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Abstract issue-width scaling of conventional superscalar architec

The TRIPS system employs a new instruction set architec-tures. Because of these trends, major microprocessor ven-

ture (ISA) called Explicit Data Graph Execution (EDGE) dors have abandoned architec_tures for s_ingle-threadrperf_o
that renegotiates the boundary between hardware and soft-mance and turned to the promise of mulltiple cores per chip.
ware to expose and exploit concurrency. EDGE ISAs use aWhlIe many applications can exploit multicore systems, this
block-atomic execution model in which blocks are composed 2PProach places substantial burdens on programmers to par-

of dataflow instructions. The goal of the TRIPS design is allelize their codes. Despite these trend§, Amdghl’s law di
to mine concurrency for high performance while tolerating tates that single-thread performance will remain key to the

emerging technology scaling challenges, such as increas-Uture success of computer systems [9]. _

ing wire delays and power consumption. This paper eval- In response to sem|con_ductor spalmg tr_ends, we designed
uates how well TRIPS meets this goal through a detailed a new architecture and microarchitecture intended to éxten
ISA and performance analysis. We compare performance, Single-thread performance scaling beyond the capabititie
using cycles counts, to commercial processors. On specsuperscalar architectures. TRIPS is the first instantiatfo
CPU2000, the Intel ’Core 2 outperforms compiled TRIPS these research efforts. TRIPS uses a new class of instnuctio

code in most cases, although TRIPS matches a Pentium gset architectures (ISAs), called Explicit Data Graph Execu

On simple benchmarks, compiled TRIPS code outperformstion (EDGE), which renegotiate the hardware and software

the Core 2 by 10% and hand-optimized TRIPS code out- boundary. EDGE ISAs use a block-atomic execution model,
performs it by factor of 3. Compared to conventional ISAs in which EDGE blocks consist of dataflow instructions. This

the block-atomic model provides a larger instruction win- Model preserves sequential memory semantics and exposes

dow, increases concurrency at a cost of more instructions 9réater instruction level concurrency without requiring e
executed, and replaces register and memory accesses witfplicit software parallelization. We constructed a custord 1
more efficient direct instruction-to-instruction commagi million transistor ASIC, an instantiation of the ISA (TRIPS
tion. Our analysis suggests ISA, microarchitecture, amico  'oA), TRIPS system circuit boards, a runtime system, per-
piler enhancements for addressing weaknesses in TRIPS andermance evaluation tools, and a compiler that optimizeks an

indicates that EDGE architectures have the potential to ex- tanslates C and Fortran programs to the TRIPS ISA. The
ploit greater concurrency in future technologies. d|str|b_uted processing cores of a TR_IPS processor issue up
to 16 instructions per cycle from an instruction window of

Categories and Subject Descriptors - C.4 [Performance of  yp to 1024 instructions contained in 8 blocks. The TRIPS

Systems Design Studies ISA and distributed microarchitecture are designed to ex-
General Terms  Performance, Measurement ploit concurrency and reduce the influence of long wire de-

lays by exposing the spatial nature of the microarchitectur
1. Introduction to the compiler for optimization.

This paper presents a performance analysis that explores
how well the TRIPS system meets its goals of exploiting
concurrency, hiding latency, and distributing controlings
the TRIPS hardware and microarchitectural simulators, we
use compiled and hand-optimized benchmarks to compare
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Growing on-chip wire delays, coupled with complexity and
power limitations, have placed severe constraints on the



gating), a detailed power analysis and an examination of Generic RISC Code  TRIPS EDGE Code (TIL)

multicore execution is beyond the scope of this paper. Labell: .bbegin blockl

Our microarchitecture analysis shows that TRIPS canfill 1d %3, 4(%2) RO: read $t2, $g2
much of its instruction window; compiled code shows anav- 7, ¥ g?t/’;}z Ri: read $;‘t‘é $g‘t‘2
erage of 400 total instructions in flight (887 peak for thetbes  a4qi 23, 23, %5 11: 1d 515, 4(st2)
benchmark) and hand-optimized code shows an average of st %3, 4(%2) I2: d $t6, 8($t3)
630 (1013 peak). While much higher than conventional pro- ~ -abet2: I3: tlez §t7, $t5

h b fi . in flight is | h h addi %4, %4, #-1 I4: addi_ f<$t7> $t8, $t5, $t6

cessors, the number of instructions in flight is less than the  pge; %4, Label1 I5: null t<st7> $t8
maximum of 1024 because the compiler does not completely Label3: I6: st $t8, 4(st3)
fill blocks and the hardware experiences pipeline stalls and Dpataflow Graph I7: subi 19, $t4, #1

I8: teqz $t10, $t9
I9: b t<$t10> block3
I10:b f<$t10> blockl
WO: write $g4, $t9
.bend blockl

.bbegin block3 ...

flushes due to I-cache misses, branch mispredictions, and
load dependence mispredictions. The EDGE ISA incurs sub-
stantial increases in instructions fetched and executed re
ative to conventional RISC architectures because of pred-
ication and instruction overheads required by the dataflow
model. A strength of the EDGE ISA and distributed con- e
trol is that TRIPS requires less than half as many register (1901110,
and memory accesses than a RISC ISA (Alpha in this paper)
because it converts these into direct producer to consumer
communications. Furthermore, communicating instrugtion
are usually on the same tile or an adjacent tile, which makes  Figyre 1. RISC and TRIPS code with dataflow graph.
them power efficient and minimizes latency.

We compare the performance (measured in Cyc|es) of EDGE ISA: Two defining features of an Explicit Data
TRIPS to the Intel Core 2, Pentium Ill, and Pentium 4 us- Graph Execution (EDGE) ISA arélock-atomic execu-
ing hardware performance counters on compiled and hand-tion [14] and direct instruction communication within a
optimized programs. On EEMBC, the Core 2 executes 30% block, which together enable efficient hybrid dataflow ex-
fewer cycles than TRIPS compiled code. On SPEC2000, ecution. An EDGE microarchitecture maps each compiler-
TRIPS compiled code executes more than twice as many cy-generated dataflow graph to a distributed execution sub-
cles than Core 2 on integer benchmarks but the same numbeptrate. The ISA was designed to provide high-performance,
of cycles on floating-point benchmarks. TRIPS executes 3 Single-threaded, concurrent, and distributed execution.
times fewer cycles than the Core 2 on hand-optimized bench-  The TRIPS ISA aggregates up to 128 instructions in a
marks. These experiments suggest that EDGE processor@'OCk. The block-atomic execution model Ioglcally fetches
have the capability to achieve substantial performance im- €xecutes, and commits each block as a single entity. Blocks
provements over conventional microprocessors by exploit- amortize per-instruction bookkeeping and reduce branch
ing concurrency. However, realizing this potential reles ~ Predictions, providing latency tolerance to make distelou
the compiler to better expose concurrency and create largeexecution practical. Blocks communicate through regsster
blocks of TRIPS instructions, as well as microarchitedtura and memory. Within a blocldirect instruction communica-

innovations in control distribution and branch prediction tion delivers results from producer to consumer instructions
in dataflow fashion. This supports distributed execution by

. eliminating accesses to a shared register file.
2. TheTRIPS Processor Architecture Figure 1 compares RISC and TRIPS EDGE code on an

The foundations of the TRIPS system were published in example. The TRIPS register reads (RO, R1) at the beginning
2001 [16]. Between 2001 and 2004, we refined the archi- of the block start dataflow execution by injecting values
tecture so as to realize it in silicon and began the compiler from the register file into the block. The block ejects the
implementation. The TRIPS chip taped out in August 2006 register write (WO0) and writes registég4 when the block
and was fully functional (no known bugs) in the lab in Febru- commits. Instruction operands within the block, suck&s

ary 2007. The TRIPS chip uses a 130nm ASIC technology are passed directly from producer to consumer without an
and contains 170 million transistors. One chip contains two intervening register access. Because the instructiorsdenc
processors and the simplest system consists of four TRIPStheir targets, rather than a register in a common regisegfil
chips. Each chip contains two processors and 2GB of lo- 32-bit instruction encoding has room for at most two targets
cal DRAM connected to a motherboard. While we designed When more targets are required, such as the value read in
the system to scale to eight motherboards (64 processors)jnstruction RO, the program needaav (move) instruction

this paper examines a single TRIPS processor using single{I0) to replicate the value flowing in the dataflow graph.
threaded codes. We summarize the architecture and compileThe TRIPS code also shows that branch and non-branch
below; details are in prior publications [2, 20, 23]. instructions can be predicated. To enable the hardware to



— Processor0 protocol updates the data caches and register file with the
el speculative state of the block. The GT uses its next block
predictor (branch predictor) to begin fetching and exexyti

 TRIPSTiles the next block while previous blocks are still executing.
x| T I The prototype can simultaneously execute up to eight 128-
4 | o b fEfElE|E R: RegisterFile instruction blocks (one non-speculative, seven speeelgti
g 3 o elelele té Data Cache giving it a maximum window size of 1024 instructions.
2 — (ALU array) At 130 nm, each TRIPS processor occupies approxi-
v mately 92mm? of a total chip area of 33@vm?2. If scaled
S TS Comtpollers down to 65 nm, a TRIPS core would be approximately 23
oc:soram mm?, similar to the 29nm? of a Core 2 processor. A direct
EBC: External Bus comparison is difficult because TRIPS uses an ASIC tech-
€ e nology and lacks some hardware needed for an operatrng
0% a1 system. Nonetheless, TRIPS has a greater density of arith-

metic units in a similar area and the architecture provides
greater issue width and instruction window scaling.

TRIPS Compiler: The TRIPS compiler first performs
detect block Completion, the execution model requires that conventional optimizations such as in|ining, unro”ingrm.
all block outputs (register writes and stores) be produced mon subexpression elimination, scalar replacement, and
regardless of the predicated path within the block. fiiEL TRIPS-specific optimizations such as tree-height rednctio
instruction produces a token that when passed through theto expose parallelism. The compiler next translates the cod
st (store) indicates that the store output has been producedto the TRIPS Intermediate Language (TIL), a RISC-like IR,
but does not modify memory. In our experiments, we do and progressively transforms TIL into blocks that confoom t
not classify these dataflow execution helper instructians a the TRIPS block constraints: up to 128 instructions, up to 32
useful when comparing to conventional ISAs. The dataflow register read/writes with 8 per bank, and up to 32 load/store
graph shows the producer/consumer relationships encodeddentifiers [23]. The compiler aggregates basic blocks from
in the TRIPS binary. multiple control paths into optimized TRIPS blocks using

TRIPS Microarchitecture: Because the goals of the predication, tail duplication, and loop optimizations [23].
TRIPS microarchitecture include scalability and disttéul This process is similar to hyperb|ock formation, but more
execution, it has no global wires, reuses a small set of challenging because of the additional block constrairas th
components on routed networks, and can be extended tosimplify the hardware. The compiler iteratively merges and
a wider-issue implementation without source recompitatio optimizes blocks until they are as full as possible and then
or ISA changes. Figure 2 superimposes the tile-level block performs register allocation. This phase produces coegplet
diagram on a TRIPS die photo. Each TRIPS chip contains T|L with correct and fully specified blocks, as in Figure 1.
two processors and a secondary memory system, each inter- The compiler's scheduler then transforms TIL to TRIPS
connected by one or more micronetworks. Each processorassembly language (TASL), which includes a mapping of in-
uses five types of tiles: one global control tile (GT), 16 exe- structions to execution tiles. The scheduler seeks a mgppin
cution tiles (ET), four register tiles (RT), four data tilgsT), that exposes instruction concurrency and minimizes commu-
and five instruction tiles (IT). The tiles communicate via njcation overheads (distance and contention) [3]. This-map
six micronetworks that implement distributed control and p|ng Optimizes performance without restricting functibna
data protocols. The main micronetwork is the operand net- portability as the hardware can remap an EDGE binary to

work (OPN), which replaces a bypass network in a conven- different hardware topologies (number of tiles) without re
tional superscalar. The two-dimensional, wormhole-rdute  compilation or changes to the binary.

5x5 mesh OPN delivers one 64-bit operand per link per cy-
cle [8]. The other networks perform distributed instruntio .
fetch, dispatch, I-cache refill, and completion/commit. 3. Evaluation Methodology

TRIPS fetches and executes each blesknasseThe GT We evaluate the TRIPS system and compare its performance
sends a block address to the ITs which deliver the block’s with conventional architectures using performance casnte
computation instructions to the reservation stations énltf on the TRIPS hardware and on commercial platforms. Sec-
execution tiles (ETs), 8 per tile as specified by the compiler tions 4 and 5 present TRIPS and Alpha simulation results
The ITs also deliver the register read/write instructioms t to gain insights into the relative strengths and weaknesses
reservation stations in the RTs. The RTs read values fromof TRIPS. All performance measurements in Section 6 are
the global register file and send them to the ETs, starting from actual hardware.
dataflow execution. The GT instigates the commit protocol = The TRIPS System: A TRIPS chip consists of two pro-
once each DT and RT receives all block outputs. The commit cessors that share a 1 MB L2 static NUCA cache [11] and 2

Processor 1

Figure2. TRIPS die photo with tile overlays.



Issue| Proc | Mem [Proc/Mem{ L1 Cap.] L2 [Mem [ Suite [ Count ] Benchmarks
System |Width| Speed| Speed Ratio | (D/l) | Cap.| Cap. Kernels 4 [transpose (ct), convolution (conv), vector-add
(MHz) | (MHz) (KB) |(MB)](GB) (vadd), matrix multiply (matrix)
TRIPS 16| 366/ 200/ 1.83 32/80 1 2 VersaBench| 3 of 10 | bit and stream (fmradio, 802.11a, 8b10b)
Core 2 4| 1600 800f 2.00 32/32 2 2 EEMBC 28 of 30| Embedded benchmarks
Pentium 4 4| 3600 533 6.75 [16/150 2 2 Simple 15 |Hand-optimized versions of  Kernels,
Pentium 111 3 450/ 100| 4.50 16/16| 0.5[/0.256] VersaBench, and 8 EEMBC benchmarks
SPEC 2K Inf 9 of 12 | All but gap, vortex and C++ benchmarks
Table 1. Reference platforms. SPEC 2K FR 9 of 14 [ All but sixtrack and 4 Fortran 90 benchmatks

GB of DDR Memory; we use one processor for all experi-
ments in this study. Each processor has a private 32 KB L1
data cache and a private 80 KB L1 instruction cache. We run marks [5]. We hand-optimized benchmarks to guide com-
the processor core at 366 MHz and the DRAM with 100/200 piler efforts and explore the potential of the system. We per
MHz DDR clocks. TRIPS system calls interrupt program ex- formed hand-optimization on the compiler-generated TIL
ecution, halt the processor, and execute off-chip on a com-code and scheduled the result with the compiler. Most of the
mercial processor running Linux. Because the TRIPS cycle hand-optimizations are mechanical, but not yet implentente
counters increment only when the processor is not halted,in the compiler. We more extensively hand-optimized four
the program performance measurements ignore the time toscientific kernels on TRIPS: matrix transpos$,(convolu-
process system calls. The tools we use to measure cycles irion (cony), vector addyadd, and matrix multiply (natrix);
the commercial systems also exclude operating system exefurther, we hand-scheduledatrix andvadd
cution time, thus providing a fair comparison. The most complex benchmarks come from SPEC2000
Simulators: We use functional and cycle-level TRIPS and include 10 integer and 8 floating-point benchmarks [25].
simulators to gather statistics not available from the hard Three SPEC programs that currently fail to build correctly
ware [26]. Validation of the TRIPS cycle counters against with our toolchain are omitted. We use a consistent set of
the TRIPS simulators indicates statistical differenceless$ compiler flags for all benchmarks rather than tuning the flags
than 5%. We use a customized version of the M5 simula- for performance on a per-benchmark basis. We use SimPoint
tor [1] to produces statistics that measure loads, storek, a simulation regions for our simulation-based evaluatiothef
register accesses frogtc-compiled Alpha-Linux binaries. SPEC benchmarks [22]. This paper shows some benchmark
Reference Platforms. We compare TRIPS performance measurements in aggregates; the complete set of measure-
to three reference platforms from the Intel x86 product fam- ments are in a companion technical report [6].
ily (Pentium Ill, Pentium 4, and Core 2). Table 1 shows
the platform configurations including processor and DDR 4. |SA Evaluation
DRAM clock speed and the memory hierarchy capacities.
Because each machine is implemented in a different proces
technology, we compare cycle counts obtained from perfor-

mance counters, using PAPI on the Intel processors [17] (Alpha) statistics to quantify the relative overheads & th

tCycIe Coutf“ 'Is elm tlr:npsrfetg:t mitrlc beﬁau'se s?ms arCh'teC'TRIPS ISA. We present details for the simple benchmarks
ures, particularly the Pentium 4, emphasize clock rate ove 4 neans for EEMBC, SPEC INT, and SPEC FP.
cycle count. However, we expect that the TRIPS microar-

chitecture, with its partitioned design and no global wires 41 TRIPSBlock Size and Composition

could be implemented in a clock rate equivalent to the Core . .
2, given a custom design and the same process technology’.A key parameter for a block-atomic EDGE ISA is the block

Another pitfall is that the relatively slow clock rate of TIRS Size. Early experience demonsrated that creating pragram

. . . with average block sizes of 20+ instructions was not difficul
may make memory accesses less expensive relative to high

clock-rate processors. To counter this effect, we undeekel agﬁlztﬁ:g::;ig?& F}L'g::;ig;?\:&?ﬁfvc ig?t;?zt*gg?zlk:ﬁg
the Core 2 from 1.8 GHz to 1.6 GHz to make the proces- '

sor/memory speed more similar to that of TRIPS. Because g\ézrl?iﬁadt?isamejrpo?\r/ﬁaaii pv?lzer;t;]agsl;oiobetuti:] ?ﬁ;f%rgnrﬁnif:r'
the benchmarks are largely L2 cache resident, the relative 9 P y P P

: o Co technology by selecting 128-instruction block sizes.
memory speed has little effect on application executiortim Figure 3 shows the average block size weighted by execu-
Benchmarks: Table 2 shows our benchmarks, ranging tio

from simple kernels to complex uniprocessor workloads, . nfrequency and broken dOV\(n by the numperofanthmeuc
; i . instructions, memory instructions, branch/jump/catlire
compiled with the TRIPS C and Fortran compiler [23]. . . . . .
i . . ; instructions, test instructions (used for branches andipre
The suite labelegimplerefers to applications with hand- : : ) . )
S - . cation), andnove instructions (used to fan out intermediate
optimizations: 4 application kernels, 3 stream and bit op-

eratlon_benc_hmarks from the VersaBench suite [18], and 1 Section 5 omitemmpandparseras they do not execute correctly on the
8 medium-sized benchmarks from the EEMBC bench- TRIPS microarchitecture simulator.

Table 2. Benchmark suites.

This section uses simulation to examine how well programs
%ap to the TRIPS ISA, characterizing block size, instructio
overheads, and code size. We compare TRIPS and RISC ISA
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Figure 3. TRIPS block size and composition for compiled (C) and haptiktized (H) benchmarks.

operands). The figure does not include the register read/wri optimized version obspfhas blocks two times larger than
instructions, which reside in the block header and not in its compiled versions. Hand-optimizations include elimi-
the 128 instructiond-etched Not Executddstructions in a nating unnecessary instructions and then merging adjacent
block are never executed either because they did not receivesmaller blocks or increasing unrolling factors to fill bleck

a matching predicate or because they did not receive all of Higher block utilization is correlated with higher perfor-
their operands due to predicated instructions earlier én th manceRoutelookumndautocoractually have smaller block
block’s dataflow graptExecuted Not Useidstructions were  size when hand-optimized but a similar number of useful in-
fetched and executed speculatively but their values were un structions. These programs are memory and control bound;

used due to predication later in the dependence graph. larger blocks do not improve performance due to the pred-

For some programs, such agtime mispredicated in-  ication overhead. Both hand-optimized and compiled code
structions account for a third of the instructions within a utilize the aggressive 128-instruction block size to aahie
block. A2timecontains several nested/then/else State- average block sizes ranging from 20 to 128.

ments. To fill blocks and minimize executed blocks, the com-
piler produces code that speculatively executes hatn 4.2 TRIPSISA versusAlpha

andelse clauses simultaneously within one block and pred- quantify the differences between the TRIPS ISA and
icates to select the correct outputs. Aggressive predicati 5 R|SC ISA, we compare to the Alpha. Figure 4 shows
can improve system performance by eliminating branch mis- fetched instruction counts on TRIPS normalized to Alpha,
predictions and increasing front-end fetch bandwidth. with TRIPS including neither register read/write instians

The remainder of the instruction types, tests, control flow, fom the block header naioPs in underfull blocks. For both
memory, and arithmetic, are required for correct execution TR|pS and Alpha, the instruction count omits incorrectly
The number of useful instructions (excludiagve and mis-  feiched instructions due to branch mispredictions.
predicated instructions) varies. Some programs with com-  The number of useful instructions varies widely by
plex control have only 10 instructions per block while other  panchmark suite which is a function of the state of the
with more reg_ular control have as many as 80 instructions TR|ps compiler and gcc Alpha compiler. TRIPS executes
per block. To implement dataflow execution in a block, the haif as many useful instructions on the simple benchmarks,
TRIPS ISA usesove instructions. Because TRIPS instruc- 5, equal number on SPEC INT, and twice as many on SPEC
tions have fixed width (32 bits), arithmetic and load instruc  Ep. One of the SPEC FP benchmarksyrid, is an outlier
tions can target at most two consumers. The compiler there-yith TRIPS executing 10 times more instructions. This is
fore insertanove and speciahove3 andmove4 instructions a reflection of the current state of the compiler. On com-
to fanout values consumed by more than two instructions. pijed code, TRIPS tends to execute more instructions due
Predicate merge points may require predicaigeb instruc- 1o prototype simplifications, which introduce inefficieesi
tions. The result is thatove instructions account for nearly i, constant generation and sign extension unrelated to its
20% of all instructions, more than anticipated at the strt 0 oyecution model. For hand-optimized benchmarks, TRIPS
t_he design. Support fo_rwider fanout move instructions (mul  executes fewer instructions because its larger register se
ticast) would substantially reduce this overhead. (128 registers) eliminates store/load pairs and because mo

Compiled code has an average block utilization of 70 in- aggressive unrolling exposes more opportunities foriestr
structions, but with high variance, ranging from 35 t0 OVer tjon reduction. The number of fetched but mispredicated
110 instructions. Hand-optimizations execute fewer lock  jnstryctions varies across the benchmarks, dependingeon th
by increasing block utilization. For example, the hand- gegree of predication. Overall, TRIPS may need to fetch as
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Figure 5. Storage accesses normalized to Alpha for compiled (C) and-batimized (H) benchmarks.

many as 2—4 times more instructions than the Alpha, due tothey register allocate fields in structures and small arrays

aggressive predication. whereas the compiler currently does not. The right bar stack
_ shows the number of register reads, writes, and operand
4.3 Register and Memory Access network communications on TRIPS normalized to register

TRIPS inter-block communication uses registers and mem-reads and writes on the Alpha. Because of direct operand
ory while intra-block communication is direct between in- communication, TRIPS accesses the register file 80-90%
structions, reducing the number of accesses to registers an less often than the Alpha. The top bar shows direct operand
memory. TRIPS has a total of 128 registers spanning four communication that replaces register accesses on TRIPS.
register banks (32 registers per bank). Each bank has one Compared to their compiled counterparts, hand-optimized
read and one write port. The large register file reduces loadbenchmarks generally have fewer register accesses, OPN
on the memory system since the compiler can register allo- communications, and memory accesses. The hand-optimized
cate more of a program’s variables [15]. Compared to a con- versions aggressively register allocate more memory ac-
ventional architecture, TRIPS replaces memory instrostio ~ cesses by using programmer knowledge about pointer alias-
with less expensive register reads and writes, and replacesng, much of which may be automated. They also eliminate
register reads and writes with less expensive direct commu-instructions, such as unnecessary sign extensions, which
nication between producing and consuming instructions.  could be automated with aggressive peephole optimizations
The left bar stack of each pair in Figure 5 shows the num- On average, the sum of register reads, writes, and direct
ber of loads and stores on TRIPS normalized to loads andcommunications approximates the number of Alpha register
stores on the Alpha. TRIPS executes about half as manyreads and writes. On some benchmarks (SPEC INT), direct
memory instructions as the Alpha and as few as 10%, duecommunication is large because of the distribution of predi
to its larger register file and direct instruction communica cates and communication of useless values by mispredicated
tion. Several hand-optimized benchmarks have signifigant! instructions. On SPEC FP the large number of accesses is a
fewer memory accesses than the compiled versions becauséesult of TRIPS executing many more instructions than Al-



R [ N O Fetched but not executed| |
2 om =5 [ B Executed but not useful
o 2 70)0| P I I I — I & Moves
5 II I = il W Useful
‘U‘:) % 600 e I ,,,,,,, - ] T I ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
£3 g B g = -
[SIY = =
i LISl T | 1 BT | — al T
§= i il ol G il [F a4 - S IE
oo el MG —en-BelEw el e
0 _ =_-I-.. L |
Or OrO0oroOoroOorOrOr Oor Or O O O O OT OT ooooLooLooLLOoLLOLOLOOLOLOOLOO [ORONE)
¢ Q& .8 & & N > O & Q K L QAR S XL E PO LN RO Q@ & R
& ST L &Ry FE P& RS ELORLF EFFIEE P«
S F I &S P PR & PP FY TR TR IO N O
R & e ¢ ST g
¢ Average

Figure 6. Average number of in-flight instructions for compiled (C)amand-optimized (H) benchmarks.

pha. In a conventional architecture, the register file broad 5. Microarchitecture Evaluation
casts an mstructl_on’s result to oth_er instructions. I_n FH_R,I 51 Fillinga 1K Instruction Window
fanout may require a tree afove instructions, which in-

creases communication and the number of instructions. With up to 128 instructions per block and eight concur-

rently executing blocks, TRIPS has a maximum dynamic in-
struction window size of 1024 instructions. Figure 6 shows
the average number of TRIPS instructions in the window.
4.4 CodeSize This metric multiplies the average number of blocks in flight

The TRIPS ISA significantly increases dynamic code size (SPeculative and non-speculative) and the average nurfiber o
over Alpha. Each block has 128 32-bit instructions, a 128-bi Instructions per block. Compiled codes have on average 400
header. 32 22-bit read instructions. and 32 six-bit write in total instructions of which more than 170 are useful. The

structions. The compiler insem8Ps when a block has fewer ~h@nd-optimized programs with larger blocks achieve a mean
than 32 reads/writes or fewer than 128 instructiafGes of 630 instructions, more than 380 of which are useful. Com-

consume space in the L1 I-cache but are not executed. wePared with issue windows of 64 to 80 on modern superscalar

compared dynamic code size of TRIPS to Alpha by counting Processors, TRIPS exposes more concurrency at the cost of
the number of unique instructions that are fetched. The dy- MOré communication due to the distributed window.

namic code size of TRIPS, including the overheads from the 1 n€ Principal speculation mechanisms in TRIPS are pred-
block header, read and write instructions, and nops, agsrag 'cation, load-store dependence prediction, and nextkbloc
about 11 times larger than the Alpha, but with a wide vari- Prediction. When the load/store queue detects that a spec-
ance. Without the block header, read and write instructions Ulative load is incorrect, it flushes the block pipeline and
and the nop overheads, the number of unique instructions for€Nters the load into the dependence predictor's partitione

TRIPS is 5 times that of Alpha, while the number of unique Ioad-wait_table. The predictor is effective in part because_z
useful instructions for TRIPS (discounting the instrupgio e compiler reduces the number of loads and stores (as dis-

that are fetched but not needed) is 2—3 times greater thanCuSSed in Section 4.3). For the SPEC benchmarks, TRIPS

Alpha. Thus instruction replication due to TRIPS block op- flushes fewer than one block per 2000 useful instructions,
timizations accounts for about half of the code bloat. without overly constraining speculative load issue.
Experiments generally show a low instruction cache miss _ 1he TRIPS next-block predictor selects the next specula-
rate on small and medium sized benchmarks, but some spedive block [20]. It consists of a 5 KB local/global tournanten
benchmarks have miss rates in the range of 20—40%, indicat-eXit predictor that predicts the gxit branch (one of up tdnéjg
ing that cache pressure is a problem for some real applica-Tom the block and a 5 KB multi-component target predictor
tions. The TRIPS prototype can compress underfull instruc- that predicts the target address of this exit. Figure 7 shows
tion blocks in memory and in the L2 cache down to 32, 64, the prediction breakdown for _four dlfferer_1t configurations
or 96 instructions, depending on block capacity, which re- (A) shows an Alpha 21264-like conventional tournament
duces the expansion factor over Alpha from 11 to 6. Block Pranch predictor (10 KB) predicting TRIPS-compiledsic
compression in the instruction cache may unduly slow down Pl0cks (B) shows the TRIPS block predictor (10 KB) pre-
instruction fetch or require more complex instruction rFout dicting basic blocks;H) shows the TRIPS block predictor
ing from the instruction cache banks to the execution tiles. (10 KB) predicting optimized TRIPS blocks, ang ghows
The results indicate that the benefits of variable blockssize 2 ‘1€ssons learned” block predictor (14 KB) that scales up
warrant this complexity for future designs. Furthermone, i (e target predictor component sizes to 9 KB. Each bar is
creasing the instruction cache size in distributed archite NOrmalized to the total number of predictions made for ba-
tures is relatively easy and will also mitigate cache pressu I blocks to measure accuracy and reductions in predition
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Figure 7. Block-predictor mispredictions normalized to total piitins made for basic blocks.

due to TRIPS blocks. The average MPKI (Mispredictions ing instructions reside on different tiles. About 60% of the
Per 1000 Instructions, omitting move and mispredicated in- OPN messages stems from ET-ET operand traffic, with the
structions) observed for these four configurations on SPEC remaining messages about evenly split between ET-DT and
INT are 14.9, 15.1, 8.6 and 7.3 respectively. SPEC FP appli- ET-RT traffic. On the SPEC benchmarks two-thirds of the
cations have an MPKI of 1.6, 1.7, 1.5 and 1.3 respectively. ET-DT traffic and one half of the ET-RT traffic requires
The accuracy of predicting predicated blocks is neither three or more hops because the DTs and RTs lie along the
strictly better nor strictly worse than that of predictingsic edge of the ET array. Simulations results show that conges-
blocks. Predication within TRIPS blocks may improve accu- tion contributes only a 12% performance overhead as the la-
racy by removing hard-to-predict branches, but may also de-tency due to hops count is more significant. These results in-
grade accuracy by obscuring correlating branches in the his dicate opportunities for on-chip network design innovasio
tory. Although the TRIPS predictoH() has a higher mispre-  to improve performance of distributed architectures.
diction rate (18% higher) than a conventional predict9r, (
it has a lower MPKI because it makes fewer predictions— 53 |Lp Evaluation
59% fewer on SPEC INT and 35% fewer on SPEC FP. The . .
improved TRIPS predictof} reduces SPEC INT MPKI by | RIP'S éxecutes up to 16 instructions per cycle, but can only
15.8% and SPEC FP MPK| by 14.2%. Lower prediction ac- sustaln that ra}te under ideal conditions: 8 plqcks full af-ex
curacy has a significant effect on the instruction window uti cuted_mstructlons, perfect next-blogk predl_cnon, andmo
lization and has a strong correlation with performance. How _S"E‘Ct_"’” stalls due to Iong-la’gency instructions. ACRC
ever, more aggressive next-block predictors may still fall IS I|m|teq to 1/8 of the block size pecause of block fet.chlla-
short of modern branch prediction accuracies. Increasiag t tency. Since the average block size of our hand-optimized

size of the branch target buffer, call target buffer, antojs benChm"’l‘Lké 'Sf ?8 ms:}:ucﬂog; ’ wescorl: Id ac:‘tuleve ?t m o§t|§2;
register does improve accuracy. Advanced muIti—componentf‘h\'etr_""l_gReIP S Oh' onthem. tlr?ulroe Sh OWSk e\;;ﬁ aine
long-history predictors [10, 21] will likely also improvexi¢ a achieves across the benchmarks. Vhiie Some ap-

plications are intrinsically serial (e.ggutelookuptraverses
and target accuracy and consequently performance. a tree data structure serially for an IPC near 1), othershreac
6 to 10 IPC, showing that the processor exploits more ILP
52 Operand Network in these programs. The hand optimized codes have an IPC
The Operand Network (OPN) connects the TRIPS processor25% greater on average than their compiled counterparts,
tiles and transmits operands between execution tiles (ETs) mostly due to executing fewer more densely packed blocks.
the register file (RTs), and the data cache (DTs) [8]. The The SPEC benchmarks have lower IPCs, both because they
TRIPS scheduler optimizes instruction placement on tee til  have smaller average block sizes and more flushes due to
topology to exploit concurrency and minimize the distance branch mispredictions and i-cache misses.
between dependent instructions along the program’s akitic To understand the theoretical ILP capability of EDGE ar-
path. As a result, about half of operands are bypassedyocall chitectures, we conducted a limit study using an idealized
within an ET. Of the traffic that must traverse the OPN, about EDGE machine with perfect prediction, perfect predication
80% require one or two hops, resulting in an overall operand perfect caches, infinite execution resources, and a zaie-cy
hop count of 0.9. Ideally, all operand communication would delay between tiles. Like TRIPS, we use a 1K window size
be bypassed locally (0 hops), but the inherent tradeoff be- and limit dispatch and fetch to one new block every eight
tween locality and concurrency combined with limited in- cycles. Figure 9 shows that on average this ideal machine
struction storage per tile demands that many communicat-only outperforms the prototype by roughly a factor of 2.5,
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Figure9. IPC for TRIPS and benefits for two idealized EDGE designs.

indicating only moderate room for improvement due to low marks for TRIPS to show the potential of the system and
inherent application ILP, dispatch cost, and limited wwdo  compiled benchmarks to show the current state of the TRIPS
size. Simulating this ideal machine with a zero-cycle dis- compiler. We compare to the GNU C compiler (gcc) and the
patch cost increases the IPC on average by a factor of four.native Intel compiler (icc) on the reference machines taide
However, eliminating only the dispatch delay on TRIPS im- tify the effect of platform-specific optimizations. The djta
proves performance by only 10%, which indicates that dis- of scalar optimization in gcc is more similar to the TRIPS
patch is not the primary bottleneck on the hardware. We an- compiler, since the TRIPS compiler is an academic research
notate the top of the SPEC bars with the IPC for the ideal compiler. Consequently, we normalized performance to the
machine with a 128K instruction window and a dispatch cost Core 2 using the gcc compiler.

of zero cycles. The SPEC benchmarks have a wide range Simple Benchmarks: The left side of Figure 10 shows

of available ILP, with most benchmarks around 50 IPC but relative performance (computed as a ratio of cycles exdcute
some FP benchmarks having IPCs in the hundreds. The sim+elative to the Core 2 using gcc) for TRIPS hand-optimized
ple benchmarks have a similar range of IPCs. Several, suchcode, TRIPS compiled code, icc-compiled code for the Intel
as802.11aand8b10h are inherently serial and do not ex- Core 2, and gcc-compiled code for the Intel Core 2, Pentium
ceed 15. Others, such aaddandfmradio, are quite con- 4, and Pentium Ill. The TRIPS compiler achieves equivalent
current with IPCs of 1000 and 500 respectively on the ideal performance to the Core 2 on average, with better perfor-
machine with a 128K window, but are resource limited on mance on nine benchmarks and worse performance on six.
the hardware. This study reveals that the amount of ILP cur- Benchmarks with smaller speedupspeed employ sequen-
rently available to TRIPS is limited and that larger window tial algorithms that do not benefit from increased execution

machines have the potential to further exploit ILP. bandwidth or deep speculation. The benchmarks that show
) the largest speedupstrix and8b10h typically have sub-
6. TRIPSversusCommercial Platforms stantial parallelism exposed by the large window on TRIPS.

This section compares TRIPS to conventional processors us-The TRIPS hand-optimized code always outperforms the
ing cycle counts from performance counters, which normal- Core 2, with an average 2.9x cycle count reduction.
izes for different clock rates. We use hand-optimized bench
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Figure 10. Speedup of TRIPS relative to the Core 2 on simple, EEMBC, &tCSbenchmarks.

The performance differences between TRIPS compiled Core TRF;EFS 10?% f;gfugnstrgct$£fps sl A

.. . . ore ore verage
a_nd hand-optlmlz_ed code a_lre p”manly due to more aggres- cor_1d. br. cor_1d. br, ca_ll/ret I—c_ache I—c_ache load usefu_l instg

sive block formation, unrolling, and scalar replacement. F misses| misses | misseg| misses| misses| flushes| in flight
T H H bzip2 1.3 1.6 0.0 0.0 0.0 0.09 342.5
example,8b10bbenefits from unrplllng the innermost loop crafty 1= 3ol ol 17l 175 oae A
of the kernel to create a full 128-instruction block and from |gcc 74 70 18 31| 185 052 73.0
i i i . gzip 438 73] 00| 00| 00] 004 206.1
reg]stgr allocating a small lookup table fimradia the hand g 10 e IR R e
optimized code fuses loops that operate on the same vector, | parser 2.0 32 01 00| 06 004 =
i H H H perlbmk 2.5 0.4 8.3 0.0 13.0f 0.19 106.9
and uses profile information to exclude infrequently taken | P=" i Toor o he s S
paths through the kernel. vpr 05 T4] 05| 00| 32| 040 221.8
To show the ability of the TRIPS architecture to exploit a ammp 0.2 I5[ 01 00[ 10[ 0.5 —
large number of functional units, we compare a TRIPS hand- | 255" o o o e
optimized and hand-scheduled matrix multiply [4] to the |art ) 04 00] 00| 00 00 001 692.2
g, : equake 02 06| 00| 00/ 09 008 3379
state-of-the-ar_t hand-o_ptlmlze_d ass_emb_ly versions obGot | con 14 T6— oo 0035004 ]
BLAS Streaming Matrix Multiply Libraries on Intel plat- mgrid 0.0 0.1 00| 00 0.0 0.0 519.8
. . . swim 0.0 1.0 0.0 0.0 0.0] 0.00 416.1
forms [7]. We use the best published results from library im- | yise 0007050008002 796.9

plementations for conventional platformsof the results in
Figure 10). The performance across platforms, measured in

terms of FLOPS Per Cycle (FPC), ranges from 1.87 FPC o fixed-size 128-instruction blockBerlomkalso has an

on the Pentium 4 to 3.58 FPC on the Core 2 using SSE. n,syally high number of call/return mispredictions, due
The TRIPS version achieves 5.20 FPC without the benefit ;y 5, insufficiently tuned call and branch target buffer in

of SSE, which is 40% better than the best Core 2 result. TRIPS. All of these factors reduce the utilization of the

SPEC CPU2000: The right side of Figure 10 compares instryction window; for examplegcchas an average of only
performance on SPEC2000 using reference data sets. TRIPS3 yseful instructions in flight, out of a possible 121 based o
performance is much lower on the SPEC benchmarks thane ayerage block size. While the TRIPS call/return flushes
on the simple benchmarks. While floating-point perfor- 4nq |_cache misses cause serious performance losseshbranc
mance is nearly on par with Core 2-gcc (Core 2-icc achieves mispredictions are competitive with the Core 2 and load
a 1.9x speedup over TRIPS), integer performance is less tharyependence violations are infrequent. Benchmarks that hav
half that of the Core 2. Table 3 shows several events thatihe most useful instructions in the window compare best
have a significant effect on performance: conditional bhanc {5 cqre 2, such aart and mgrid. These benchmarks are

mispredictions, call-return mispredictions, |-cache sB&  known to contain parallelism, and show good performance
and load flushes for TRIPS, normalized to events per 1000 ith Jittle compiler or microarchitectural tuning.

useful TRIPS instructions. Also shown are the branch mis-
predictions and I-cache misses for the Core 2, normalized t07 | essons L earned
the same 1000 TRIPS instruction-baseline to ease cross-ISA

comparison. The rightmost column shows the average usefuIThe PVOTF’WP‘”Q effort's goals were twofold: to dgtermine
TRIPS instructions in the window, from Figure 6. the viability of EDGE technology and to learn the right (and

Several of the SPECINT benchmarks have frequent |- Wong) ways to build an EDGE machine. This design and
cache misses, such asfty, gcc, perlbmk andtwolf. These evaluation effort taught us the following lessons about how

benchmarks are known to stress the instruction cache, ancf0 build this class of architectures.

the block-based ISA exacerbates the miss rate because of EPCE ISA: Prlototypir_lg dhas dem?nsgated that_ E”? G.E
TRIPS code expansion and the compiler’s inability to fill ISAs can support large-window, out-of-order executiorhwit
less complexity than an equivalent superscalar processor.

Table 3. Performance counter statistics for SPEC.



However, the TRIPS ISA had several significant weak-
nesses. Most serious was the limited fanout of tloee
instructions, which results in far too many overhead ircstru
tions for high-fanout operations. The ISA needs support for
limited broadcasts of high-fanout operands. In additibe, t
binary overhead of the TRIPS ISA is too large. The 128-
byte block header, with the read and write instructionssadd
too much per-block overhead. Future EDGE ISAs should

shrink the block header to no more than 32 bytes and sup-

port variable-sized blocks in the L1 I-cache to reduce the
NOP bloat, despite the increase in hardware complexity.
Compilation: The TRIPS compiler can generate correct
code with reasonable quality for the TRIPS ISA, despite the
new burdens the ISA places on the compiler. We believe
that an industrial production compiler could achieve code
quality similar to our hand-optimized results because the

8. Conclusions

At its inception, the TRIPS design and prototyping ef-
fort addressed three questions: (1) whether a distributed,
tiled, EDGE-based processor was feasible, (2) whether
EDGE ISAs form a manageable compiler target, and (3)
whether an EDGE-based processor can support improved
general-purpose, single-threaded performance. Thisiaval
tion shows that the TRIPS ISA and microarchitecture are in
fact feasible to build, resulting in a tiled design that exisl
out-of-order execution over a window of many hundreds
of instructions. Despite the inter-tile routing latenciése
combination of the large window, dynamic issue, and highly
concurrent memory system permits TRIPS to sustain up to
10 IPC, showing an average three-fold cycle count speedup
over a Core 2 processor, if hand-optimized kernels are used.
However, the compiled cycle counts on major bench-

most effective hand-optimizations are largely mechanical .o1s such as SPECINT and SPECEP. are not competi-
Because of the challenges presented by block constraintsy o with industrial designs, despite the greater computa-

we moved structural optimizations, such as loop unrolling yjon4) resources present in TRIPS. On compiled SPEC2000

and hyperblock formation, to the back end after code genera-

tion. A remaining challenge is how best to form large blocks
in control-intensive code. For example, frequent function
calls that end blocks too early cannot be solved by inlining
without substantial re-engineering to move this optimarat
from its traditional position in the front end to the back end
Another opportunity is to allocate more variables in reg-
isters, which requires better alias analysis of pointeadat
structures; the best hand-generated code replaced stmte-I
pairs with intra-block temporary communications, produc-
ing tighter code and higher performance.

Microar chitecture: A microarchitecture with distributed
protocols is feasible; the fully functional silicon indtea
that the tiled nature of the architecture aided in both de-
sign and validation productivity. Another positive resiglt
that the design eliminates distributed block control pcots
(fetch, dispatch, commit, and flush) from the critical path.
However, a number of artifacts in the microarchitecture re-
sulted in significant performance losses. Most importarst wa
traffic on the operand network, which averaged just under

one hop per operand. This communication resulted in both

OPN contention and communication cycles on the critical
path. Follow-on microarchitectures must map instructions
in coordination with the compiler, so that most instruction

to-instruction communication occurs on the same tile. The

second most important lesson was that performance losses iijes [19]

benchmarks, measuring cycle counts, the TRIPS proto-
type achieves 60% of the performance of a Core 2 run-
ning SPEC2000 compiled at full optimization with gcc.
Despite the fact that the TRIPS design was built by fewer
than twenty people in an academic environment, this level
of performance does not support the hypothesis that EDGE
processors could outperform leading industrial designs on
large, complex applications. Even doubling the TRIPS per-
formance would likely result in speedups too small to jystif
a switch to a new class of ISAs. These limitations are due
partially to inefficiencies in the ISA and microarchiteaur
but may also result from mismatches between certain pro-
gram features and EDGE ISAs. For example, benchmarks
with many indirect jumps, or unusually complex call graphs
with many small functions, are difficult to compile into larg
blocks without a debilitating increase in binary size.
Nevertheless, the TRIPS prototype was a first-generation
design, being compared to an extremely mature model, and
there is much low-hanging fruit remaining in EDGE de-
signs. The prototyping effort taught several lessons tiat r
sult in significant improvements in both power and per-
formance. Future EDGE designs should have support for
variable-sized blocks, multicast of operands, predicate p
diction, a more distributed/scalable memory system, small
block headers, and less distributed mappings of instmugtio
. Also, since not all codes have high concuryenc

due to the evaluation of predicate arcs was occasionally ¢,,re EDGE-based microarchitectures must allow adaptive

high, since arcs that could have been predicted as bramheﬁranularity

are deferred until execution. Future EDGE microarchitec-

providing efficient small configurations when
larger configurations provide little performance benef#][1

tures must support predicate prediction to evaluate the mos . project that these improvements will enable EDGE de-

predictable predicate arcs earlier in the pipeline. Thine,
primary memory system must be distributed among all of

signs to outperform high-end commodity systems on com-
plex integer codes, but not by enough to justify deployment

the execution tiles; the cache and register bandwidth along;,, full-power desktop systems. In the five-to-ten watt space

one edge of the execution array was insufficient for many
bandwidth-intensive codes.

however, the performance and potential energy efficiency of
EDGE designs may be sufficiently large to justify adoption
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