Getting Started in
Programming Language
Design Research

Copyright © 2007 Sun Microsystems, Inc. ("Sun"). All rights are reserved by Sun except as expressly stated as follows.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted, provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers, or to redistribute to lists, requires prior specific written
permission of Sun.

©2007 Sun Microsystems, Inc. Al rights reserved. 2

Read

» Read everything you can get your hands on
> | killed time between classes reading back issues of CACM

» Well, actually, be selective: ask for advice

» There really are some “classics”
> Naur et al., The Revised Report on ... ALGOL 60

>
>
>

_andin, The Next 700 Programming Languages
Dijkstra, Go To Statement Considered Harmful

Knuth, Structured Programming with Go To Statements

> Milner, A Proposal for Standard ML

©2007 Sun Microsystem

s, Inc. All rights reserved.

Attend Conferences/Read the Papers

Principles of Programming Languages (POPL)
Programming Language Design and Implementation (PLDI)

Ob ch);tS E'ral\ented Programming, Systems, Languages, and Applications

Pr|n0|ples and Practice of Parallel Programming (PPoPP)

Architectural Support for Programming Languages and Operating
Systems (ASPLQOS)

International Conference on Functional Programming (ICFP)
Languages, Compilers, and Tools for Embedded Systems (LCTES)
International Symposium on Memory Management (ISMM)

Virtual Execution Environments (VEE)
History of Programming Languages (HOPL: 1978, 1993, June 2007)

©2007 Sun Microsystems, Inc. All rights reserved.

Learn and Use Several Languages

» Pick languages very different from each other

> Say: Java, Lisp, ZPL, Haskell, Fortran, COBOL, and APT

> These span wide ranges of time and application areas
> They span a wide range of styles and mechanisms
> Some are trendy and some seem downright fuddy-duddy: why?

» Write substantial amounts of code in each
> Try to use them idiomatically
> Don't just write “Fortran with Lisp syntax” (or vice versa)

» Write the same program in several languages
> What becomes easier? What becomes harder?

©2007 Sun Microsystems, Inc. All rights reserved.

Design New Features or Languages

» Try Biggle's “Rule of One”; what one improvement
would you make to your favorite language?

> Don't go for the shiny object: think carefully

> Try to make your new features fit the existing style
> S0 what s the “existing style™?

* Implement your new feature!
> Join a project, or find an open-source implementation
> Or build a “toy interpreter”

» Design and implement an entire "toy language”
> Which features are really essential?
> Which are “merely” conveniences?

©2007 Sun Microsystems, Inc. All rights reserved.

Read Implementations

* Read the code! Read a library! Read a compiler!
> |s it elegant? Is it yucky? What would you do differently?

» For that matter, read applications code, too
> Is it yucky?
> If it is, was that the coder's fault or the language designer's fault?

» Would the implementation be better or worse If it
were coded in the language being implemented?

> |s self-implementation a goal of the language design?

©2007 Sun Microsystems, Inc. All rights reserved.

Question Everything

* Not to be adversarial, but to understand why

> Why use “=" for assignment?

> Why worry about the difference between “1" and “1.0™?
> Why evaluate argument expressions before a call?

> Why declare variables before they are used?

> Why declare statement labels before they are used?

> Why call “free” after using a malloc'd structure?

* For every feature of your favorite language, try to find
another language that does it differently

> Then try to figure out why
> Was it a good reason? s it still a good reason today?

©2007 Sun Microsystems, Inc. Al rights reserved.

Know Your History

- Stuff we now take for granted had origins
> Before acceptance, lots of variants were explored
> Examples: if-then-else, case, records

» We can learn from the experience of others
» It's only about 50 years' worth, not 500!

©2007 Sun Microsystems, Inc. All rights reserved.

Use the Internet

» Two decades ago, I'd have said “Use the Library”

» Google and (especially) Citeseer are your friends
> Online databases have forward references!

* Online ACM Portal is a great resource

» Save yourself some embarrassment
> Find relevant work

> Dig up and verify citations for yourself
> Citations often have errors
> While you're at it, read the cited works!

©2007 Sun Microsystems, Inc. All rights reserved.

@

Sun

milerosystems

10

Polish Your Natural Language Skills

» Learn one or more foreign languages
> Learn how human communication works
> Programming languages are human communication, too

» Work on your writing skills

> Strive for clarity and consistency

> \Watch out for slippery pronouns

> Try not to use a word in two senses

> Read with a critical eye: could this sentence have two meanings?
> Learn the mechanics of your natural language

> Read style manuals

> Know when you don't know—then look it up!

©2007 Sun Microsystems, Inc. All rights reserved. 11

@ E The Stanford GraphBase
= A Platform for Combinatorial Computing
—— — —

b
The Associated Press |

2: The TgXbook

NTH
Y

ollegiate
ictionary

Coll

OW

X
A
N\

RIYMIN
ITIONA

(KB Y

7

e
!
Di
. .o
AT ®

- A
satvees ASME ENGINEER'S DATA |
G TR

©2007 Sun Microsystems, Inc. Al rights reserved.

guy.steele@sun.com

http://research.sun.com/projects/pirg
http://fortress.sunsource.net

