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Figure 1: Our Distributed Information Retrieval Systembased on distributed architectures use resources more e�-ciently and in parallel by spreading work across a networkof workstations.The focus of this paper is to design appropriate dis-tributed information retrieval architectures by analyzing theperformance of potential systems under a variety of work-loads. We begin with a prototype implementation of adistributed information retrieval system using Inquery; aninference network, full-text information retrieval model[4].Our system adopts a variation of the client-server paradigmthat consists of clients connected to Inquery server retrievalengines through a connection server, a central administra-tion broker, as illustrated in Figure 1. In the original In-query system (not distributed), clients specify an Inqueryserver, connect to it, interact with it, and �nally disconnect.In the distributed system, clients search multiple databasessimultaneously. To build our prototype, we made the fewestpossible changes to the underlying software. We thereforebegan with a single connection server which maintains a listof available collections and their locations and brokers all ofthe clients' retrieval requests and Inquery server responses.We describe this distributed system in detail in Section 2.We measure the system and use it to drive a simulator inwhich we can easily move and replicate functionality to in-vestigate alternative architectures for our distributed sys-tem. Section 3 presents this simulation model.The simulation model is parameterized by system fea-tures such as the number of users and text collections, aver-age query length, I/O and CPU demands, network latency,and the time to merge results from di�erent IR servers.This model allows us to investigate systems that vary fromour implementation. We measure system response time,1



throughput, and resource utilization for a variety of con-�gurations. During our investigation we identify potentialbottlenecks and study the e�ects of various architectures andparameters. Our goal is to use resources e�ciently by max-imizing parallelism and ensuring scalability. We also main-tain the e�ectiveness, in terms of recall and precision [3], ofa stand-alone IR system.The results show that the implemented system performswell for small con�gurations when the Inquery servers pro-cess queries quickly. However, as the size of the system in-creases, bottlenecks begin to degrade performance. We showthat we can alleviate some of the bottlenecks by adding ad-ditional brokers to manage the clients and Inquery servers.Section 7 compares our work to previous work and Section 8summarizes our results.2 A Distributed Information Retrieval SystemThis section describes the implementation of our distributedIR system. It describes the functionality and interactionbetween the clients, the connection server, and the Inqueryservers in terms of the IR commands issued by the clients.2.1 ClientsThe clients are lightweight processes that provide a userinterface to the retrieval system. Clients initiate all thework in the system by sending commands to the connec-tion server, as illustrated in Figure 1. Clients �rst connectto the connection server. A client can request a list of col-lections from the connection server or remember those itused previously. Clients specify a list of text collections tosearch with each IR command. The clients can issue theentire range of IR commands, but in this paper, we focus onquery, summary, and document commands.Query commands consists of a set of words or phrases(terms) and a set of collection identi�ers on which to per-form the queries. Query responses consist of a list of ndocument identi�ers ranked by belief values that estimatethe probability that the document satis�es the informationneed.Summary commands consist of a set of document iden-ti�ers and their collection identi�ers. Summary responsesinclude the document title and the �rst few sentences ofthe document.Document commands consist of a document and collec-tion identi�er. The response includes the complete text ofthe document.A client issues a command and waits for the connectionserver to return the results before it issues another com-mand. Users issue queries and document commands. Aclient automatically issues the �rst summary command whenit receives a query response. A client issues additional sum-mary commands at the user's request.2.2 Connection ServerThe clients and Inquery servers communicate via the con-nection server. The connection server is also a lightweightprocess that keeps track of all the Inquery servers, outstand-ing client requests, and organizes responses from Inqueryservers. The connection server continuously checks for in-coming messages from clients and Inquery servers. The con-nection server handles outstanding requests from multipleclients. We brie
y describe the processing that the connec-tion server performs to handle each request below.Inquery servers add themselves to the system by send-ing a message to the connection server. Clients send their

commands to the connection server which forwards themto the appropriate Inquery servers. The connection servermaintains a queue of outstanding requests for each of theInquery servers as illustrated in Figure 1. If an Inqueryserver is currently processing another command, the con-nection server inserts the command onto a queue. Whenthe connection server receives an outstanding response froman Inquery server, it forwards the next command on thecorresponding queue to the Inquery server.The connection server maintains intermediate responsesfrom the Inquery servers until it receives all the responses.It then sends the �nal result to the appropriate client. For asummary command, the connection server simply orders thelist of responses in the same order as the request. For a querycommand, each Inquery server sends its top n responses backto the connection server. The connection server maintainsa sorted list of the overall top n entries until all the In-query servers respond. The connection server merges newresults with the existing sorted list. We assume the rela-tive rankings between documents in independent collectionsare comparable, but this assumption is clearly tenuous. Forexample, one collection may be irrelevant to a particularquery, but if the user includes it, the overall response maystill include its top ranked responses. Other research is in-vestigating techniques to automatically select appropriatecollections with respect to speci�c queries [5, 14].The connection server does not maintain intermediateresults for document retrieval commands; it simply forwardsa document as soon as the Inquery server sends it.2.3 Inquery ServersThe Inquery server uses the Inquery retrieval engine to pro-vide IR services. The Inquery system is a probabilistic re-trieval model that is based upon a Bayesian inference net-work [4]. Inquery accepts natural language or structuredqueries. For query operations, the system outputs a listof documents ranked by relevance. Internally, the systemstores the text collections as an inverted �le. Previous workdemonstrates that Inquery is an e�ective retrieval systemfor large, full-text databases [3].3 Simulation ModelIn this section, we present a simulation model for exploringdistributed IR system architectures. Simulation techniquesprovide an e�ective and 
exible platform for analyzing largeand complex distributed systems. We can quickly changethe system con�guration, run experiments, and analyze re-sults without making numerous changes to large amountsof code. Furthermore, simulation models allow us to easilyde�ne very large systems and examine their performance ina controlled environment.To implement the simulator, we use YACSIM, a processoriented discrete event simulation language [10]. YACSIMcontains a set of data structures and library routines thatmanage user created processes and resources. Its processoriented nature enables the structure of the simulator toclosely re
ect the actual system.Our simulation model is simple, yet contains enough de-tails to accurately represent the important features of thesystem. We model the basic architecture and functional-ity described in Section 2 and illustrated in Figure 1. Themodel is driven by empirical measurements obtained fromour prototype.A user con�gures a simulation by de�ning the architec-ture of the distributed information retrieval system using a2



simple command language. A con�guration �le contains thecommands that the simulator reads at start-up time.3.1 System MeasurementsTo accurately model an IR system, we analyzed the dis-tributed Inquery system and measured the resources usedfor each operation. We focused on CPU, disk, and net-work resources. The simulation does not model memoryand cache e�ects. Empirical measurements rather than ananalytical model drive the activities performed in the sim-ulator. The simulator is driven by the following measure-ments: query evaluation time, document/summary retrievaltime, connection server time, network latency, and time tomerge results. We obtained measurements of the prototypesystem using Inquery version 2.1 running on a DECsystem-5000/240 (MIPS R3000 clocked at 40 MHz) workstation run-ning Ultrix V4.2A (Rev. 47) with 64 MB of memory and 300MB of swap space.We examined several di�erent text collections and querysets to obtain system measurements. We examined TIP-STER 1, a large heterogeneous collection of full-text articlesand abstracts [8], a database containing the CongressionalRecord for the 103rd Congress [6], and a small collection ofabstracts from the Communications of the ACM [7].The simulator uses a simple, yet accurate model to repre-sent query evaluation time. We found that evaluation timeis very strongly related to the number of terms in the queryand the frequency of each of the terms. On the TIPSTER 1query set, the correlation between query length and queryevaluation time is .96. The correlation is .95 for query termfrequency. We used the TIPSTER 1 collection to measurethe evaluation time for terms of di�erent frequencies. Thetime to evaluate a single term ranges from 0.5 seconds fora term that appears only once to 17 seconds for a termthat appears 554,658 times (the maximum term frequencyin TIPSTER 1). We divide the evaluation time into CPUand disk access time. The simulator computes the evalua-tion time for a query by adding the evaluation times of theindividual terms in the query.The simulator represents the document retrieval time foran Inquery server as a constant value. We used the TIP-STER 1 collection to measure the the amount of time ittakes the Inquery system to return documents of di�erentsizes. The document sizes range from 0.24 KB to 12 KB.We found that the retrieval time is highly variable and doesnot correlate to the size of the document. The value thatthe simulator uses is 0.31 seconds which is the average doc-ument retrieval time for 2000 randomly selected documentsfrom the TIPSTER 1 collection. We divide the evaluationtime into CPU and disk access time. The simulator uses thedocument retrieval time to compute the summary informa-tion retrieval time. Inquery retrieves a complete documentto obtain the summary information, but it only returns thesummary part.The connection server time consists of two values; thetime to access the connection server and the time to mergeresults. The simulator uses a constant value to represent theconnection server processing time which we obtained frommeasuring the actual connection server. The value is 0.1seconds. The time to merge query results depends upon thenumber of answers that an Inquery server returns. A listwith 1000 results takes 17.9 milliseconds.We represent network time as the sender overhead, re-ceiver overhead, and network latency. The sender and re-ceiver overhead is the CPU processing time for adding andremoving a message from the network. The network latency

Parameter ValuesClients C 1 4 8 32 64 128 256Inquery Servers IS 1 4 8 32 64 128Terms per Queryneg. binomial dist. TPQ 2 12 27Query Term Freq. Obs. Low Highdist. from queries QTF Dist. Skew SkewAnswers Returnedconstant values AR 100 1000Think Time/Summarynormal dist. TTS 15 30 90Think Time/Documentnormal dist. TTD 30 60 180Documents Retrievedrange of values DR 1{5 8{12 15{20Summary Operationsrange of values SO 1{5 8{12 15{20Table 1: Experiment Parametersis the amount of time the message spends on the networkitself. These times depend upon the size of the message andthe bandwidth of the network. We obtained the sender andreceiver overhead times by measuring messages sent betweentwo DECsystem-5000 workstations connected by a 10MbpsEthernet.3.2 ValidationWe validated the simulator against the actual implementa-tion using a con�guration consisting of single client, Inqueryserver, and connection server. We placed each of the com-ponents on a separate host. We used the query sets and textcollections from TIPSTER 1 and the Congressional Record.We found that our simulator runs within �10% of the ac-tual system. The simulator tends to overestimate evaluationtimes for small queries and underestimate evaluation timesfor large queries. In general, the simulator follows the sametrend as the actual system; larger queries take longer toevaluate.3.3 Experiment ParametersBased on our measurements and our system architecture,we parameterized the simulator as summarized in Table 1.Table 1 presents the parameters, their values, and abbrevi-ations for our experiments. Below, we brie
y describe eachparameter.Number of Clients/Inquery Servers (C/IS). We ex-periment with both small and large system con�gurations.Measuring the e�ect of increasing the number of clientsand Inquery servers provides insight into identifying bot-tlenecks and understanding system utilization and scala-bility.Terms per Query (TPQ). We use three di�erent aver-age query lengths in our experiments obtained from actualquery sets as described in Section 3.1. We use a negativebinomial distribution that matches the observed distribu-tion of query lengths from our query sets.Distribution of Terms in Queries (QTF). Researchersdo not agree on a commonly accepted distribution for termfrequencies in queries [15]. We examined our query setsto determine an appropriate distribution. The query termfrequency distributions for the query sets are similar butthe distributions are complex and do not closely match amathematical function. In our experiments we use the dis-tribution of query term frequencies from the TIPSTER 13



query set. We call this our observed query term frequencydistribution. We also use a distribution that is skewed to-wards terms that occur less frequently and a distributionthat is skewed towards terms that occur more frequently.Number of Documents that Match Query (AR).The IR system returns a sorted list of matching documentsto the clients. The number of documents returned a�ectsnetwork tra�c and processing by the connection servers.Think Time (TT). In the simulated workload, clients\think" after receiving summary information and docu-ments. This value accounts for the time, in seconds, thatusers use to look at the results of their requests. Thinktime can be large in comparison to the time the systemtakes to perform requests. Since we do not have statisticsthat represent actual user think times we use a range ofvalues. Further reducing think time and adding clientshave similar e�ects on performance in this system.Document Retrieval/Summary Information(DR/SO). We vary the number of summary and docu-ment retrieval operations after each query. The entriesin Table 1 represent a range of values from which thesimulator randomly chooses values. A single summaryinformation operation retrieves entries for 15 documents.The simulator generates di�erent document lengths froma distribution that matches the distribution of documentlengths in the TIPSTER 1 collection. The summary anddocument size determine the time to send it across thenetwork.We discuss these parameters and our reasons for choosingspeci�c values in greater depth in a technical report [2].Unless otherwise stated, the clients, connection server,and Inquery servers operate as described in Section 2. Weallocate each of the basic components in the distributed sys-tem to its own host. Each host contains its own processor,memory, and secondary storage. A local area network witha bandwidth of 10Mbps connects the machines. Each of theInquery servers maintains a 1 Gigabyte database (exceptin the �rst experiment in Section 4.1 where a single 1 GBdatabase is distributed).3.4 WorkloadThe workload consists of the the basic retrieval operationsdescribed in Section 2: query evaluation, obtaining sum-mary information, and document retrieval. The simulatordoes not model more complicated functions such as relevancefeedback. In the simulator, clients repeatedly perform thefollowing transaction sequence: evaluate a query, obtainsummary information of top ranking documents, think, re-trieve documents, think.The simulator only models natural language queries anddoes not perform structured query operations such as phraseand proximity operators. The simulator varies the speci�coperations for each client and during each sequence. Forexample, the model generates new queries and retrieves dif-ferent documents for each iteration.3.4.1 Simulation OutputFor each simulation con�guration of parameters, we mea-sure the system performance in terms of average query re-sponse time, summary response time, document responsetime, connection server utilization, queue lengths, networkutilization, Inquery server utilization, etc. Due to spaceconstraints, we only present graphs of the results for aver-age Inquery server utilization, connection server utilization,

and response time for a transaction sequence. For each se-ries of graphs, we display the corresponding values of theparameters listed in Table 1. We refer the interested readerto our technical report for more results [2].4 Experiments and ResultsIn this section, we present the results from four sets of ex-periments. Two of the experiments use the prototype ar-chitecture that we implemented. In the �rst experiment,we study the e�ect of equally distributing a single databaseamong each of the Inquery servers. In the second, each ofthe Inquery servers maintains a di�erent database and theclients broadcast queries to a subset of the available data-bases.For small, realistic queries, we demonstrate several ar-chitectures that scale with the number of processors anddegrade gracefully as the number clients (work) increases.Our results illustrate that the system can achieve good per-formance under varying conditions if we can maintain a bal-ance between connection server and Inquery server utiliza-tion. However, we see that system performance deterioratesrapidly when either the connection server or Inquery serversbecome over utilized.We then investigate several changes to the basic architec-ture to eliminate bottlenecks at the connection server. Tointroduce more parallelism, we �rst add connection servers.We test con�gurations using two and four connection serversand �nd this is su�cient to relieve the connection server bot-tleneck. We also test moving the response merging from theconnection server to the clients, but this change does notimprove performance because the increased number of mes-sages the connection server must send is just as costly asmerging short lists.4.1 Distributing a Single Text CollectionIn this section, we examine the performance of the systemwhen we divide a single 1 GB text collection among all theInquery Servers. The size of the text collection managed byeach Inquery server depends upon the number of Inqueryservers. For example in a system with 64 Inquery servers,each collection is 16 MB. This architecture models a dis-tributed system that maintains a single large database, butexploits parallelism by operating independently on each por-tion. In this con�guration, the total amount of work doneby the system for each client is �xed. Each client connectsto all the Inquery servers.4.1.1 Discussion of ResultsIn Figures 2{7, we present and compare the average transac-tion time, connection server utilization, and Inquery serverutilization for small queries and large queries. In all �gures,we display the number of clients, 1 to 256, on the x-axis. InFigures 2 and 5, we display the number of seconds on they-axis. In Figures 3, 4, 6, and 7, we display the percent ofprocess utilization time on the y-axis.Small Queries (TPQ=2)Figure 2 illustrates that for up to 8 Inquery servers, addingInquery servers improves the average transaction time (Inthis experiment, 1 Inquery server and 128 have the same per-formance). Going from 1 to 8 Inquery servers improves per-formance for 256 clients by a factor of 4.66. However, whenthe system contains more that 8 Inquery servers, the perfor-mance degrades because the connection server becomes overutilized.The performance improvement is due to a couple of fac-tors. First, as we increase Inquery servers, the size of each4
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database decreases which improves query evaluation time.For example, the system is able to search two 500 MB data-bases in parallel quicker than searching a single 1 GB data-base. More detailed measurements reveal that some of theimprovement stems from increased parallelism during sum-mary retrieval. Recall that a single summary informationoperation retrieves 15 documents. A system with one In-query server contains all the documents on the same ma-chine. However, in a system with multiple Inquery serversthe documents are distributed among the available Inqueryservers. The 15 summary entries may reside on di�erent In-query servers resulting in a parallel access of the summaryinformation. In the best case, each of the 15 entries arelocated on di�erent Inquery servers.As Figure 2 shows, the system achieves the best perfor-mance with 8 Inquery servers. The average transaction se-quence time degrades very slowly as we increase the numberof clients. For example, for 8 Inquery servers as we increasethe number of clients from by a factor of 64 (from 1 to 64),system response time degrades by a factor of 1.35. However,the jump between 1 and 256 clients degrades performanceby a less acceptable factor of 4. With this con�guration, thesystem achieves a good balance between connection serverand Inquery server utilization for 8 Inquery servers.The performance degradation for 32 or more Inqueryservers occurs because the connection server becomes a bot-tleneck. We see in Figure 3 that the connection server uti-lization is very high for 32 to 128 Inquery servers. When theutilization exceeds 85% the connection server does not pro-cess messages as quickly as the clients and Inquery serverssend them. For example, the connection server's incomingqueue length for utilization values greater than 85% exceeds20 messages. Our results indicate that the connection servere�ectively processes up to 8 requests per second. After thisthreshold, the connection server becomes over utilized.The bottleneck in the connection server explains the lowutilization of the Inquery servers (Figure 4). The Inqueryservers remain idle when the connection server is too busyto forward outstanding requests.Large Queries (TPQ=27)For large queries, the performance of 4 to 128 Inquery serversis very similar and degrades rapidly as the number of clientsincreases. However, Figure 5 shows small improvementsbetween 4 and 64 Inquery servers. Performance deterio-rates when a single database is distributed over 128 Inqueryservers. For 128 Inquery servers, extremely high utilizationof the connection server and the Inquery servers causes thissevere degradation.In comparison with the results for small queries (Fig-ure 2), the system response time does not scale well as thenumber of clients increases. For large queries, the Inqueryservers quickly become a bottleneck. As the number ofclients increases, the system places greater demands on theInquery servers which in turn increases in the average trans-action time. Contrast this result with short queries wherethe Inquery server is only highly utilized when the entiredatabase resides on a single Inquery server. On a con�gu-ration with 8 Inquery servers, query evaluation using largequeries takes 9 times longer than using small queries.The system only achieves scalable performance when theutilization of the connection server and the Inquery serversremains below 80%.4.2 Multiple Text CollectionsIn this section, we measure the performance of the dis-tributed IR system that maintains multiple text collections.

In this con�guration, each client selects a random subset ofthe available collections to search for the duration of a sim-ulation. On average, a client therefore searches half of theavailable collections. Thus, the workload increases both asa function of the number of Inquery servers and the num-ber of clients. This workload mimics the scenario when theconnection server is able to automatically select an appro-priate subset of the available collections to search. It also isaccurate when the user is given a selection of databases andthen chooses some subset to search.4.2.1 Discussion of ResultsFigures 8{13 present and contrast average transaction time,connection server utilization, and Inquery server utilizationfor small queries (Figures 8{10) and large queries (Figures11{13). For the scaled workload, we see that query sizehas an even more dramatic impact on system performance.Two di�erent e�ects are evident in these graphs. In Fig-ures 8{10, degradations occur when the connection serverbecomes highly utilized. In contrast, Figures 11{13 illus-trate the more dramatic e�ect on performance when theInquery servers are the bottleneck.Small Queries (TPQ=2)Figure 8 illustrates that until we reach 32 Inquery servers,the average transaction time improves as the number of In-query servers, and therefore the workload increases. Whenthe number of Inquery servers doubles, a client potentiallysearches twice as much information. However, for more than64 Inquery servers, the average transaction time decreases.Again, our more detailed measurements reveal that the per-formance improvement is due to increased parallelism duringthe summary commands (see Small Queries in Section 4.1.1).In Figure 9, we see a large increase in connection serverutilization as the size of the distributed system grows. Atthe same time, Figure 10 shows the Inquery server utilizationdecreases as we add Inquery servers. It is apparent that asthe system size increases the connection server becomes abottleneck causing performance to degrade. We con�rmedthis result by measuring the size of the message queue forthe connection server. We found that the queue is emptyfor 1, 4, and 8 Inquery servers. For 64 and 128 Inqueryservers, the queue length becomes very long and approaches90 entries when the system contains 128 clients.Large Queries (TPQ=27)Figure 11 illustrates that the performance of the distributedsystem does not scale for large queries. The average trans-action time almost doubles as the number of number of In-query servers doubles. The reason for the poor performanceis that the Inquery servers cause a bottleneck in the system(see Figure 13). The time in the Inquery servers accounts forthe majority of the transaction time. Note that these valuesrepresent the average utilization over all Inquery servers.Since each client connects to a subset of the available In-query servers, it is di�cult to reach 100% utilization.In Figure 12, we see that utilization in the connectionserver is very low. Since query evaluation dominates pro-cessing time, the connection server remains idle most of thetime.4.3 Multiple Connection ServersIn the experiments in Sections 4.1 and 4.2, the system scalesfor small queries up to a certain point; if we add too manyInquery servers, the performance degrades. As we previ-ously mentioned, the problem is that the connection server6
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becomes a bottleneck. To relieve this bottleneck we ana-lyze the performance of a system with 2 and 4 connectionservers. Adding additional connection servers reduces theaverage utilization of each connection server, and improvesperformance for small queries.In this system, the clients divide evenly among the con-nection servers and each connection server maintains a linkto all the Inquery servers. In the basic architecture, the con-nection server maintains a queue of outstanding requests foreach of the Inquery servers. If an Inquery server is busy,the connection server adds the request to the queue. In themultiple connection server system, the connection server im-mediately forwards requests to the Inquery servers. Each ofthe Inquery servers instead maintains its own queue of out-standing requests. Moving the queues to the Inquery serversdoes not signi�cantly e�ect performance.The workload in this system is the same as in Section 4.2:each Inquery server contains a 1 GB database and the work-load scales with the number of clients and Inquery servers.4.3.1 Two Connection ServersFigure 14 shows the average transaction sequence time fora system with two connection servers. In this test, we usedsmall queries. Compare these results to those in Figure 8(all of the y-axes for average transaction times are on thesame scale). As with the 1 connection server architecture,the best performance occurs with 32 Inquery servers.We see that the system performs better as the number ofclients and Inquery servers increases. For combinations of 1to 8 clients and Inquery servers, there is not a signi�cant dif-ference in performance. However, for all other combinations,we see that there is an improvement in performance. We geta speedup of 1.94 over the single connection server model forthe con�guration using 256 clients and 128 Inquery servers.4.3.2 Four Connection ServersFigure 15 shows the average transaction sequence time fora system with four connection servers. Again, for this test,we used small queries. The additional connection serversprovide even greater improvements in performance for thelarger con�gurations. We see that the best performance oc-curs for 32, 64, and 128 Inquery servers. This result is quitedi�erent from Figure 8 in which the performance begins todegrade after 32 Inquery servers. The most interesting e�ectof adding four connection servers is that the system scalesvery well for large con�gurations. We see this e�ect in Fig-ure 15 where the average transaction response time of 32 to128 Inquery servers remains nearly the same for all clientcon�gurations.DiscussionAdding additional connection servers improves performancein large systems when users evaluate small queries. In thesingle connection server architecture, the connection serverquickly becomes saturated with requests limiting perfor-mance. Adding connection servers distributes this work andimproves performance. However, when the Inquery serversare the bottleneck in the system, as in Figure 11 with largequeries, additional connection servers do not improve per-formance.5 Moving FunctionalityAnother way to reduce the amount of processing that occursin the connection server is to move the merging functionalityto the clients. Currently, the connection server is responsi-ble for collecting and merging intermediate results before

sending the �nal answer to the client. We test this archi-tecture using workloads that cause high contention for theconnection server. We con�gured the simulation to matchthe experiments in Section 4.2 (Figures 8{10). Our resultsshow that moving the merging functionality does not im-prove the average transaction sequence time. The reasonis that the connection server sends more messages to theclient. The extra processing for sending more messages isapproximately the same as for merging small lists.6 Future WorkFor large queries or extremely high workloads, the Inqueryservers do not provide reasonable response times. To allevi-ate this problem, we can hope to follow the technology curveto get some improvements in performance. Processors aregetting faster and the underlying information retrieval tech-nology is likely to get quicker as well. Other, more imme-diate solutions we will investigate are replicating the collec-tions, shared-memory multiprocessing, and multithreadedservers. Replication will require additional functionality inthe connection server to coordinate and load balance access.Based on our small query results, our architecture should beable to achieve good performance with this solution. Usinga multiprocessor instead should provide parallel access with-out paying the resource costs of replication. However, thehigh I/O demands of information retrieval may overwhelma shared-memory multiprocessor. We are investigating mul-tithreading for the connection servers and Inquery servers.7 Related WorkOur research combines and extends previous work in dis-tributed IR since we model and analyze a complete systemarchitecture. Although others have examined some of theissues, no one has considered the entire system under a va-riety of realistic conditions. We experiment with very largetext collections; up to 128 GB of data. Prior work has notexamined such large systems. We also base our distributedsystem on a proven, e�ective retrieval engine.Burkowski reports on a simulation study which measuresthe retrieval performance of a distributed IR system [1]. Theexperiments explore two strategies for distributing a �xedworkload across a small number number of servers. Thiswork is the most closely related to our work, but di�ersin several ways. He assumes a worst case workload whereeach user broadcasts queries to all servers without any thinktime. We experiment with larger distributed con�gurations,we vary the number of clients, and use a more realistic userworkload.Other researchers have investigated various data parti-tioning schemes for distributed IR systems [12, 13, 11, 9].We address this issue in the experiments in Section 4.1. Al-though we only consider one partitioning scheme, we im-prove upon their results in several ways. Our experimentsinclude results for both small and large con�gurations. Pre-vious research has investigated only small con�gurations.Also, we use an existing retrieval model that has proven tobe very e�ective. We investigate changes to the architec-ture that do not involve changes to the underlying retrievalmodel. Several of the partitioning schemes mentioned in theprevious work require changes to the retrieval model whichpossibly a�ects retrieval e�ectiveness.8 SummaryTo keep pace with the increasing amounts of online informa-tion, the performance of information retrieval systems mustimprove. In this paper, we present an implementation of a8
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Figure 15: Average Transaction Sequence Timedistributed IR system to achieve coordinated, concurrent,and scalable access. We develop a 
exible simulation modelto examine the performance of the prototype using a widevariety of parameters, workloads, and con�gurations. Wepresent results that measure system response time, utiliza-tion, and identify bottlenecks.Our results show that our architecture provides scalableperformance when clients enter small queries. Small queriesare a realistic workload, since several studies of existing IRsystems demonstrate that users tend to use small queries [6].By adding a small number of connection servers to coor-dinate a large number of clients and Inquery servers thesystem can maintain scalable performance at higher work-loads. When the system bottleneck is the Inquery server,as for large queries, it is more di�cult to achieve reason-able performance. Based on the performance of the Inqueryservers for short queries, we believe our future work willshow that replicating text collections will mitigate much ofthe competition for the Inquery servers.AcknowledgmentsWe would like to thank Bob Cook and Kathleen Dibella forhelp with the development of the prototype system. Wewould also like to thank Jamie Callan and Bruce Croft fortheir contributions to this work.References[1] F. J. Burkowski. Retrieval performance of a distributedtext database utilizing a parallel process document server.In 1990 International Symposium On Databases in Paral-lel and Distributed Systems, pages 71{79, Trinity College,Dublin, Ireland, July 1990.[2] B. Cahoon and K. S. McKinley. Performance analysis ofdistributed information retrieval architectures. TechnicalReport UM-CS-1995-054, Department of Computer Science,University of Massachusetts, Amherst, June 1995.[3] J. P. Callan, W. B. Croft, and J. Broglio. TREC and TIP-STER experimentswith INQUERY. Information Processing& Management, 31(3):327{343, May/June 1995.[4] J. P. Callan, W. B. Croft, and S. M. Harding. The IN-QUERY retrieval system. In Proceedings of the 3rd Inter-national Conference on Database and Expert System Appli-cations, Valencia, Spain, September 1992.
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