 9230 756 353 094
SPEC_201compress| Compresses and decompresses8 144 188 | 120 057 332 138 931
20MB of data using the Lempel-Zi

method

SPEC_202jess Expert shell system using NASA 3792856 | 321981032| 8575988
CLIPS

SPEC_205raytrace | Raytraces a scene into a memoyy 5733464 | 154 028 396| 6 552 000
buffer

SPEC_209.db Performs series of database functionsl0 047 216| 85169 104| 3314278
on a memory resident database

SPEC_213 javac Sun’s JDK 1.0.4 compiler 11742 640| 274573 404| 8096 562

SPEC_228 jack Generates a parser for Java programs3 813 624 | 322 274 664| 8107 004

lambda-fact5 Untyped lambda calculus interpreter 25180 1111760 53 580

evaluating 5! in the standard Churdh
numerals encoding
lambda-fact6 Untyped lambda calculus interpreter 54 700 4 864 988 241 864
evaluating 6! in the standard Churd
numerals encoding

tomcatv Vectorized mesh generator 126096 | 42085496 3385900
heapsim Simulates a garbage collected heap 549 504 9949 848 764 465
tree-replace-random | Builds a binary tree then replaces 49 052 2341 388 121 588
random subtrees at a fixed height
with newly built subtrees
tree-replace-binary Builds a binary tree then replaces 39148 818 080 34729
random subtrees with newly builf
subtrees

=y

Table Il.  Simulator output from a fixed-sized nursery (FNfslation of Health (4, 512). The top lines are the
metrics after six collections, when the differences firstdme obvious; the bottom lines are the final results of
the simulation.

|GC| alloc b copyb xcopyb garbageb  mark/con xcopy/copy mut. i/s
6 5221236 1098480 268088 3770048 0.210387 0.244 054 14243

10 9230756 1552152 284404 6622732 0.168 150 0.183232 40675
(a) Perfect Trace

|GC| alloc b copyb xcopyb garbageb  mark/con xcopy/copy mut. i/s
6 4787328 1443608 355768 2824328 0.301548 0.246 444 11644

11 9230756 2007252 375464 6392528 0.217 453 0.187 054 41949
(b) SyncMid With 1KB Granularity
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and granularity scheme. From this large population of datgperform qualitative and
statistical analyses of the results.

We exclude the following sets of simulations that do not eiserthe memory system
well, and/or yield incomplete information. We remove siatidns with fewer than 10 gar-
bage collections. We remove simulations where the traceugety equaled 50% or more
of the simulatedFrom space size, since trace granularity would obviously implaese
results. We also excluded simulations where either thelaiion using the perfect trace
or granulated trace could not run within the given heap siz@. example, the heap size
was too small to accommodate imperfect collection due todakarly synchronization.

For our statistical study, the number of experiments reingiat the 1KB granularity
was about 90 for SS, 200 for VG, 250 for FG, and 425 for OF. Theatrer of valid
simulations does not vary by more than 2%-3% until the 32Kahgtarity. At the 32KB
granularity, there are 20% fewer valid simulations. The hars continue to drop as the
granularity increases; by the 2048KB granularity therefaweer than half the number of
usable simulations as at the smallest granularity.

We analyze the data as follows to reveal if trace granulaffigcts GC simulations and
if it does, at what granularities do differences appear. ggregate the data, we normalize
the granulated trace simulation results to the results ademtically configured simulation
using a perfecttrace. We use the logarithm of this ratio abwhlues twice as large and half
as much average to 1. To provide a qualitative analysis afffieets of trace granularity, we
compared the normalized simulator result of each metricsagghe granularity of the trace
being simulated. We found that expressing the trace gratyutyy different methods helps
show different causes of these errors. The three graphgimé2 all show normalized
mark/cons values for SyncMid with VN, but using three diffier methods of expressing
the trace granularity.

Figure 2(a) plots the relative mark/cons ratio as a funabitie trace granularity. This
graph reveals that normalized simulator results for thigimeange from 1.6 to 0.5 at even
the smallest granularity with the spread increasing atlagganularities. From this graph,
however, it is difficult to determine how much of this behavidue to the relative size
of the trace. Figure 2(b) shows the same results as a funativace granularity relative
to the maximum live size of the trace. It separates the dathshows the range of errors
for the mark/cons ratio that can occur at a single heap sigeré&2(c) expresses the trace
granularity relative to the size of ttemulatedheap and is a better predictor of error, but
still does not place a tight bound on the deviations. Figyso& relative trace granularity
for VN using SyncEarly, SyncLate, and Unsynchronized. Imparison to Figure 2(c),
SyncMid is as good as or better than the other granulatiosnseb.

While these results are helpful for understanding whenrgwocur, statistical analysis
is needed to determine (1) if measures of trace granulamsiaulation-dependent, (2)
if there exists some granularity size that could yield ataiele error at trace generation
time; and (3) if even when relative trace granularity is guitnall, we will continue to see
a sizable error in simulated results.

For a more definitive answer as to whether trace granuldifitgts GC simulations, we
performed two-tailed t-tests on the aggregated resultalfanetrics. A two-tailed t-test
determines if the difference between the actual mean fagresult from the granulated
trace) and expected mean (e.g., the result if trace gratyuterd no effect on the simula-
tor results) is the result of natural variance in the dateherdffects of trace granulation
are larger than can be explained by normal variance. Fallgwbnvention, we consid-
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Table 1ll.  Smallest granularity (in KB) at which each mettiecomes significantly different, by simulation
method and collector. Differences were tested using a aieek t-test at the 95% confidence level (p = 0.05).
Unsynced SyncMid SyncEarly SyncLate

SS FG VG OF SS FG VG OKSS FG VG OFSS FG VG OF

Mark/Cond 1 1 1 1none 1 none L1 1 4 4 1 8 16 4
Space-Tim¢ 1 1 1 1none 1 2 11 1 1 11 1 1 2

IGC| 1 1 16 1Lnone 1 16 11 1 4 41 1 1 1
WB Storesn/a 16 16 1 n/a 32 16 nongn/a 2 8 4nla 2 4 8

Table IV. Smallest granularity (in KB) at which each metriecbmes significantly different, by simulation

method and collector. Differences were tested using a aieet t-test at the 95% confidence level=£p0.05).

This table considers only data from traces with a maximumdize of 2MB or more.

Unsynced SyncMid SyncEarly SyncLate

SS FG VG OF SS FG VG OFSS FG VG OFSS FG VG OF

Mark/Cong 1 1 4 32none 512 none 648 512 none 832 11024 16

Space-Timg 4 1 512 1 1 1 512 321 1 512 216 1 512512
|GC||32 1 512 1¢none 1 512102464 1 512 816 1 64 8

WB Storesn/a 512 2098 512 n/a 16 1 nonm/a 32 1 8&n/a 16 1024 16

ered only differences at the 95% confidence level or highet (h05) to be statistically
significant (more than the result of the random variationseobable in the simulator re-
sults). When the t-test finds that the granulated resultsigraficantly higher at the 95%
confidence level, it signifies that were the experiment reggbwith similarly granulated
traces, 95% of repeated experiments will also find that thagated trace mean will be
larger than results generated from perfect traces [Natt®63]. A similar argument exists
for results that the t-test determine are significantly lowEable 11l shows the smallest
granularity, in Kbytes, at which we observe a statisticallynificant difference for each
combination of collector, metric, and simulation method.intludes the mark/cons ra-
tio, Space-Timewhich measures fragmentatid@C|l—the number of collections, arw/B
Storesthe number of pointers the write barrier must record foréntental collection (i.e.,
older to younger pointers in FG and VG, and cross incremeint@ in OF). Section 4.1
describes these in more detail.

Programs with smallgfrom space and nursery (window) sizes will obviously be more
sensitive to trace granularity. Just as we removed sinuiativhere the granularity was
over half of From space size, we re-ran our analysis using only those traegsathsome
point, had enough live objects to equal the largest traceudmaity. The excluded programs
are small enough that a trace generator using the brute-foethod of lifetime analysis
can generate perfect traces in under 8 hours. The tracesniaman this analysis are
those for which tracing using the brute-force method wowdddto generate granulated
traces. The number of remaining simulations ranged fromradalO (for SS) to around
220 (for OF) at the 1KB granularity and does not vary by moamth or 2 until the 2048KB
granularity where the counts of the OF and all Unsynchrah&mulations decrease by
about 10%. The results of this analysis appear in Table IV.

5. TRACE GRANULARITY DISCUSSION

The data in Table IIl are quite revealing about the effectsarfe granularity and the use-
fulness of the different schemes in handling granulatecksa While Figure 2(a) shows
that there can be a considerable range of errors, TabledWskhat this stillisn’t enough to
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Mark/Cons Ratio for SyncMid Runs of the Generational (VN) Collector
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(a) Mark/cons results for SyncMid runs of VN
by trace granularity. At even the smallest granu-
larities, the errors can be quite large.
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(b) Mark/cons results for SyncMid runs of VN (c) Mark/cons results for VN by ratio of trace

by ratio of trace granularity to maximum live granularity to the simulated heap size. Shows

size. larger relative granularities can cause smaller
simulated mark/cons values.

Fig. 2. Qualitative analyses of the effects of trace graiitylan simulator fidelity of mark/cons measurements for
runs of VN using SyncMid. While relatively large errors ocet even the smallest trace granularities, patterns
emerge when the results are plotted against the ratio &f geanularity versus simulated heap size.

establish statistically significant distortions. For a andy of the metrics, however, a gran-
ularity as fine as one kilobyte is enough to cause this distarClearly, trace granularity
significantly affects the simulator results.

5.1 Unsynchronized Results

Unsynchronized collections dramatically distort simiglatresults. In Table Ill, two col-
lectors (SS and OF) have statistically significant diffeesfor every metric at the 1KB
granularity. In both cases, the granulated traces copiec fogtes, needed more col-
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Mark/Cons Ratio for SyncEarly Runs of the Generational (VN) Collector

Trace Granularity Relative to Heap Size

(a) Mark/cons results for SyncEarly runs of VN

versus the ratio of trace granularity to simulated
heap size. While the results initially tend to be
too high, at the largest relative granularity the re-
sults are too low.

Mark/Cons Ratio for SyncLate Runs of the Generational (VN) Collector
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(b) Mark/cons results for SyncLate runs of VN
versus the ratio of trace granularity to simulated
heap size. These results always tend to be too
low, though this worsens as the relative granular-
ity increases.

Mark/Cons Ratio for the Unsyncronized Runs of the Generational (VN) Collector
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Trace Granularity Relative to Heap Size

(c) Mark/cons results for Unsynchronized runs
of VN by trace granularity relative to simulated
heap size. This graph shows the largest set of
distortions for VN.

Fig. 3. Qualitative analyses of the effects of trace graitylan simulator fidelity for measurements of mark/cons
on VN. At even the smallest granularities, there are widgearin simulator results.

lections, and their heaps were consistently fuller. Fohlootlectors the differences were
actually significant at the 99.9% confidence level or higpet 0.001), meaning we would
expect similar results in 999 out of 1000 experiments. Theegational collectors did not
fare much better. VG and FG simulations using traces witly @KIB of granularity av-
eraged 2.8% and 5.0% higher mark/cons ratios than with gietrfeces, respectively. As
one would expect, these distortions grew with the tracegeaity. In Unsynchronized
simulations, collections may come at inaccurate pointh@ttace; the garbage collector
must process and copy objects that are reachable only lettausace has not reached the
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next set of death records. Once copied, these objects B&tha space-time product and
cause the heap to be full sooner, and thus require more fne@@s. At the 16KB gran-
ularity, FG averaged “only” 2.0% more collections—the athellectors averaged from
6.9% (VG) to 10.5% (SS) more. As these incorrectly promoteigas cause needless
promotion of the objects to which they point, this processwdralls so that even small
granularities quickly produce significant differences. IYOtme number of write-barrier
stores for the generational collectors and the number édattdns required for VG are not
immediately affected. There are not significantly more mmfrom the older generation
to the nursery because Unsynchronized collections temtttiiiectly promote objects that
are unreachable and cannot be updated.

We expect simulations using larger heaps to be less affégtédtese issues. The results
in Table IV show that this hypothesisis true. The space-pnogluct and mark/cons results
for SS show that objects are staying in the heap longer. Fosilations, however, we
do not see a significant increase in the number of collectj@n$6KB granularity, these
simulations average only 0.09% more collections); theaeabjects require the collector
to perform more whole-heap collections and not just nursetiections. Therefore each
collection does more work: a conclusion validated by thaificantly higher mark/cons
ratio (at 16KB granularity VG’s mark/cons ratio is 15.7% ger on average than perfect
simulation). Irrespective of the collection algorithm, $ymchronized simulations clearly
distort the results. This finding suggests that trace filenfis should clearly label the
points in the trace with perfect knowledge.

5.2 Synchronized Results

Synchronized simulations tend to require slightly highangilarities than Unsynchronized
before producing significant distortions. As can be seerainld 11, every Synchronized
scheme significantly distorts the results for each metriaféeast one collector and at least
one metric for each collector. Examining the results frorbl@dll and Table IV reveals
a few patterns. Considering all the traces, SyncEarly anttiSgte still produce differ-
ences from simulations using perfect traces, but requigbtyy larger trace granularities
than Unsynchronized before the differences become staligtsignificant. SyncMid has
several cases where significant distortions do not appetathis result is both collector-
and metric-dependent. In addition, there are still siatifly significant distortions when
using traces with granularities as small as 1KB. In Tablevitijch considers only traces
with larger maximum live sizes, Synchronized simulatiorsvjde better estimates of the
results from simulating perfect traces. There still exighgicant differences at fairly small
granularities, however.

Because Synchronized simulations affect only when thesctiins occur, they do not
copy unreachable objects merely because the object deatfurieas not been reached. In-
stead, adjusting the collection point causes other prablé€dijects that are allocated and
those whose death records should occur between the nadlisgition point and the Syn-
chronized collection point are initially affected. Depérglon the Synchronized scheme,
these objects may be removed from the heap or processed piedl @arlier than in a
simulation using perfect traces. Once the heap is in ermorté&ining too many or too few
objects), it is possible for the differences to be compodratethe Synchronized simula-
tion may collect at points even further away (and make dffiecollection decisions) than
the simulation using perfect traces. Just as with Unsymgheal simulations, small initial
differences can snowball.
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SyncEarly. SyncEarly simulationtendto decrease the space-time products and increase
the number of collections, write-barrier stores, and nak$ ratios versus simulations
using perfect traces. While generally true, FG contradtuits trend, which produces a
higher space-time product at smaller granularities. NdgmaG copies objects from the
nursery because they have not had time to die before calfectyncEarly exacerbates
this situation, collecting even earlier and copying morgots into the older generation
than similar simulations using perfect traces. At even 1KBranularity, the average FG
simulation’s space-time product is more than 1.0% largen fdentical simulations using
perfect traces considering all experiments and just tha#elarger live sizes. As trace
granularity grows, however, this result disappears (theukitions still show significant
distortions, but in the expected direction) because thelraurof points in the trace with
perfect knowledge limits the number of possible GCs.

SyncLate.In a similar, but opposite manner, SyncLate simulati@mslto decrease the
mark/cons ratio and number of collections. As trace graitylimcreases, these distortions
become more pronounced as the number of potential colfeptiints is limited as well.
Not every collector produces the same distortion on the sastec, however. Excluding
the traces with smaller live sizes, FG averages 1.8% higlagkfcons ratios and 0.5%
more GCs versus perfect traces at even a 1KB granularity.le/@yincLate simulations
allow it to copy fewer objects early on, copying fewer obgecauses the collector to delay
whole-heap collections. The whole-heap collections reenoweachable objects from the
older generation and prevent them from forcing the copyingtioer unreachable objects
in the nursery. The collector eventually promotes more anderanreachable objects, so
that it often must perform whole-heap collections soonraftesery collection, boosting
both the mark/cons ratio and the number of GCs.

SyncMid. As expected, the best results are for SyncMid. From Tableth, larger
From space sizes produce similar results for SyncMid simulati&md simulations using
perfect traces at even large granularities. The design n€8id averages the times that
it collects too early with those it collects too late. Thiddrae makes the effects of trace
granularity hard to predict. Both SyncEarly and SyncLatewsdd collector-dependent
behavior. While conclusions for a new or unknown collectooldd not be drawn from
their results, one could make assumptions about how thegtadimulated metrics. In
contrast, SyncMid simulations produce biases that arerdipd upon both the metric
and the collector: at a 2KB granularity, FG averages a mangcatio 1.6% higher than
simulations with perfect traces while VG’s average mark&@tio is 0.4% too low. While
the results were very good on the whole, there is still nohglsimetric for which every
collector returned results without statistically sigrafit distortions.

5.3 Trace Granularity Conclusion

While Unsynchronized simulations clearly caused extremstodions, SyncMid some-
times allowed the use of traces with very small granulariteebe simulated without sig-
nificant differences. However, all of the Synchronized datians suffer from statisti-
cally significant deviations. Because the metrics are distiodifferently depending on
the metric and simulated garbage collection algorithm duld be impossible to “adjust”
simulator results for novel algorithms or optimizationslthdugh we simulate copying
garbage-collection, most of the metrics and algorithmshatelependent on copying, and
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should hold for other algorithms such as mark-sweep (setoBed for additional discus-
sion). These results prove the need for an accurate tranihgimulation environmentin
which to evaluate and compare garbage collection algosthm

6. TRACE GENERATION USING MERLIN LIFETIME COMPUTATION
Life can only be understood backwards; but it must be liveddods. —Sgren Kierkegaard

The previous section motivates accurate traces for use isifGlations, but the cost of
whole-heap collection after each object allocation in aeitrg collector is prohibitive. This
section presents our neMerlin Algorithmfor computing accurate object lifetimes. We de-
signed Merlin for use with tracing copying collectors tha thiad already built. However,
the key propagation of time stamps is similar to the use ofateents in reference count-
ing (see Section 9) and could easily be used with other dollecsuch as mark-sweep
(see Section 10). Merlin reduces the time needed to gernthiatiava traces discussed in
Section 4.2 from several years to a single weekend. Merlesamt require frequent col-
lections and thus places less stress on the underlyingsytn the brute-force method
of computing object lifetimes.

According to Arthurian legend, the wizard Merlin began lie an old man. He then
lived backwards in time, dying at the time of his birth. Maidi knowledge of the present
was based on what he had already experienced in the futurdinMgoth the mythical
character and our algorithm to compute object lifetimestkadn reverse chronological
order so that each decision can be made correctly based moariddge of the outcome.
Because our algorithm works backwards in time, the first fileelin encounters an object
in its calculation is the time the object dies (i.e., is n@tateable).

The remainder of this section overviews how Merlin computasn objects transition
from reachable to unreachable, gives a detailed explanafiavhy Merlin works, and
discusses implementation issues. While our initial disimrsfocuses on using Merlin on-
line for generating the perfect traces needed for simulatice also present how Merlin
can be used to compute object lifetimes off-line from an otliee complete trace, and
finally we discuss, if using granulated traces is appropyiaw Merlin can generate them.

6.1 Merlin Algorithm Overview

The brute-force method of computing object lifetimes isasliecause, at each possible
time, it computes which objects are unreachable by coligdtie entire heap. The Mer-
lin algorithm improves upon brute force by instead computime last time objects are
reachable Since time advances in discrete steps, an object’s dea¢higithe time interval
immediately following the one when it was last reachable.

Merlin has three key parts: (1) a forward pass that recoréstsvthat make objects
unreachable, (2) garbage collections that identify degdotdy and (3) a backward pass
that computes for all dead objects the time at which they lmeconreachable.

During the forward pass, Merlitimestamp®ach object with the current tinvehenever
it may become unreachable—i.e., whenever an object losgxaming reference. If the
object later loses another incoming reference (becausedtiier update did not leave it
unreachable), then Merlin simply overwrites the previamestamp with the current time.
Since an object only dies once when it becomes unreachalgidinNdomputes this time
after it knows an object is dead. Merlin could compute thisetiat the end of program
execution when all objects are dead. Merlin instead usesra afficient solution that pig-
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OENON
(®)

Fig. 4. When the program eliminates the last incoming refege to objects A and B, they transition to unreach-
able. When the program eliminates the last reachable refer® object C, it becomes unreachable, even though
it has other incoming references. Updates to objects that gmectly or transitively to objects D, E, and F make
them unreachable.

Table V. How objects become unreachable

(1) A pointer update transitions an object from one to zeocoiing references. For example, objects A and B
in Figure 4.

(2) A pointer update transitions an object fronto n— 1 incoming references, and now al- 1 references are
from unreachable objects. For example, object C in Figure 4.

(3) An object’'s number of incoming references does not chahgt a pointer update transitions the last reach-
able objects pointing to it to unreachable. For examplegaibjlabeled D, E, and F in Figure 4.

gybacks on a host system garbage collection to identifyaggrlobjects periodically. Given
a set of dead (unreachable) objects, Merlin then compubesithey were last reachable
in a backward pass.

If a dead object has no incoming references, its currentstiamep directly indicates
its death time. However, some objects become unreachabtetbough they still have
incoming references as shown in Figure 4. Merlin thus perfoa timestamp propagation
phase on unreachable objects. (By definition, no reachélgeigpoints to an unreachable
one.) It starts with the unreachable object with the latieseéstamp tS) and continues
processing unreachable objects in decreasing timestatep. @orting the list i©(nlogn)
in the number of dead objects. For each object with a poister {), if ss > ts, Merlin
propagates the later timestamp from the source to the tai@#terwise, Merlin stops
propagating. Since it starts with the latest timestamp,stvoase processing time is the
number of unreachable (dead) objects.

6.2 Details and Implementation

This section expands on the key insights and implementagres for Merlin. It first
compares the time complexity of the brute-force and Meiigoathms. It then discusses
trace requirements, object reachability, timestamp pgapan, and other uses of Merlin.

Finding dead objects requires a reachability analysis kwhiith brute-force tracing on
every allocation costs:

n
|live object$ ata;
2

wherenis the number of objects the program allocates,aiiglan allocation event. Merlin
eliminates the need to perform reachability analysis omyeslocation. Merlin instead
records object timestamps when an object loses an inconaimggp, and delays the bulk
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of its propagation step until it can piggyback on a reaclitgtahalysis that occurs during
a garbage collection. After a collection, Merlin works baekd in time to find exactly
when each dead object was last reachable. Merlin’s exetctitiee is thus proportional
to processing each object once plus the number of times dagebtdoses an incoming
referencem.

n m
Z\object allocatepata; +  r;
i= =1

6.2.1 Trace RequirementsThe in-order brute-force method processing adds death
records as it produces the trace. Since Merlin determinethdienes out-of-order, it needs
to introducetimekeepingnto the traces. Time is related to trace granularity; timesin
advance wherever object death records may otcur.

6.2.2 How Objects Become Unreachabl€able V lists a series of generalizations that
demonstrate how objects within the heap transition froroliable to unreachable. Scenar-
ios 1 and 2 describe an object that is reachable until anreicholving the object; Scenario
3 describes an object that becomes unreachable without direlvement in an action.
Not every pointer store kills an object, but if an objdallies,d either loses an incoming
pointer or some other objectoses a reference which pointsdairectly or indirectly (the
transitive closure of reachability frou).

6.2.3 Finding Potential Last Reachable Timed/e propagate time stamps after an ob-
ject is dead, instead of when it loses a reference. Thisseptiesents the Merlin pseudo-
code used to compute these last reachable times.

Instrumented Pointer Storedlost pointer stores can be instrumented by a write barrier.
The Merlin write barrier timestamps objects losing an inamyreference (the old target
of the pointer) with the current time. Since time increasematonically, each object
will ultimately be stamped with the final time it loses an intdag reference. If the last
incoming reference is removed by an instrumented pointee sthe Merlin code shown in
Figure 6 stamps the object with the last time it was reachable

Uninstrumented Pointer Store®ecause root pointers (especially ones in registers or
thread stacks) are updated very frequently, instrumentiogpointer stores is prohibitively
expensive and is rarely done. An object that is reachableaur@ot pointer update may not
have the time it transitions from reachable to unreachadtieated by any instrumentation.
Just as a normal GC begins with a root scan, the Merlin alyorgerforms a modified root
scan at each allocation. This modified root scan enumeta¢a®bt pointers, but merely
stamps the target objects with the current time. While ref¢renced, objects are always
stamped with the current time; if an object was reachabl& ambot pointer update, the
timestamp will be the last time the object was reachableuréi§ shows Merlin’s pseudo-
code executed whenever the root scan enumerates a pointer.

Referring Objects Become UnreachabWe also compute the time an object was last
reachable for objects unreachable only because the afjjedifiting to them are unreach-
able (Scenario 3 of Table V). To handle pointer chains, updéahe last reachable time for

2For many collectors, time need only advance at object aitmts. To simulate collectors that can reclaim objects
more frequently, e.qg., reference counting collectorsetimould advance at each location where the collector could
scan the program roots and begin a collection.
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one object requires recomputing the last reachable tim#&seadbjects to which it points.
We simplify this process by noting that each of these olgdesst reachable time is the
latest last reachable time of an object containing the foimits transitive closure set.

6.2.4 Computing When Objects Become UnreachaBlecause the Merlin algorithm
is concerned witlwhenan object was last reachable and cannot always detetminéhe
objectbecame unreachable, the issue is to find a single chéthbcomputes every object’s
last reachable time. The methods in Figures 6 and 7 timesthenporrect last reachable
time for those objects that are last reachable as descmb®ddnarios 1 and 2 of Table V.
By combining the two timestamping methods with computingtbieimes by membership
in transitive closure sets of reachability, Merlin can detime the last reachable time of
every object.

To demonstrate that this combined method works, we consien scenario from Ta-
ble V. Since an object last reachable as described by Scehas not the target of a
pointer after it is last reachable, it is only a member ofriémsitive closure set, and the last
reachable time Merlin computes will be the object’s own staenp. For Scenario 2 the
last reachable time Merlin computes will also be the timéwihich the object is stamped:
since the source of any pointers to the object must alreadynbeachable when the ob-
ject s last timestamped, the source objects’ last reaeftabes must be earlier. We show
above that this combined method computes last reachalds fion objects in Scenario 3,
so Merlin can compute last reachable times by combininggiaraping and computing
the transitive closures, and need not know how each obptsitioned from reachable to
unreachable.

6.2.5 Computing Death Times EfficientliComputing the full transitive closure sets is
a time consuming process, requiri@gn?) time. But Merlin needs to find only thatest
object containing the former object in its transitive clesget. Merlin performs a depth-
first search from each object, propagating the last reaeftabk forward to the objects
visited in the search. To save time, our implementation ofliérst orders the unreach-
able objects from the earliest timestamp to the latest amadl plushes them onto the search
stack so that the latest object will be popped first. Figua Shows this initialization.
Upon removing a new source object from the stack, the Mettjorithm analyzes it for
pointers to other (target) objects. If any target objectsstamped with an earlier time, the
algorithm updates their timestamp with that of the sourgeaiblf the target object is defi-
nitely unreachable (e.g., will be reclaimed when the cdibleccompletes), it is pushed onto
the stack also. Figures 5(b) and 5(c) show examples of thilysis. If the target object’s
timestamp is equal to that of the source object, then we daeed to push it on the stack,
since we either have found a cycle (e.g., Figure 5(c)) ordhget object is already on the
stack. We also do not push the target object onto the stattifiestamp is later than the
source object’s timestamp, since the target object mus hewained reachable after the
time currently being propagating. Pushing objects ontstaek from the earliest stamped
time to the latest means each object is processed only onte.sdarch proceeds from
the latest stamped time to the earliest; after a first exainimgany repeated examinations
of an object must be computing earlier last reachable tinkkstz et al. [2002b] proved
this asymptotically optimal method of finding last reacledihes requires onl@(nlogn)
time, limited only by the sorting of the objects, wheres restricted to dead objects for this
collection. Figure 8 shows the Merlin pseudo-code for thiglified depth-first search.
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Stack Stack

A D A D
Object A Object B
Object C Object C
\ C Object B \ C Object B
Object D Object D
B B
(a) Before Processing Object A (b) Before Processing Object B
A D Stack A D Stack
Object C Object C
Object C Object B
\ C Object B \ C Object D
Object D
B B
(c) Before Processing Object C (d) After Processing Object C

Fig. 5. Computing object death times, whére: ti;1. Since Object D has no incoming references, Merlin's
computation cannot change its timestamp. Although ObjeeBA last reachable at its timestamp, care is needed
so that the last reachable time does not change via progessincoming reference. In (a), Object A is processed
finding the pointer to Object B. Object B’s timestamp is egrlso Object B is added to the stack and last reachable
time set. We process Object B and find the pointer to Object ®)inObject C has an earlier timestamp, so it
is added to the stack and timestamp updated. In (c), we pd@bgect C. Object A is pointed to, but it does
not have an earlier timestamp and is not added to the stadkl),lthe cycle has finished being processed. The
remaining objects in the stack will be examined, but no frrfirocessing is needed.

voi d Poi nter Storel nstrunment ati on( ADDRESS sour ce, ADDRESS newTar get )
ADDRESS ol dTarget = get MenoryWrd(source);
if (oldTarget # null)
ol dTarget.ti meStanp = currentTi ne;
addToTr ace(poi nt er Updat e, source, newTlarget);

Fig. 6. Code for Merlin’s pointer store instrumentation

voi d ProcessRoot Poi nt er (ADDRESS r oot Addr)
ADDRESS r oot Target = get Menor yWor d(r oot Addr) ;
if (rootTarget # null)
root Target.ti meStanp = currentTi ne;

Fig. 7. Code for Merlin’s root pointer processing
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voi d Conput e(oj ect Deat hTi nmes()
Tine lastTinme = o
sort unreachabl e objects fromthe earliest timestanp to the |atest;
push each unreachabl e object onto a stack fromthe earliest
timestanp to the |l atest;
while (!stack.enpty())

Obj ect obj = stack. pop(); /1 pop obj with next earlier tinestanp
Tine obj Tine = obj.timeStanp;
if (objTime <= lastTinme) /1 don’t reprocess rel abel ed objects

last Time = obj Ti ne;
for each (field in obj)
if (isPointer(field) &k obj.field # null)
Obj ect target = get MenoryWsrd(obj.field);
Tine targetTime = target.ti meStanp;
if (isUnreachable(target) && targetTime < | astTine)
target.timeStanp = | astTine;
st ack. push(target);

Fig. 8. Code of Merlin trace generation last reachable tioragutation

6.3 The Merlin Algorithm

As described so far, Merlin is able to reconstrwtitenobjects were last reachable. How-
ever, it is still unable to determinehich objects are no longer reachable. The Merlin
algorithm uses two simple solutions to overcome this probl&/henever possible, it de-
lays computation until immediately after a collection, before any memory is cleared.
At this time, the object lifetime computation algorithm hascess to all of the objects
within the heapand the garbage collector’s reachability analysis. By piggiag upon
this work, Merlin saves a lot of duplicative analysis. Atettimes (e.g., just before a pro-
gram terminates), GC may not occur but the algorithm stiéldsea reachability analysis.
In this case, Merlin first stamps the root-referenced objedth the current time and then
computes the last reachable times of every object in the Agagual. Objects with a last
reachable time equal to the current time are still reachaibtedo not need object death
records. All other objects must be unreachable and deathdgéor them are added to the
trace as usual. This method of finding unreachable objectsles the Merlin algorithm
to work with any garbage collector. Even if the garbage ctilecannot guarantee that it
will collect all unreachable objects, Merlin performs trembined object reachability/last
reachable time analysis just before the program termirtatfisd all of the last reachable
times.

As stated in Section 2.1, we rely upon a couple of assumptibosit the host garbage
collector. First, we assume that any object the collectteisting as live will have the ob-
jects it points to also treated as live, as is required amab@lgorithms without additional
information. The collector thus removes an object only walkather objects pointing to it
are provably unreachable. Second, the Merlin algorithrarass that there are no pointer
stores involving an unreachable object. Therefore, weragghat once an object becomes
unreachable, its incoming and outgoing references argaunsBoth of these precondi-
tions are important for our transitive closure computatamd languages such as Java, C#,
and Smalltalk satisfy them. Last, the Merlin algorithm addsadditional requirement, the
reasons for which are explained in Section 6.2.3, that teeimented pointer stores has
access to the old value of the pointer. As the trace genearaist already include a write
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barrier to output pointer updates, and many write barrieezady include these values (e.g.,
a reference counting write barrier), this additional regoient is not a hardship.

The order in which a trace generator using the Merlin alparitadds object death
records to the trace is an issue. As discussed in Sectioh, G2 Merlin algorithm re-
quires that the trace generator use the concept of time &rdiete where in the trace to
place each object death record. The object death recottr @ite added to the trace in
chronological order before writing the trace to disk, or em@uded in the trace as they
occur and a post-processing step places the records inpzipooder. Holding all the
trace records in memory until Merlin computes all the objeaths is a difficult chal-
lenge; with larger traces, holding these records requiggsficant amounts of memory.
Our trace generation implementation using Merlin for objéetime computation uses an
external post-processing step that sorts and integratesbjlect death records. Either way
of handling this issue has advantages and disadvantagesdisivery little time to trace
generation.

6.4 Using Merlin Off-line

Merlin does not need to perform its object lifetime analysisline: researchers have suc-
cessfully used Merlin to compute object lifetime infornaatifrom an otherwise complete
garbage collection trace [Hertz and Berger 2004; Hirzel.e2@03]. As described, the
Merlin algorithm only needs to track pointer updates andioneerate root pointers. This
information can be obtained through instrumenting poistere operations and perform-
ing a periodic modified root scan, but can also be acquired &dile that faithfully records
all pointer stores and enumerates all root pointers. Withfile, a simulator can generate
the state of the program heap over the course of the prograoutan and use Merlin to
compute the object lifetime information missing from thace. Computing object life-
times off-line can save substantial time when the lifetifoesonly a subset of the objects
are desired (e.g., only objects allocated during a pagiquitase of program execution).

6.5 Using Merlin for Granulated Traces

Our discussion of the Merlin algorithm has, until now, foedson the perfect traces re-
quired for GC simulation. GC traces are used not only for &tians, however, but
have also been used to gain a deeper understanding of thes iaffecting object life-
times [Hirzel et al. 2002a; Hirzel et al. 2002b; Shaham eR8@00] and to measure the
effects of GC optimizations [Shaham et al. 2002]. Becaush@kpeedup in trace gen-
eration achieved by the Merlin algorithm, it is now feasitdeconsider generating traces
at granularities finer than each allocation. For instans@mguMerlin, the trace generator
could create a dynamic “escape-analysis” trace that isratzat each method exit.

As described in Section 6.2.3, Merlin advances the trace #ind enumerates and pro-
cesses the root pointers at each allocation to help gereepgect trace. However, these
actions should occur whenever the trace must be accuratehighevery allocation in a
perfect trace, but would be every method exit for a dynamies-analysis tracé) The
Merlin algorithm is identical for any trace generation, tmy change being how often the
time is updated and the modified root scan is performed; therig#thm otherwise acts the
same after each collection and at every instrumented paiptiate.

3These arguments could also be used to generate coarseedjteces.
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7. EVALUATION OF MERLIN

We implemented a trace generator in the Jikes RVM that careitlser the brute-force
method or the Merlin algorithm to compute object lifetimade then performed timing
runs on a Macintosh Power Mac G4, with two 533 MHz process22&B on-chip L1
data and instruction caches, 256KB unified L2 cache, 1MB K=lip cache and 384MB
of memory, running PPC Linux 2.4.3. We used only one proaefgsmur experiments,
which were run in single-user mode with the network cardldésd We built two versions
of the VM with trace generation, one using Merlin for objefgtime computation and one
using the brute-force method. Whenever possible we usediddécode in the two VMs.
For these experiments, the trace generator employed thiespaire collector needed by
the brute-force method so as to keep the two systems as isamifgossible.

Merlin’s running time is spent largely in performing the nifgetl root scan required af-
ter every allocation. We further improved Merlin’s runnitige by including a number of
optimizations to minimize the number of root pointers thatstrbe enumerated at each of
these locations. Our first optimization was to instrumelin{ao store operations involving
static pointers. With this instrumentation, Merlin need elmumerate these pointers during
its root scan. Instead, it can treat them as it does heapgrsijrgince any stores to these
pointers will be processed by the same instrumentationaise Java allows functions to
access only their own stack frame, repeated scanning vifieisame method always enu-
merates the same objects from the pointers below this mistfrache. We implemented a
stack barrierthat is called when frames are popped off the stack, enaMigrdjn to scan
less of the stack [Cheng et al. 1998]. We do not include thekdiarrier in the brute-force
generator because it introduces overhead on each methachiion, and it was beyond
the scope of this work to evaluate it.

We generated traces at different granularities acrossgerahprograms. Because of
the time required for brute-force trace generation, wetkchsome traces to only the ini-
tial 4 or 8 megabytes of data allocation (which still reqdimser 34 hours in one case).
Working with common benchmarks and identical granulatibce generation using Mer-
lin achieved speedup factors of up to 816. In the time needetthdr system using the
brute-force method to generate traces with granularifidé$K to 1024K bytes, trace gen-
eration with Merlin completed perfect traces. Figure 9 shithve speedup to the trace gen-
erator when using Merlin, generating perfect traces, \susing the brute-force method at
different levels of granularity. Clearly, Merlin can grigateduce the time needed to gen-
erate a trace. However, as seen in Figure 9, the speedup istes granularity increases.
The time required largely depends on the time needed to genebject death records—
the trace granularity. Brute force limits object death tipnecessing to only those points
where the trace is accurate; as the granularity increapesfdarms fewer GCs and the time
needed greatly diminishes. Even though Merlin performsefemctual collections than
brute force with a large granularity, the cost of enumeratire roots at every allocation
and updating timestamps can become greater than the cmfiedst at large granularities.

These results are typical. For programs with larger avemaaémum live size and total
allocation volume, Merlin should provide further speeddps to the differences between
its death time propagation algorithm and root scanningscositnpared to the larger cost
of repeatedly tracing the heap.
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Speedup of Perfect Merlin Tracing v. Brute Force Tracing
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7.1 Granulated Trace Generation

When generating escape-analysis traces (i.e., small lgréties), it is clear from the above
results that Merlin will be much quicker than brute force. dpen question, however, is the
fastest way to generate traces wltinge granularities These traces could not, of course,
be used for GC simulations, but could still be used to tundilprdriven feedback opti-
mizations [Ungar and Jackson 1992; Cheng et al. 1998; Blaokét al. 2001] or to gain
a deeper understanding of the issues affecting objeantiést [Hirzel et al. 2002a; Hirzel
et al. 2002b; Shaham et al. 2000]. While we show in Section\s th@ compounding
of these lifetime errors results in statistically signifitdistortions for simulation results,
when analyses consider each object’s lifetime indepehdém error is bounded by at
most one trace granule, and snowballing cannot occur. &ushly, Hirzel et al. [2002b]
showed that their analysis was not altered by the use of tatatltraces.

Even with the improvement Merlin provides to trace genergtihe time required to
generate a trace is 70-300 times slower than running thegrogithout tracing. As
shown by Figure 10, granulated traces require much lesstngenerate, and they are
thus attractive when granulation does not distort res@figen a heap that actually has a
maximum live size of 10MB, for example, a trace with a 10KBrgrkrity will overesti-
mate the maximum live size by at most 0.1%.

Figure 10 shows that while introducing some trace granylailows Merlin tracing
to run faster, there is little gain in generating traces withranularity above 4096 bytes.
Since Figure 9 shows that the time needed for trace genenagiog brute force continues
to improve even when the trace granularity is increased B@&KB to 1MB, it still is not
clear what is the best way to generate a granulated tracereé-id. examines the speedup
that generating a granulated Merlin trace offers versusiggimg a granulated brute-force
trace.

As seen in Figure 11, Merlin outperforms brute force at alted granularities and over
all of the benchmarks examined. While all the work requirgdhute force (performing
a GC) is directly related to the granularity of the trace gatesl, some of Merlin's work-
load (enumerating and scanning the root pointers) is i@lete¢he trace granularity and
some work is constant (timestamping objects losing incgméfierences via instrumented
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Dilation of Merlin Tracing v. Untraced

Hertz, Blackburn, Moss, McKinley, Stefanovic
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Fig. 10. The cost of Merlin versus trace generation withdatiines. Merlin imposes a substantial slowdown
when generating a perfect trace. If approximate objedirifes are desired, generating a slightly granulated trace

can require} the time.
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Fig. 11. The speedup of trace generation using Merlin vebsute force. Merlin tracing is faster for each

benchmark at every trace granularity tested. Note thedggstale.

pointer stores). Because of this constant work overheatMatin, the improvement in
generating a trace of SPER28 jack slowly drops from a speedup factor of 817 for per-
fect traces to a factor of 5 at a granularity of 64K and finatlyatfactor of 1.14 at 1MB
granularity. Even at this very high granularity, howevée speedup of not needing to
perform the repeated garbage collections makes Merlin theex. When these results are

combined with those from Figure 10, they provide

a pers@saigument for using Merlin

to compute object lifetimes even for granulated traces.
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8. PROGRAM HEAP VISUALIZATION

Whether creating new GC optimizations, explaining the grenfance of an existing algo-
rithm, or developing a set of benchmarks to test GC, reseesaleed to understand the
lifetimes of objects in the heap and how they interact. Refegis have used program
heap graphs, visualizations showing the composition oh#ap, identifying the locations
of unreachable object over the entire program run, to devetal share this knowledge
(e.g., [Runciman and Wakeling 1992; Runciman and Rojen®18ansom 1994; Sansom
and Jones 1994; Rojemo and Runciman 1996; Stefanovi¢ B¥&gham et al. 2000]).The
resolution of a visualization is dependent on the granylafi the trace used; granulated
traces can generate the powerfully simple graphs (suchoas th [Shaham et al. 2000]),
while precise graphs capable of zooming in to show very firtaidg(such as the graphs
in [Stefanovi¢ 1999] and the figures in this section) regpierfect traces.

This section presents several program heap visualizafions Jikes RVM produced
with Merlin, which reveal object lifetimes and lifetime pams. Section 8.1 analyzes a
few of these graphs to show how they provide insight into piieié GC optimizations and
Section 8.2 illustrates how these visualizations can hedfuate benchmark programs.

8.1 Program Heap Behavior Insights

The simplesheap profilevisualizations show the composition of the heap over a piogr
run, providing a means of seeing where, in an age-ordergu tleareachable objects ex-
ist. Figure 12(a) shows a heap profile of SPED2 jess when run with the Jikes RVM
Opt (optimizing) compiler. The Y-axis of this graph repnetsethe position of reachable
objects in an age-ordered heap, while the X-axis repredgnés(measured as the total
number of bytes allocated into the heap so far). At the sfagboh program “segment”
(some set number of bytes of allocation), we introduce a mendlong the X-axis. Lasting
until program termination, the line shows, at each momésetposition in the heap of the
boundary between the objects allocated before and afteptint. In this graph, we can
see the program run through three distinct phases: stastaiple running, and finishing.
The startup phase, lasting the first 50000000 words of dltmtashows the variable live
sizes and object lifetimes arising from compilation. Theosel phase of this profile shows
a regular pattern of very short lived objects — the actuahig of the jess benchmark
and the last phase shows a brief return of compilation asribgrgm reaches the SpecAp-
plication termination code. Given this complex behavigyaabage collector could benefit
from using phase detection to moderate any dynamic opttioiz During the long stable
(middle) phase of the run, optimizations may vyield littlerar benefit as most collectors
would already perform well. Rather then spend time workioglittle benefit, a system
would be better served saving that time and using the dedatkvior.

Figure 12(b) also shows a heap profile of SPRG2jess run with the Jikes RVM opti-
mizing compiler. This heap profile differs from Figure 12 (ay showing theldestobjects
of the age-ordered heap along the Y-axis and adding newdgattd objects to thip of
the graph. Long-lived objects appear as a horizontal linebastant live amounts in these
figures. When some objects die at some point, the line segngentloser together. Fig-
ure 12(b) shows many immortal objects that are created dthnfirst (compilation) phase
of the program. As shown in [Blackburn et al. 2001], these ol objects present invit-
ing targets for optimizations such as pretenuring. The meqhase of the trace (when
most compilation is complete and the benchmark is actualiping) shows new program
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Lines of constant allocation time: spec_jvm8_202_jess_optopt
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(a) Heap profile of SPEC202 jess. In this graph, the oldest objects are shown at O on theisy-The
graph shows that the program goes through three phaseginst®y compiling the program, then solves
the fifteen puzzles that comprise the benchmark, and finaliguis the result.
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(b) Inverted heap profile far202 jess. In this graph, the youngest objects are shown at 0 oW-éhes.
It is easy to see the compiler’s initial immortal allocasioithe short-lived allocations of the benchmark,
and the medium-lived allocations from when the program testes.

(c) Demise graph for202jess. In the demise map, the youngest objects appear at Ceo¥tdkis.
This graph shows that the program has different phases etblifietime behavior with the benchmark
allocating only short-lived objects. The black verticalds in the demise map show large numbers of
objects becoming unreachable at once, suggesting deatgeflinked structures such as trees or lists.

i e R S ey

Fig. 12. Three different heap visualizations for SPRG2 jess using the optimizing compiler at run time. While
each of these graphs summarizes the composition of the veaphe run, the different ways of expressing this
composition can highlight different information. Using #iree graphs in combination is an easy way to gain a
good understanding of the object lifetime behavior of thegpam.

segments barely rising from the graph and then rapidly gisapng, i.e., allocation of
many very short-lived objects. The last phase of the progiaows the system compiles
the methods corresponding to the final code for the progrdma.optimizing compiler uses
short-lived objects and outputs the long-lived blocks othiae code causing the behavior
seen during this final phase. The very different lifetime debrs at different points of
the program suggests that a garbage collector that cowddtdbese phases and change its
behavior accordingly could perform well on this benchmark.

Another type of heap visualization is tdemise mapan example of which can be seen
in Figure 12(c). Like the previous visualizations, a demis&p’s X-axis is the number
of bytes allocated and its Y-axis is the heap position in the-ardered heap. However,
points on the demise map indicate an object’s becoming ohedde. We represent the
density of objects becoming unreachable at the same locgitian age-ordered heap) by
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the darkness of the point on the map. The demise map in Figfcg i$ also for the runs of
_202jess using the Jikes RVM optimizing compiler. The graph aghiows the program
running through several phases of object lifetime behagi@r the run. Examining the
demise map provides some useful information. At severalgslan the trace, we can see
a number of objects become unreachable at the same timerfasattical bands in the
demise map). By grouping these objects together and dejaly@ir collection until they
all become unreachable, a collector could greatly imprts/pérformance.

8.2 Evaluation

Heap visualizations help reveal how demanding a benchreavkt respect to its memory
management needs. We present heap profiles for the SPECjvem@8marks and pseu-
doJBB, a version of SPECjbb modified to run for a specified remobtransactions rather
then a specified length of time. Figure 13 shows heap profilitstive youngest objects at
the bottom of the y-axis; and Figure 14 shows heap profilels thi¢ youngest objects at
the top of the y-axis.

The figures indicate a range of challenges for garbage tiolted-or instance, 201 compress
and_222 mpegaudio do not stress garbage collectors much, whezéaslib, pseudoJBB,
and _213javac demonstrate richer memory management behavior. \AlgzEneach of
these programs below.

Consider Figure 13(a) which presents a run21 compress. While the irregular al-
location peaks in Figure 13(a) suggest that it could be u$efuanalyzing phase change
optimizations or comparing algorithms that dynamicallieseheap sizes, this benchmark
would not be useful for comparing statically sized heaps.il&\én statically chosen heap
size must be sufficient to hold the initial peak (approxima®MB), this space is larger
than the rest of the program need201.compress thus exercises the garbage collector
only at the smallest heap sizes.

The heap profile 0f222 mpegaudio, Figure 13(f), shows that it has a low ratio of byte
allocated to maximum live size (a ratio of only 2.1:1). Thejerofile also shows that
objects allocated by this program are either immortal or @drately become unreachable.
However, it shows two phases. The program allocates seffittit it can steadily increase
its live size for the entire duration of the program.

While _209.db, shown in Figure 13(d), maintains a constant live size hibap profile
indicates that it allocates ten times as much data as tlEsize, which limits how much
stress it places on the garbage collector. Af09.db populates its database with “im-
mortal” objects (roughly the first 3MB of allocation), theggram allocates objects which
immediately become unreachable. Combining these two liefsathe heap profile in Fig-
ure 13(d) shows that with a large enough nursery, a genagtimrbage collector should
perform well on_209.db and whole heap collections are a waste of time. Howevisr, th
behavior is not the whole story faR09.db, because its choice of allocator and collector
radically affect its performance through the locality bébathey induce [Blackburn et al.
2004a; Huang et al. 2004; Hertz and Berger 2004].

PseudoJBB only allocates about ten times as many bytes amisnum live size, as
does 209db. The allocated objects, however, have more complexrifepatterns. Af-
ter initially allocating and building a large structure (atMB), the program makes the
majority of this unreachable. The program again allocat&srge amount of immortal
objects. It then allocates short-lived objects and pecalti causes these to become un-
reachable. Unlike209.db, however, these short-lived objects do not immediatebome
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Lines of constant allocation time: spec_jvm8_201_compress_optbase
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(e) Heap Profile of213 javac

unreachable but must remain in the heap for a time. Figurg 4ddws pseudoJBB be-
gins allocating the next period of short-lived objects befit has made all objects from
the previous period unreachable. This behavior guaratheésome objects will survive
simple nursery collections in generational collectors] aeed a more expensive collection
to reclaim them.

The heap profile of213 javac shows this program periodically building and then mak
ing large structures unreachable; few generational dtgos would normally size their
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Lines of constant allocation time: spec_jvme8_222_mpegaudio_optbase
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Lines of constant allocation time: spec_jvmo8_228_jack_optbase
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Fig. 13. Heap profile graphs for the SPECjvm 98 benchmarkgaeddoJBB. Newly allocated objects are added
at the bottom of these heap profiles. To limit the influencenhtb& JVM has on these graphs, they were generated
from runs using the Jikes RVM baseline JIT compiler.

nursery or Eden space large enough to hold these structings.behavior ensures that
some objects will be promoted into the mature space and niidaefap collections to be
reclaimed. Especially when combined witkl 3 javac’s high ratio of allocation to max-
imum live size, it is clear this benchmark will highlight gge collector performance
differences.

9. RELATED WORK

We now discuss the prior research on which this study builtisre are 3 areas of research
that are most relevant: reference counting, approximatiject lifetimes, and generating
perfect (accurate) traces.
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Lines of constant allocation time: spec_jvm8_201_compress_optbase
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Reference CountingWhile the Merlin algorithm does not do reference countin@)R

issues that arise from its time stamping are similar to tti@sa counting references. As a
result of these similar issues, RC collectors are ofteretyaglated to the Merlin algorithm

and we describe them here.

Reference counting associates a count of incoming refesamith each object; when the
countis 0, it frees the object [Collins 1960]. To improvea#ncy, modern deferred refer-
ence counters do not count the numerous updates to staabblerand registers [Deutsch
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Lines of constant allocation time: spec_jvme8_222_mpegaudio_optbase
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Fig. 14. Inverted heap profile graphs for the SPECjvm 98 beracks and pseudoJBB. Newly allocated objects
are drawn at the top of these heap profiles. To limit the infleethe host JVM has on these graphs, they were
generated from runs using the Jikes RVM baseline JIT compile

and Bobrow 1976], but instead compute correct counts pieatid As with other al-
gorithms, RC must enumerate the stacks and registers wioatiétts the heap. Since
reference counting cannot find dead cycles [Weizenbaum]18&#lern implementations
add periodic tracing collection or perform trial deletioveftal 1987; Bacon and Rajan
2001]. Trial deletion keeps objects that lost a pointeryubse count did not reach 0, in
a “candidate set”. It then recursively performs trial dieles on the objects in this set and
those objects reachable from them. When all the referengets@o to zero, the objects
form a dead cycle and can be reclaimed.

At first glance, adding time stamps to RC might seem fastar giggybacking on a
tracing collector, but cycles complicate this argument.cdmpute a perfect trace using
an RC (and ignoring cycles), we could extend the object hisaddnclude a time stamp,
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update the time stamp with each decrement, update themefeceunts at every allocation,
and record and propagate time stamps when the object'snefercount goes to zero.
Since cycles must be unreachable at program terminatioicowlel then propagate these
time stamps to accurately compute the remaining death tildesever, never collecting
cycles might cause the program to fail by running out of mgméwdding RC tracing or
trial deletion reverts trace generation to the cost of theehforce method plus additional
reference counting overheads. To add Merlin to an existi@gsigstem is thus likely to
yield similar or worse performance than using Merlin withr@ctng collector.

Unlike RC, the Merlin algorithm is not a garbage collectart tnerely computes object
lifetimes. While there are similarities between Merlin &@ (deferred reference counting
is similar to Merlin’s time stamping), Merlin relies upon anderlying collector to actually
reclaim objects whereas RC performs this reclamation. 8/RIC canuse an additional
tracing collector to detect dead cycles, the Merlin aldonineedsa garbage collector to
compute which objects are unreachable.

Lifetime ApproximationTo cope with the cost of producing GC traces, there has been
previous research into approximating the lifetimes of otgeThese approximations model
the object allocation and object death behavior of actuagiams. One paper described
mathematical functions that model object lifetime chaggstics based upon the actual
lifetime characteristics of 58 Smalltalk and Java progr§atefanovi¢ et al. 2000]. Zorn
and Grunwald [1992] compare several different models oneisa to approximate object
allocation and object death records of actual programghdestudy attempted to generate
actual traces, nor does either study consider pointer epgither, these studies attempted
to find ways other than trace generation to produce input famory management simu-
lations.

Perfect Tracing.Our previous work [Hertz et al. 2002a] presented the effettsace
granularity on GC simulator fidelity. Additionally, it desised how Merlin can be used to
generate the perfect traces needed for GC simulation, askpted a preliminary com-
parison between generating perfect Merlin traces and gteafed granulated brute-force
traces. Because of this work, others have begun to re-exdiméir analyses to see if their
results were affected by trace granulation [Hirzel et aDZ1f]. We presented additional
work proving that the Merlin algorithm runs in asymptotigabptimal time [Hertz et al.
2002b]. Our previous work did not demonstrate how to use ik#éolgenerate granulated
traces, nor did it include the more detailed timing resukkspresent here. The current work
also discusses additional uses of Merlin and presents @mogeap visualizations that are
only possible due to Merlin’s reduced processing time.

10. APPLICABILITY TO OTHER COLLECTION ALGORITHMS

We built these and other copying algorithms in GCTk [Blaakbet al. 2002; Blackburn
et al. 2001; Stefanovit et al. 2002], a freely available mpmmanagement toolkit, for
use with Jikes RVM. Although our results are for copying eolbrs, there is no reason
to believe they will not hold for mark-sweep (MS) collectarsd hybrid copying and MS
collectors, such as the popular copying nursery/Eden spadeMS old space. Product
VMs often use this later variation due to its high performahcMS offers significant

4A more recent toolkit MMTk [Blackburn et al. 2004b; 2004ahtains MS, reference counting, and their gener-
ational variants. Experimental comparisons of copyingwsmS collection of the mature space show neither is
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space efficiency over copying [Hertz and Berger 2004] whgckspecially important in
the old space. MS collectors thus trigger collections ldnahan copying. However, if
collecting the same region as a copying collector, MS findgty the same objects as live
since it computes reachability the same way. Thereforeergsufficient collections, the
accuracy of MS collectors should be similarly distorted bypchoice of collection point
with respect to a granulated trace.

We can make no conclusions about the sensitivity to trageuiméion of reference count-
ing collectors since their liveness test is different frompging. However, our traces con-
tain sufficient information to simulate these algorithmsvad.

11. SUMMARY

The use of granulated traces for GC simulation is problem&le first develop a method
that can statistically test if a variable affects GC simolat We then use this method
to show that, over a wide range of variables, granulatecesrgroduce results that are
significantly different from those produced by perfect &sc While we show that there
are ways of simulating granulated traces that are betteriritmzing these issues, we
find none of these methods can eliminate all the problemdh Wvése results, we propose
standard trace formats should include additional inforomat

We then introduce and describe the Merlin Algorithm. We s trace generation
using the Merlin algorithm can produce perfect traces muase 800 times faster than the
common (brute force) method of trace generation. We alscriteshow, for new analyses,
Merlin makes it possible to generate traces at even finedpdties, and when it may be
permissible to use coarser traces. Finally, we show thatngilke Merlin algorithm there
is never a reason to generate traces coarser than a 4KB grianulhus, the Merlin algo-
rithm makes trace generation quick and easy, and elimitta¢aseed for using granulated
traces in simulation.

Finally, we present several examples of program heap visi#@ns, powerful tools that,
with traces like those generated by Merlin, are easy to gaéeeMith graphs of several
well-known, commonly used benchmark programs, we show @y provide insights
that can be used to design future GC optimizations and elakugprogram’s memory
management needs.
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