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Abstract

Distributed processors must balance communication and con-
currency. When dividing instructions among the processors,
key factors are the available concurrency, criticality of depen-
dence chains, and communication penalties. The amount of
concurrency determines the importance of the other factors:
if concurrency is high, wider distribution of instructions is
likely to tolerate the increased operand routing latencies.
If concurrency is low, mapping dependent instructions close
to one another is likely to reduce communication costs that
contribute to the critical path.

This paper explores these tradeoffs for distributed Explicit
Dataflow Graph Execution (EDGE) architectures that exe-
cute blocks of dataflow instructions atomically. A runtime
block mapper assigns instructions from a single thread to
distributed hardware resources (cores) based on compiler-
assigned instruction identifiers. We explore two approaches:
fixed strategies that map all blocks to the same number of
cores, and adaptive strategies that vary the number of cores
for each block. The results show that best fixed strategy
varies, based on the cores’ issue width. A simple adaptive
strategy improves performance over the best fixed strategies
for single and dual-issue cores, but its benefits decrease as
the cores’ issue width increases. These results show that
by choosing an appropriate runtime block mapping strat-
egy, average performance can be increased by 18%, while
simultaneously reducing average operand communication by
70%, saving energy as well as improving performance. These
results indicate that runtime block mapping is a promising
mechanism for balancing communication and concurrency in
distributed processors.

1. Introduction

Balancing concurrency and communication is a fundamental
challenge when mapping instructions to a distributed sub-
strate. As the granularity of parallel computation increases
the frequency and cost of communication changes, as does
the extent to which the parallel units of computation can

be statically summarized. We investigate the tradeoff be-
tween communication and concurrency for the case where
the parallel unit of computation is a fixed-size block of
instructions. Instruction-level parallelism can be exploited by
mapping each block of instructions to multiple cores. Block-
level parallelism can be exploited by mapping multiple blocks
of instructions to the substrate at the same time.

We introduce a run-time block mapper, implemented in
hardware, that maps these blocks to a distributed substrate of
composable cores. The block mapper can use various policies
to map blocks to cores that represent different tradeoffs
between concurrency and communication. The evaluation
platform for this block mapper is the TFlex microarchitecture,
a composable lightweight processor that executes blocks of
instructions atomically on a distributed substrate [1]. TFlex
implements an EDGE ISA, in which the instructions within an
atomic block encode their targets and communicate with one
another directly. Instructions encode their targets using a 7-bit
identifier (ID) associated with each instruction. The compiler
encodes criticality and locality information in the ISA when
it assigns these IDs. Then, the block mapper assigns the
instructions in each block to cores based on their IDs and the
number of available resources as provided by the operating
system.

We first consider a spectrum of fixed policies in which
the block mapper maps all blocks to a fixed number of
cores. At one extreme, a flat strategy spreads the instructions
within a block across all participating cores. This flat strategy
achieves high performance with single-issue cores, at the cost
of frequent operand communication. At the other extreme, a
deep strategy maps all of the instructions in a block to only
one core. This strategy performs well for dual-issue cores,
which are able to exploit intra-block parallelism locally while
reducing operand traffic significantly.

We also explore an adaptive strategy, in which the block
mapper uses a compiler specified concurrency value to adjust
the number of cores to the block. Results show that adaptive
outperforms fixed strategies on both single and dual-issue
cores. When running on single-issue cores, the adaptive
strategy achieves higher performance than the flat strategy



with operand traffic comparable to that of the deep mapping
strategy. Our results also suggest that if a future compiler can
effectively express more information about communication
and criticality, it is likely to inform block mapping policies
that further improve performance.

2. Related Work

To support workloads with differing degrees of parallelism,
multi-core systems must adapt the granularity of cores to
match the available number of threads [2]. One approach
to this problem is to aggregate a small number of cores to
form a larger core capable of exploiting concurrency at a
finer granularity [3], [1]. Recent studies propose methods for
aggregating both in-order [4], [5] and out-of-order cores [3],
[1]. This study relies on out-of-order core aggregation as the
underlying mechanism for exploiting block-level concurrency
in programs.

Some architectures, such as VLIW architectures and RAW,
rely heavily on the compiler to map instructions to a dis-
tributed substrate. For example, the RAW compiler schedules
instructions in time to exploit concurrency, and places instruc-
tions on a physical substrate [6]. The Voltron architecture [4]
combines multiple in-order VLIW cores into a wide-issue
VLIW core. This statically exposed architecture relies on
the compiler to schedule VLIW instructions and extract fine-
grained communicating threads.

Fully dynamic approaches only use hardware to map in-
structions. These methods do not take advantage of instruction
dependencies extracted by the compiler. Clustered superscalar
processors [7], [8] rely on the hardware to steer instruc-
tions dynamically to different clusters based on instruction
dependencies. Complexity-Effective Superscalar Processors
steer the dependent instructions into separate FIFO buffers
dynamically and only send the result tags to the heads of the
FIFO buffers [9]. The ISA for Instruction Level Distributed
Processing [10] supports hierarchical register files consisting
of many general purpose registers and a few accumulator
registers. The instruction stream is divided into short strands
of dependent chains. The instructions in each strand are
steered into a processing element associated with the accu-
mulator accessed by those instructions. While the instructions
in each cluster are linked by the the accumulator, the inter-
strand dependencies are passed through the general purpose
registers. To simplify the hardware, this paper relies on the
compiler to specify instruction dependencies and concurrency,
rather than discovering it at runtime.

The runtime mapping approach presented here, which can
use static information, is most similar to approaches in
which the hardware allocates/maps coarse chunks of work to
distributed units, often with compiler support. The compiler
for Multicluster processors partitions instructions between

clusters during register allocation to minimize remote reg-
ister accesses [11]. Instructions in each cluster are sched-
uled dynamically by the hardware. In Multiscalar [12] and
Thread-Level Speculation [13], the hardware automatically
spawns speculative threads, selected by the compiler, on
multiple cores. These more speculative approaches rely on
dis-contiguous instruction windows.

A recent trend has been to balance ILP and TLP by adjust-
ing the number of distributed resources allocated to a thread
dynamically, by having multiple independent units collude to
accelerate a single thread. This approach makes distribution
of instructions more challenging because the number of
participating processor elements is unknown statically and
may change dynamically. In the Federation technique [5],
two neighboring in-order cores, similar to Niagara/T1 [14]
cores, are “federated” to create an out-of-order processor. A
recent study, however, demonstrates that aggregating in-order
cores, even under idealized assumptions about aggregation
overheads, leads to major performance challenges [15]. Some
recent work has allowed core aggregation on a set of out-of-
order cores. CoreFusion [3] is a technique that “fuses” mul-
tiple dual-issue out-of-order cores to form a wide-issue out-
of-order core. The fused cores form a distributed instruction
cache, instruction window and branch predictor, but some
of the structures, such as register renaming, are physically
shared, which limits the aggregate issue width to eight.

Distributed dataflow-like architectures, including Explicit
Dataflow Graph Execution (EDGE) architectures can also
support a varying number of dynamic elements assigned to a
single thread. TRIPS is an early EDGE design that uses the
compiler to form predicated blocks of dataflow instructions
and to specify the placement of each instruction on a grid of
16 ALUs, where they are issued dynamically [16]. Wavescalar
is a dataflow processor that uses static placement of instruc-
tions and dynamic issue on a hierarchical substrate [17].
Neither design explicitly supports dynamic variance of the
available hardware resources for mapping. TFlex is a second
generation EDGE design that supports dynamic core aggre-
gation [1], and is the underlying distributed substrate used in
this paper.

3. System Overview

TFlex is a composable lightweight processor in which all
microarchitectural structures, including the register file, in-
struction window, predictors, and L1 caches are distributed
across a set of cores [1]. Distributed protocols implement in-
struction fetch, execute, commit, and misprediction recovery
without centralized logic. To run a program, the OS assigns a
set of N cores on the substrate to a program, and the program
treats those cores as a single processor. We call these N
cores the participating cores. Figure 1 illustrates the various
microarchitectural components of a TFlex core [1].
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Figure 1. Microarchitectural components of one core of a 32-
core TFlex Composable Light-weight Processor.

When cores are aggregated, the register file, instruction
cache, and data cache are equally distributed across all
participating cores. Each operation that needs to access a
microarchitectural structure uses a hash function to determine
which core contains the structure. For example, each core
contains a data cache, and the low-order bits of the cache
index determine the core for a cache access. Similarly, the
low-order bits of the architectural register number specify
which core contains the register [1].

TFlex implements an EDGE ISA. EDGE ISAs use block-
atomic execution, and instructions within a block execute
in dataflow order, using direct instruction communication.
Thus, fetch, completion, and commit protocols operate on
blocks rather than individual instructions. Within a block,
each instruction explicitly encodes its target instructions,
and executes when its operands arrive. This dataflow encod-
ing eliminates the need for an operand broadcast network.
Instead, a point-to-point network between cores performs
producer-consumer communication.

Figure 2 shows the components in a TFlex system. The
compiler [18] breaks the program into single-entry, predicated
blocks of instructions, similar to hyperblocks [19]. The EDGE
ISA imposes several restrictions on blocks to simplify the
hardware. We chose an implementation with a maximum
block size of 128 instructions, and thus 7-bit target dataflow
instruction encoding. Each block can contain up to 32 register
reads, 32 register writes, and 32 load/store instructions. The
compiler currently achieves about 64 dynamic instructions
per block.

During compilation, the compiler’s instruction scheduler
generates blocks containing dataflow instructions in target
form. Each instruction directly specifies its consumers using
7-bit instruction identifiers (IDs) assigned by the instruction
scheduler. To generate these IDs, the scheduler takes as
input the hardware topology, which includes the number of
reservation stations, the maximum number of participating
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Figure 2. Runtime and compile time system components.

cores, network latencies, and a mapping of IDs to cores. For
a given configuration, the scheduler seeks an assignment of
IDs that minimizes the latency of the critical path through
each block by minimizing communication costs along that
path and exploiting available concurrency [20]. The compiler
implicitly encodes the ID for each instruction in the binary via
its location within the block. At runtime, the hardware routes
results based on the target ID. The hardware block mapper
uses IDs to map instructions to the distributed substrate. The
instruction scheduler and block mapper agree upon a mapping
contract and thus the scheduler can convey static information
about concurrency, locality, and criticality via IDs. The next
section presents more details on ID encoding.

The runtime system allocates N cores to an application
based on resource availability. The hardware fetches and ex-
ecutes up to N blocks in parallel on the N participating cores,
where N is a power of two. One executing block is always
non-speculative and the others are speculative. The mapping
strategy determines how many instructions from the same
block a core executes. For example, a core can execute up to
128 instructions from the same block, or 128/N instructions
from N different blocks. Inter-block communication occurs
via registers, cache, and memory based on hash functions.
Intra-block communication between instructions depends on
the dataflow graph, the number of participating cores, and the
mapping of blocks to participating cores.

4. Block Mapping Strategies

For a given block, the block mapper may choose to distribute
the block across all participating cores, a subset of these
cores, or a single core. Each strategy represents a different
tradeoff between parallelism and communication overhead.
We explore fixed and adaptive strategies. The fixed mapping
strategies choose the same number of cores for all blocks in
a program. At one extreme, the fixed flat strategy partitions
the block across all participating cores, exploiting intra-block
concurrency. At the other extreme, the fixed deep strategy
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puts the entire block on a single core, minimizing intra-
block communication. The adaptive strategy seeks a better
tradeoff by choosing the number of cores based on block
characteristics. For each of these block mapping strategies,
the block mapper interprets IDs assigned to each instruction
by the compiler. We next describe this software/hardware
contract in more detail, and then fully discuss each mapping
strategy.

4.1. Compiler/Hardware Contract

We use IDs to express criticality and locality. The block
mapper reinterprets these IDs to allow programs to run
on a different number of cores without being recompiled.
Because there are at most 128 instructions in a block, the
compiler assigns each instruction a 7-bit ID that determines
where the instruction will execute, i.e., on which core. At
runtime, instructions execute when their operands arrive. If
two instructions on the same core are both ready at the same
time, the more critical instruction should execute first. The
block mapper uses the IDs to determine the order in which
instructions appear in the reservation stations on each core,
thus, the ID can be used to express criticality information as
well as locality information.

The instruction IDs should preserve locality information if
the block is mapped to a smaller number of cores. We use
an abstract mapping between IDs and cores, but for ease of
understanding, consider a simple mapping where IDs directly
encode instruction locations. Imagine 32 cores laid out in a
4 by 8 grid, and the compiler and hardware could agree that
IDs 0-3 map to core (0,0), 4-7 to (0,1), and so on. At runtime,
if there are only four participating cores laid out in a 2 by 2
grid, the block mapper must interpret the bits differently, for
instance by mapping IDs 0-31 to (0,0). The problem with this
simple mapping is that instructions that were one hop away,
those mapped to (2,4) and (3,4) in the 4 by 8 grid, are now
assigned to (0,1) and (1,0), which are two hops away in the 2
by 2 grid. Ideally, the IDs should be assigned and interpreted
such that instructions mapped to the same or nearby cores
when compiled for N cores remain on the same or nearby
cores when mapped to a smaller number of cores. We use the
following abstract encoding to achieve this versatility.

Figures 3(a-c) show the software/hardware contract for ID
bits when running on eight, four, and two cores, respectively.
With eight cores, each core will execute 16 of the 128
instructions and the first three bits determine the core. The
scheduler encodes locality information in these top three bits:
R (row) and C (column) in the figures. The four remaining
frame (F) bits express criticality information, where lower is
more critical and appears earlier in the reservation stations.
The core chooses to execute the lower numbered instructions
when two instructions are ready to issue in the same cycle.
Similarly, mapping to four and two cores, the microarchitec-
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Figure 3. Information encoded in the instruction IDs for fixed
and adaptive mapping strategies.

ture uses two and one locality bits, and five and six criticality
bits, respectively.

By interleaving the R and C bits in the IDs, the compiler
helps the hardware preserve locality information when map-
ping blocks to different numbers of cores. For example, in
Figure 3(a), the scheduler maps dependent instructions a and
b to two adjacent cores, and independent instructions a and
h to two distant cores. At runtime, when mapped to four and
two cores, as shown in Figures 3(b) and 3(c), the relative
locality among these instructions is preserved. This format for
IDs, however, does not preserve the criticality of instructions
because as instructions are mapped to fewer cores, locality
bits are converted to criticality bits. For example, all eight
instructions in Figure 3(a) have high criticality and are thus
placed in the highest position in their cores’ reservation
stations. When mapped to four and two cores, as shown in
Figures 3(b) and 3(c), however, the relative positions of these
instructions in their reservation stations change dramatically.
Fortunately, instructions are allowed to issue out of order,
so the criticality bits only become a factor when multiple
instructions are ready to execute at the same time.

4.2. Fixed Mapping Strategies

Each fixed strategy represents a different tradeoff between
communication overhead and ability to exploit concurrency.

Flat Mapping. With a flat mapping strategy, the block
mapper distributes the instructions in each block across all
participating cores. This approach exploits as much intra-
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block concurrency as possible, but incurs high intra-block
communication overheads.

The IDs convey both locality and criticality information
with the flat mapping strategy. For example, in a 2 × 4
configuration containing eight total cores, each of the eight
cores executes 16 of the 128 instructions as shown in
Figure 3(a). The flat mapper uses four bits to indicate the
location of the instruction, two bits for the row, and two bits
for the column. The remaining three bits express criticality
information – the relative issue priority that breaks ties in the
reservation stations on each core (see Figure 3). Instructions
that are close to each other when compiled to 16 cores
are close, or on the same core, when executed in a flat
mapping on a smaller number of cores. The TRIPS prototype
employed what was essentially a flat mapping strategy across
16 execution tiles [16].

Deep Mapping. With a deep mapping strategy, the block
mapper assigns all instructions within a block to a single
core. This strategy eliminates cross-core communication be-
tween instructions, but provides only as much intra-block
parallelism as the issue width of the cores. Although deep
mapping eliminates communication between instructions, it
may increase communication between blocks because cache
banks and registers are distributed across the cores.

With the deep mapping strategy, the instruction identifiers
assigned by the scheduler are no longer used for locality at
all – the entire instruction identifier is devoted to determining
the criticality of the instruction, i.e., the instruction’s priority
within the core’s reservation stations.

For the DFG in Figure 4(a), Figures 4(b) and 4(c) provide
a simple example of the flat and deep mapping strategies for
two blocks, B0 and B1, on a 4-core processor. Symbols a
through h represent the instructions in these blocks. Registers
R0, R1, and R3 are located in cores 0, 1, and 3, respectively.
Block B0 reads registers R0 and R1, and writes register R3.
Block B1 reads register R3, which is produced by B0, and
writes register R0. Block B1 also loads a value from cache
bank D3 located on core 3.

The value communicated between blocks B0 and B1 via
register R3 is an example of communication between blocks,
while the value produced by instruction a and consumed by
instruction b is an example of communication within a block.
With flat mapping, as shown in Figure 4(b), the instruction
scheduler tries to place instructions that access registers on the
same core as the corresponding register. With deep mapping,
as shown in Figure 4(c), however, the blocks are assigned to
cores dynamically in a round-robin fashion, so most register
accesses go to remote cores.

4.3. Adaptive Mapping

Flat and deep mapping are both limited because the block
mapper selects the same number of cores, C, for all blocks in
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Figure 4. A sample DFG consisting of two blocks mapped
using the flat, deep and adaptive mapping strategies. Solid
and dotted lines represent intra and inter-block communication,
respectively.

an application. The flat mapping strategy uses C = N , where
N is the number of participating cores. The deep mapping
uses C = 1. As a result, flat mapping may under-utilize
cores or experience excessive communication overheads when
blocks have low concurrency. On the other hand, the deep
mapping fails to exploit all of the available concurrency for
highly concurrent blocks.

The adaptive mapping strategy balances these tradeoffs by
selecting the number of cores based on the block’s available
concurrency and then using the IDs to map to the selected
cores. The compiler evaluates the available concurrency and
encodes the concurrency value in the block header as follows:

Concurrency = BlockInstructionCount
CriticalPathLength

where BlockInstructionCount is the total number of
instructions in the block and CriticalPathLength is the length
of the critical path through the block in cycles. This metric
estimates the maximum achievable IPC for the block. At
runtime, the block mapper dynamically selects a set of cores
for the block based on the concurrency value provided by
the compiler as follows:

C = 2dlog2 d
Concurrency
IssueW idth ee

where IssueWidth is the issue width of each core, assuming
homogeneous cores. The block mapper uses this number of
cores, always a power of two, if they are available.

Using the adaptive strategy, a round-robin algorithm
chooses the cores for the next block, similar to deep mapping,
but it also accounts for requests with varying numbers of
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cores. If there is not enough room in the instruction window
for the next block, then instruction fetch stalls until there
is sufficient space available. More sophisticated algorithms
are possible, but may make the hardware implementation
impractical. Round-robin strategies can be implemented in
a distributed fashion without any centralized components.

Figure 4(a) shows the concurrency and core count for
blocks B0 and B1, and Figure 4(d) illustrates the adaptive
block mapping for these blocks on a 4-core processor. For
simplicity, this example assumes that the static execution time
for all instructions is one cycle, and that all cores have an
issue width of one. B0 consists of a chain of dependent
instructions, and all of its instructions are on its critical path.
As a result, its concurrency is equal to 1.0, and the block
mapper assigns one core to this block. On the other hand, the
length of the critical path of block B1 is three cycles, but this
block has four instructions, which results in a concurrency
value of 4/3. For this block, the number of cores chosen by
the block mapper is equal to 2dlog2 d

4/3
1 ee = 2dlog2 2e = 2.

If the cores were dual-issue, the concurrency values for B0
and B1 would remain the same, but the block mapper would
assign one core to each of the blocks in this example.

As shown in Figure 3(d), the adaptive strategy uses the
concurrency information for each block to select an appro-
priate number of cores for that block. At runtime, this number
determines how many bits in the instruction identifier specify
locality and how many bits specify criticality.

4.4. Reducing Communication Between Blocks

One disadvantage of the deep and adaptive block mapping
strategies is that they may increase communication between
blocks. One way to deal with this problem is to use a different
algorithm to select the next core in the block mapper. We
investigate two possible algorithms.

Inside-Out. The Inside-Out algorithm prioritizes the cores
close to the center when selecting the next set of cores at
runtime. Because the cores close to the center have a smaller
average distance to other cores, they should require a smaller
average hop count to access registers and memory locations.

Preferred-Location. The compiler encodes a list of pre-
ferred cores in the block header. During core selection, the
Preferred-Location block mapper selects the available cores
highest in this list. To prioritize the cores, the compiler
computes the static hop count required to access registers.
For example, in Figure 4(d), block B0 prefers core 1 to core
0 because core 1 will require two cycles to read R0 and R1,
and write R3, whereas core 0 will require three cycles. If
cores 0 and 1 are both available for B0, the block mapper
will choose core 1. A drawback of this algorithm is that the
compiler must know the number of cores assigned to the
program, making it less general than Inside-Out selection.

4.5. Hardware Complexity and Cost

The dynamic block mapper for deep and adaptive strategies
can be implemented in a fully distributed way among cores,
thus, there is no central unit for making block mapping deci-
sions. Distributing the block mapper among cores minimizes
its effect on the latency of the critical path. Here, we briefly
discuss various components in this distributed block mapper.

Next core selection mechanism. The core selection mech-
anisms can be implemented in a fully distributed fashion.
For the deep mapping strategy, the selected core for the
current block sends a message to the next core in round-robin
order to execute the next block. This mechanism requires no
extra state in the cores. The adaptive block mapping strategy,
however, requires each core to keep track of the allocation
status of other cores in a table consisting of N ∗ log2N flip
flops, where N is the total number of cores. In addition, each
core requires a priority encoder to choose the next set of cores
using the table. The table and encoder incur a relatively small
area overhead for each core.

Decoding IDs. The block mapper specifies how each core
interprets IDs. For example in the deep strategy, all seven ID
bits determine the position of each instruction in the core’s
reservation stations. In the flat strategy, the mapper uses 7−
log2N bits as criticality bits. In the adaptive strategy, C cores
use 7− log2C bits for criticality.

5. Results

We added support for the fixed and adaptive strategies to
the validated TFlex simulator [1]. The baseline cores are
capable, dual-issue, out-of-order cores with a 128-instruction
window. Table 1 shows the microarchitectural parameters
for each TFlex core. We test each mapping strategy on the
SPEC [21] benchmarks. We use eight integer and nine floating
point SPEC benchmarks with the reference (large) dataset
simulated with single SimPoints [22].
Table 1. Single Core TFlex Microarchitecture Parameters [1].

Parameter Configuration
Instruction
Supply

Partitioned 8KB I-cache (1-cycle hit); Local/Gshare Tour-
nament predictor (8K+256 bits, 3 cycle latency) with spec-
ulative updates; Num. entries: Local: 64(L1) + 128(L2),
Global: 512, Choice: 512, RAS: 16, CTB: 16, BTB: 128,
Btype: 256.

Execution Out-of-order execution, RAM structured 128-entry issue
window, dual-issue (up to two INT and one FP) or single
issue.

Data
Supply

Partitioned 8KB D-cache (2-cycle hit, 2-way set-
associative, 1-read port and 1-write port); 44-entry LSQ
bank; 4MB decoupled S-NUCA L2 cache [23] (8-way
set-associative, LRU-replacement); L2-hit latency varies
from 5 cycles to 27 cycles depending on memory address;
average (unloaded) main memory latency is 150 cycles.

Simulation Execution-driven simulator validated to be within 7% of
real system measurement
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Figure 5. Average speedup over single core for the SPEC benchmarks with varying numbers of cores and varying core issue widths.

With the flat strategy, we use binaries scheduled for 32
cores. We compile to this maximum number of cores because
in a real system, the number of cores assigned to a program
may not be known at compile time. Binaries compiled to a
smaller number of cores may sacrifice locality information
when running on a larger number of cores, which may lead
to performance degradation. The deep strategy uses binaries
scheduled specifically for one core, where all seven bits spec-
ify criticality. The Fixed-2 and Fixed-4 strategies use binaries
scheduled for two and four cores, respectively. The adaptive
strategy uses binaries scheduled for eight cores because few
blocks require more than eight cores. This section evaluates
the mapping strategies, the concurrency distribution for the
adaptive strategy, communication overhead for each strategy,
and mechanisms for improving inter-block communication
for the deep and adaptive strategies.

5.1. Performance

Figure 5 shows performance using the flat, deep, and adaptive
mapping strategies for the SPEC benchmarks normalized to
the performance of each benchmark on a single dual-issue
core. These experiments vary the number of cores allocated
to the application from 1 to 32 cores, and the issue width of
the cores from one to two. The baseline cores, however, are
always out-of-order, dual-issue cores.

With dual-issue cores, the adaptive strategy outperforms
the fixed strategies in all cases. For example, running on 16
cores, the adaptive strategy outperforms the flat strategy by
9% for SPEC INT, and 21% for SPEC FP. The flat mapping
strategy shows little benefit moving from single to dual-
issue cores, yet both the deep and the adaptive strategies
see a noticeable improvement with dual-issue cores. This
difference is more pronounced for the deep mapping strategy
because with single-issue cores, the deep strategy is unable to

exploit any concurrency within a block. The adaptive strategy,
however, is able to compensate for the loss of intra-block
parallelism by using more cores when the block contains
sufficient concurrency.

We also measured speedup using two intermediate fixed
strategies. With the Fixed-2 and Fixed-4 strategies, the sched-
uler schedules all blocks to two and four cores, respectively,
and the block mapper selects two and four cores for each
block in a round-robin fashion. For most configurations, the
adaptive strategy achieves performance close to or better
than the performance of the best fixed strategy. For single-
issue SPEC FP runs, the Fixed-4 strategy achieves better
performance than the adaptive strategy when running on 8
and 16 cores.

Figure 6 indicates the percentage of executed blocks that
use each number of cores with the adaptive mapping strategy.
With dual-issue cores, as shown in Figure 6(a), the adaptive
strategy maps about 40% of blocks to two or four cores. The
block mapper maps 30% of the blocks in the SPEC integer
benchmarks to more than one core when using dual-issue
cores. When using single-issue cores, as shown in Figure 6(b),
half as many blocks are mapped to more than one core, and
more than half of the blocks use two or four cores.

The SPEC integer benchmarks reach their maximum per-
formance when running on 16 cores and observe a significant
slowdown with 32 cores. High operand network latency and
contention due to register and memory traffic when using
32 cores is the most likely reason for this slowdown. The
adaptive strategy reduces this degradation to some extent, but
cannot remove the inter-block communication. The perfor-
mance of the SPEC floating point benchmarks improves when
running with 32 cores because the floating point benchmarks
contain blocks that can actually exploit 32 cores.

Figure 7(a) shows the speedup achieved using the adaptive
and deep mapping strategies normalized to the flat mapping
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Figure 6. Percent of blocks mapped to each number of cores by the adaptive block mapper.

strategy on 16 dual-issue cores. For most programs, the deep
and adaptive strategies outperform the flat strategy. Some
benchmarks, including ammp, equake, sixtrack, and vpr, show
significant speedups when using the deep and adaptive strate-
gies because the most critical blocks in these applications
have little concurrency. For instance, the benchmark with
the largest speedup using the deep and adaptive strategies
is equake, and the adaptive strategy for equake chooses to
place 98% of dynamically executed blocks on a single core.
This result indicates that the instruction scheduler is able
to find very little concurrency in the most critical blocks
of this benchmark, so the flat mapping strategy incurs extra
communication overhead without any benefit in parallelism.
Similarly, the mapper chooses to map 94%, 79%, and 74%
of blocks to only one core in vpr, ammp, and sixtrack,
respectively, as shown in Figure 6(a).

For most SPEC benchmarks, the adaptive strategy performs
better than the deep strategy. The adaptive block mapping
strategy achieves the largest speedup over the flat strategy,
1.22, for apsi because the block mapper chooses to map
nearly 50% of blocks to two or four cores as shown in
Figure 6(a). This mapping suggests that there is a high amount
of concurrency available in this benchmark, and the adaptive
strategy is able to exploit it.

Figure 7(b) graphs the performance of individual SPEC
benchmarks when running on single-issue cores using the
flat, deep, and adaptive strategies. For most benchmarks, the
deep strategy performs worse than the flat strategy because
there is more intra-block concurrency than the single core can
support. The adaptive strategy outperforms both the deep and
and the flat strategy for most benchmarks.

5.2. The Effect of Cross-Core Communication

To find the extent to which the overhead of inter and intra-
block communication affects performance, we experimented
with the following idealized modes:

• Baseline: The results discussed in the previous section.
• Perfect-Reg: Accessing a register on any of the partic-

ipating cores takes only one cycle.
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Figure 8. Speedup over the flat strategy running on 16 dual-
issue cores with perfect register, memory and intra-block in-
struction and distributed protocol communication.

• Perfect-Mem: Accessing a memory location on any of
the participating cores takes one cycle plus the hit or
miss time of the corresponding cache line.

• Perfect-Operand: Intra-block instruction and distributed
protocol communication take only one cycle.

• Perfect-All: Combination of the Perfect-Reg, Perfect-
Mem, and Perfect-Operand modes.

Figure 8 shows the performance of the flat, deep, and
adaptive mapping strategies running with 16 dual-issue cores.
If all register accesses could be local, the performance of
the flat mapping strategy improves slightly but the speedup
of the deep and adaptive strategies improve by about 6%,
as shown in the Perfect-Reg bars. Perfect memory accesses
improve the speedup of all three strategies by about 11%.
These results show that reducing the inter-block communica-
tion overhead caused by register and memory accesses can
improve performance significantly for the deep and adaptive
mapping strategies. Localizing all intra-block communication,
as shown in the Perfect-Operand bars, changes the speedup of
the deep and adaptive strategies only slightly. The speedup
of the flat strategy, however, improves by about 30% and
outperforms the deep and adaptive strategies by at least
15%. These results indicate that in the absence of cross-core
communication overhead, the flat mapping strategy is able to
exploit both inter and intra-block parallelism well.
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Figure 7. Speedup over flat mapping for the SPEC benchmarks with 16 cores.

5.3. Reducing Inter-block Communication

We implemented the inside-out and preferred-location core
selection algorithms discussed in Section 4.4. Figure 9 shows
performance for the round-robin (RR), inside-out (IO) and
preferred-location (PL) core selection algorithms running on
16 dual-issue cores. These core selection algorithms offer
modest improvements.

Another way to reduce communication overhead between
blocks is to map registers to the cores close to the center
of the execution substrate. This mapping could be achieved
by modifying the register allocator to give priority to cores
close to the center for the most critical registers. This solution
would have the undesirable side effect, however, of requiring
the register allocator to make additional assumptions about
the underlying substrate. Instead, we use a hash function
implemented in the TFlex simulator to map all architectural
registers to the cores near the center. This approach may
require larger register files in the central cores, which may
not be practical. Also, programs with high register bandwidth
requirements may suffer due to contention on the cores near
the center. We chose to implement this test in the hardware,
however, because doing so allows the compiler to remain
agnostic to the layout of the underlying substrate, and it did
not require recompiling or modifying the compiler. Figure 9
shows performance results for different core selection algo-
rithms with the registers mapped to the central cores.

Using the inside-out or preferred-location algorithms rather
than round-robin improves performance for the deep and
adaptive strategies. This performance improvement is more
significant when the microarchitecture maps the registers only
to the four cores located in the center of the sixteen-core
array. The preferred-location algorithm, when used with the
restricted register mapping, achieves the best speedup for both
the deep and adaptive strategies (the two right-most bars in
Figure 9). This speedup is about 5% higher than the round-
robin algorithm without the restricted register mapping (the
two left-most bars in Figure 9).

Figure 10 shows the performance achieved using the adap-
tive and deep mapping strategies before and after reducing the
register and memory communication overhead for individual
SPEC benchmarks. These results are normalized to the flat
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Figure 9. Speedup over the flat strategy on 16 dual-cores with
different block selection algorithms (Round-Robin, Inside-Out
and Preferred-Location).

mapping strategy. In this figure, Deep and Adaptive represent
the deep and adaptive strategies using the round-robin core se-
lection algorithm and PL Deep and PL Adaptive represent the
deep and adaptive strategies using the the preferred-locations
core selection algorithm with the registers mapped to the four
central cores. When using the round-robin algorithm, the deep
and adaptive strategies outperform flat by 9% and 13% on
average, respectively. These speedups increase by 5% when
using the preferred-location core selection algorithm and the
restricted register mapping.

5.4. Communication Overhead

To understand the communication and concurrency tradeoff
better, we measured the communication overhead for each
mapping strategy by counting the number of communication
hops necessary for each register access, memory access, and
operand bypass. Figure 11 shows the average communication
overhead for each block mapping strategy running on 16 dual
and single-issue cores. The bars for single and dual-issue
cores are labeled DI and SI, respectively. These results are
normalized to the total hop count using the flat strategy on
dual-issue cores. With the flat strategy, 70% of communi-
cation consists of operand and distributed protocol transfer
among cores. With the deep and adaptive strategies these
values reduce to 9% and 12%, respectively, when running
on dual-issue cores. Memory accesses cause almost the same
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Figure 11. Communication overhead (hop count) for SPEC
benchmarks on 16 single (SI) and dual-issue (DI) cores.

amount of traffic for all three mapping strategies, but the
overhead of register accesses is smaller for the flat strategy.
The static instruction scheduling algorithm considers the
location of registers on an abstract substrate when calculating
the placement cost for each instruction with flat mapping,
thus minimizing register latency. When running on single-
issue cores, the network traffic does not change for the flat
and deep strategies. The adaptive strategy, however, shows an
increase in operand traffic, which is relatively small compared
to operand traffic with the flat strategy.

The PL selection algorithm with all registers located on
the four central cores reduces register traffic to almost half
of its previous value for the deep and adaptive strategies, as
shown in the PL deep and PL adaptive bars in Figure 11.
On average, the PL deep and adaptive strategies have 70%
lower communication overhead than the flat strategy. This
improvement should translate to a significant reduction in
power consumption caused by on-chip network transactions.

5.5. The Effect of Instruction Criticality

This section investigates the extent to which the accuracy of
criticality bits affects performance. Because instructions on
the same core issue out of order, the instructions’ order in the
reservation stations only matters when multiple instructions
are ready to execute at the same time, and a more critical
instruction gets lower priority. Thus, using more locality bits

and fewer criticality bits may be the right choice.
To investigate the effect of criticality bits, we test various

bit distributions with the deep strategy. We selected the
deep strategy for this experiment because this strategy uses
instruction identifiers entirely for criticality information. First,
we test binaries scheduled specifically for the deep strategy,
in which all seven bits of the IDs are used for criticality
information. We also run the deep strategy with binaries
scheduled for an extreme flat mapping with blocks mapped
to 32 cores. In these binaries, five bits of the instruction
identifiers are used for locality information, and only two
bits are used for criticality information.

Table 2 compares the performance using these two sets
of binaries for the deep strategy on the SPEC benchmarks
running on 1, 4, and 16 dual-issue cores. These results are
normalized to the performance of the benchmarks running on
one core with two criticality bits. Running on one core, the
deep strategy using 7-bit criticality information performs 9%
better than the deep strategy with 2-bit criticality information.
This improvement decreases to 2% and 0.5% percent when
running on 4 and 16 cores, respectively. One reason why the
criticality becomes less important may be that more paral-
lelism is possible between blocks. To further investigate this
observation, we modified the simulator such that instructions
are dispatched in the reverse of their criticality order set by
the compiler. As shown in the table, this change causes major
performance loss only when running on one core.

5.6. Comparison with Conventional Processors

A performance comparison with production ISAs is beyond
the scope of this paper. A relevant comparison requires factor-
ing in the differences due to the ISA, memory system, cycle

Table 2. Performance of deep mapping strategy with different
numbers of criticality bits.

2-bit cr. 7-bit cr. reversed cr.
1 dual-issue core 1.00 1.09 0.86
4 dual-issue cores 2.55 2.61 2.49
16 dual-issue cores 3.84 3.86 3.84
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time, and different compilers. A related study [1] compares
TRIPS with the Core2Duo in terms of cycle count achieved
when running the same benchmarks used in this work. That
study [1] indicated that TRIPS outperforms Core2Duo by
50% on the EEMBC benchmarks. For SPEC FP, TRIPS and
the Core2Duo achieve similar cycle counts, but the Core2Duo
outperforms TRIPS by 40% when running SPEC INT. Using
the flat block mapping strategy, TFlex outperforms TRIPS
by 19% when running on eight TFlex cores. This speedup
increases to 42% when using the best per-application TFlex
configuration [1].

6. Discussion

Other optimization opportunities. We propose a hard-
ware/software contract that preserves locality information
across topologies with different numbers of cores, but we
have not systematically studied the set of possible mappings.
Additional performance improvements may be possible with
mappings that preserve both locality and criticality informa-
tion, for example.

Modifying the compiler could provide additional perfor-
mance improvements. We chose a concurrency heuristic that
was simple to compute, but compiler hints that incorporated
other concurrency metrics, or an estimate of the amount
of communication within a block may further improve the
block mapper’s decisions. In addition, prior work suggests
that more specialized instruction scheduling heuristics may
improve performance [24].

Applicability to other processors. The idea of encoding
locality and criticality information into the ISA can be
applied to other composable multi-core systems. These sys-
tems should support varying numbers of cores and system
configurations. Locality and criticality information encoded
in the binary facilitates hardware runtime decisions in such
systems.

The analysis of how to map instructions to clusters may
be relevant for distributed processing in production ISAs, as
well. If future processors perform clustering on a chunk-by-
chunk basis they can benefit from these results, which show
how to map the chunks to clusters. Because conventional
ISAs do not have block headers, they will require a different
mechanism to convey per chunk mapping information (e.g.,
hint instructions).

Measuring static concurrency of a code region at compile
time, and using that concurrency to choose resources for that
region at runtime, may help future systems with RISC or
CISC ISAs as well. In an SMT processor, issue bandwidth can
be assigned to each thread running in the system according to
a compile-time-evaluated concurrency value associated with
that thread. For these systems, however, different concurrency
evaluation functions may be needed.

7. Conclusions

This paper explores various strategies to dynamically map
blocks of instructions to a distributed hardware substrate
consisting of composed cores acting as a single processor.
A run-time block mapper, implemented in hardware, maps
instructions to cores. We explore a spectrum of fixed policies,
in which the block mapper maps each block of instructions
to the same number of cores. At one extreme, a flat mapping
policy partitions the instructions in each block among all
participating cores, emphasizing intra-block parallelism, but
increasing intra-block communication. At the other extreme,
a deep mapping policy maps all of the instructions in a block
to a single core, but successively maps blocks to different
cores. The deep strategy minimizes intra-block communica-
tion delays, but allows no intra-block parallelism beyond the
issue width of the individual cores, and makes inter-block
communication more expensive.

For single-issue cores, a flat mapping policy is the highest-
performing fixed choice. Although the flat mapping pol-
icy increases the processor’s complexity and communica-
tion overheads, single-issue cores need the additional intra-
block concurrency that the flat mapping provides. The low
additional complexity of dual-issue cores, however, harvests
enough of the intra-block parallelism to change the ideal
mapping to a deep mapping. The deep mapping eliminates
substantial intra-block operand communication, and the dual-
issue cores provide enough intra-block parallelism that a
flatter mapping provides no benefit. Both of these policies
are limited, however, because they are fixed: each block
is mapped to the same number of cores, regardless of the
variance in ILP across different blocks.

Using block-level concurrency information provided by the
compiler, the block mapper can specialize its policies on a
per-block basis and harvest more performance than is possible
using the fixed policies. For single-issue cores, this adaptive
policy may be a good design choice because it exploits intra-
block concurrency while limiting operand network traffic,
which is a significant source of energy overhead for this class
of architectures. As the issue width of the individual cores
increases, however, the benefit of a statically guided adaptive
policy decreases. Dual-issue cores can exploit enough par-
allelism locally, without any communication overhead, that
the added complexity of the adaptive policy may not be
worth the corresponding performance improvements. If the
issue width of individual cores increases further, the adaptive
policy’s utility will continue to decrease. However, it is likely
that more flexible and sophisticated mapping policies may
increase performance and reduce energy further, even for
dual-issue cores.
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