
Experiences Using the ParaScope Editor:an Interactive Parallel Programming Tool�Mary W. Hally Timothy J. Harveyz Ken Kennedyz Nathaniel McIntoshzKathryn S. McKinleyx Je�rey D. Oldhamy Michael H. Palecznyz Gerald RothzAbstractThe ParaScope Editor is an interactive parallel pro-gramming tool that assists knowledgeable users in de-veloping scienti�c Fortran programs. It displays theresults of sophisticated program analyses, provides aset of powerful interactive transformations, and sup-ports program editing. This paper summarizes experi-ences of scienti�c programmers and tool designers us-ing the ParaScope Editor. We evaluate existing fea-tures and describe enhancements in three key areas:user interface, analysis, and transformation. Many ex-isting features prove crucial to successful program par-allelization. They include interprocedural array side-e�ect analysis and program and dependence view �lter-ing. Desirable functionality includes improved programnavigation based on performance estimation, incorpo-rating user assertions in analysis and more guidance inselecting transformations. These results o�er insightsfor the authors of a variety of programming tools andparallelizing compilers.1 IntroductionThe complexity of constructing parallel programs is asigni�cant obstacle to widespread use of parallel com-puters. In the process of writing a parallel program,programmers must consider the implications of concur-rency on the correctness of their algorithms. Ideally, anadvanced compiler could free the programmer from thisconcern by automatically converting a sequential pro-gram into an equivalent shared-memory parallel pro-gram. Although a substantial amount of research hasbeen devoted to automatic parallelization, such sys-tems are not consistently successful [1, 9, 6, 30, 33].�The Fourth ACM SIGPLAN Symposium on Principles &Practice of Parallel Programming, San Deigo, CA, May, 1993.This research was supported by The Center for Research andParallel Computation (CRPC) at Rice University, under NFSCooperative Agreement Number CCR-9120008.yCenter for Integrated Systems, Stanford University, PaloAlto, CA 94305. zDepartment of Computer Science, Rice Uni-versity, Houston, TX 77251-1892. xENSMP (CRI), 35, rue SaintHonor�e, F-77305 Fontainebleau Cedex, France.

When automatic systems fail, the ParaScope Editor(Ped) assists in parallelizing Fortran applications bycombining programmer expertise with extensive anal-ysis and program transformations [3, 27, 28].This paper reports on the utility of Ped as an in-teractive parallel programming tool in the ParaScopeparallel programming environment [10]. Through userevaluation of Ped, we assess existing functionality andsuggest enhancements. The critiques con�rm the use-fulness of tools like Ped and o�er new insights for com-piler writers and parallel programming tool designersin three key areas.User Interface. We describe a new user interfacethat was designed and implemented based on previousevaluations [17, 25]. This interface enhances the orig-inal [28], unifying improved navigation and viewing ofthe program, its dependences, and information aboutits variables. User evaluation con�rms the appropri-ateness of the interface but exposes the need for newfeatures such as navigation assistance based on perfor-mance estimation and a facility enabling users to assertinformation about variable values.Program Analysis. Dependence analysis speci�es apartial order of a program's statements that preservesits meaning [5, 15]. For safety, the compiler must as-sume a dependence exists if it cannot prove otherwise.In ParaScope, analysis of interprocedural and intrapro-cedural constants, symbolics and array sections im-prove the precision of its dependence analysis [19, 27].(We assume the reader is familiar with these analyses.)User evaluation con�rms they are indispensable for dis-covering parallelism. In addition, more advanced sym-bolic analysis and exploiting user assertions in all anal-yses are essential when parallelizing many programs.Transformations. Program transformations intro-duce, discover, and exploit parallelism without chang-ing the meaning of the program. Ped provides userswith the same source-to-source transformations and ac-companying analysis employed by ParaScope's compil-ers [8, 22], allowing users to apply transformations di-rectly. User evaluation reveals that access to transfor-mations is not su�cient. Users found it di�cult to de-termine which transformations to attempt and requestthat the system suggest a transformation or compoundtransformations.
Page 1

name description & contributor lines proceduresspec77 weather simulation code 5600 67Steve Poole, IBM Kingston & Lo Hsieh, IBM Palo Altoneoss thermodynamics code 350 5Mary Zosel, Lawrence Livermore National Laboratorynxsns quantum mechanics code 1400 11John Engle, Lawrence Livermore National Laboratorydpmin molecular mechanics and dynamics program 5000 52Marcia Pottle, Cornell Theory Centerslab2d 2-D severe storm
uid
ow prototype 550 9Roy Heimbach, National Center for Supercomputing Applicationsslalom benchmark program 1200 13Roy Heimbach, National Center for Supercomputing Applicationspueblo3d hydrodynamics benchmark program 4000 50Ralph Brickner, Los Alamos National Laboratoryarc3d 3-D hydrodynamics code 3600 25Doreen Cheng, NASA Ames Research CenterTable 1: Analyzed and Parallelized Programs.This paper is organized into 4 more sections, relatedwork and conclusions. In the next section, we presentour evaluation methodology. Sections 3 through 5 dis-cuss the three key areas in detail, brie
y describingexisting functionality, evaluating it and outlining ob-stacles to parallelization and proposed solutions.2 MethodologyThe experiences presented in this paper result primar-ily from a workshop held in July, 1991 at Rice Uni-versity. Eight researchers from industrial sites andgovernment laboratories attended. Each contributeda Fortran code to be parallelized with Ped. Table 1lists the workshop attendees with their programs. Ad-ditional evaluations result from two studies of paral-lel programming tools: one by Joseph Stein, a visit-ing scientist at Syracuse University [35], and anotherby Katherine Fletcher of Rice University and DoreenCheng at NASA Ames Research Center [16].At the workshop, we divided the attendees intogroups of one or two people and assigned a researcherfamiliar with Ped to assist each group. After a morn-ing of introductory talks and a Ped demonstration, theuser groups parallelized their application with Ped forthe next two half days. They followed the work modeldescribed in Section 3.1.We collected feedback from the workshop throughtwo sources. First, the assistants recorded observa-tions from the hands-on sessions with their user groups:which features were used, any di�culties encountered,and participants' comments. Each group also pre-sented their experiences. We concluded with a lengthydiscussion involving all attendees.The contents of this paper are derived from the as-sistants' accounts and the discussions as well as talksby Stein and Fletcher on their experiences.

3 User Interface3.1 BackgroundThe user interface communicates Ped's capabilities toprogrammers. Repeated evaluation of Ped [17] and itspredecessor Ptool [2, 25] by compiler writers, applica-tion programmers and human interface experts has ledto its current design. Although many of the featuresin the new Ped interface are found in the original [28],it improves upon the original by providing more con-sistent and powerful features.Ped employs three user interface techniques to man-age and present the detailed information computed bythe system: (1) a book metaphor with progressive dis-closure, (2) user-controlled view �ltering, and (3) powersteering for complex actions. The book metaphor por-trays a Fortran program as an electronic book withanalysis results annotating the source, analogous to abook's marginal notes, footnotes, appendices, and in-dices [37]. Progressive disclosure presents details incre-mentally as they become relevant [34]. View �lteringemphasizes or conceals parts of the book as speci�edby a user [14]. Power steering automates repetitiveor error-prone tasks, providing unobtrusive assistancewhile leaving the user in control.The layout of a Ped window is shown in Figure 1.The large area at the top is the source pane display-ing the Fortran text. Two footnotes beneath it, thedependence pane and the variable pane, display depen-dence and variable information. All three panes oper-ate similarly. Scroll bars can be used to bring otherportions of the display into view, prede�ned or user-de�ned view �lters may be applied to customize thedisplay, the mouse may be used to make a selection,and menu choices or keyboard input may be used toedit the displayed information. The Fortran text, thedependence information, and the variable information
Page 2

Figure 1: The ParaScope Editor.are each described below in terms of the informationdisplayed, view �ltering, and editing. We also discussthe work model best supported by Ped and used dur-ing the workshop.Fortran Source Code. Fortran source code is dis-played in pretty-printed form in the source pane. Atthe left are marginal annotations showing the ordinalnumber of each source line and asterisks (�) which in-dicate the start of each loop. The ordinal line numbersfor the statements in the current loop are highlightedwith color (not visible in Figure 1). Source view �l-tering can be used to highlight or conceal source lines,based on either the text or the underlying semantics

of each line. For example, source view �lter predicatescan test attributes of a line such as if it contains certaintext, if it is a loop header, or if it is erroneous.The source pane allows arbitrary editing of the pro-gram using mixed text and structure editing tech-niques [36]. The user has the full freedom to edit char-acter by character or to use the power steering a�ordedby template-based structure editing. Incremental pars-ing occurs in response to edits, and the user is imme-diately informed of any syntactic or semantic errors.Dependence Information. The editor reveals pro-gram dependences in a tabular list in the dependencepane. The display shows each dependence's source and
Page 3

sink variable references and characteristics such as de-pendence distance. Ped uses progressive disclosure ofdependences based on the current loop. When the userexpresses interest in a particular loop by selecting itsmarker in the source pane, the selected loop's depen-dences immediately appear in the dependence pane.The user may select a range of dependences in the de-pendence pane to examine that are then highlighted.Simultaneously, the source pane graphically displaysselected dependences using red arrows from source vari-able references to sink variables. In Figure 1, the userhas selected a single dependence to be displayed, whichis re
ected in the source and dependence panes.Dependence view �lter predicates can test the com-puted and user-controlled attributes of a dependence,such as its source and sink variable references and linenumbers, its type, loop nesting level, mark and rea-son. The �ltered dependence list may then be dis-played graphically all at once, one dependence at atime, or according to line numbers in the source.The dependence pane also permits an importantform of editing known as dependence marking. Thesystem marks each dependence as either proven, pend-ing, accepted or rejected. If Ped proves a dependenceexists with an exact dependence test [19], the depen-dence is marked as proven; otherwise it is marked pend-ing. Users may sharpen Ped's dependence analysis bymarking a pending dependence as accepted or rejected .Rejected dependences are disregarded when Ped con-siders the safety of a parallelizing transformation, butthey remain in the system so the user can reconsiderthem at a later time. If desired, the user can editthe dependence's reason attribute to attach a commentexplaining the classi�cation decision. A Mark Depen-dences dialog box provides power steering for depen-dence marking by allowing the user to classify in onestep an entire set of dependences that satisfy a chosenpredicate.Variable Information. The variable pane displaysa list of variables with progressive disclosure similarlybased on the current loop. The attributes of a variableinclude its name, de�nitions and uses outside the cur-rent loop, dimension, common block if any, and sharedor private status. View �lter predicates can test any ofthese attributes.The variable pane also supports editing in the formof variable classi�cation. Locating variables that maylegally be made private to a loop body can greatly re-duce the number of spurious dependences in a loop (seeSection 4.1). Analysis automatically locates many suchvariables, but it is conservative and may classify vari-ables as shared that may legally be made private. Withvariable classi�cation, the user may edit a variable'sshared/private attribute to correct overly conservative

used improve like dislikeuser interactiondependence deletion ?????? ???variable classi�cation ????access to analysis ???navigationprogram ??????? ??????? ??dependence ??????? ????? ?? ?view �ltering ? ?otherdetect interface error ???help ?? ? ??teaching tool ???: one group of users out of a possible sevenused: feature was usedimprove: current implementation should be improvedlike: liked current implementation of featuredislike: did not like current implementation of featureTable 2: User Interface Evaluation.classi�cations for arrays and scalars. As with depen-dence editing the user may also edit a variable's rea-son �eld, attaching a comment regarding the variable'sclassi�cation. A Classify Variables dialog box (analo-gous toMark Dependences) provides power steering forvariable classi�cation.Work Model. The following work model was usedby the workshop participants. Users select a loop forconsideration and examine any parallelism inhibitingdependences. If they are the result of overly conser-vative assumptions, the user employs dependence dele-tion and variable classi�cation to increase the precisionof analysis. If necessary, they perform transformationsto expose parallelism. Ped supports this model by dis-playing the dependences and variables associated witha selected loop and relating them back to the sourcecode. During the workshop, the attendees augmentedthis work model with program execution pro�les tohelp them focus on the most computationally intensiveloops in their program.3.2 EvaluationThis section describes the evaluation of Ped's user in-terface, as summarized in Table 2. The table lists anumber of features in its rows and responses in thecolumns. Each of the �ve workshop groups, along withFletcher and Stein, is represented by an asterisk, fora total of seven possible asterisks. Because the imple-mentation of the interface described above was not ro-bust at the time of the workshop, it was demonstratedbut not used by the participants. Here, we address onlyissues that apply to both interfaces and are not ad-dressed in the current implementation. This structureallows us to focus on user suggestions for improvement.User Interaction. Users were comfortable with se-lecting a loop and then evaluating its dependencesand variable annotations. Speci�cally, one user com-
Page 4

mented that having all information available in onewindow annotating the source code was preferable tothe functional-based approach of Forge [31], which re-quires the programmer to bring up a series of windowsto access the results of program analysis.To correct overly conservative analysis, users per-formed both dependence deletion and variable reclassi-�cation to re
ect their perception of the true programstate. Variable reclassi�cation proved to be the rightlevel of abstraction. When users were able to determinea variable could be made private to a loop, changingthe variable's classi�cation and seeing the resulting de-crease in dependences was e�ective. However, deletingindividual dependences was too tedious for most users.One user disliked dependences as a paradigm and de-sired a higher level of abstraction based on variables.We discussed simplifying dependence deletion by intro-ducing variable-based user assertions that the systemwould then use to automatically eliminate dependences(see Section 3.3).Three users requested more access to all the analy-sis computed by the system in order to enhance theirunderstanding of the program and provide insight intothe reasons the system must assume dependences exist.For instance, one user felt that displaying array sec-tions that summarize the portion of an array accessedby a loop, similar to those used in interprocedural anal-ysis (see Section 4.1), would provide an intuitive rep-resentation of the accesses within the loop. Two otherusers requested that the system display constant valuesor ranges for loop bounds and subscript expressions. Ingeneral, they wanted access to any information the sys-tem uses to compute dependences in order to correctoverly conservative analysis.Program Navigation. Existing features in Pedassist in navigating the source code. They includeview �ltering and annotations in the display. Sourceview �ltering was not widely used during the workshopprimarily because it was unfamiliar to the assistants.However, one group de�ned �lters based on labels tohelp them understand a procedure's control
ow (seeSection 5.3). One user commented that they wouldhave liked to apply view �ltering to examine the pro-cedure's loop structure; this feature is one of the prede-�ned view �lters. Another requested that the displayannotations include a loop nesting depth indicator.All users requested more assistance in locating themost computation-intensive procedures and loops inthe program in order to better target their paralleliza-tion e�orts. For this purpose, the users relied on ex-ternal tools to pro�le their codes. They used the Unixutility gprof from Sun and Cray executions to deriveprocedure-level pro�les. One user brought loop-levelpro�ling available from Forge [31], which shows the

loop structure of a procedure, with the number of iter-ations executed and its percentage of execution time.The users requested that similar pro�ling or static per-formance estimation be integrated into Ped to helpfocus user attention on the loops where e�ective par-allelization would have the highest payo�. ParaScopenow includes a static performance estimator used topredict the relative execution time of loops and sub-routines in parallel programs [26].Several users wanted a graphical representation ofthe call graph, rather than the current textual presen-tation [21]. A visual program representation provides amuch needed \big picture" when working with a largeor unfamiliar program. Short cuts to accessing otherprocedures via this representation were also requested.Dependence Navigation. In navigating depen-dences, the users requested a number of features sub-sumed by the current implementation. First, theyneeded to visit dependence endpoints quickly ratherthan having to scroll through the source. They wantedview �ltering capabilities to examine in the source anddependence panes all dependences associated with aparticular de�nition. They were comfortable with use-de�nition chains and requested a �lter mechanism forviewing them.The users also wanted additional navigational fea-tures to examine dependences with at least one end-point outside the current loop, in another loop or evenanother procedure. Displaying dependences with end-points outside the selected loop requires straightfor-ward extensions to Ped. For example, if a variableis used or de�ned outside the current loop, the vari-able display reveals that information. To �nd the ref-erence(s) at the workshop, the users were forced tosearch the program. Now the user need only selectthe line number of interest in the use or def �eld (seeFigure 1), and the appropriate reference appears in thesource pane.Dependence endpoints spanning multiple procedurespose a more di�cult problem. Because interproceduralside-e�ect information summarizes accesses, one end-point may correspond to several reads or writes of anarray in multiple procedure bodies. To fully supportdependence navigation, Ped must be able to displayother procedures while iterating over all the endpointscorresponding to a dependence.Other. Another ParaScope tool, the CompositionEditor, compares a procedure de�nition to calls invok-ing it, ensuring the parameter lists agree in numberand type [11, 21]. These types of errors exist in pro-duction codes because most compilers do not performcross-procedure comparisons. Several mismatched pa-rameters between a procedure call and its declarationas well as type errors were detected and subsequently
Page 5

corrected using this analysis. One user requested fur-ther analysis to ensure that common block declarationshave the same shape in every procedure in which theyappear and to perform static array bounds checking.Two participants were eager to use Ped as a teach-ing tool for parallel programmers at their institutions.They felt Ped's tutorial nature could help explain par-allel programming to novices. Two users found theinteractive help facility useful, but one wanted it toprovide more information. One user wanted the abilityto print the program, dependences, and variable infor-mation.3.3 Obstacles to ParallelizationUser Assertions. Explicit deletion of dependencesfails to capture the user's reason for eliminating a de-pendence. A user deletes a dependence or a groupof dependences because of some additional knowledgeabout the program that the system is unable to de-tect statically. This information is usually at a higherlevel than a speci�c dependence. Users would preferto specify a high-level assertion and then have the sys-tem respond by deleting associated dependences. Theyproposed adding a user assertion language.To support user assertions, we �rst need to de�ne anassertion language based on three important concepts.(1) Assertions should express program properties thatare natural to a user. (2) Assertions should provideinformation to the system that is useful in eliminatingdependences. (3) It should be possible for the systemto verify the correctness of the assertions at run time.For example, the assertion language could enableusers to specify the value or range of values of a variableusing familiar Fortran syntax. Two simple but veryuseful assertions encountered during evaluation werespecifying relationships between two symbolic variablesand the properties of index arrays, arrays used in sub-script expressions of another array. Consider the fol-lowing fragment from pueblo3d.DO M = 1, 3MCN = ICN (M, IR)...DO I = ISTRT(IR), IENDV(IR)...... = UF(I + MCN, 3)UF(I, M) = ...ENDDOThis construction appears in 10 loop nests in pueblo3dand several of these consume the majority of the totalexecution time. MCN represents \my current neigh-bor" and is used to index linearized three-dimensionalarrays. Relative to the above loop structure, this pro-gram ensures that MCN > IENDV(IR) - ISTRT(IR) andtherefore, there are no loop-carried dependences onUF. As in this case, arriving at an appropriate and

useful assertion may require some careful thought, butthe system will be o�ering some assistance as well (seeSection 4.3).4 Program Analysis4.1 BackgroundDiscovering and evaluating potential parallelism in aprogram requires extensive program analysis. In par-ticular, dependence analysis provides the fundamen-tal paradigm for detecting parallelism. A loop thatcontains no loop-carried dependences may execute itsiterations in parallel. Further, dependences are usedto prove the safety of program transformations. Thissection brie
y describes the dependence analysis andsupporting analyses that are currently available inPed [27].Dependence Analysis. Ped detects data and con-trol dependences. Data dependences are located bytesting pairs of references in a loop. A hierarchicalsuite of tests is used, starting with inexpensive tests, toprove or disprove that a dependence exists [19]. Controldependences explicitly represent how control decisionsa�ect statement execution [15].Supporting Analysis. Scalar data-
ow analysis, in-cluding def-use chains, constant propagation and sym-bolic analysis, provides additional information aboutthe values and relationship of variables. They canvastly improve the precision of dependence analysis[19, 20]. Def-use chains expose dependences amongscalar variables as well as linking all accesses to eacharray for dependence testing. A critical contributionof scalar data-
ow analysis is recognizing scalars thatare killed, or rede�ned, on every iteration of a loopand may be made private, thus eliminating depen-dences. Constant propagation can locate constant-valued loop bounds, step sizes and subscript expres-sions. Symbolic analysis locates auxiliary inductionvariables, loop-invariant expressions and equivalent ex-pressions. It also performs expression simpli�cation ondemand.Interprocedural Data-
ow Analysis. One of thedistinguishing features of Ped's dependence informa-tion is the incorporation of an extensive suite of in-terprocedural analysis techniques that determine thee�ects of procedure calls on variables. Interprocedu-ral constants are inherited from a procedure's callersand directly incorporated into the intraprocedural con-stants. Flow-insensitive side-e�ect analysis, includingMod and Ref analysis, describes the variables thatmay be accessed on some control
ow path throughthe procedure [4]. Flow-sensitive side-e�ect analysis,such as Kill analysis, describes accesses that occur onevery possible control
ow path [7]. Regular section
Page 6

spec77 neoss nxsns dpmin slab2d slalom pueblo3d arc3ddependence U U U U U U U Uscalar kills U U U U U U Usections U U U U U Uarray kills N N N N N N Nreductions N N N N Nindex arrays N N NU: existing analysis was used. N: additional analysis was needed.Table 3: Analysis Used or Needed During Workshop.analysis is also used to describe more precisely, whenpossible, the side-e�ects to portions of arrays [24].4.2 EvaluationTable 3 demonstrates the importance of existing anal-ysis and the need for additional analysis for the pro-grams described in Table 1.Dependence Analysis. The dependence entry inTable 3 indicates whether dependence analysis locatesparallel loops in each program. For all of the programs,the system is able to automatically detect many paral-lel loops. Small, inner parallel loops are almost alwaysdetected. However, outer loop parallelism is essentialto achieving measurable performance improvements forapplications programs on many parallel architectures,and it too often goes undetected. We discuss impedi-ments and solutions for parallel loop detection in Sec-tion 4.3.Scalar Kill Analysis. As illustrated by the scalarkills entry, almost all of the programs contain a loopthat becomes parallelizable following scalar privatiza-tion. In the program nxsns, interprocedural scalarKillanalysis reveals a scalar variable is killed in a proce-dure invoked inside a loop. Experience using Ptool,Ped's predecessor, also suggests interprocedural scalarKill analysis is useful in eliminating spurious depen-dences [25].Interprocedural Side-e�ect Analysis. The sec-tions entry indicates that scalar side-e�ect analysis orregular section analysis reduces the number of depen-dences on a loop containing a procedure call in six ofthe programs. Of the two remaining programs, onedoes not contain loops with procedure calls and analy-sis failed on the other. In spec77 and nxsns, interproce-dural side-e�ect analysis reveals that loops containingprocedure calls can safely execute in parallel.4.3 Obstacles to ParallelizationThere are several areas where existing analysis in Pedis not su�cient to detect parallelism, but the users to-gether with the workshop assistants were able to dis-cover it. In many cases, more precise analysis can de-

tect and eliminate overly conservative dependences. Inothers, static analysis will probably never be su�cientand user assertions are needed.Array Kill Analysis. For loops in seven of theprograms, array kill analysis would eliminate impor-tant dependences, revealing parallelism. In slab2d andarc3d, automatic privatization of one or more killedarrays is su�cient to prove that loops may be safelyexecuted in parallel. Frequently, a temporary array isassigned and used in an inner loop and its value doesnot carry across iterations of the outer loop. In arc3d,an array is killed inside a procedure invoked in a loop,so interprocedural array kill analysis is required. Toperform array privatization in slab2d, kill analysis mustbe combined with loop transformations. Because theneed for array kill analysis has been discussed previ-ously [6, 33], we do not elaborate further here.Reductions. Five of the programs contain sum re-ductions which go unrecognized by Ped. For exam-ple, computing the sum of all the elements of an array.Because addition is associative, the additions do notneed to be performed in order and so the loop can beparallelized after restructuring the accumulation of thesum. The need and methods for recognizing reductionsare well known and we do not elaborate here. How-ever, transforming reductions in an interactive settingis complicated by the property that e�cient executionrequires an architecture-speci�c approach.Symbolic Expressions. Static analysis cannot de-rive information about certain symbolic expressions,such as variables read from an input �le or index arraysused in subscript expressions. Symbolic terms in sub-script expressions are a key limiting factor in precisedependence analysis. One study found that over 50%of the array references in some numerical packages con-tained at least one unknown symbolic term [20]. Theindex arrays entry in Table 3 demonstrates that threeprograms contained index arrays in subscript expres-sions that prevented parallelization.We are using a three-pronged approach to improvingthe precision of dependence information in the presence
Page 7

of symbolics: (1) sophisticated symbolic analysis; (2)partial evaluation, or compiling the program with allor part of an input data set [18]; and (3) incorporat-ing user assertions to eliminate dependences (describedfrom the user interface perspective in Section 3.3).The following program fragment from the routine�lter3d in arc3d demonstrates the type of advancedinterprocedural symbolic analysis that would improveprogram parallelization.DO 15 N = 1, 5DO 16 J = 1, JMDO 16 K = 2, KMWR1(J,K) = Q(JPL,K,L,N)-Q(J,K,L,N)16 CONTINUEDO 76 K = 2, KMWR1(JMAX,K) = WR1(JM,K)76 CONTINUE... = WR1(J,K)...15 CONTINUEIn the initialization routine, the assignment JM =JMAX � 1 occurs, and this relation holds for the restof the program. Given this symbolic relationship andarray kill analysis, the DO 15 loop may be safely paral-lelized by privatizing WR1 and two other arrays. Theability to detect and propagate this type of relation-ship can greatly improve the precision of dependenceanalysis.In other cases, symbolic values are read, making itvirtually impossible for static analysis to determineactual dependences. Consider the following fragmentfrom the program dpmin.DO 300 N = 1, NBAI3 = IT(N)J3 = JT(N)K3 = KT(N)...F(I3 + 1) = F(I3 + 1) - DT1F(I3 + 2) = F(I3 + 2) - DT2F(I3 + 3) = F(I3 + 3) - DT3F(J3 + 1) = F(J3 + 1) - DT4F(J3 + 2) = F(J3 + 2) - DT5F(J3 + 3) = F(J3 + 3) - DT6F(K3 + 1) = F(K3 + 1) - DT7F(K3 + 2) = F(K3 + 2) - DT8F(K3 + 3) = F(K3 + 3) - DT9300 CONTINUEThe arrays IT(N), JT(N) and KT(N) are read from a �le,so the system assumes dependences connect all refer-ences to F.To assist the user in deriving assertions that elim-inate spurious dependences, the system may be ableto derive breaking conditions that eliminate a particu-lar dependence or class of dependences. In the above,a breaking condition for loop-carried dependences be-tween instances of F(I3+1) is that IT(N) is a permuta-tion array (i.e all values for I3+1 are unique). Whilepossible, it would take signi�cantly more analysis for

the system to derive breaking conditions to eliminateall dependences on F and parallelize the loop. Thesystem must recognize that if IT(N) is a function sat-isfying the constraint IT(I) + 3 � IT(I+1) (similarly forJT and KT), IT(NBA) + 3 � JT(1) and JT(NBA) + 3 �KT(1), all dependences may be eliminated.A similar approach is being pursued by Pugh andWonnacott [32]. They derive relational constraints onvariables during dependence testing using a variant ofinteger programming, and these are presented to theuser in their implementation.5 Program Transformation5.1 BackgroundPed supports a large set of transformations proven use-ful for introducing, discovering, and exploiting paral-lelism and for enhancing memory hierarchy use [27].Figure 2 shows a taxonomy of the transformationsavailable in Ped. Transformations are applied accord-ing to a power steering paradigm: the user speci�es thetransformations to be made, and the system providesadvice and carries out the mechanical details. The sys-tem advises whether the transformation is applicable (issyntactically correct), safe (preserves the semantics ofthe program) and pro�table (contributes to paralleliza-tion). The complexity of many transformations makescorrect application di�cult and tedious by hand. Thus,power steering provides safe, pro�table and correct ap-plication of transformations and incremental updatesof dependence information to re
ect the modi�ed pro-gram.Reordering transformations change the order inwhich statements are executed, either within or acrossloop iterations. They expose or enhance loop-levelparallelism and improve data locality. Dependencebreaking transformations eliminate storage-related de-pendences that inhibit parallelism. They often intro-duce new storage and convert loop-carried dependencesto loop-independent dependences. Memory optimizingtransformations expose reuse of memory locations inregisters or cache.5.2 EvaluationTable 4 lists the transformations used for paralleliz-ing each program. The rows describe the existingtransformations used and the additional transforma-tions needed.It is notable that only a few of Ped's transformationswere used. The most commonly used transformationwas scalar expansion, which transforms a scalar intoan array to eliminate loop-carried dependences. Loopunrolling was the only other transformation used morethan once. For the most part, the transformations inthe table are commonly used in vectorization; however,in one example loop interchange of an imperfect loop
Page 8

spec77 neoss nxsns dpmin slab2d slalom pueblo3d arc3dloop distribution Uloop interchange Uloop fusion Uscalar expansion U U Uloop unrolling U Ucontrol
ow N N Ninterprocedural NU: existing transformation was used. N: new transformation was needed.Table 4: Transformations Used and Needed During the Workshop.nest was required.As compared with the previous section, users weremuch better at reproducing analysis not provided bythe system than at determining which transformationscould improve parallelization. The users and their as-sistants mentioned that selecting among the large num-ber of transformations is too overwhelming. It was notclear to them which transformations to attempt for agiven loop nest.5.3 Obstacles to ParallelizationTo assist users in program parallelization, they re-quested more automated assistance for applying trans-formations and two additional transformations.Transformation Guidance. While few transforma-tions were performed on these programs, it was notbecause opportunities for transformation did not exist.Indeed, a substantial amount of research has demon-strated the value of loop transformations in exposingparallelism. Cursory re-examination of the programsreveals opportunities for many transformations thatenable parallelization of outer loops. These opportu-nities include fusion and interchange in pueblo3d anddistribution in dpmin and neoss. However, when theusers were confronted with the selection of transforma-tions, they did not know which ones to explore.Several users want the transformation selection toFigure 2: Transformation Taxonomy for Ped.ReorderingLoop Distribution Loop Interchange Loop FusionStatement Interchange Loop Skewing Loop ReversalDependence BreakingPrivatization Array Renaming Loop PeelingScalar Expansion Loop Splitting Loop AlignmentMemory OptimizingStrip Mining Scalar ReplacementLoop Unrolling Unroll and JamMiscellaneousSequential $ Parallel Loop Bounds AdjustingStatement Addition Statement Deletion

include only those which are safe and pro�table forthe currently selected loop. This structure would savethem from sifting through the entire list of transfor-mations for each loop. As a simple extension to thecurrent system, it could evaluate the safety of all thetransformations for a particular loop on demand andpresent only the safe ones. However, determining whattransformations are pro�table is much more di�cult.Pro�tability not only depends on machine speci�cs, buton subsequent transformations.According to the users, transformation advice shouldincorporate the compiler's parallel code generation al-gorithms for a particular architecture. Ideally, a userwould select the architecture and request paralleliza-tion at the loop, subroutine or program level. The sys-tem would then automatically perform parallelizationor describe the impediments to a desired paralleliza-tion. Impediments would be presented in a systematicfashion based on the relative importance of a loop orsubroutine. The user could evaluate any impedimentsand correct overly conservative assumptions, thus en-abling semi-automatic parallelization. Several usersstressed the importance of providing consistent analy-sis and parallelization algorithms between the compilerand interactive tool.Complex Control Flow. Three programs, neoss,nxsns and dpmin, were written in dialects of Fortranthat do not support structured if statements and thatrequire do loops to execute at least one iteration re-gardless of loop bounds. Possibly to compensate forconstructs lacking in the language, programmers intro-duced complex control
ow involving goto statements.Consider the following loop with gotos from neoss andthe structured equivalent produced by hand during theworkshop. originalDO 50 K= ...<b1>IF (DENV(K) - RES(NR+1)) 100, 10, 1010 CONTINUE<b2>GOTO 101
Page 9

100 <b3>101 <b4>50 CONTINUE + structured versionDO 50 K=...<b1>IF (DENV(K) .GE. RES(NR+1)) THEN<b2>ELSE<b3>ENDIF<b4>50 CONTINUEThe gotos make it di�cult for the users to understandthe original loop. Other variations of if-then-else con-structs formed with gotos also appear in these pro-grams. However, users were able to further transformand parallelize a loop of this sort after control
ow wassimpli�ed by hand.To assist users in this process, the simpli�cation ofcomplex control
ow can be automated by recogniz-ing and substituting structured idioms for unstructuredcontrol-
ow when appropriate. The need for this trans-formation is unique to an interactive setting. It is notnecessary in completely automatic systems or inter-nally in interactive tools because control dependencesu�ces to understand control
ow regardless of the lan-guage constructs.Interprocedural Transformations. The programspec77 has a number of loops containing procedure callsin the key procedure gloop. Interprocedural analysis in-dicates that the loops may be safely parallelized, butthe loops have at most twelve iterations, limiting thenumber of possible parallel threads. The procedures in-voked in these loops however contain outer loops withmany more iterations that may also safely execute inparallel. A solution that combines the granularity ofthe outer loop with the parallelism of the loop in theprocedure is to perform loop interchange across theprocedure boundary [23]. In some cases, loops in gloopcontained multiple calls so the loops of the called pro-cedures were �rst fused before applying interchange.In order to enable transformations such as loop in-terchange and loop fusion across procedure boundaries,we must be able to move a loop into or out of a proce-dure invocation. We call these interprocedural trans-formations loop embedding and loop extraction, respec-tively [23]. Steve Poole brought spec77 to the workshopbecause he was familiar with this work and wanted toperform these transformations in Ped. Embedding andextraction are not currently implemented in Ped.6 Related WorkA few other papers report on the e�ectiveness of ex-isting automatic parallelizing compilers on large appli-cations [9, 6, 12, 13, 33] and of interactive tools [9].

Two of these suggest compiler-programmer interactionto achieve parallelization [9, 33].Blume and Eigenmann explore the e�ectiveness ofKAP [29] applied to Perfect benchmark programs onan 8-processor Alliant [6]. Half of the programs demon-strate little or no improvement following paralleliza-tion. Using the transformation algorithms in KAP,scalar expansion is the only transformation that con-sistently improved performance on several codes. Thecompiler often fails to parallelize important loops, suchas loops containing procedure calls, and sometimes par-allelizes loops with insu�cient granularity. These fail-ures are in part because the compiler does not performinterprocedural analysis.Eigenmann et al. present novel approaches for im-proving parallelization in four Perfect programs [12,13]. These techniques include run-time dependencetesting and aggressive use of synchronization to guardcritical sections.Singh and Hennessy examine parallelization of threeprograms on an 8-processor Alliant [33]. They observethat certain programming styles interfere with compileranalysis. These include linearized arrays and special-ized use of the boundary elements in an array. To aidthe compiler in selecting appropriate loops to paral-lelize, they suggest user access to pro�ling informationand assertion facilities that allow specifying ranges ofsymbolic variables.Cheng and Pase consider 25 programs running on an8 processor Cray Y-MP, using Cray fpp, KAP/Crayand Forge to introduce parallelism [9]. Most of theparallel versions demonstrate a speedup of less than2 over their vector counterparts. When using Forge,the only interactive tool, they o�er two suggestions.First, the user should be given insight about what loopsto parallelize, either through pro�ling or performanceestimation. Second, they want the system to query forunknown scalar variable values and use these assertionsin analysis to eliminate dependences.Because Ped contains some of the features recom-mended by these studies, our evaluation reveals howthey work in practice. For example, most of thesestudies �nd interprocedural analysis to be essential,but missing from the compilers under investigation. InPed, interprocedural analysis is found e�ective, butmore advanced analysis such as interprocedural sym-bolic propagation is also needed.Our evaluation is also distinguished because it exam-ines the interactive parallelization process with outsideusers. The existence of an advanced interactive toolallowed us to go beyond the comments provided by thestudies of automatic parallelizers to investigate the ap-propriate level for compiler and tool interaction. Forinstance, users deleted dependences in Ped, as sug-gested previously [25, 33], but requested higher-level
Page 10

assertions and guidance. We also uncovered the needfor new features such as access to compiler transforma-tion algorithms and control
ow simpli�cation.7 ConclusionIn an interactive system, the combination of user ex-pertise with the sophisticated analysis and transforma-tions used by parallelizing compilers requires power-ful mechanisms and careful engineering. Through userevaluation of the ParaScope Editor, an interactive par-allel programming tool, we have established several es-sential user requirements. Users prefer that the user in-terface tie the compiler analysis to the source code andprovide facilities such as view �ltering of source codeand analysis results, navigational assistance, and trans-formation guidance. To assist users in re�ning programanalysis for use in compilation, a facility that commu-nicates high-level information to the tool in the formof assertions is needed. Advanced analysis, such as in-terprocedural array section analysis, symbolic analysisand array privatization, can substantially reduce theamount of work the user must perform. By continuingextensive evaluations, improvements and additions, theParaScope Editor aspires to meet user requirements.8 AcknowledgementsWe would like to thank all of the researchers who par-ticipated in this study. We also thank the members ofthe ParaScope programming environment group, pastand present, who participated in the implementation ofPed and the infrastructure upon which it is built. Weespecially appreciate Scott Warren's implementation ofthe new user interface.References[1] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante.An overview of the PTRAN analysis system for multipro-cessing. In Proceedings of the First International Confer-ence on Supercomputing. Springer-Verlag, Athens, Greece,June 1987.[2] J. R. Allen, D. B�aumgartner, K. Kennedy, and A. Porter-�eld. PTOOL: A semi-automatic parallel programming as-sistant. In Proceedings of the 1986 International Conferenceon Parallel Processing, St. Charles, IL, August 1986. IEEEComputer Society Press.[3] V. Balasundaram, K. Kennedy, U. Kremer, K. S. McKinley,and J. Subhlok. The ParaScope Editor: An interactive par-allel programming tool. In Proceedings of Supercomputing'89, Reno, NV, November 1989.[4] J. Banning. An e�cient way to �nd the side e�ects of proce-dure calls and the aliases of variables. In Conference Recordof the Sixth Annual ACM Symposium on the Principles ofProgramming Languages, San Antonio, TX, January 1979.[5] A.J. Bernstein. Analysis of programs for parallel processing.IEEE Transactions on Electronic Computers, 15(5):757{763, October 1966.[6] W. Blume and R. Eigenmann. Performance analysis of par-allelizing compilers on the Perfect Benchmarks programs.

IEEE Transactions on Parallel and Distributed Systems,3(6):643{656, November 1992.[7] D. Callahan. The program summary graph and
ow-sensitive interprocedural data
ow analysis. In Proceedingsof the SIGPLAN '88 Conference on Program Language De-sign and Implementation, Atlanta, GA, June 1988.[8] S. Carr. Memory-Hierarchy Management. PhD thesis, RiceUniversity, September 1992.[9] D. Cheng and D. Pase. An evaluation of automatic andinteractive parallel programming tools. In Proceedings ofSupercomputing '91, Albuquerque, NM, November 1991.[10] K. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S.McKinley, J. M. Mellor-Crummey, L. Torczon, and S. K.Warren. The ParaScope parallel programming environment.Proceedings of the IEEE, To appear 1993.[11] K. Cooper, K. Kennedy, L. Torczon, A. Weingarten, andM. Wolcott. Editing and compiling whole programs. InProceedings of the Second ACM SIGSOFT/SIGPLAN Soft-ware Engineering Symposium on Practical Software Devel-opment Environments, Palo Alto, CA, December 1986.[12] R. Eigenmann, J. Hoe
inger, G. Jaxon, Z. Li, and D. Padua.Restructuring Fortran programs for Cedar. In Proceedingsof the 1991 International Conference on Parallel Process-ing, St. Charles, IL, August 1991.[13] R. Eigenmann, J. Hoe
inger, Z. Li, and D. Padua. Experi-ence in the automatic parallelization of four Perfect bench-mark programs. In U. Banerjee, D. Gelernter, A. Nico-lau, and D. Padua, editors, Languages and Compilers forParallel Computing, Fourth International Workshop, SantaClara, CA, August 1991. Springer-Verlag.[14] D. C. Engelbart and W. K. English. A research center foraugmenting human intellect. In Proceedings of AFIPS 1968Fall Joint Computer Conference, San Francisco, CA, De-cember 1968.[15] J. Ferrante, K. Ottenstein, and J. Warren. The programdependence graph and its use in optimization. ACM Trans-actions on Programming Languages and Systems, 9(3):319{349, July 1987.[16] K. Fletcher. Experience with ParaScope at NASA Ames Re-search Center. Presentation at the ParaScope Editor Work-shop, July 1991.[17] K. Fletcher, K. Kennedy, K. S. McKinley, and S. Warren.The ParaScope Editor: User interface goals. Technical Re-port TR90-113, Dept. of Computer Science, Rice University,May 1990.[18] G. Go�. Practical techniques to augment dependence anal-ysis in the presence of symbolic terms. Technical ReportTR92-194, Dept. of Computer Science, Rice University, Oc-tober 1992.[19] G. Go�, K. Kennedy, and C. Tseng. Practical dependencetesting. In Proceedings of the SIGPLAN '91 Conference onProgram Language Design and Implementation, Toronto,Canada, June 1991.[20] M. Haghighat and C. Polychronopoulos. Symbolic depen-dence analysis for high-performance parallelizing compilers.In Advances in Languages and Compilers for Parallel Com-puting, Irvine, CA, August 1990. The MIT Press.[21] M. W. Hall. Managing Interprocedural Optimization. PhDthesis, Rice University, April 1991.[22] M. W. Hall, S. Hiranandani, K. Kennedy, and C. Tseng.Interprocedural compilation of Fortran D for MIMDdistributed-memory machines. In Proceedings of Supercom-puting '92, Minneapolis, MN, November 1992.[23] M. W. Hall, K. Kennedy, and K. S. McKinley. Interprocedu-
Page 11

ral transformations for parallel code generation. In Proceed-ings of Supercomputing '91, Albuquerque, NM, November1991.[24] P. Havlak and K. Kennedy. An implementation of inter-procedural bounded regular section analysis. IEEE Trans-actions on Parallel and Distributed Systems, 2(3):350{360,July 1991.[25] L. Henderson, R. Hiromoto, O. Lubeck, and M. Simmons.On the use of diagnostic dependency-analysis tools in paral-lel programming: Experiences using PTOOL. The Journalof Supercomputing, 4:83{96, 1990.[26] K. Kennedy, N. McIntosh, and K. S. McKinley. Static per-formance estimation in a parallelizing compiler. TechnicalReport TR91-174, Dept. of Computer Science, Rice Univer-sity, December 1991.[27] K. Kennedy, K. S. McKinley, and C. Tseng. Analysis andtransformation in the ParaScope Editor. In Proceedings ofthe 1991 ACM International Conference on Supercomput-ing, Cologne, Germany, June 1991.[28] K. Kennedy, K. S. McKinley, and C. Tseng. Interac-tive parallel programming using the ParaScope Editor.IEEE Transactions on Parallel and Distributed Systems,2(3):329{341, July 1991.[29] Kuck & Associates, Inc. KAP User's Guide. Champaign,IL 61820, 1988.[30] K. S. McKinley. Automatic and Interactive Parallelization.PhD thesis, Rice University, April 1992.[31] Paci�c-Sierra Research. Forge User's Guide, version 7.01,December 1990.[32] W. Pugh and D. Wonnacott. Eliminating false data depen-dences using the Omega test. In Proceedings of the SIG-PLAN '92 Conference on Program Language Design andImplementation, San Francisco, CA, June 1992.[33] J. Singh and J. Hennessy. An empirical investigation of thee�ectiveness of and limitations of automatic parallelization.In Proceedings of the International Symposium on SharedMemory Multiprocessors, Tokyo, Japan, April 1991.[34] D. C. Smith, C. Irby, R. Kimball, B. Verplank, andE. Harslem. Designing the Star user interface. BYTE,7(4):242{282, April 1982.[35] J. Stein. On outer-loop parallelization of existing, real-lifeFortran-77 programs. Colloquium at Rice University, July1991. In collaboration with M. Paul and G.C. Fox.[36] R. C. Waters. Program editors should not abandon textoriented commands. ACM SIGPLAN Notices, 17(7):39{46,July 1982.[37] N. Yankelovitch, N. Meyrowitz, and A. van Dam. Read-ing and writing the electronic book. IEEE Computer,18(10):15{29, October 1985.

Page 12

