Experiences Using the ParaScope Editor:

an Interactive Parallel Programming Tool*

Mary W. Hall

Timothy J. Harvey? Ken Kennedy!

Nathaniel MCIntosh?

Kathryn S. McKinley® Jeffrey D. Oldham® Michael H. Paleczny* Gerald Roth?

Abstract

The ParaScope Editor is an interactive parallel pro-
gramming tool that assists knowledgeable users in de-
veloping scientific Fortran programs. It displays the
results of sophisticated program analyses, provides a
set. of powerful interactive transformations, and sup-
ports program editing. This paper summarizes experi-
ences of scientific programmers and tool designers us-
ing the ParaScope Editor. We evaluate existing fea-
tures and describe enhancements in three key areas:
user interface, analysis, and transformation. Many ex-
isting features prove crucial to successful program par-
allelization. They include interprocedural array side-
effect analysis and program and dependence view filter-
ing. Desirable functionality includes improved program
navigation based on performance estimation, incorpo-
rating user assertions in analysis and more guidance in
selecting transformations. These results offer insights
for the authors of a variety of programming tools and
parallelizing compilers.

1 Introduction

The complexity of constructing parallel programs is a
significant obstacle to widespread use of parallel com-
puters. In the process of writing a parallel program,
programmers must consider the implications of concur-
rency on the correctness of their algorithms. Ideally, an
advanced compiler could free the programmer from this
concern by automatically converting a sequential pro-
gram into an equivalent shared-memory parallel pro-
gram. Although a substantial amount of research has
been devoted to automatic parallelization, such sys-
tems are not consistently successful [1, 9, 6, 30, 33].

*The Fourth ACM SIGPLAN Symposium on Principles €
Practice of Parallel Programming, San Deigo, CA, May, 1993.
This research was supported by The Center for Research and
Parallel Computation (CRPC) at Rice University, under NFS
Cooperative Agreement Number CCR-9120008.

TCenter for Integrated Systems, Stanford University, Palo
Alto, CA 94305. iDepartment of Computer Science, Rice Uni-
versity, Houston, TX 77251-1892. SENSMP (CRI), 35, rue Saint
Honoré, F-77305 Fontainebleau Cedex, France.

When automatic systems fail, the ParaScope Editor
(PED) assists in parallelizing Fortran applications by
combining programmer expertise with extensive anal-
ysis and program transformations [3, 27, 28].

This paper reports on the utility of PED as an in-
teractive parallel programming tool in the ParaScope
parallel programming environment [10]. Through user
evaluation of PED, we assess existing functionality and
suggest enhancements. The critiques confirm the use-
fulness of tools like PED and offer new insights for com-
piler writers and parallel programming tool designers
in three key areas.

User Interface. We describe a new user interface
that was designed and implemented based on previous
evaluations [17, 25]. This interface enhances the orig-
inal [28], unifying improved navigation and viewing of
the program, its dependences, and information about
its variables. User evaluation confirms the appropri-
ateness of the interface but exposes the need for new
features such as navigation assistance based on perfor-
mance estimation and a facility enabling users to assert
information about variable values.

Program Analysis. Dependence analysis specifies a
partial order of a program’s statements that preserves
its meaning [5, 15]. For safety, the compiler must as-
sume a dependence exists if it cannot prove otherwise.
In ParaScope, analysis of interprocedural and intrapro-
cedural constants, symbolics and array sections im-
prove the precision of its dependence analysis [19, 27].
(We assume the reader is familiar with these analyses.)
User evaluation confirms they are indispensable for dis-
covering parallelism. In addition, more advanced sym-
bolic analysis and exploiting user assertions in all anal-
yses are essential when parallelizing many programs.

Transformations. Program transformations intro-
duce, discover, and exploit parallelism without chang-
ing the meaning of the program. PED provides users
with the same source-to-source transformations and ac-
companying analysis employed by ParaScope’s compil-
ers [8, 22], allowing users to apply transformations di-
rectly. User evaluation reveals that access to transfor-
mations is not sufficient. Users found it difficult to de-
termine which transformations to attempt and request
that the system suggest a transformation or compound
transformations.

|| name | description & contributor | lines | procedures ||
spec?7 weather simulation code 5600 67
Steve Poole, IBM Kingston & Lo Hsieh, IBM Palo Alto
neoss thermodynamics code 350 5
Mary Zosel, Lawrence Livermore National Laboratory
nxsns quantum mechanics code 1400 11

John Engle, Lawrence Livermore National Laboratory

dpmin molecular mechanics and dynamics program 5000 52
Marcia Pottle, Cornell Theory Center

slab2d 2-D severe storm fluid flow prototype 550 9
Roy Heimbach, National Center for Supercomputing Applications

slalom benchmark program 1200 13
Roy Heimbach, National Center for Supercomputing Applications

pueblo3d | hydrodynamics benchmark program 4000 50
Ralph Brickner, Los Alamos National Laboratory

arc3d 3-D hydrodynamics code 3600 25

Doreen Cheng, NASA Ames Research Center

Table 1: Analyzed and Parallelized Programs.

This paper is organized into 4 more sections, related
work and conclusions. In the next section, we present
our evaluation methodology. Sections 3 through 5 dis-
cuss the three key areas in detail, briefly describing
existing functionality, evaluating it and outlining ob-
stacles to parallelization and proposed solutions.

2 Methodology

The experiences presented in this paper result primar-
ily from a workshop held in July, 1991 at Rice Uni-
versity. FEight researchers from industrial sites and
government laboratories attended. Each contributed
a Fortran code to be parallelized with PED. Table 1
lists the workshop attendees with their programs. Ad-
ditional evaluations result from two studies of paral-
lel programming tools: one by Joseph Stein, a visit-
ing scientist at Syracuse University [35], and another
by Katherine Fletcher of Rice University and Doreen
Cheng at NASA Ames Research Center [16].

At the workshop, we divided the attendees into
groups of one or two people and assigned a researcher
familiar with PED to assist each group. After a morn-
ing of introductory talks and a PED demonstration, the
user groups parallelized their application with PED for
the next two half days. They followed the work model
described in Section 3.1.

We collected feedback from the workshop through
two sources. First, the assistants recorded observa-
tions from the hands-on sessions with their user groups:
which features were used, any difficulties encountered,
and participants’ comments. FEach group also pre-
sented their experiences. We concluded with a lengthy
discussion involving all attendees.

The contents of this paper are derived from the as-
sistants’ accounts and the discussions as well as talks
by Stein and Fletcher on their experiences.

3 User Interface
3.1 Background

The user interface communicates PED’s capabilities to
programmers. Repeated evaluation of PED [17] and its
predecessor PTOOL [2, 25] by compiler writers, applica-
tion programmers and human interface experts has led
to its current design. Although many of the features
in the new PED interface are found in the original [28],
it improves upon the original by providing more con-
sistent and powerful features.

PED employs three user interface techniques to man-
age and present the detailed information computed by
the system: (1) a book metaphor with progressive dis-
closure, (2) user-controlled view filtering, and (3) power
steering for complex actions. The book metaphor por-
trays a Fortran program as an electronic book with
analysis results annotating the source, analogous to a
book’s marginal notes, footnotes, appendices, and in-
dices [37]. Progressive disclosure presents details incre-
mentally as they become relevant [34]. View filtering
emphasizes or conceals parts of the book as specified
by a user [14]. Power steering automates repetitive
or error-prone tasks, providing unobtrusive assistance
while leaving the user in control.

The layout of a PED window is shown in Figure 1.
The large area at the top is the source pane display-
ing the Fortran text. Two footnotes beneath it, the
dependence pane and the variable pane, display depen-
dence and variable information. All three panes oper-
ate similarly. Scroll bars can be used to bring other
portions of the display into view, predefined or user-
defined view filters may be applied to customize the
display, the mouse may be used to make a selection,
and menu choices or keyboard input may be used to
edit the displayed information. The Fortran text, the
dependence information, and the variable information

&7 EBAd

H P 0 I 0 p ﬂ
file edit view search dependence variahle transform
* 33 do 682 i = non@A - 1, npatch - 1
48 coeff(i, 1) NEEELTEIY
41 result(i, m)™=_rhs{i, n)
L do BAL j = 8, iN L
42 coeff(j, i) = chgffli, j)
44 6681 continue
45 6B2 continue
48 C
47 L Factor matrix, writing factomg on top of original matria.
48 C
L do 683 j = 8, non@ - 2
5 coeff(j, j) = 1.d8 / diaglj, n)
51 result(j, m) = rhs(j, n}
52 BB3 cohtinue
¥ 53 do BA7 j = non@ - 1, npatch - 1
LT do 6AS k = nonf - 1, j -1
L) do 664 1 = @, k - 1
55 coeff(k, 79 = caefflk, jJ - (coeff(i, k)) ¥
continue L}

TYPE SO0URCE 3 IME WECTOR LYWL ELOCK Mk REAZOM A
True coeff(i, i) coefflk, j) (*) 1 i
Output coeff(i, i) coeffik, j) (%) 1 .
coeffli, i) coeff{i, j) (%) 1

True coeff(i, i) coeff(i, k) (*) 1

True coeff(i, i) coefflk, j) (*) 1

Output coeff(i, 1) coeffij, j) (%) 1

Output coeffli, i) coeff(j, i) (*,2) 1

True coeffli, i) coeff(i, j) (*,=) 1

Output coeff(i, 1) coeff(i, 1) (*,=) 1 i
Anti coeff(i, i) coeff(j, ji (*) 1 ¥
| 1 1 1
HAME OIM BLOCK DEF< UZE> KIMHD REAZON ‘
coeff 2 shared ?
diag 2 shared

i - private
h - private i
k - private L]
1 | | |

Figure 1: The ParaScope Editor.

are each described below in terms of the information
displayed, view filtering, and editing. We also discuss
the work model best supported by PED and used dur-
ing the workshop.

Fortran Source Code. Fortran source code is dis-
played in pretty-printed form in the source pane. At
the left are marginal annotations showing the ordinal
number of each source line and asterisks (*) which in-
dicate the start of each loop. The ordinal line numbers
for the statements in the current loop are highlighted
with color (not visible in Figure 1). Source view fil-
tering can be used to highlight or conceal source lines,
based on either the text or the underlying semantics

of each line. For example, source view filter predicates
can test attributes of a line such as if it contains certain
text, if it is a loop header, or if it is erroneous.

The source pane allows arbitrary editing of the pro-
gram using mixed text and structure editing tech-
niques [36]. The user has the full freedom to edit char-
acter by character or to use the power steering afforded
by template-based structure editing. Incremental pars-
ing occurs in response to edits, and the user is imme-
diately informed of any syntactic or semantic errors.

Dependence Information. The editor reveals pro-
gram dependences in a tabular list in the dependence
pane. The display shows each dependence’s source and

sink variable references and characteristics such as de-
pendence distance. PED uses progressive disclosure of
dependences based on the current loop. When the user
expresses interest in a particular loop by selecting its
marker in the source pane, the selected loop’s depen-
dences immediately appear in the dependence pane.
The user may select a range of dependences in the de-
pendence pane to examine that are then highlighted.
Simultaneously, the source pane graphically displays
selected dependences using red arrows from source vari-
able references to sink variables. In Figure 1, the user
has selected a single dependence to be displayed, which
is reflected in the source and dependence panes.

Dependence view filter predicates can test the com-
puted and user-controlled attributes of a dependence,
such as its source and sink variable references and line
numbers, its type, loop nesting level, mark and rea-
son. The filtered dependence list may then be dis-
played graphically all at once, one dependence at a
time, or according to line numbers in the source.

The dependence pane also permits an important
form of editing known as dependence marking. The
system marks each dependence as either proven, pend-
ing, accepted or rejected. If PED proves a dependence
exists with an exact dependence test [19], the depen-
dence is marked as proven; otherwise it is marked pend-
ing. Users may sharpen PED’s dependence analysis by
marking a pending dependence as accepted or rejected.
Rejected dependences are disregarded when PED con-
siders the safety of a parallelizing transformation, but
they remain in the system so the user can reconsider
them at a later time. If desired, the user can edit
the dependence’s reason attribute to attach a comment
explaining the classification decision. A Mark Depen-
dences dialog box provides power steering for depen-
dence marking by allowing the user to classify in one
step an entire set of dependences that satisfy a chosen
predicate.

Variable Information. The variable pane displays
a list of variables with progressive disclosure similarly
based on the current loop. The attributes of a variable
include its name, definitions and uses outside the cur-
rent loop, dimension, common block if any, and shared
or private status. View filter predicates can test any of
these attributes.

The variable pane also supports editing in the form
of variable classification. Locating variables that may
legally be made private to a loop body can greatly re-
duce the number of spurious dependences in a loop (see
Section 4.1). Analysis automatically locates many such
variables, but it is conservative and may classify vari-
ables as shared that may legally be made private. With
variable classification, the user may edit a variable’s
shared/private attribute to correct overly conservative

used improve | like | dislike
user interaction
dependence deletion *kkkkk *kk
variable classification Skkok
access to analysis *kk
navigation
program ok kKK k K Xk Kk kKK *x
dependence F— F— *% *
view filtering * *
other
detect interface error Skx
help *x * *%
teaching tool ek
*: one group of users out of a possible seven
used: feature was used
improve: current implementation should be improved
like: liked current implementation of feature
dislike: did not like current implementation of feature

Table 2: User Interface Evaluation.

classifications for arrays and scalars. As with depen-
dence editing the user may also edit a variable’s rea-
son field, attaching a comment regarding the variable’s
classification. A Classify Variables dialog box (analo-
gous to Mark Dependences) provides power steering for
variable classification.

Work Model. The following work model was used
by the workshop participants. Users select a loop for
consideration and examine any parallelism inhibiting
dependences. If they are the result of overly conser-
vative assumptions, the user employs dependence dele-
tion and variable classification to increase the precision
of analysis. If necessary, they perform transformations
to expose parallelism. PED supports this model by dis-
playing the dependences and variables associated with
a selected loop and relating them back to the source
code. During the workshop, the attendees augmented
this work model with program execution profiles to
help them focus on the most computationally intensive
loops in their program.

3.2 Evaluation

This section describes the evaluation of PED’s user in-
terface, as summarized in Table 2. The table lists a
number of features in its rows and responses in the
columns. Each of the five workshop groups, along with
Fletcher and Stein, is represented by an asterisk, for
a total of seven possible asterisks. Because the imple-
mentation of the interface described above was not ro-
bust at the time of the workshop, it was demonstrated
but not used by the participants. Here, we address only
issues that apply to both interfaces and are not ad-
dressed in the current implementation. This structure
allows us to focus on user suggestions for improvement.

User Interaction. Users were comfortable with se-
lecting a loop and then evaluating its dependences
and variable annotations. Specifically, one user com-

mented that having all information available in one
window annotating the source code was preferable to
the functional-based approach of Forge [31], which re-
quires the programmer to bring up a series of windows
to access the results of program analysis.

To correct overly conservative analysis, users per-
formed both dependence deletion and variable reclassi-
fication to reflect their perception of the true program
state. Variable reclassification proved to be the right
level of abstraction. When users were able to determine
a variable could be made private to a loop, changing
the variable’s classification and seeing the resulting de-
crease in dependences was effective. However, deleting
individual dependences was too tedious for most users.
One user disliked dependences as a paradigm and de-
sired a higher level of abstraction based on variables.
We discussed simplifying dependence deletion by intro-
ducing variable-based user assertions that the system
would then use to automatically eliminate dependences
(see Section 3.3).

Three users requested more access to all the analy-
sis computed by the system in order to enhance their
understanding of the program and provide insight into
the reasons the system must assume dependences exist.
For instance, one user felt that displaying array sec-
tions that summarize the portion of an array accessed
by a loop, similar to those used in interprocedural anal-
ysis (see Section 4.1), would provide an intuitive rep-
resentation of the accesses within the loop. Two other
users requested that the system display constant values
or ranges for loop bounds and subscript expressions. In
general, they wanted access to any information the sys-
tem uses to compute dependences in order to correct
overly conservative analysis.

Program Navigation. FExisting features in PED
assist in navigating the source code. They include
view filtering and annotations in the display. Source
view filtering was not widely used during the workshop
primarily because it was unfamiliar to the assistants.
However, one group defined filters based on labels to
help them understand a procedure’s control flow (see
Section 5.3). One user commented that they would
have liked to apply view filtering to examine the pro-
cedure’s loop structure; this feature is one of the prede-
fined view filters. Another requested that the display
annotations include a loop nesting depth indicator.

All users requested more assistance in locating the
most computation-intensive procedures and loops in
the program in order to better target their paralleliza-
tion efforts. For this purpose, the users relied on ex-
ternal tools to profile their codes. They used the Unix
utility gprof from Sun and Cray executions to derive
procedure-level profiles. One user brought loop-level
profiling available from Forge [31], which shows the

loop structure of a procedure, with the number of iter-
ations executed and its percentage of execution time.
The users requested that similar profiling or static per-
formance estimation be integrated into PED to help
focus user attention on the loops where effective par-
allelization would have the highest payoff. ParaScope
now includes a static performance estimator used to
predict the relative execution time of loops and sub-
routines in parallel programs [26].

Several users wanted a graphical representation of
the call graph, rather than the current textual presen-
tation [21]. A visual program representation provides a
much needed “big picture” when working with a large
or unfamiliar program. Short cuts to accessing other
procedures via this representation were also requested.

Dependence Navigation. In navigating depen-
dences, the users requested a number of features sub-
sumed by the current implementation. First, they
needed to visit dependence endpoints quickly rather
than having to scroll through the source. They wanted
view filtering capabilities to examine in the source and
dependence panes all dependences associated with a
particular definition. They were comfortable with use-
definition chains and requested a filter mechanism for
viewing them.

The users also wanted additional navigational fea-
tures to examine dependences with at least one end-
point outside the current loop, in another loop or even
another procedure. Displaying dependences with end-
points outside the selected loop requires straightfor-
ward extensions to PED. For example, if a variable
is used or defined outside the current loop, the vari-
able display reveals that information. To find the ref-
erence(s) at the workshop, the users were forced to
search the program. Now the user need only select
the line number of interest in the USE or DEF field (see
Figure 1), and the appropriate reference appears in the
source pane.

Dependence endpoints spanning multiple procedures
pose a more difficult problem. Because interprocedural
side-effect information summarizes accesses, one end-
point may correspond to several reads or writes of an
array in multiple procedure bodies. To fully support
dependence navigation, PED must be able to display
other procedures while iterating over all the endpoints
corresponding to a dependence.

Other. Another ParaScope tool, the Composition
Editor, compares a procedure definition to calls invok-
ing it, ensuring the parameter lists agree in number
and type [11, 21]. These types of errors exist in pro-
duction codes because most compilers do not perform
cross-procedure comparisons. Several mismatched pa-
rameters between a procedure call and its declaration
as well as type errors were detected and subsequently

corrected using this analysis. One user requested fur-
ther analysis to ensure that common block declarations
have the same shape in every procedure in which they
appear and to perform static array bounds checking.

Two participants were eager to use PED as a teach-
ing tool for parallel programmers at their institutions.
They felt PED’s tutorial nature could help explain par-
allel programming to novices. Two users found the
interactive help facility useful, but one wanted it to
provide more information. One user wanted the ability
to print the program, dependences, and variable infor-
mation.

3.3 Obstacles to Parallelization

User Assertions. Explicit deletion of dependences
fails to capture the user’s reason for eliminating a de-
pendence. A user deletes a dependence or a group
of dependences because of some additional knowledge
about the program that the system is unable to de-
tect statically. This information is usually at a higher
level than a specific dependence. Users would prefer
to specify a high-level assertion and then have the sys-
tem respond by deleting associated dependences. They
proposed adding a user assertion language.

To support user assertions, we first need to define an
assertion language based on three important concepts.
(1) Assertions should express program properties that
are natural to a user. (2) Assertions should provide
information to the system that is useful in eliminating
dependences. (3) It should be possible for the system
to verify the correctness of the assertions at run time.

For example, the assertion language could enable
users to specify the value or range of values of a variable
using familiar Fortran syntax. Two simple but very
useful assertions encountered during evaluation were
specifying relationships between two symbolic variables
and the properties of index arrays, arrays used in sub-
script expressions of another array. Consider the fol-
lowing fragment from pueblo3d.

DO I = ISTRT(IR), IENDV(IR)

. = UF(I + MCN, 3)
UF(I, M) = ...
ENDDO

This construction appears in 10 loop nests in pueblo3d
and several of these consume the majority of the total
execution time. MCN represents “my current neigh-
bor” and is used to index linearized three-dimensional
arrays. Relative to the above loop structure, this pro-
gram ensures that MCN > IENDV(IR) - ISTRT(IR) and
therefore, there are no loop-carried dependences on
UF. As in this case, arriving at an appropriate and

useful assertion may require some careful thought, but
the system will be offering some assistance as well (see
Section 4.3).

4 Program Analysis
4.1 Background

Discovering and evaluating potential parallelism in a
program requires extensive program analysis. In par-
ticular, dependence analysis provides the fundamen-
tal paradigm for detecting parallelism. A loop that
contains no loop-carried dependences may execute its
iterations in parallel. Further, dependences are used
to prove the safety of program transformations. This
section briefly describes the dependence analysis and
supporting analyses that are currently available in
PED [27].

Dependence Analysis. PED detects data and con-
trol dependences. Data dependences are located by
testing pairs of references in a loop. A hierarchical
suite of tests is used, starting with inexpensive tests, to
prove or disprove that a dependence exists [19]. Control
dependences explicitly represent how control decisions
affect statement execution [15].

Supporting Analysis. Scalar data-flow analysis, in-
cluding def-use chains, constant propagation and sym-
bolic analysis, provides additional information about
the values and relationship of variables. They can
vastly improve the precision of dependence analysis
[19, 20]. Def-use chains expose dependences among
scalar variables as well as linking all accesses to each
array for dependence testing. A critical contribution
of scalar data-flow analysis is recognizing scalars that
are killed, or redefined, on every iteration of a loop
and may be made private, thus eliminating depen-
dences. Constant propagation can locate constant-
valued loop bounds, step sizes and subscript expres-
sions. Symbolic analysis locates auxiliary induction
variables, loop-invariant expressions and equivalent ex-
pressions. It also performs expression simplification on
demand.

Interprocedural Data-flow Analysis. One of the
distinguishing features of PED’s dependence informa-
tion is the incorporation of an extensive suite of in-
terprocedural analysis techniques that determine the
effects of procedure calls on variables. Interprocedu-
ral constants are inherited from a procedure’s callers
and directly incorporated into the intraprocedural con-
stants. Flow-insensitive side-effect analysis, including
MobD and REF analysis, describes the variables that
may be accessed on some control flow path through
the procedure [4]. Flow-sensitive side-effect analysis,
such as KILL analysis, describes accesses that occur on
every possible control flow path [7]. Regular section

spec77 | neoss | nxsns | dpmin | slab2d | slalom | pueblo3d | arc3d
dependence U U U U U U U U
scalar kills U U U U U U U
sections U U U U U U
array kills N N N N N N N
reductions N N N N N
index arrays N N N
U: existing analysis was used. N: additional analysis was needed.

Table 3: Analysis Used or Needed During Workshop.

analysis is also used to describe more precisely, when
possible, the side-effects to portions of arrays [24].

4.2 Evaluation

Table 3 demonstrates the importance of existing anal-
ysis and the need for additional analysis for the pro-
grams described in Table 1.

Dependence Analysis. The dependence entry in
Table 3 indicates whether dependence analysis locates
parallel loops in each program. For all of the programs,
the system is able to automatically detect many paral-
lel loops. Small, inner parallel loops are almost always
detected. However, outer loop parallelism is essential
to achieving measurable performance improvements for
applications programs on many parallel architectures,
and it too often goes undetected. We discuss impedi-
ments and solutions for parallel loop detection in Sec-
tion 4.3.

Scalar Kill Analysis. As illustrated by the scalar
kills entry, almost all of the programs contain a loop
that becomes parallelizable following scalar privatiza-
tion. In the program nxsns, interprocedural scalar KiLL
analysis reveals a scalar variable is killed in a proce-
dure invoked inside a loop. Experience using PTOOL,
PED’s predecessor, also suggests interprocedural scalar
KiLL analysis is useful in eliminating spurious depen-
dences [25].

Interprocedural Side-effect Analysis. The sec-
tions entry indicates that scalar side-effect analysis or
regular section analysis reduces the number of depen-
dences on a loop containing a procedure call in six of
the programs. Of the two remaining programs, one
does not contain loops with procedure calls and analy-
sis failed on the other. In spec77 and nxsns, interproce-
dural side-effect analysis reveals that loops containing
procedure calls can safely execute in parallel.

4.3 Obstacles to Parallelization

There are several areas where existing analysis in PED
is not sufficient to detect parallelism, but the users to-
gether with the workshop assistants were able to dis-
cover it. In many cases, more precise analysis can de-

tect and eliminate overly conservative dependences. In
others, static analysis will probably never be sufficient
and user assertions are needed.

Array Kill Analysis. For loops in seven of the
programs, array kill analysis would eliminate impor-
tant dependences, revealing parallelism. In slab2d and
arc3d, automatic privatization of one or more killed
arrays is sufficient to prove that loops may be safely
executed in parallel. Frequently, a temporary array is
assigned and used in an inner loop and its value does
not carry across iterations of the outer loop. In arc3d,
an array is killed inside a procedure invoked in a loop,
so interprocedural array kill analysis is required. To
perform array privatization in slab2d, kill analysis must
be combined with loop transformations. Because the
need for array kill analysis has been discussed previ-
ously [6, 33], we do not elaborate further here.

Reductions. Five of the programs contain sum re-
ductions which go unrecognized by PED. For exam-
ple, computing the sum of all the elements of an array.
Because addition is associative, the additions do not
need to be performed in order and so the loop can be
parallelized after restructuring the accumulation of the
sum. The need and methods for recognizing reductions
are well known and we do not elaborate here. How-
ever, transforming reductions in an interactive setting
is complicated by the property that efficient execution
requires an architecture-specific approach.

Symbolic Expressions. Static analysis cannot de-
rive information about certain symbolic expressions,
such as variables read from an input file or index arrays
used in subscript expressions. Symbolic terms in sub-
script expressions are a key limiting factor in precise
dependence analysis. One study found that over 50%
of the array references in some numerical packages con-
tained at least one unknown symbolic term [20]. The
index arrays entry in Table 3 demonstrates that three
programs contained index arrays in subscript expres-
sions that prevented parallelization.

We are using a three-pronged approach to improving
the precision of dependence information in the presence

of symbolics: (1) sophisticated symbolic analysis; (2)
partial evaluation, or compiling the program with all
or part of an input data set [18]; and (3) incorporat-
ing user assertions to eliminate dependences (described

from the user interface perspective in Section 3.3).
The following program fragment from the routine
filter3d in arc3d demonstrates the type of advanced
interprocedural symbolic analysis that would improve

program parallelization.
DO 15 N =1, 5
D0 16 J = 1, M

DO 16 K = 2, KM

WR1(J,K) = Q(JPL,K,L,N)-Q(J,K,L,N)
16 CONTINUE

DO 76 K = 2, KM
WR1(JMAX,K) = WR1(JM,K)
76 CONTINUE
. = WR1(J,K)

15 CONTINUE

In the initialization routine, the assignment JM =
JMAX —1 occurs, and this relation holds for the rest
of the program. Given this symbolic relationship and
array kill analysis, the DO 15 loop may be safely paral-
lelized by privatizing WR1 and two other arrays. The
ability to detect and propagate this type of relation-
ship can greatly improve the precision of dependence
analysis.

In other cases, symbolic values are read, making it
virtually impossible for static analysis to determine
actual dependences. Consider the following fragment
from the program dpmin.

DO 300 N = 1, NBA

I3 = IT(N)

J3 = JT(N)

K3 = KT(N)

F(I3 + 1) = F(I3 + 1) - DT1
F(I3 + 2) = F(I3 + 2) - DT2
F(I3 + 3) = F(I3 + 3) - DT3
F(J3 + 1) = F(J3 + 1) - DT4
F(J3 + 2) = F(J3 + 2) - DT5
F(J3 + 3) = F(J3 + 3) - DT6
F(K3 + 1) = F(K3 + 1) - DTI7
F(K3 + 2) = F(K3 + 2) - DT8
F(K3 + 3) = F(K3 + 3) - DT9

300 CONTINUE

The arrays IT(N), JT(N) and KT(N) are read from a file,
so the system assumes dependences connect all refer-
ences to F.

To assist the user in deriving assertions that elim-
inate spurious dependences, the system may be able
to derive breaking conditions that eliminate a particu-
lar dependence or class of dependences. In the above,
a breaking condition for loop-carried dependences be-
tween instances of F(I3+1) is that IT(N) is a permuta-
tion array (i.e all values for 1341 are unique). While
possible, it would take significantly more analysis for

the system to derive breaking conditions to eliminate
all dependences on F and parallelize the loop. The
system must recognize that if IT(N) is a function sat-
isfying the constraint IT(1) + 3 < IT(1+1) (similarly for
JT and KT), IT(NBA) + 3 < JT(1) and JT(NBA) + 3 <
KT(1), all dependences may be eliminated.

A similar approach is being pursued by Pugh and
Wonnacott [32]. They derive relational constraints on
variables during dependence testing using a variant of
integer programming, and these are presented to the
user in their implementation.

5 Program Transformation
5.1 Background

PED supports a large set of transformations proven use-
ful for introducing, discovering, and exploiting paral-
lelism and for enhancing memory hierarchy use [27].
Figure 2 shows a taxonomy of the transformations
available in PED. Transformations are applied accord-
ing to a power steering paradigm: the user specifies the
transformations to be made, and the system provides
advice and carries out the mechanical details. The sys-
tem advises whether the transformation is applicable (is
syntactically correct), safe (preserves the semantics of
the program) and profitable (contributes to paralleliza-
tion). The complexity of many transformations makes
correct application difficult and tedious by hand. Thus,
power steering provides safe, profitable and correct ap-
plication of transformations and incremental updates
of dependence information to reflect the modified pro-
gram.

Reordering transformations change the order in
which statements are executed, either within or across
loop iterations. They expose or enhance loop-level
parallelism and improve data locality. Dependence
breaking transformations eliminate storage-related de-
pendences that inhibit parallelism. They often intro-
duce new storage and convert loop-carried dependences
to loop-independent dependences. Memory optimizing
transformations expose reuse of memory locations in
registers or cache.

5.2 Evaluation

Table 4 lists the transformations used for paralleliz-
ing each program. The rows describe the existing
transformations used and the additional transforma-
tions needed.

It is notable that only a few of PED’s transformations
were used. The most commonly used transformation
was scalar expansion, which transforms a scalar into
an array to eliminate loop-carried dependences. Loop
unrolling was the only other transformation used more
than once. For the most part, the transformations in
the table are commonly used in vectorization; however,
in one example loop interchange of an imperfect loop

spec77 | neoss | nxsns | dpmin | slab2d | slalom | pueblo3d | arc3d
loop distribution U
loop interchange U
loop fusion U
scalar expansion U U U
loop unrolling U U
control flow N N N
interprocedural N

U: existing transformation was used.

N: new transformation was needed.

Table 4: Transformations Used and Needed During the Workshop.

nest was required.

As compared with the previous section, users were
much better at reproducing analysis not provided by
the system than at determining which transformations
could improve parallelization. The users and their as-
sistants mentioned that selecting among the large num-
ber of transformations is too overwhelming. It was not
clear to them which transformations to attempt for a
given loop nest.

5.3 Obstacles to Parallelization

To assist users in program parallelization, they re-
quested more automated assistance for applying trans-
formations and two additional transformations.

Transformation Guidance. While few transforma-
tions were performed on these programs, it was not
because opportunities for transformation did not exist.
Indeed, a substantial amount of research has demon-
strated the value of loop transformations in exposing
parallelism. Cursory re-examination of the programs
reveals opportunities for many transformations that
enable parallelization of outer loops. These opportu-
nities include fusion and interchange in pueblo3d and
distribution in dpmin and neoss. However, when the
users were confronted with the selection of transforma-
tions, they did not know which ones to explore.
Several users want the transformation selection to

Figure 2: Transformation Taxonomy for PED.

Reordering
Loop Distribution
Statement Interchange
Dependence Breaking
Privatization
Scalar Expansion
Memory Optimizing
Strip Mining
Loop Unrolling
Miscellaneous
Sequential <+ Parallel
Statement Addition

Loop Fusion
Loop Reversal

Loop Interchange
Loop Skewing

Array Renaming
Loop Splitting

Loop Peeling
Loop Alignment

Scalar Replacement
Unroll and Jam

Loop Bounds Adjusting
Statement Deletion

include only those which are safe and profitable for
the currently selected loop. This structure would save
them from sifting through the entire list of transfor-
mations for each loop. As a simple extension to the
current system, it could evaluate the safety of all the
transformations for a particular loop on demand and
present only the safe ones. However, determining what
transformations are profitable is much more difficult.
Profitability not only depends on machine specifics, but
on subsequent transformations.

According to the users, transformation advice should
incorporate the compiler’s parallel code generation al-
gorithms for a particular architecture. Ideally, a user
would select the architecture and request paralleliza-
tion at the loop, subroutine or program level. The sys-
tem would then automatically perform parallelization
or describe the impediments to a desired paralleliza-
tion. Impediments would be presented in a systematic
fashion based on the relative importance of a loop or
subroutine. The user could evaluate any impediments
and correct overly conservative assumptions, thus en-
abling semi-automatic parallelization. Several users
stressed the importance of providing consistent analy-
sis and parallelization algorithms between the compiler
and interactive tool.

Complex Control Flow. Three programs, neoss,
nxsns and dpmin, were written in dialects of Fortran
that do not support structured if statements and that
require do loops to execute at least one iteration re-
gardless of loop bounds. Possibly to compensate for
constructs lacking in the language, programmers intro-
duced complex control flow involving goto statements.
Consider the following loop with GOTOs from neoss and
the structured equivalent produced by hand during the
workshop.

DO 50 K= original

<bl>

IF (DENV(K) - RES(NR+1)) 100, 10, 10
10 CONTINUE

<b2>

GOTO 101

100 <b3>
101 <b4>
50 CONTINUE

| structured version

DO 50 K=...
<bl>
IF (DENV(K) .GE. RES(NR+1)) THEN
<b2>
ELSE
<b3>
ENDIF
<b4>
50 CONTINUE

The gotos make it difficult for the users to understand
the original loop. Other variations of if-then-else con-
structs formed with gotos also appear in these pro-
grams. However, users were able to further transform
and parallelize a loop of this sort after control flow was
simplified by hand.

To assist users in this process, the simplification of
complex control flow can be automated by recogniz-
ing and substituting structured idioms for unstructured
control-flow when appropriate. The need for this trans-
formation is unique to an interactive setting. It is not
necessary in completely automatic systems or inter-
nally in interactive tools because control dependence
suffices to understand control flow regardless of the lan-
guage constructs.

Interprocedural Transformations. The program
spec?7 has a number of loops containing procedure calls
in the key procedure gloop. Interprocedural analysis in-
dicates that the loops may be safely parallelized, but
the loops have at most twelve iterations, limiting the
number of possible parallel threads. The procedures in-
voked in these loops however contain outer loops with
many more iterations that may also safely execute in
parallel. A solution that combines the granularity of
the outer loop with the parallelism of the loop in the
procedure is to perform loop interchange across the
procedure boundary [23]. In some cases, loops in gloop
contained multiple calls so the loops of the called pro-
cedures were first fused before applying interchange.
In order to enable transformations such as loop in-
terchange and loop fusion across procedure boundaries,
we must be able to move a loop into or out of a proce-
dure invocation. We call these interprocedural trans-
formations loop embedding and loop extraction, respec-
tively [23]. Steve Poole brought spec77 to the workshop
because he was familiar with this work and wanted to
perform these transformations in PED. Embedding and
extraction are not currently implemented in PED.

6 Related Work

A few other papers report on the effectiveness of ex-
isting automatic parallelizing compilers on large appli-
cations [9, 6, 12, 13, 33] and of interactive tools [9].

Two of these suggest compiler-programmer interaction
to achieve parallelization [9, 33].

Blume and Eigenmann explore the effectiveness of
KAP [29] applied to Perfect benchmark programs on
an 8-processor Alliant [6]. Half of the programs demon-
strate little or no improvement following paralleliza-
tion. Using the transformation algorithms in KAP,
scalar expansion is the only transformation that con-
sistently improved performance on several codes. The
compiler often fails to parallelize important loops, such
as loops containing procedure calls, and sometimes par-
allelizes loops with insufficient granularity. These fail-
ures are in part because the compiler does not perform
interprocedural analysis.

Eigenmann et al. present novel approaches for im-
proving parallelization in four Perfect programs [12,
13]. These techniques include run-time dependence
testing and aggressive use of synchronization to guard
critical sections.

Singh and Hennessy examine parallelization of three
programs on an 8-processor Alliant [33]. They observe
that certain programming styles interfere with compiler
analysis. These include linearized arrays and special-
ized use of the boundary elements in an array. To aid
the compiler in selecting appropriate loops to paral-
lelize, they suggest user access to profiling information
and assertion facilities that allow specifying ranges of
symbolic variables.

Cheng and Pase consider 25 programs running on an
8 processor Cray Y-MP, using Cray fpp, KAP/Cray
and Forge to introduce parallelism [9]. Most of the
parallel versions demonstrate a speedup of less than
2 over their vector counterparts. When using Forge,
the only interactive tool, they offer two suggestions.
First, the user should be given insight about what loops
to parallelize, either through profiling or performance
estimation. Second, they want the system to query for
unknown scalar variable values and use these assertions
in analysis to eliminate dependences.

Because PED contains some of the features recom-
mended by these studies, our evaluation reveals how
they work in practice. For example, most of these
studies find interprocedural analysis to be essential,
but missing from the compilers under investigation. In
PED, interprocedural analysis is found effective, but
more advanced analysis such as interprocedural sym-
bolic propagation is also needed.

Our evaluation is also distinguished because it exam-
ines the interactive parallelization process with outside
users. The existence of an advanced interactive tool
allowed us to go beyond the comments provided by the
studies of automatic parallelizers to investigate the ap-
propriate level for compiler and tool interaction. For
instance, users deleted dependences in PED, as sug-
gested previously [25, 33], but requested higher-level

assertions and guidance. We also uncovered the need
for new features such as access to compiler transforma-
tion algorithms and control flow simplification.

7 Conclusion

In an interactive system, the combination of user ex-
pertise with the sophisticated analysis and transforma-
tions used by parallelizing compilers requires power-
ful mechanisms and careful engineering. Through user
evaluation of the ParaScope Editor, an interactive par-
allel programming tool, we have established several es-
sential user requirements. Users prefer that the user in-
terface tie the compiler analysis to the source code and
provide facilities such as view filtering of source code
and analysis results, navigational assistance, and trans-
formation guidance. To assist users in refining program
analysis for use in compilation, a facility that commu-
nicates high-level information to the tool in the form
of assertions is needed. Advanced analysis, such as in-
terprocedural array section analysis, symbolic analysis
and array privatization, can substantially reduce the
amount of work the user must perform. By continuing
extensive evaluations, improvements and additions, the
ParaScope Editor aspires to meet user requirements.

8 Acknowledgements

We would like to thank all of the researchers who par-
ticipated in this study. We also thank the members of
the ParaScope programming environment group, past
and present, who participated in the implementation of
PED and the infrastructure upon which it is built. We
especially appreciate Scott Warren’s implementation of
the new user interface.

References

[1] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante.
An overview of the PTRAN analysis system for multipro-
cessing. In Proceedings of the First International Confer-
ence on Supercomputing. Springer-Verlag, Athens, Greece,
June 1987.

[2] J. R. Allen, D. Baumgartner, K. Kennedy, and A. Porter-
field. PTOOL: A semi-automatic parallel programming as-
sistant. In Proceedings of the 1986 International Conference
on Parallel Processing, St. Charles, IL, August 1986. IEEE
Computer Society Press.

[3] V. Balasundaram, K. Kennedy, U. Kremer, K. S. M¢Kinley,
and J. Subhlok. The ParaScope Editor: An interactive par-
allel programming tool. In Proceedings of Supercomputing

’89, Reno, NV, November 1989.

[4] J. Banning. An efficient way to find the side effects of proce-
dure calls and the aliases of variables. In Conference Record
of the Sizth Annual ACM Symposium on the Principles of
Programming Languages, San Antonio, TX, January 1979.

[5] A.J.Bernstein. Analysis of programs for parallel processing.
IEEE Transactions on FElectronic Computers, 15(5):757—
763, October 1966.

[6] W. Blume and R. Eigenmann. Performance analysis of par-
allelizing compilers on the Perfect Benchmarks programs.

(7]

(8]
(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

20]

21]

(22]

23]

IEEE Transactions on Parallel and Distributed Systems,
3(6):643-656, November 1992.

D. Callahan. The program summary graph and flow-
sensitive interprocedural data flow analysis. In Proceedings
of the SIGPLAN ’88 Conference on Program Language De-
sign and Implementation, Atlanta, GA, June 1988.

S. Carr. Memory-Hierarchy Management. PhD thesis, Rice
University, September 1992.

D. Cheng and D. Pase. An evaluation of automatic and
interactive parallel programming tools. In Proceedings of
Supercomputing 91, Albuquerque, NM, November 1991.

K. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S.
McKinley, J. M. Mellor-Crummey, L. Torczon, and S. K.
Warren. The ParaScope parallel programming environment.
Proceedings of the IEEE, To appear 1993.

K. Cooper, K. Kennedy, L. Torczon, A. Weingarten, and
M. Wolcott. Editing and compiling whole programs. In
Proceedings of the Second ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Devel-
opment Environments, Palo Alto, CA, December 1986.

R. Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li, and D. Padua.
Restructuring Fortran programs for Cedar. In Proceedings
of the 1991 International Conference on Parallel Process-
ing, St. Charles, IL, August 1991.

R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua. Experi-
ence in the automatic parallelization of four Perfect bench-
mark programs. In U. Banerjee, D. Gelernter, A. Nico-
lau, and D. Padua, editors, Languages and Compilers for
Parallel Computing, Fourth International Workshop, Santa
Clara, CA, August 1991. Springer-Verlag.

D. C. Engelbart and W. K. English. A research center for
augmenting human intellect. In Proceedings of AFIPS 1968
Fall Joint Computer Conference, San Francisco, CA, De-
cember 1968.

J. Ferrante, K. Ottenstein, and J. Warren. The program
dependence graph and its use in optimization. ACM Trans-
actions on Programming Languages and Systems, 9(3):319—

349, July 1987.

K. Fletcher. Experience with ParaScope at NASA Ames Re-
search Center. Presentation at the ParaScope Editor Work-
shop, July 1991.

K. Fletcher, K. Kennedy, K. S. M¢Kinley, and S. Warren.
The ParaScope Editor: User interface goals. Technical Re-
port TR90-113, Dept. of Computer Science, Rice University,
May 1990.

G. Goff. Practical techniques to augment dependence anal-
ysis in the presence of symbolic terms. Technical Report
TR92-194, Dept. of Computer Science, Rice University, Oc-
tober 1992.

G. Goff, K. Kennedy, and C. Tseng. Practical dependence
testing. In Proceedings of the SIGPLAN ’91 Conference on
Program Language Design and Implementation, Toronto,
Canada, June 1991.

M. Haghighat and C. Polychronopoulos. Symbolic depen-
dence analysis for high-performance parallelizing compilers.
In Advances in Languages and Compilers for Parallel Com-
puting, Irvine, CA, August 1990. The MIT Press.

M. W. Hall. Managing Interprocedural Optimization. PhD
thesis, Rice University, April 1991.

M. W. Hall, S. Hiranandani, K. Kennedy, and C. Tseng.
Interprocedural compilation of Fortran D for MIMD
distributed-memory machines. In Proceedings of Supercom-
puting 92, Minneapolis, MN, November 1992.

M. W. Hall, K. Kennedy, and K. S. M¢Kinley. Interprocedu-

24]

(25]

[26]

(27]

(28]

29]

(30]

(31]

32]

33]

(34]

(35]

(36]

(37]

ral transformations for parallel code generation. In Proceed-
ings of Supercomputing 91, Albuquerque, NM, November
1991.

P. Havlak and K. Kennedy. An implementation of inter-
procedural bounded regular section analysis. I[EEE Trans-
actions on Parallel and Distributed Systems, 2(3):350-360,
July 1991.

L. Henderson, R. Hiromoto, O. Lubeck, and M. Simmons.
On the use of diagnostic dependency-analysis tools in paral-
lel programming: Experiences using PTOOL. The Journal
of Supercomputing, 4:83-96, 1990.

K. Kennedy, N. McIntosh, and K. S. M¢Kinley. Static per-
formance estimation in a parallelizing compiler. Technical
Report TR91-174, Dept. of Computer Science, Rice Univer-
sity, December 1991.

K. Kennedy, K. S. MCKinley, and C. Tseng. Analysis and
transformation in the ParaScope Editor. In Proceedings of
the 1991 ACM International Conference on Supercomput-
ing, Cologne, Germany, June 1991.

K. Kennedy, K. S. M¢Kinley, and C. Tseng. Interac-
tive parallel programming using the ParaScope Editor.
IEEE Transactions on Parallel and Distributed Systems,
2(3):329-341, July 1991.

Kuck & Associates, Inc. KAP User’s Guide. Champaign,
IL 61820, 1988.

K. S. McKinley. Automatic and Interactive Parallelization.
PhD thesis, Rice University, April 1992.

Pacific-Sierra Research. Forge User’s Guide, version 7.01,
December 1990.

W. Pugh and D. Wonnacott. Eliminating false data depen-
dences using the Omega test. In Proceedings of the SIG-
PLAN ’92 Conference on Program Language Design and
Implementation, San Francisco, CA, June 1992.

J. Singh and J. Hennessy. An empirical investigation of the
effectiveness of and limitations of automatic parallelization.
In Proceedings of the International Symposium on Shared
Memory Multiprocessors, Tokyo, Japan, April 1991.

D. C. Smith, C. Irby, R. Kimball, B. Verplank, and
E. Harslem. Designing the Star user interface. BYTE,
7(4):242-282, April 1982.

J. Stein. On outer-loop parallelization of existing, real-life

Fortran-77 programs. Colloquium at Rice University, July
1991. In collaboration with M. Paul and G.C. Fox.

R. C. Waters. Program editors should not abandon text
oriented commands. ACM SIGPLAN Notices, 17(7):39-46,
July 1982.

N. Yankelovitch, N. Meyrowitz, and A. van Dam. Read-

ing and writing the electronic book. [EEE Computer,
18(10):15-29, October 1985.

