
Interpreting Loosely Encoded Questions
�

James Fan and Bruce Porter
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712 USA�

jfan, porter � @cs.utexas.edu

Abstract

Knowledge-based question-answering systems have become
quite competent and robust at answering a wide range of
questions in different domains, however in order to ask ques-
tions correctly, one needs to have intimate knowledge of the
structure of the knowledge base, and typical users lack this
knowledge. We address this problem by developing a sys-
tem that uses the content of the knowledge base to automati-
cally align a user’s encoding of a query to the structure of the
knowledge base. Our preliminary evaluation shows the sys-
tem detects and corrects most misalignments, and users are
able to pose most questions quickly.

Introduction
Knowledge-based question-answering systems have become
quite competent and robust. Unlike their expert-system pre-
decessors, modern systems answer a wide range of types
of questions. Moreover, they cover broad domains (e.g.
infectious disease), not just isolated tasks (e.g. diagno-
sis of infectious disease). For example, several question-
answering systems built for Project Halo (Vulcan Inc. 2003)
performed well on a targeted portion of the Advanced
Placement (AP) exam in chemistry, answering about 160
widely varying and novel questions (Barker et al. 2004;
Angele et al. 2003).

Despite this success, Project Halo revealed a signifi-
cant problem that limits the utility of question-answering
systems: posing questions to knowledge-based question-
answering systems requires intimate knowledge of the struc-
ture of the knowledge base, and ordinary users lack
this knowledge. Consequently, their question encodings
are structurally flawed, and no state-of-the-art question-
answering system will answer the questions correctly.

One solution to this problem, but a false one, is to re-
strict the expressiveness of the query language to such a de-
gree that only “legal queries” can be posed. For example,
conventional information-retrieval systems use a query lan-
guage that permits only boolean combinations of keywords.
Queries posed in this language are matched with target texts,
�
Full support for this research was provided by Vulcan Inc. as

part of Project Halo
Copyright c

�
2004, American Association for Artificial Intelli-

gence (www.aaai.org). All rights reserved.

which are little more than bags of words and their frequen-
cies, so there is no opportunity for structural misalignments.
However, the keyword-query language is inappropriate for
asking conventional questions, such as this typical one from
Project Halo:

When dilute nitric acid was added to a solution of one
of the following chemicals, a gas was evolved. This
gas turned a drop of limewater, ���	��
���
�� cloudy, due
to the formation of a white precipitate. The chemical
was:

(a) household ammonia, �����
(b) baking soda, ��������
��
(c) table salt, �������
(d) epsom salt, ������
 �"!$#%� �

(e) bleach, 5% ����
����

Another approach to restricting the expressiveness of the
query language is to use question templates. The tem-
plate language permits expressions such as: “what hap-
pens to &�')(+*-,.*-/10 during &325476789'7:$:;0 ?”, where &�')(+*-,.*-/10 and
&<25476789'7:$:$0 are typed variables that can be bound to indi-
viduals in the knowledge base. Although question tem-
plates have been used successfully (Clark et al. 2003;
Buchanan & Shortliffe 1984), they have serious limitations.
First, the set of templates is small and fixed, which limits
their usefulness for novel questions. Second, they lack the
expressiveness to describe the context in which the question
is posed. For example, the question above arises in the con-
text of a chemical mixture which produces a gas, which in
turn mixes with limewater to produce a precipitate.

The goal of our research is to address the problem of pos-
ing questions to knowledge-based systems by automating
the task of aligning question encodings with the structure
of the knowledge base.

Loose speak
We assume that questions originate in English, or some other
natural language, and that some person or program encodes
them in the formal language used by the question-answering
system. If the question is encoded without regard for the
structure of the knowledge base, we call it a naı̈ve encoding.
If the encoding happens to align with the structure of the

Pilot (� = 43) Final (� = 107)
No loose speak 2.3% 0.0%
Metonymy 25.0% 10.8%
Causal factor 45.5% 23.5%
Role 9.1% 7.8%
Aggregate 77.3% 87.3%
Too generic 34.1% 40.2%
Noun compounds 22.7% 29.4%

Table 1: Types of loose speak, and their frequencies, en-
countered in two sets of AP-like questions from Project
Halo. The pilot set contains 43 questions in total; the fi-
nal set contains 107 questions in total. The first row shows
the percentage of questions that contained no loose speak –
i.e. for which a naı̈ve encoding was correct. Note that the
sum of the frequencies exceeds 100% because each question
may contain multiple occurrences of loose speak.

knowledge base, then it is a correct encoding of the ques-
tion. If, on the other hand, any part of the encoding fails to
align with the knowledge base, we call that part loose speak,
in reference to the imprecise way that people form English
expressions.

The term “loose speak” is not meant to be pejorative.
To the contrary, question encodings that contain loose
speak are often literal translations from the original English
expressions– i.e. the form of questions we should expect
from typical users. The goal of our project is to improve
knowledge-based question-answering systems by develop-
ing ways to automate the interpretation of loose speak to
produce correct encodings of questions.

Types of loose speak and their frequencies
Misalignments between queries and the knowledge bases to
which they are posed are common and unavoidable because
knowledge bases, like many engineered systems, are full of
idiosyncratic design decisions. Since a naı̈ve encoding may
differ from a correct encoding in many ways, developing
and testing a loose-speak interpreter appears to be a daunting
task.

However, we have found that occurrences of loose speak
cluster into a small set of categories that share interpreta-
tion strategies. This section describes a study in which we
analyzed two sets of questions from Project Halo. All the
questions were given in English. We built naı̈ve encodings
for the questions and matched the encodings with the struc-
ture of the chemistry knowledge base built for Project Halo
(Barker et al. 2004). Here are the types of loose speak we
encountered:�

Metonymy: referring to an entity or event (the referent)
by one of its features or attributes (the metonym).
The metonym is related to the referent through a
restricted set of relations; a commonly used list of
metonymic relations is compiled by (Lakoff & Johnson
1980). It has the following relations: PART-FOR-
WHOLE, PRODUCER-FOR-PRODUCT, OBJECT-
FOR-USER, CONTROLLER-FOR-CONTROLLED,

Aqueous−Solution

HCl

conductivity
?

base

Figure 1: An example of loose speak from the Project Halo
question set: “Is a water solution of ����� conductive?”. The
“?” in the figure indicates an query. With respect to the
chemistry knowledge base, this encoding contains two oc-
currences of loose speak. First, it contains aggregate loose
speak: a ����� is a molecule, and a single molecule does
not act as the solute of a solution because it does not have
properties such as concentration. The ����� in the encod-
ing should be replaced by a � � '�� ,.89��� whose basic struc-
tural unit is a ����� molecule. Second, it contains metonymy
loose speak: the 896$(����	89*-,	� ,-*-/ property belongs to solutes
instead of solutions because it is the solutes that determine
the conductivity of a solution. The query “the conductivity
of Aqueous-Solution” should be placed on the base of the
Aqueous-Solution instead. Figure 4 shows the correct en-
coding of this query.

INSTITUTION-FOR-PEOPLE-RESPONSIBLE,
PLACE-FOR-INSTITUTION and PLACE-FOR-
EVENT.
Figure 1 contains an example of metonymy: a property
(896$(��
� 89*-,	� ,.*-/), which pertains to a part (solutes), is as-
cribed to the whole (the aqueous solution).�
Causal factor: referring to a result by one of its causes.
For example, a chemistry question might refer implicitly
to a chemical reaction by mentioning only the “mix” or
“add” event that causes the reaction.�
Aggregate: referring to an aggregate by one of its mem-
bers, or vice-versa. For example, in figure 1, ����� must
refer to a set of molecules, i.e. a chemical, not an indi-
vidual ����� molecule, because a solution of ����� should
contain more than one � ��� molecule. Although this
type of loose speak is similar to PART-FOR-WHOLE
metonymy, it differs in terms of the partonomy types to
which it applies. The PART-FOR-WHOLE metonymic
relation applies to heterogeneous sets (e.g. an entity can
have different types of parts, such as the various parts of
a car), but the aggregate relation applies to homogeneous
sets (e.g. each individual in the set is a basic unit of the
set, such as a single soldier in an army).�
Role: referring to an entity by a role played by that entity,
or vice-versa(Fan et al. 2001). For example, a Bronsted
acid is a role played by chemicals in the context of reac-
tions, but is often used loosely, omitting the context as in:
“these chemicals are Bronsted acids”.�
Overly generic concept: referring to a specific concept
or instance by the generic class to which it belongs. For
example, a “reaction” is used to refer to an “equilibrium
reaction”.�
Noun compounds: referring to the implicit relation be-

RESULT = nil

else if range_violation (C2, r) then
RESULT = search_head(<C1,r,C2>)

If domain_violation (C1, r) then

RESULT = search_tail(<C1,r,C2>)

RESULT = search_head(<C1,r,C2>)

If not (RESULT) then

RESULT = search_tail(<C1,r,C2>)
end if

end if
end if

end if

If RESULT then

Return RESULT
else

Return <C1, r, C2>
end if

Given a triple of the form <C1, r, C2>:

else if not(resemblace_test (<C1, r, C2>)) then

Figure 2: The search algorithm used to interpret one triple.
The algorithm detects loose speak by checking the domain,
range constraints and checking to see if the input expression
is similar to any existing knowledge. If loose speak is found,
then it calls the two search routine to search for encodings
similar to the input, and it returns the search result if any is
found, or the original input if nothing else is found.

tween a pair of nouns by using just the noun phrase con-
sisting of the two nouns. For example, “zinc metal” refers
to metal composed of zinc. Noun compounds are a type
of loose speak because they omit the semantic relation be-
tween the head noun and its modifier(s), and this omission
must be rectified before the reference is clear.

Table 1 reports the results of our study. We can draw sev-
eral conclusions from this study. First, loose speak is ubiqui-
tous, occurring in virtually every question we analyzed. Sec-
ond, loose speak concentrates on a small number of types.
We found common types of loose speak, some of which oc-
cur as frequently as 87% of the time.

Interpreting loose speak
Algorithm Overview
The input to our loose-speak interpreter is a ques-
tion encoding, which may or may not contain loose
speak, and the output is the correct encoding of
the question. The question encoding is a concep-
tual graph consisting of a set of labeled edges of the
form: &���6$(+8 '�2 * ��� ��:$:���47'$� ��*-,.6$(�� � ,.� ��')4%������:$:$0 . We call
��6$(+89' 2 * ������:;: the head and

� ,.� ��';47������:;: the tail. Queries
are encoded as a special type of edge in which the tail is
unknown (denoted: “ � ”). Figure 1 is an example of such
encoding.

The interpreter makes multiple passes through the set of
edges. Each pass is equivalent to traversing the graph. Dur-
ing each pass, the interpreter applies a “test & repair” func-
tion to every edge. The interpreter stops when a pass is com-
pleted in which all the edges pass the test, so none is re-

paired. The order of traversal does not matter because (other
than “overly generic concept” type of loose speak) the in-
terpreter does not alter the original head or tail. Rather, the
interpretation of each edge is a series of connecting edges,
and the interpretation of one edge does not affect the inter-
pretation of other edges. For “overly generic concept” type
of loose speak, the interpreter replaces the head or the tail of
an edge with a more specific class, and a simple backtrack-
ing algorithm is used in case the more specific class conflicts
with edges connected to the original edge.

Test & repair

During the traversal of the conceptual graph encoding the
question, each edge is tested and repaired. Figure 2 shows
the algorithm for the test and repair procedure. The test de-
termines whether the edge contains loose speak. Because
the correct encoding is unknown, the test uses this heuristic:

If the edge violates structural constraints, then it must
contain loose speak (because correct encodings are
consistent with the structure of the knowledge base).

The only structural constraints used by the interpreter are
based on the domain and range of the relation in an edge.
Specifically, for an edge &������ 4�� � �$0 , the domain of 4 must
subsume � � , and the range of 4 must subsume � � .

Although the constraint check returns many true posi-
tive cases, it also may return many false negatives. The
constraint check is complemented by a resemblance check.
The resemblance check is based on the hypothesis that if
the input does not resemble any existing knowledge, then
it may contain loose speak because studies have shown that
“one frequently repeats similar versions of general theories”
(Clark, Thompson, & Porter 2000). Even though the knowl-
edge resemblance test may return many false positives, it
returns many true negatives as well.

The resemblance test, applied to an edge, is implemented
as follows. If the edge represents a query (i.e. the tail of the
edge is “?”), the edge passes the test only if the knowledge
base can compute one or more fillers for the tail. (This is
the basic question-answering function of a knowledge base.)
Otherwise, the edge & ��'$� �
	���4��
� � ,.��	90 passes the test only
if the knowledge base contains an edge &���'$� ������� 4��
� � ,.����� 0 ,
such that ��'$� � ��� subsumes or is subsumed by ��'$� � 	 and
� � ,-� ��� subsumes or is subsumed by � � ,.� 	 .

After loose speak has been detected in a edge, it is
interpreted by searching the knowledge base for similar
edges. The search is conducted by two breadth-first pro-
cedures: search_head and search_tail. Given the
edge & � � � 4�� � � 0 , the search_head function starts at � � ,
traverses all semantic relations, such as “has-part”, “agent”
and “subclasses”, and stops when a suitable instance is
found. An instance, �"� , is suitable if the triple &��"��� 4�� � � 0
does not contain loose speak. The successful search path is
returned as the interpretation for the input.

To avoid unintended interpretations, the semantic rela-
tions do not include “superclasses” relation. If both “sub-
classes” and “superclasses” are included in the search path,
then any concept can be found from � � by climbing up and

Aqueous−Solution

Solution

subclass−of

Chemical
base

has−basic−structural−unit

Chemical−Entity

volume

Volume−Value

Halo KB

Figure 3: The application of “search-head” function on the
edge &���� �	';6 � : - � 67� �	*-,-6$(, �9��:;' , ������0 . The function
is called because this edge does not resemble any existing
path in the knowledge base. The loose speak is resolved by
breadth-first search from ��� � '$6 � : - � 67� � *-,.6$(, along all the
semantic relations such as ��67� � � ' , � ��:;' , : ��� 89� ��:$:;'7: , until
a ����� or a superclass or subclass of � ��� , is found. In this
example, the search stops at depth 2, and returns the new
edge &���� �	';6 � : - � 67� �	*-,-6$(, �9��:;' , & � � '�� ,.89��� , � ��: - � ��:),.8 -
:;*-4 � 89*	� 47��� - � (,.* , ����� 0 0 because ����� is a superclass of
� � ' � ,.89��� - ��(+*-,.*-/ . The bold line in the above figure shows
how the result is found.

down the taxonomy, and a large number of spurious inter-
pretations may be returned for the given input.

If multiple suitable instances are found, then they are or-
dered based on their distances from � � . Either users are
prompted to choose one correct interpretation from the list
of results or the first result is automatically chosen.

If the original input has a domain constraint violation and
no result is found, then an additional search is performed.
The additional breadth-first search starts from an instance of
the domain class, and it searches along all semantic relations
until � � is found.

The search_tail function is implemented similarly as
a search that starts at � � .

The search is conducted in a breadth-first manner for two
reasons. First, because each occurrence of loose speak is
a naı̈ve encoding that has a limited number of differences
from its correct encoding, a correct interpretation should be
closely related to the naı̈ve input. A very deep search will
only return encodings that are not closely related to the in-
put. If only a shallow search is needed, then a brute force
search such as breadth-first search is sufficient. The maxi-
mum search depth in our system is set 4. Second, a breadth-
first search returns the shallowest interpretation without ex-
amining the whole search space. Such breadth-first searches
have been shown to be effective in interpreting noun com-
pound type of loose speak given a top level ontology that
contains the fundamental axioms (Fan, Barker, & Porter
2003).

If no interpretation is found when the depth cutoff is
reached, the interpreter returns the original encoding. In ad-
dition, if loose speak was detected by a constraint violation,
the interpreter returns an error report.

?

base

Aqueous−Solution

HCl

Chemical

has−basic−structural−unit

conductivity

Figure 4: The interpretation of the query in Figure 1 in the
context of the chemistry knowledge base built for Project
Halo. Notice that � ��� is replaced by � � '�� ,-8 � � , and
the 896$(����	89*-,	� ,-*-/ query has been moved from ��� �	'$6 �	: -
� 67� �	*-,.6$(to the � ��:)' of ��� �	'$6 �	: - � 67� �	*-,.6$(to conform to
the structure of the knowledge base.

This algorithm applies to all types of loose
speak, even noun compounds. A noun compound
is represented as an unlabeled edge of the form:
& � 6 � ,
	 ,.';4%��� ��:$:���(,.� � ��'$� ����� ��:$:$0 . Because there is
no unlabeled edges in the knowledge base, noun compounds
will fail the resemblance test, and consequently trigger
search_head and search_tail.

Example

For the example in figure 1, the loose-speak interpreter tra-
verses the query graph to test & repair each edge. The edge
&���� � '$6 � : - � 67� � *-,.6$(, � ��:;' , ����� 0 is tested first. The do-
main of � ��:)' is constrained to be a � 67� � *-,.6$(, and the range
is constrained to be a � � ,-(� . Both constraints are satis-
fied because ��� �	'$6 �	: - � 67� �	*-,.6$(is a subclass of � 67� �	*-,.6$(
and � ��� is a subclass of � � ,-(� . However, there is no
path in the knowledge base that resembles the edge, so the
search-head function is called to search from the head,
��� �	';6 � : - � 67� �	*-,-6$(. The search returns � � '�� ,.89��� , whose� ��: - �9��:),.8 - :;*-4��	89*	� 47� � - � (,.* is � � '�� ,.89��� - ��(+*-,.*-/ (the su-
perclass of �����). See Figure 3. Consequently, the edge
is interpreted as &���� �	'$6 �	: - � 67� �	*-,-6$(, � ��:;' , � � '�� ,.89���10 .

The edge &
��� �	'$6 �	: - � 67� �	*-,.6$(, 896$(��
�	89*-,	� ,.*-/ , � 0 is then
tested for loose speak. No constraints are violated, but the
query does not yield any result. This prompts a breadth-
first search from ��� �	';6 � : - � 67� �	*-,-6$(. This search stops
at � � '�� ,.89��� , the � ��:;' of ��� �	'$6 �	: - � 67� �	*-,.6$(, because it
has a conductivity value and is a suitable replacement for
��� �	';6 � : - � 67� �	*-,-6$(in the original edge.

Figure 4 shows the final interpretation of the query graph.
Notice that the solute of the ��� �	'$6 �	: - � 67� �	*-,.6$(is re-
placed by � � '�� ,.89��� , and the 8 6$(����	89*-,	� ,.*-/ query has been
moved from ��� � '$6 � : - � 67� � *-,.6$(to � � '�� ,-8 � � . After these
changes, the two types of loose speak, metonymy and ag-
gregate, are resolved in the query graph and the encoding is
correctly aligned with the structure of the knowledge base.

Experiment
To evaluate our approach, we asked several users to encode
a set of questions, and compared their naı̈ve encodings with
the corresponding output from the loose-speak interpreter.

KE Chemistry Experiment Questions Correct Interpreter Interpreter
Experience Background length encoded encodings precision recall

User A 0.5 yr medium 10.5 hr 47 (94%) 3 (6.4%) 97.4% 90.5%
User B 17 yrs weak 9.95 hr 48 (96%) 4 (8.3%) 100% 90.7%
User C 0.25 yr medium 10 hr 44 (88%) 5 (11.4%) 96.8% 87.8%

Table 2: The evaluation results of the loose-speak interpreter. The first two columns show users’ backgrounds in knowledge
engineering and chemistry. The next three columns show users’ performance: the time required to finish the experiment; the
number of questions encoded; and the number of correct encodings. The last two columns measure the interpreter’s performance
in term of precision recall. As the data have shown, despite different backgrounds, all users were able to encode most of
questions, the encodings had many occurrences of loose speak, the interpreter was able to correct most encodings, and to do so
with high precision.

Setup
For this experiment we used a set of fifty multiple choice
questions from various mock AP chemistry tests. This set
was compiled by a chemist (anonymous to us), who also
provided the answers for the questions. This data set is dis-
tinct from the two sets of questions used in the frequency
study, and it is distinct from the training data that we used to
refine the interpreter.

We recruited three users, with varying backgrounds in
knowledge engineering and chemistry, to pose questions to
the chemistry knowledge base built for Project Halo. All
three were familiar with KM (Porter & Clark 1998), the
knowledge representation language used in the experiment,
but none was familiar with the chemistry knowledge base
and its structure. Their knowledge engineering experience
varied from a few months to many years. Their chem-
istry backgrounds varied from weak (high school chemistry
decades ago) to medium (college chemistry years ago).

The users were given a short (three page) tutorial on en-
coding questions. It contains two sections: format and vo-
cabulary. The format section explained that question encod-
ings should have a context part, which gives the contextual
information of a question, and an output part, which spec-
ifies the value being sought. The format section illustrates
this with three examples. The vocabulary section lists com-
monly used classes and slots in the chemistry knowledge
base, and their corresponding chemistry terms. Users were
also pointed to a web page containing the complete listing
of slots and classes, and they were allowed to take as much
time as necessary to complete the questions. These brief in-
structions were not a complete tutorial on using the knowl-
edge base, as evidenced by the high rate of loose speak in
the users’ encodings of questions.

We used metrics of precision and recall to evaluate the
interpreter’s performance. Precision and recall are defined
as follows (Jurafsky & Martin 2000):

� 47'$8 , : ,.6$(��
� 6 	�8 6$4;47'$89* � (:�� ';4%: ��, ��';(� / :)/�:;*.'��

� 6 	 � (:�� ';4%: ��, ��';(� / :)/�:;*.'��
� '$89��� ���

� 6 	�8 6$4;47'$89* � (:�� ';4%: ��, ��';(� / :)/�:;*.'��
.67.��� � 6 	�2 6%:;:), � ��' 896$4$47'$89* � (:�� ';4%:

For our experiment, the correct answers are the number
of question encodings that are interpreted correctly. An-

swers given by the system are the number of question en-
codings for which the interpreter detects loose speak and
finds an interpretation. Finally, all possible correct answers
are the number of all the question encodings that contain
loose speak. An interpretation is determined to be correct if
it completely aligns with the chemistry knowledge base and
conveys the intended semantics of the question encoding as
judged by us. Precision estimates the likelihood of a cor-
rect interpretation when an interpretation is found; recall is
a measurement of coverage.

Our experiment does not include noun compound type of
loose speak for two reasons. First, the effectiveness of the in-
terpreter on noun compounds has been evaluated separately
in (Fan, Barker, & Porter 2003). Second, although noun
compounds, such as “carbon monoxide”, occur frequently in
chemistry questions, their interpretations do not require in-
ferring a variety of semantic relations, therefore chemistry is
an unrepresentative domain for evaluating noun compound
interpretation.

For this experiment, we ran the interpreter in “batch
mode”. If the interpreter found multiple interpretations for
any question, we treated the first interpretation as its sole
response.

Data analysis and discussion

The experimental results are shown in table 2. The first two
columns give the users’ background in knowledge engineer-
ing and in chemistry; the next three columns record the time
it took users to encode the test questions, the number of
questions they were able to encode, and the percentages of
correct encodings. The last two columns measure how well
the interpreter performed.

Based on the data, we can draw three conclusions:

1. Loose speak is very common – just as we found in our
preliminary study (described in the “Types of loose speak
and their frequencies” section). Only 4% of the encod-
ings on average contain no loose speak. This underscores
the importance of the loose-speak interpreter for building
useful knowledge-based question-answering systems.

2. The loose-speak interpreter works well. As shown in Ta-
ble 2, the precision of the interpreter is above 95%, and
the recall is around 90%. This shows the search algo-
rithm we used is suitable for interpreting naı̈ve encodings.

In addition we found that 54% of the loose speak occur-
rences are detected by constraint violations, and the rest
by the resemblance check. This suggests both checks are
important for detecting loose speak.

3. The loose-speak interpreter significantly assists novice
users in posing questions. The results show that there is
no clear correlation between users’ knowledge engineer-
ing experience and the number of questions they are able
to encode. Users with little knowledge engineering ex-
perience were able to encode large percentages of ques-
tions quickly. This is good news; it suggests that with
the burden of loose-speak interpretation lifted, knowledge
engineering is no longer a significant hurdle to question-
answering. Users can concentrate on the content of ques-
tions instead of knowledge engineering details.

Related work
Metonymy is one type of loose speak that has been stud-
ied extensively in the computational linguistic community.
There are two basic approaches to metonymy interpretation.
First, there are systems that interpret metonymic expressions
based on a set of rules (Weischedel & Sondheimer 1983;
Grosz et al. 1987; Lytinen, Burridge, & Kirtner 1992; Fass
1997). These rules contain explicit knowledge about how
to interpret some types of metonymy, and they are matched
against inputs to produce interpretations. This approach
is easy to implement because no large knowledge base is
required, but it can handle only a fixed set of metonymy
types. Second, there are systems that interpret metonymic
expressions based on knowledge-base search (Browse 1978;
Markert & Hahn 1997; Harabagiu 1998). Unlike the rule-
based systems, they do not contain explicit knowledge of
different types of metonymy, instead they rely on searches
in a general purpose knowledge base. Our loose speak in-
terpreter is one of them. Although this approach has no
limit on the types of metonymy it can handle, the demand
for an extensive knowledge base makes it difficult to imple-
ment. Because our interpreter is used for knowledge-based
question-answering systems, it avoids this cost by operating
on an existing knowledge-base.

Another closely related linguistic phenomenon is the use
of generics, a technique called “genericity”. The study of
genericity deals with how to distinguish between classes and
instances (Carlson & Pelletier 1995). For example, “potato”
refers to the class of potato and an instance of potato in the
following two sentences.

a. The potato was first cultivated in South America.
b. The potato was rotten.

This is similar to the aggregate type of loose speak be-
cause an individual is used to refer to an aggregate, the class.
However aggregate type of loose speak differs from gener-
icity when the aggregate being referred to is not the whole
class of concepts. For example, in figure 1, � ��� refers to
a particular set of molecules that is dissolved in the solu-
tion, not the complete class of ����� molecules. Most of the
genericity detection methods are either syntax based or re-
quire human judgment. They are not suitable for automatic

interpretation of loose speak in a knowledge-rich environ-
ment such as question-answering.

Techniques similar to knowledge-base search are used for
other tasks, such as knowledge acquisition, in addition to
loose-speak interpretation (Davis 1979; Kim & Gil 1999;
Blythe 2001). Many of these systems build explicit meta-
knowledge representation, such as the tree of rule models
in (Davis 1979), and use such meta-knowledge to guide
knowledge acquisition. Our loose-speak interpreter does
not have meta-knowledge representations, instead it uses
generic search algorithm directly on the knowledge base it-
self to find useful knowledge to assist question-answering.

Conclusion
In this paper, we defined loose speak as the part of a question
encoding that misaligns with existing knowledge base struc-
tures, and we presented a system that would interpret loose
speak automatically. Our preliminary evaluation shows that
loose speak is common in question encodings, and that
our interpreter can detect and interpret most occurrences of
loose speak correctly. Without the burden of manually inter-
preting every occurrence of loose speak, users were able to
pose a good percentage of questions quickly.

In the near future, we will expand the investigation of
loose speak into other aspects of knowledge base interac-
tion, such as knowledge acquisition, and evaluate its impact.

References
Angele, J.; Moench, E.; Oppermann, H.; Staab, S.; and
Wenke, D. 2003. Ontology-based query and answering in
chemistry: Ontonova@project halo. In Proceedings of 2nd
International Semantic Web Conference.
Barker, K.; Chaw, S. Y.; Fan, J.; Porter, B.; Tecuci, D.; Yeh,
P.; Chaudhri, V. K.; Israel, D.; Mishra, S.; Romero, P.; and
Clark, P. E. 2004. A question-answering system for AP
chemistry: Assessing KR&R technologies. In Principles
of Knowledge Representation and Reasoning: Proceedings
of the Ninth International Conference.
Blythe, J. 2001. Integrating expectations from different
sources to help end users acquire procedural knowledge. In
Proceedings of Seventeenth International Joint Conference
on Artificial Intelligence.
Browse, R. A. 1978. Knowledge identification and
metaphor. In Proceedings of the 2nd Biennial Conferene
of the Canadian Society for Computational Studies of In-
telligence (CSCSI-2), 48–54.
Buchanan, B. G., and Shortliffe, E. 1984. Rule-Based
Expert Systems: The MYCIN Experiments of the Stanford
Heuristic Programming Project. Reading, MA: Addison-
Wesley.
Carlson, G. N., and Pelletier, F. J., eds. 1995. The Generic
Book. Chicago: University of Chicago Press.
Clark, P.; Barker, K.; Porter, B.; Chaudhri, V.; Mishra, S.;
and Thomere, J. 2003. Enabling domain experts to con-
vey questions to a machine: a modified, template-based
approach. In Proceedings of Second International Con-
ference on Knowledge Capture.

Clark, P.; Thompson, J.; and Porter, B. 2000. Knowledge
patterns. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Seventh International Con-
ference.
Davis, R. 1979. Interactive transfer of expertise: Ac-
quisition of new inference rules. Artificial Intelligence
12(2):121 – 157.
Fan, J.; Barker, K.; and Porter, B. 2003. The knowledge
required to interpret noun compounds. In Proceedings of
Eighteenth International Joint Conference on Artificial In-
telligence.
Fan, J.; Barker, K.; Porter, B.; and Clark, P. 2001. Repre-
senting roles and purpose. In Proceedings of First Interna-
tional Conference on Knowledge Capture.
Fass, D. 1997. Processing Metonymy and Metaphor.
Greenwich, Connecticut: Ablex Publishing.
Grosz, B. J.; Appelt, D. E.; Martin, P. A.; and Pereira,
F. C. N. 1987. TEAM: An experiment in the design of
transportable naturual-language interfaces. Artificial Intel-
ligence 32(2):173–243.
Harabagiu, S. 1998. Deriving metonymic coercions
from wordnet. In Proceedings of the Workshop on Us-
age of WordNet in Natural Language Processing Systems,
COLING-ACL, 142–148.
Jurafsky, D., and Martin, J. 2000. Speech and Language
Processing: An Introduction to Natural Language Process-
ing Computational Linguistics, and Speech Recognition.
New Jersey: Prentice Hall.
Kim, J., and Gil, Y. 1999. Deriving expectations to guide
knowledge-base creation. In Proceedings of Sixteenth Na-
tional Conference on Artificial Intelligence. AAAI Press.
Lakoff, G., and Johnson, M. 1980. Metaphors We Live By.
Chicago: University of Chicago Press.
Lytinen, S. L.; Burridge, R. R.; and Kirtner, J. D. 1992. The
role of literal meaning in the comprehension of non-literal
constructions. Computational intelligence 8(3):416–432.
Markert, K., and Hahn, U. 1997. On the interaction of
metonymies and anaphora. In Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence.
Porter, B., and Clark, P. 1998. KM - the
knowledge machine: Reference manual. Tech-
nical report, University of Texas at Austin.
http://www.cs.utexas.edu/users/mfkb/km.html.
Vulcan Inc. 2003. Project Halo. http://projecthalo.com.
Weischedel, R. M., and Sondheimer, N. J. 1983. Meta-
rules as a basis for processing ill-formed input. American
Journal of Computational Linguistics 9(3-4):161–177.

